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1 Introduction

Modeling and forecasting of stock market return volatility has received unprecedented attention in

the academic literature over the past two decades. The three most striking empirical regularities

to emerge from this burgeon literature arguably concern: (i) the highly persistent own dynamic

dependencies in the volatility;1 (ii) the existence of a typically positive volatility risk premium

as manifested by the variance swap rate exceeding the corresponding expected future volatility;2

(iii) the apparent asymmetry in the lead-lag relationship between returns and volatility.3 Despite

these now well-documented and generally accepted empirical facts, no formal theoretical model yet

exists for explaining all of these features within a coherent economic framework. This paper fills

that void by developing an entirely self-contained equilibrium based explanation for the observed

asymmetry and volatility risk-premium. The model is based on the Epstein-Zin-Weil recursive

preference structure and is cast in continuous-time, thereby allowing for a direct assessment of it’s

ability to match the qualitative features of the data across different sampling frequencies, including

intraday cross-correlation patterns as well as longer-run dynamic dependencies.

The specific contributions of the paper are twofold. First, from an empirical perspective, we

use ultra high-frequency 5-minute data on both returns and volatility. Our use of the CBOE VIX

volatility index, constructed to match to the risk neutral expectation of the forward integrated

variance, together with the actual S&P 500 index affords a much sharper view of the dynamic

asymmetries and cross-correlations between returns and volatility than hitherto available in the

literature.4 Intuitively, the higher resolution traces directly to the fact that correlations are second

moment statistics, which are well known to be much more accurately determined from intraday

1The historically low volatility in the years preceding the Fall 2008 financial crises and the subsequent sustained
heightened volatility provide anecdotal evidence for this idea.

2The preponderance of options traders ”selling” volatility to gain the premium indirectly supports the notion
of volatility carrying a risk premium.

3Again, the heightened volatility following Russia’s default and the LTCM debacle in September 1998, the
relatively low volatility accompanying the rapid run-up in prices during the tech bubble, as well as the recent sharp
increase in volatility accompanying the Fall 2008 financial crises and sharp market declines are all in line with this
asymmetry.

4To the best of our knowledge, no clear depictions of the dynamic cross-correlations, such those in Figure 2
below, currently exists in the literature. Using 5-minute returns alone, Bollerslev et al. (2006) have previously
adduced a negative relationship between the magnitude and the sign of contemporaneous and lagged returns.
Unlike the VIX2), however, the absolute returns provide extremely noisy measures of the local volatility, and in
turn do not afford a clear picture of the forward positive relationship essential to the risk-based explanation of the
present paper.
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high-frequency, as opposed to say daily, data. Second, from a theoretical perspective, we set

forth a continuous time model, albeit highly stylized, that uses the shadow prices implied by

an optimizing economic agent operating within an endowment environment to help understand

the three striking regularities noted above — hence the term “equilibrium.” The model fills the

above-mentioned void in the literature, and stands in direct contrast to the less formal “reduced

form” explanations proffered for some of the observed regularities, most notably those associated

with the so-called “leverage effect” first observed by Black (1976) and Christie (1982). Working in

continuous time presents a number of new theoretical challenges, but is essential to avoid internal

timing inconsistencies in regards to the dynamic dependencies in the VIX, which is formally

defined as square-root of the expectation of the continuously integrated forward variance. Even

though our economic, or “equilibrium,” model is too stylized to be directly estimable, it’s general

qualitative predictions are rich enough to be compared with the documented empirical patterns,

thus making the model and the basic underlying economic mechanisms refutable.

Before discussing the model any further, it is instructive to illustrate the new empirical reg-

ularities that we seek to explain. To that end, the top most solid line in Figure 1 shows the

sample autocorrelations for the aggregate market volatility out to a lag length of ninety days. The

calculations are based on daily data for the squared options-implied volatility index VIX over the

past two decades; further details concerning the data and different volatility measures are given

in Section 4. The autocorrelations in Figure 1 decay at a very slow rate and remain numerically

large and statistically significant for all lags. Consistent with these highly persistent own dynamic

dependencies in the volatility, it is now widely accepted that the typical rate of decay is so slow as

to be best described by a fractionally integrated long-memory type process; for some of the earliest

empirical evidence along these lines see, e.g., Robinson (1991), Ding et al. (1993) and Baillie et

al. (1996).

The VIX index in effect represents the market’s expectation of the cumulative variation of the

S&P 500 index over the next month plus any premium for bearing the corresponding volatility risk.5

Isolating the variance risk premium, the second line in Figure 1 shows the daily autocorrelations for

the difference between the squared VIX index and the one-month-ahead forecasts from a simple

5The variance risk premium is formally defined as the difference between the expected future variation under
the risk-neutral and actual probability measures.
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Figure 1 Sample Autocorrelations
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The top most solid line shows the sample autocorrelations for the V IX2 volatility index to a lag length of 90 days. The lower line

shows the sample autocorrelations for the variance risk premium. The calculations are based on daily data and variable definitions as

described in more detail in Section 4.1.

reduced form time series model for the actually observed daily realized variation in the S&P

500 index; further details concerning the high-frequency based realized volatility series and the

construction of the model forecasts are again deferred to Section 4. Although the autocorrelations

still indicate positive own dynamic dependencies for up to several weeks, the premium is clearly

not as persistent as the volatility process itself. Again, this is not a new empirical result per se.

For instance, the analysis in Bollerslev et al. (2011) also supports the idea of relatively fast mean

reversion in the volatility risk premium, as does the empirical evidence of fractional co-integration

between implied and realized volatility presented by, e.g., Bandi and Perron (2006) and Nielsen

(2007).6

Next, in order to highlight the aforemention return-volatility asymmetry, the first panel in

Figure 2 plots the cross-correlations between leads and lags of the S&P 500 returns and the squared

options-implied VIX volatility index.7 Bollerslev et al. (2006) have previously demonstrated the

6As noted by a referee, the lower persistence in the variance premium could at least in part be due to an
errors-in-variables type problem created by the use of an estimated forecast proxy in place of the true population
conditional expectation for the squared VIX. However, on implementing the instrumental variables technique
recently developed by Hansen and Lunde (2010) to account for this problem, we find that the robust to measurement
errors autocorrelations differ little from those shown in Figure 1. Further details concerning these results are
available in a web-accessible appendix.

7Note that Figure 2 shows cross correlations between the levels of the variance-related variables because the
expected part of future returns, reflected in the right-hand side of the plots, depends on their levels, not the first
differences or innovations. Both variance related variables are stationary in levels as seen from Figure 1.
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Figure 2 Sample Cross-Correlations
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The top panel shows the sample cross-autocorrelations between the V IX2 and lags and leads of the returns ranging from -22 to 22

days. The bottom panel shows the sample cross-autocorrelations between the variance risk premium and the returns. The calculations

are based on high-frequency five-minute data and and variable definitions as further detailed in Section 4.1.

advantage of using high-frequency intraday returns for more effectively estimating and analyzing

the lead-lag relationship between returns and volatility, using the absolute returns as a proxy for

the latent spot volatility. We follow their lead in the use of high-frequency five-minute observations.

However, instead of proxying the volatility by the absolute returns, we rely on actual observations

on the S&P 500 returns and the VIX volatility index recorded at a five-minute sampling frequency

in calculating the sample cross-correlations for leads and lags ranging up to 22 days, or 1,716 leads

and lags at the five-minute sampling. High-frequency data for the VIX have only recently become

available, so that the cross-autocorrelations depicted in Figure 2 are necessarily based on a shorter

five-year calendar-time span compared to the longer eighteen-year sample of daily observations

used for illustrating the own dynamic dependencies in the previous Figure 1. Nonetheless, the

use of high-frequency data over this shorter sample still reveals a striking negative pattern in the

correlations between the volatility and the lagged returns, lasting for several days. On the other

hand, the correlations between the volatility and the future returns are all positive, albeit closer

to zero.
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This systematic pattern in the high-frequency based cross-correlations between returns and

volatility is directly in line with the empirical evidence from numerous studies based on coarser

lower frequency daily data and specific parametric models, including the early influential work

by French et al. (1987), Schwert (1990), Nelson (1991), Glosten et al. (1993) and Campbell and

Hentschell (1992). Also, following Black (1976), the left part of Figure 2 and the negative correla-

tions between lagged returns and current volatility is now commonly referred to in the literature as

a “leverage effect,” while the right part of the figure and the positive correlations between current

volatility and future returns has been termed a “volatility feedback effect.”8

Further relating our empirical findings to the existing literature, it is worth noting that while

numerically small compared to the estimates reported in some of the above mentioned studies based

on coarser daily data, the magnitudes of the cross-correlations in Figure 2 are frequency-dependent.

As such, they only appear misleadingly low. For instance, taking into account the differences in

sampling frequency, the−0.025 correlation of the squared VIX with the contemporaneous 5-minute

return translates into a correlation of roughly −0.20 with daily returns.

Taking the analysis one step further, the bottom panel in Figure 2 shows the cross-correlations

between the five-minute S&P 500 returns and a more modern volatility type measure, the variance

risk premium, where as before the variance risk premium is defined as the difference between

the squared VIX index and the corresponding forecast constructed from a simple reduced form

time series model for the daily realized volatilities. Comparing this plot to the return-volatility

dependencies in the top panel, the signs of the cross-correlations generally coincide. However,

there is a noticeable faster decay toward zero in the magnitude of the cross-correlations between

the variance risk premium and the lagged returns compared to the decay in the cross-correlations

between the squared VIX index itself and the lagged returns.9 This difference closely mirrors the

difference in the shape and the rate of decay in the standard sample autocorrelations for the two

daily volatility series depicted in Figure 1.

8It is now widely agreed that the negative correlations between lagged returns and current volatility have little
if anything to do with changes in financial leverage; see, e.g., Figlewski and Wang (2002). In fact, the two effects
may be viewed as flip sides of the same coin. Quoting from Campbell et al. (1997) chapter 12: “If expected stock
returns increases when volatility increases, and if expected dividends are unchanged, then stock prices should fall
when volatility increases.”

9Bollerslev and Zhou (2006) have previously noted that the return-volatility asymmetry tend to be stronger for
implied than for realized volatilities.
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The key empirical return-volatility patterns and dynamic dependencies illustrated in the two

figures is consistent with the idea that volatility carries a risk premium. Standard equilibrium

based models build around a representative agent with time-separable utility rules out priced

volatility risk. Instead, following the literature on so-called long-run risk models pioneered by

Bansal and Yaron (2004), we will here assume a representative agent with Epstein-Zin-Weil pref-

erences, tantamount to a preference for early resolution of uncertainty. Our model is cast in

continuous time, thereby avoiding any assumptions about the decision interval of the agent. The

Epstein-Zin-Weil preference structure was first employed in a continuous-time asset pricing set-

ting by Duffie and Epstein (1992a). In this situation the Stochastic Discount Factor (SDF) will

depend not only on the consumption growth rate, but also on the future investment opportuni-

ties.10 Consequently, the aggregate market return will be a function of the expected growth in

the economy, as in the traditional time-separable utility case, as well as the uncertainty about

the future economic growth; see, e.g., Campbell (1996). Intuitively, this explains why investors

may be willing to pay an uncertainty premium, and in turn why the VIX may differ from the

corresponding actual return volatility, and why the corresponding variance risk premium may act

as a separately priced risk factor.

The same mechanism involving time varying economic uncertainty and a preference for early

resolution of uncertainty also underlies the model of Bollerslev et al. (2009), which parallels the

present study in allowing the volatility-of-volatility in the economy, or the economic uncertainty,

to be determined by its own separate stochastic process. The new equilibrium model developed

here is also related to the long-run risk model of Drechsler and Yaron (2011), in which the expected

growth rate in consumption and the volatility of consumption growth are both allowed to “jump.”11

The present paper extends both of these studies by considering the cross-correlation between

volatility and returns at all leads and lags. Of course, as noted above, it has long been recognized

from reduced form analysis (e.g., Campbell et al. (1997) chapter 12) that the price of volatility

risk must be negative, in turn implying a negative contemporaneous correlation between return

10In contrast to the expression for the SDF involving the compensator function derived in Duffie and Epstein
(1992a), we find it more convenient to work with the discount factor expressed in terms of the consumption growth
rate and the market return.

11A related long-run risk model in which the economic uncertainty, or the volatility of consumption growth, is
allowed to “jump” in continuous-time has also recently been explored by Eraker (2008), in an attempt to explain
the existence of a (on average) positive volatility risk premium.

6



and volatility. This negative correlation was, to the best of our knowledge, first placed within

a structural equilibrium framework based on Epstein-Zin-Weil preferences by Bansal and Yaron

(2004) (see their equation 12 and surrounding discussion). With the noticeable exceptions of

Bollerslev et al. (2009) and Drechsler and Yaron (2011), however, other structural formulations

generally presume overly restrictive dynamics for the evolution of economic uncertainty, which

imply a counterfactual constant variance risk premium that simply cannot explain the rich cross-

correlation patterns seen in Figure 2.

Also, in contrast to the discrete-time formulations employed in most previous studies, Bollerslev

et al. (2009) and Drechsler and Yaron (2011) both included, the continuous-time formulation

adopted here has the distinct advantage of allowing for the calculation of internally consistent

model implications across all sampling frequencies and return horizons. Of course, as already

noted, the new model developed here also accommodates much richer and empirically realistic

longer-run volatility dependencies, including the possibility of fractional integration. Moreover, our

continuous-time setup permits an internally consistent definition of the risk-neutral expectations

and the VIX volatility index, thereby avoiding the inherent problem in discrete-time asset pricing

models with GARCH type errors that the (conditional) variance is known one period in advance

and therefore formally cannot generate a variance premium.

The new model develop below is also related to the multifractal approach put forth in the series

of papers by Calvet and Fisher (2007, 2008). In particular, on assuming that the dividend growth

volatility follows a multifractal process, as in Calvet and Fisher (2002), along with an Epstein-

Zin-Weil type representative agent, as in the model developed here, the equilibrium models in

Calvet and Fisher (2007, 2008) are also able to generate endogenous volatility feedback effects and

long-memory type features in the volatility, along with negative skewness in the returns due to the

impact of learning. None of these former studies, however, have considered the implications of the

multifractal setup and assumptions for the risk-neutral expectation of the volatility as embedded

within the VIX, nor the dynamic dependencies in the corresponding volatility risk premium.

Other recent studies concerned with the equilibrium pricing of volatility risk include Gabaix

(2010) and Wachter (2010), both of whom analyze the implications of rare disasters, and Lettau et

al. (2009) who emphasize the role of low frequency movements in macroeconomic uncertainty for

explaining low frequency multi-year movements in stock market valuations. Several studies more
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squarely rooted in the options pricing literature have also explored the equilibrium implications of

allowing for richer volatility dynamics and non-standard preference structures; see, e.g., the recent

papers by Benzoni et al. (2006), Eraker and Shaliastovich (2008) and Santa-Clara and Yan (2010)

and the references therein.

The empirical focus of the present paper and the use of high-frequency intraday data for the

S&P 500 returns and the VIX are distinctly different from all of these previous studies, and to the

best of our knowledge, no other coherent economic mechanism for explaining all of the dynamic

dependencies and asymmetries in the volatility and volatility risk premium depicted in Figures 1

and 2 is yet available in the literature. In order to focus on the volatility channels that we seek to

illuminate, the model is deliberately kept as simple as possible, and thus would not be expected

to “match” all asset pricing moments. Nonetheless, in keeping with the basic setup in Bansal and

Yaron (2004), the general modeling framework is flexible enough to allow for a reasonable “match”

with many of the more “standard” moments as well.

The plan for the rest of the paper is as follows. The new theoretical model is formally defined

and solved in Section 2. This section also briefly discusses a simple calibration for the model

designed to “match” some of the more “standard” asset pricing moments. The equilibrium impli-

cations from an extended long-memory version of the model in regards to the key return-volatility

asymmetries and own dynamic volatility dependencies that we seek to explain are presented in

Section 3. The data used in the construction of the figures discussed above and the model’s ability

to reproduce these basic empirical features are the subject of Section 4. Section 5 concludes. Most

of the mathematical proofs are deferred to two Appendixes, as are further details concerning the

stylized calibration alluded to in Section 2.

2 Volatility in Equilibrium

The classic continuous-time Intertemporal CAPM of Merton (1973) is often used to justify the ex-

istence of a volatility risk premium. However, this model is inconsistent with observed long-range

volatility dependence as seen in Figure 1 and is incapable of explaining the dynamic leverage effect

and asymmetric return-volatility dependencies shown in Figure 2. The continuous-time endow-

ment economy developed here instead builds on the discrete-time long-run risk model pioneered
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by Bansal and Yaron (2004). We begin by describing an initial continuous-time model setup and

solution under short-memory Markov dynamics. We next validate its predictions for standard

variables via a simple calibration. We also show how it can explain the dynamic asymmetries,

but fails on matching long-range volatility dependence. We subsequently show how to adjust the

model to incorporate empirically relevant long-memory dependencies, while preserving the key

return/volatility implications of the initial model.

2.1 Initial Model Setup and Assumptions

Let the local geometric growth rate of consumption Ct in the economy be denoted by gt ≡ dCt

Ct
,

which we assume follows the continuous-time process

gt = (µg + xt)dt + σg,tdW c
t . (1)

Here µg denotes the constant long-run mean growth rate, xt is the mean-zero stochastic component

of consumption growth, σg,t refers to economic uncertainty, i.e., the conditional volatility of the

growth rate, and W c
t is a standard Wiener process. The stochastic growth component follows the

standard dynamics

dxt = − κxxtdt + σxdW x
t , (2)

where κx > 0, and W x
t is a standard Wiener process independent of W c

t . For small κx this is a

long-run risk type specification, but we abstract from stochastic volatility of consumption growth

itself. We also assume a dividend asset with dividend growth dynamics (dt = dDt/Dt),

dt = (µd + φxxt)dt + φσσg,tdW c
t + φσxdW x

t + σd dW d
t , (3)

where µd refers to the unconditional mean dividend growth rate, the φ’s reflect the dividend’s

exposures to the consumption risk factors, and the dividend growth innovation volatility σd is

assumed to be constant (non-stochastic) for simplicity. Importantly, we assume that the volatility

dynamics in the economy are governed by the continuous-time affine processes,

dσ2
g,t = κσ(µσ − σ2

t )dt +
√

qtdW σ
t , (4)

dqt = κq(µq − qt)dt + ϕq
√

qtdW q
t , (5)
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where the two Wiener processes W σ
t and W q

t are independent and jointly independent of W c
t and

W x
t , and the parameters satisfy the non-negativity restrictions µσ > 0, µq > 0, κσ > 0, κq > 0,

and ϕq > 0.12 The stochastic volatility process σ2
g,t represents time-varying economic uncertainty

in consumption growth, with the volatility-of-volatility process qt in effect inducing an additional

source of temporal variation in that same process.13

We assume that the representative agent’s consumption and investment decisions are based

on the maximization of Epstein-Zin-Weil recursive preferences. As formally shown in Appendix

A, this implies the following equilibrium relationship between the inter-temporal marginal rate of

substitution, Mt, consumption, Ct, and the cumulated return on the aggregate wealth portfolio,

Rt,

d log Mt +
θ

ψ
d log Ct + (1− θ)d log Rt = −ρθdt, (6)

where ρ denotes the instantaneous subjective discount factor, ψ equals the inter-temporal elasticity

of substitution, and the parameter θ is defined by

θ ≡ (1− γ)(1− ψ−1)−1, (7)

where γ refers to the coefficient of risk aversion. The expression in equation (6) is naturally

interpreted as the continuous-time version of the discrete-time equilibrium relationship derived in

Epstein and Zin (1991). In the following we will maintain the assumptions that γ > 1 and ψ > 1,

which readily implies that θ < 0.14 Consistent with the empirical regularities discussed in the

introductory section, these specific parameter restrictions ensure, among other things, that asset

prices fall on news of positive volatility shocks and that volatility carries a positive risk premium.

2.2 Initial Model Solution

Let Ψt = Ψ(σ2
g,t , qt , xt) denote the price-dividend ratio, or equivalently the price-consumption or

the wealth-consumption ratio, of the asset that pay the consumption endowment {Ct+s}s∈[0,∞).

12We also assume that µqκq > 0.50ϕ2
q, which ensures positivity of qt, and that µσ is sufficiently large relative to

κσ, so that negativity of σ2
g,t is highly unlikely and the subsequent approximations reasonable.

13Empirical evidence in support of time-varying volatility-of-volatility in consumption growth has recently been
presented in Bollerslev et al. (2009). Alternatively, Drechsler and Yaron (2011) consider a discrete-time model with
“jumps” in volatility (and expected growth rates), in part motivated by estimates reported in the option pricing
literature.

14The assumption that γ > 1 is generally agreed upon. Early estimates by, e.g., Hall (1988) and Campbell and
Mankiw (1989), put ψ < 1, but these results have subsequently been called into question by Bansal and Yaron
(2004) among many others, and we follow the more recent literature in assuming that ψ > 1.
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The equilibrium stochastic differential equation for log(Ψt) involves the reciprocal of Ψ(zt), which

we approximate via Ψ(z)−1 ≈ exp(−log Ψ) − exp(−log Ψ)(log Ψ(z) − log Ψ) = κ0 − κ1 log Ψ(z),

where κ1 > 0.15 Now, conjecturing a solution for log(Ψt) as an affine function of the three state

variables, σ2
g,t, qt, and xt,

log(Ψt) = A0 + Aσσ
2
g,t + Aqqt + Axxt , (8)

and solving for the A coefficients, it follows from Appendix B that

A0 =
−κ0 − ρ + (1− 1

ψ
)µg + Aσµσκσ + Aqµqκq + θA2

xσ2
x

2

κ1

,

Aσ =
−γ(1− 1

ψ
)

2(κσ + κ1)
,

Aq =
κq + κ1 −

√
(κq + κ1)2 − θ2ϕ2

qA
2
σ

θϕ2
q

,

Ax =
1− 1

ψ

κx + κ1

.

The restrictions that γ > 1 and ψ > 1, readily imply that the impact coefficient associated with

both of the volatility state variables are negative; i.e., Aσ < 0 and Aq < 0.16 Or put differently, that

the market falls on positive volatility “news.” From these explicit solutions for the four coefficients

it is now possible to deduce the reduced form expressions for other variables of interest.

In particular, as shown in equation (B.13) in Appendix B, the equilibrium dynamics of the

logarithmic cumulative return process is given by

d log Rd
t = (ρ +

µg

ψ
+

θ(θ − 1)A2
xσ

2
x − ((θ − 1)Axσx + Ad

xσx + φσx)
2

2
− σ2

d

2

+
xt

ψ
− Ad

q(κq + κd
1)qt − (Ad

σ(κσ + κd
1) +

φ2
σ

2
)σ2

g,t)dt (9)

+ φσσg,tdW c
t + (Ad

xσx + φσx)dW x
t + Ad

σ

√
qtdW σ

t + Ad
qϕq

√
qtdW q

t + σddW d
t .

The directional effects of increases in the endowment volatility, σ2
g,t, on the local expected return

are generally ambiguous. However, for sufficiently high levels of risk-aversion γ and inter-temporal

15This approximation plays a similar role to that of the standard Campbell-Shiller discrete-time approximation
and similar expressions have been used in a continuous-time setting by, e.g., Campbell and Viceira (2002).

16The solution for Aq represents one of a pair of roots to a quadratic equation. However, it is the economically
meaningful root as it implies that the premium disappears for ϕq → 0, or when qt is constant, as would be required
by the lack of arbitrage.
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substitution ψ, endowment volatility positively affects the local expected return. Meanwhile, in-

creases in the volatility-of-volatility, qt, unambiguously, increase the local expected return, reflect-

ing the compensation for bearing volatility risk. On the other hand, diffusive-type innovations in

the volatility and the volatility-of-volatility, dW σ
t and dW q

t , both have a negative impact on the

local returns, consistent with a leverage type effect.

To further appreciate the implications of the model, it is instructive to consider the equity

premium derived in equation (B.12),

πr,t ≡ − 1

dt

d
[
Rd,M

]
t

Rd
t Mt

= γφσσ
2
g,t− (θ− 1)(AσA

d
σ +AqA

d
qϕ

2
q)qt− (θ− 1)(AxA

d
xσx +φσx)σx. (10)

The first term, γσ2
g,t, is akin to a classic risk-return tradeoff relationship. It does not represent a

volatility risk premium per se, however, but rather changing prices of consumption risk induced

by the presence of stochastic volatility. Instead, the second term, (1−θ)κ2
1(AσA

d
σ +AqA

d
qϕ

2
q)qt, has

the interpretation of a true volatility risk premium, representing the confounding impact of the

two diffusive-type innovations, dW σ
t and dW q

t . The existence of this true volatility risk premium

depends crucially on the dual assumptions of recursive utility, or θ 6= 1, as volatility would not

otherwise be a priced factor, and time varying volatility-of-volatility, in the form of the qt process.

2.3 Calibration

As a check on the initial model discussed above, we undertook a simple calibration to document

that it is able to match the aggregate set of moments generally agreed upon in the macro-finance

literature. The details are left to Appendix C.

The two main messages of the calibration are as follows. First, our initial model does indeed

give a consistent equilibrium risk-based explanation of the dynamic cross-correlations between

stock market return and volatility. This is evident by comparing the model-implied dynamic cross

dependencies displayed in the right-hand panel of Figure 3 to the observed dependencies seen in

Figure 2. Evidently, the agreement is quite close.17 Second, as seen by contrasting the model-based

autocorrelations in the left-hand panels of Figure 3 to the observed autocorrelations in Figure 1,

the initial model is unable to account for the very slow decay in these that is so widely documented

17Also, the instantaneous correlation between the changes in the V IX2 and the returns implied by the model
calibrated in the Appendix equals -0.418, and as such is entirely consistent with the corresponding numerically
large empirical estimates reported in the extant literature.

12



Figure 3 Calibrated Autocorrelations and Cross Correlations
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The plots are based on the model calibrated in Appendix C. The two left-hand panels show the model-implied autocorrelations for the

V IX2 volatility index and the variance risk premium to a lag length of 90 days. The right-hand panels show the model-implied cross

correlations between the V IX2 volatility index and the variance risk premium to a lag length of 22 days.

in the literature.18 This model failure can, of course, be traced directly to the presumed Markov

specifications for the underlying dynamics.

The challenge, then, is to extend the underlying dynamics to incorporate long-range depen-

dencies, while at the same time preserving the equilibrium risk-based explanation for the dynamic

leverage and volatility feedback effects seen in Figure 2.19 This extension entails some rather de-

tailed technical analysis. Since we know from the stylized calibration in Appendix C that the ini-

tial model is indeed capable of matching the generally agreed upon set of aggregate macro/finance

moments, we subsequently simplify somewhat the analysis by assuming away the dynamic de-

pendencies in the consumption endowment and dividend growth processes, while adapting the

continuous-time setup and corresponding model solution to accommodate very flexible dynamic

dependencies in the economic uncertainty, including long-memory type effects.

18The empirical and model-implied counterparts of the auto- and cross-correlations for the expected realized
volatility, as formally defined below, closely parallel those for the V IX2 depicted in Figures 1-3. These additional
results and graphs are available upon request.

19To the best of our knowledge, with the exception of the distinctly different multifractal approach in Calvet and
Fisher (2007, 2008), the extant equilibrium models all entail Markov dynamics and thereby cannot account for the
long-range dependence evident in Figure 1.
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2.4 General Model Solution

Numerous competing continuous-time stochastic volatility models have been proposed in the lit-

erature. We here build on the framework of Comte and Renault (1996) in assuming that σ2
g,t may

be described by the general representation,

σ2
g,t = σ2 +

∫ t

−∞
a(t− s)

√
qsdW σ

s . (11)

By appropriate choice of the moving average weights {a(s)}s∈[0,∞) this representation obviously

includes the affine process in equation (4) as a special case. Importantly, by suitable choice of the

mapping s → a(s), the process for σ2
g,t may also exhibit various forms of long-range dependence.

In particular, setting

a(s) =
σ

Γ(1 + α)

(
sα − ke−ks

∫ s

0

ekuuαdu

)
(12)

results in the classic fractionally integrated process, where α denotes the long-memory parameter.

To complete the specification of the model and still allow for tractable closed form solutions, we

will assume away the predictability in consumption growth in (2), i.e., xt ≡ 0, while maintaining

the identical law of motion for the volatility-of-volatility in equation (5). The actual solution

strategy, which is new and technically demanding, differs somewhat from that for the initial

model. The full details are given in Appendix D; a precis follows.

In parallel to the solution for the short-memory model discussion above, we start by conjec-

turing a solution for the logarithmic price-consumption ratio now of the form

log(Ψt) = A0 + Aqqt +

∫ t

−∞
A(t− s)

√
qsdW σ

s (13)

where A0, Aq, and {A(s)}s∈[0,∞) are to be determined. Some care is needed because of subtleties

related to possible arbitrage opportunities under long-memory type dependencies (Rogers, 1997).

The strategy that we use relies on the fact that in the absence of arbitrage the return on a traded

security must follow a semi-martingale. This allows us to split up the returns into a drift and a

local martingale component. This decomposition is possible when A(t) exists and is differentiable

at zero. Substituting the conjectured solution into the pricing equation (6) yields the following

ordinary differential equation for t > s,

A′(t− s)− κ1A(t− s) =
γ(1− 1

ψ
)

2
a(t− s), (14)
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and two regular equations,

θ

2
ϕ2

qA
2
q − (κq + κ1)Aq +

θA(0)2

2
= 0, (15)

A0 =
Aqκqθq − κ0 + (1− 1

ψ
)µg − ρ− γ

2
(1− 1

ψ
)σ2

κ1

. (16)

From the Appendix, the solutions to this system of equations are

A(s) = −
∫ +∞

s

γ(1− 1
ψ
)

2
eκ1(t−τ)a(τ)dτ, (17)

Aq =
κq + κ1 −

√
(κq + κ1)2 − θ2ϕ2

qA(0)2

θϕ2
q

, (18)

A0 =
Aqκqθq − κ0 + (1− 1

ψ
)µg − ρ− γ

2
(1− 1

ψ
)σ2

κ1

, (19)

which exists and is well defined subject to a terminal condition ruling out explosive bubble solutions

and other mild regularity conditions. As before, from this set of solutions it is possible to deduce

the reduced form expressions for all other variables of interest.

In particular, in parallel to the expression for the returns in the short-memory model in equation

(9) above, it follows from Appendix D that the reduced form expression for the returns in the

general model may be expressed as,

d log(Rt) = µR,t dt + σg,tdW c
t + Aqϕq

√
qtdW q

t + A(0)
√

qtdW σ
t , (20)

where the drift is defined by,

µR,t = ρ +
µg

ψ
+ [−1

2
+

γ

2
(1− 1

ψ
)]σ2

g,t − (κq + κ1)Aqqt. (21)

Similarly, from equation (D.7) in Appendix C the equilibrium equity premium takes the form,

πr,t = γσ2
t + (1− θ)[A2

qϕ
2
q + A(0)2]qt = γσ2

t + 2

(
1

θ
− 1

)
(κq + κ1)Aqqt. (22)

Under the previously discussed parameter restrictions γ > 1 and ψ > 1, implying that θ < 0, the

equity premium remains positive. More generally, as long as γ > 1
ψ
, or θ < 1, it remains the case

that stochastic volatility carries a positive risk premium. Note also that the instantaneous equity

premium only depends on the {a(s)}s∈[0,∞) weights and the possible long-run dependencies in the

volatility through the cumulative impact determined by the integral solution for A(0) in equation

(17).
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3 Dynamic Equilibrium Dependencies

The equilibrium expressions discussed in the previous section characterize how the equity premium

depends on the instantaneous volatility, and how the instantaneous return responds to contempora-

neous volatility innovations within the model. This section further details the model’s implications

in regards to the dynamic dependencies in the volatility and the volatility risk premium, and how

these volatility measures co-vary with leads and lags of the returns at different horizons. We will

subsequently confront these theoretical predictions with the key empirical regularities discussed

in the introduction.

3.1 VIX and the Volatility Risk Premium

One of the key features of the model is that the economic uncertainty reflected in σ2
g,t may exhibit

long-range dependence, while the volatility of the uncertainty, qt, is a short-memory process. This

in turn has important implications for the serial correlation properties of the equivalent to the

VIX volatility index implied by the model and the corresponding volatility risk premium, and how

these measures correlate with the returns.

To begin, consider the (forward) integrated variance, or quadratic variation, of the asset price

St,

IVt,t+N ≡
∫ t+N

τ=t

d [log S, log S]τ , (23)

where the “brackets” [ ] represents the standard quadratic variation process. From equation (D.8)

in Appendix D the reduced form expression for the integrated variance may be conveniently written

as,

IVt,t+N =

∫ t+N

t

σ2
g,τdτ + (A2

qϕ
2
q + A(0)2)

∫ t+N

t

qτdτ. (24)

The integrated variance is, of course, random and not observed until time t + N .

The corresponding variance swap rate is defined as the time t risk-neutralized expectation

of IVt,t+N , say EQ
t (IVt,t+N). This risk-neutral expectation may in theory be calculated in a

completely model-free fashion from a cross-section of option prices (see, e.g., Carr and Madan,

1998; Britten-Jones and Neuberger, 2000; Jiang and Tian, 2005). This way of calculating the
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variance swap rate directly mirrors the definition of the (squared) VIX volatility index for the

S&P 500,

VIX2
t ≡ EQ

t (IVt,t+N) , (25)

where the horizon N is set to one month, or 22-days.20

This same risk-neutral expected variation may alternatively be calculated within the specific

equilibrium model setting. In particular, it follows from equation (D.9) in Appendix D that

VIX2
t = βvx,0 +

∫ t

−∞
hvx(t− s)

√
qsdW σ

s + βvx,q qt, (26)

where the dependence on N has been suppressed for notational convenience. The {hvx(s)}s∈[0,∞)

weights depend on the {a(s)}s∈[0,∞) moving average coefficients, and importantly inherit any

long-memory decay in those coefficients. As such, an eventual slow hyperbolic decay in the au-

tocorrelations for the V IX2
t would therefore be entirely consistent with the implications from the

general theoretical model; i.e.,

Corr(VIX2
t , VIX2

t+s) = chs
bh s > S, (27)

where ch > 0 and bh < 0 are constants, and S denotes a sufficiently long lag so that the short-run

dependencies have dissipated.

Next, consider the variance risk premium, as formally defined by the difference between the

risk-neutral and objective expectation of IVt,t+N ,

vpt ≡ EQt (IVt,t+N)− EPt (IVt,t+N) . (28)

Whereas EQ
t (IVt,t+N) and EP

t (IVt,t+N) both depend on the consumption growth volatility and the

volatility-of-volatility of that process, the variance risk premium is simply an affine function of the

volatility-of-volatility, or qt. Specifically, from equation (D.10) in Appendix D,

vpt = bvp,0 + bvp,1qt, (29)

where bvp,0 > 0 and bvp,1 > 0, reflecting the positive premium for bearing volatility risk. Intuitively,

for θ < 1 investors have a preference for early resolution of uncertainty, while ψ > 1 implies that

20A more detailed description of the mechanical calculation of the VIX index is available in the white paper on
the CBOE website; see also the discussion in Jiang and Tian (2007).
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there is a negative link between the volatility and the P/D ratio. Meanwhile, the SDF only

depends indirectly on shocks to the volatility through (θ−1)Rt. Thus, any asset that is positively

correlated with volatility will be bearing a negative risk premium. As such, the premium for

the variance risk exposure naturally increases if the uncertainty about volatility increases, i.e.,

the volatility-of-volatility, as characterized by the qt process. Since the exposure of the variance

swap to volatility shocks directly mirrors the exposure of the volatility, the variance premium that

results from the covariance between the SDF and the variance swap therefore only depends on qt.

Even though the variance risk premium will generally be positive, only if qt is time-varying

will the premium also be time-varying. Moreover, from equation (29) above, the vpt process

simply inherits the dynamic dependencies in the qt process, and should exhibit a relatively fast

exponential decay in its autocorrelation structure. That is,

Corr(vpt, vpt+s) = cqe
−κqs s > 0, (30)

where cq > 0 denotes a positive constant.

3.2 Return-Volatility Correlations

The equilibrium expressions for the variance swap rate and the premium discussed above also

have some important and directly testable implications for the dynamic cross-correlations for the

V IX2
t and vpt with the returns. To help elucidate the economic mechanisms underlying these

dependencies, it is instructive to first review the predictions under short-memory dynamics. We

subsequently discuss the general case, explicitly allowing for long-memory dynamics. The cross-

correlations between the variance premium and the returns are easier to calculate than those for

the VIX, and we begin by considering these.

Let rt ≡ d log(Rt) denote the instantaneous return. We will refer to the cross-correlations

between the time t premium vpt and the future returns, rt+s for s > 0, as the forward correlations.

The forward correlations represent the extent to which the premium is able to forecast the returns.

The correlations between the premium vpt and the lagged returns, rt+s for s < 0, on the other

hand, represent the impact of movements in the past returns on the current variance premium.

Given the well-known near unpredictability of returns, we would expect the forward correlations

to be positive, reflecting the premium for bearing volatility risk, but small and quickly declining to

18



zero for longer interdaily return horizons. We would expect the lagged correlations to be negative,

but increasing to zero for longer daily lags, consistent with the existence of a dynamic leverage

type effect. The formal theoretical predictions from the model confirm this intuition.

Specifically, from the results for the short-memory model derived in Appendix B, it follows

that for s > 0,

Corr( vpt, rt+s ) = βR,q Var(qt) Kq e−κq s,

where βR,q represents the sensitivity of the instantaneous returns to the qt process. Since βR,q > 0

and Kq > 0, the forward correlations are all positive. Similarly, it follows from the appendix that

the cross-correlations for s < 0 satisfy,

Corr( vpt, rt−s ) = (βR,q Var(qt) + Aqφ
2
qµq) Kq e−κq s.

Since the high-frequency returns are close to unpredictable, the value for βR,q is likely to be

small. Hence, we would expect the second term involving Aq < 0 to dominate the expression in

parenthesis, and consequently all of the backward correlations to be negative. In summary, the

model predicts,

Corr(vpt, rt+s ) =





a− e−κq |s| s < 0,

a+ e−κq s s ≥ 0,

(31)

where a− < 0 and a+ > 0. As discussed further below, this prediction does indeed adhere very

closely with the pattern in the empirical correlations.

The dynamic cross-correlations between the VIX2 and the return are a bit more involved than

those for the variance premium. Still, the basic intuition is essentially the same, except that the

actual formulas now also depend on the volatility process σ2
g,t itself and its correlation with the

returns. In particular, referring to Appendix B the forward correlations for s > 0 takes the form,

Corr(VIX2
t , rt+s) = βR,σ Var(σ2

g,t)Kσ e−κσ s + βR,q Var(qt) Kq e−κq s.

The sign of βR,σ will depend upon the preference parameters ψ and γ. However, it may reasonably

be expected to be positive,21 so that the forward cross-correlations will again be positive, with the

21The prototypical values ψ = 2.5 and γ = 7.5 used in our calibration imply that βR,σ = 12.6.
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decay toward zero ultimately determined by the dominant value of κσ or κq. As for the premium,

the backward correlations for s < 0 are slightly more complicated, taking the form,

Corr(VIX2
t , rt−s) = (βR,σ Var(σ2

g,t) + Aσµσ)Kσ e−κσ s + (βR,q Var(qt) + Aqφ
2
qµq) Kq e−κq s.

As discussed above, given the difficulties in predicting returns, we would expect the βR,σ and

βR,q terms to be relatively small and dominated by the terms involving the Aσ < 0 and Aq < 0

coefficients that determine the instantaneous response of the returns to volatility innovations.

Consequently, the backward correlations are naturally expected to be all negative. In summary,

Corr(VIX2
t , rt+s ) =





aq,− e−κq |s| + aσ,− e−κσ |s| s < 0,

aq,+ e−κq s + aσ,+ e−κσ s s ≥ 0,

(32)

where aq,−, aσ,− < 0 and aq,+, aσ,+ < 0. Again, these theoretical model predictions closely match

what we see in the data.

The general model allowing for long-memory in the economic uncertainty essentially give rise to

the same basic patterns and predictions. The formal derivations are somewhat more complicated,

however, and the actual values of the cross-correlations will ultimately depend upon the specific

process for σ2
g,t and the corresponding moving average coefficients {a(s)}s∈[0,∞). We briefly sketch

the relevant tools and ideas required to evaluate the correlations.

The economics of the problem remain exactly the same. The main interactions between the

return and volatility are twofold: one consists in the forward effect of volatility innovations on

future expected returns, the other involves the feedback effect of lagged return innovations, or the

diffusive part of the returns, on current volatility. To elucidate these separate effects within the

general model setting, it is useful to define the auxiliary variable

rt,s ≡





σg,t+sdW c
t+s + Aqϕq

√
qt+sdW q

t+s + A(0)
√

qt+sdW σ
t+s s < 0,

µR,t+s s ≥ 0,

which equals the local diffusive part of the equilibrium return process for s < 0, and the local

mean of the equilibrium return process for s ≥ 0, respectively. As such, the basic shape of the

cross-covariances between the variance risk premium vpt and rt,s directly mirrors that of the cross-

covariances with the returns, rt+s. In particular, it follows directly from the expression for vpt in
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equation (29) that the forward correlations with rt,s must be proportional to the autocovariances

of the qt process. That is for s > 0,

Cov(vpt, rt,s) = Kre
−κqs,

where Kr > 0 denotes a positive constant of proportionality. To derive the backward correlations,

write qt in integral form,

qt = ϕq

∫ t

u=−∞
eκq(u−t)√qudW q

u .

From this expression it follows that for s < 0,

Cov( vpt , rt,s) = e−κq |s|E (ϕqbvp,1
√

qt+sdW q
t+s, Aqϕq

√
qt+sdW q

t+s) = Aqbvp,1ϕ
2
q E (qt) e−κq |s| ,

so that all of the backward autocovariances are again negative and decay at an exponential rate,

provided that Aq < 0 as again implied by γ > 1 and ψ > 1. These dynamic patterns in the

cross-covariances for rt,s directly translate into the cross-correlations for rt,s, and in turn the

cross-correlations for the returns rt+s, mirroring the implications from the short-memory model

summarized in equation (31) above.

The theoretical predictions for the dynamic cross-correlations between the VIX and the returns

within the general model setting are not quite as clear-cut as those for the variance premium. The

qt process determining the variance risk premium essentially gets confounded with the classical

consumption risk premium, and there are also potential side effects from long-range dependence.

However, the underlying economic mechanisms remain the same as for the short-memory model,

resulting in a similar pattern of mixed negative backward correlations and positive forward corre-

lations.

4 Empirical Results

The equilibrium framework developed above completely characterizes the dynamic dependencies in

the returns and the volatility. Of course, the specific solution of the model will invariably depend

upon the choice of preference parameters and the values of the parameters for the underlying

consumption growth rate and volatility dynamics. Meanwhile, the model is obviously somewhat

stylized and direct estimation based on actual consumption data would be challenging at best.
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Instead, we next illustrate the model’s qualitative implications in regards to the autocorrelations

and cross-correlations derived in the previous section, and in particular how well the basic patterns

implied by the model match those of the actual data depicted in Figures 1 and 2. We begin with

a discussion of the data and pertinent summary statistics underlying the figures.

4.1 Data Description

Our tick-by-tick data for the S&P 500 futures contract was obtained from Tick Data Inc. To

alleviate the impact of market microstructure “noise” in the calculation of the cross-correlations,

and the realized volatility measures discussed further below, we follow the dominant approach

in the literature and convert the tick-by-tick prices to equally spaced five-minute observations.22

With 77 five-minute intervals per trading day and one overnight return, this leaves us with a

total of 78 “high-frequency” return observations per day. Standard summary statistics for the

corresponding daily returns over the January 2, 1990, through October 31, 2007, sample period

and the five-minute returns over the shorter September 23, 2003, to August 31, 2007, sample are

reported in the first column in Table 1.

The autocorrelations for the VIX in the top panel in Figure 1 are based on daily data from

January 2, 1990, through October 31, 2007. These data are freely available from the Chicago Board

Options Exchange (CBOE).23 From the summary statistics reported in Table 1, the average value

of the V IX2 over the sample equals 32.81, or 16.41 in standard deviation form, but it varies quite

considerably over the sample, as indicated by the standard deviation of 23.70. This variation is

quite persistent, however, as manifest by the slow decay in the aforementioned autocorrelations

depicted in Figure 1. This strong persistence is also immediately evident from the actual time

series plot of the data in Figure 6 in the appendix.

The tick-by-tick data for the VIX used in the construction of the cross-correlations shown

in the top panel in Figure 2 was again obtained from Tick Data Inc. High-frequency data for

the VIX has only been available since the introduction of the “new” model-free VIX index on

22The specific choice of a five-minute smapling frequency strike a reasonable balance between confounding market
microstructure effects when sampling too frequently and the loss of important information concerning fundamental
price movements when sampling more coarsely; see, e.g., the discussion and references in Andersen et al. (2007b),
where the same futures data and five-minute sampling frequency have been used from a different perspective.

23The VIX index is reported in annualized units by the CBOE. We convert the series to monthly units using the
transformation V IX2

t = 30/365 V IX2
CBOE,t.

22



Table 1 Summary Statistics

rt V IX2
t RVt,t+22 v̂pt

Daily Sampling (1990-2007)

Mean 11.14 32.81 23.74 8.96

Standard Deviation 15.67 23.70 24.12 12.62

Skewness -0.05 1.88 2.59 -1.86

Excess Kurtosis 3.75 4.66 8.01 17.53

5-Minute Sampling (2003-2007)

Mean 8.96 17.48 11.28 6.17

Standard Deviation 11.31 8.40 7.68 5.25

Skewness 0.70 2.90 3.81 1.94

Excess Kurtosis 42.12 15.12 17.90 9.40

The table reports summary statistics for continuously-compounded returns rt, implied variances V IX2
t , monthly realized variances

RVt,t+22, and the variance risk premium v̂pt = V IX2
t − ÊRVt,t+22. The realized variances are constructed from the summation of

high-frequency five-minute squared returns. The expectations for the future variances ÊtRVt,t+22 are based on the HAR-RV forecasting

model discussed in the text. All the variables are in percentage form. The daily data extend from from January 2, 1990 to October 31,

2007. The five-minute sample spans September 22, 2003 to August 31, 2007.

September 22, 2003. The relevant summary statistics for the V IX2 over the shorter September

22, 2003, to August, 2007, high-frequency sample, reported in the bottom part of Table 1, are

broadly consistent with those over the longer daily sample, and the time series plots in Figures 6

and 7 in the appendix also reveal the same basic features. Of course, the kurtosis is substantially

higher when the data is sampled at the five-minute frequency.

The integrated variance IVt,t+N defined within the theoretical model is not directly observable.

However, it may be consistently estimated in a completely model-free manner by the correspond-

ing realized variation based on an increasing number of high-frequency squared returns over the

fixed time-interval [t, t + N ] (see, e.g., Andersen, Bollerslev and Diebold, 2009). As previously

noted, to guard against the adverse impact of market microstructure effects when sampling too

frequently, we follow the common approach in the literature and rely on equally spaced, approxi-

mately serially uncorrelated, five-minute returns.24 With 77 five-minute intervals per trading day

24The first and second order autocorrelations and their robust standard errors (in parentheses) equal -0.034(0.005)
and -0.008(0.004), respectively. Although statistically significant at conventional levels, these are obviously very
small numerically and immaterial in terms of the resulting realized volatilities. Recent studies, e.g., Zhang et al.
(2005) and Barndorff-Nielsen et al. (2008), have proposed more efficient ways in which to annihilated the impact
of the market microstructure “noise,” permitting even finer sampling. However, the simple-to-implement realized
variance estimator used here remains the dominant approach in practice, and importantly allows for easy verification
and replication of the results.
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and the overnight return, the N -day-ahead realized variation is then simply given by,

RVt,t+N =
78N∑
i=1

(log St+i/78 − log St+(i−1)/78)
2.

With the notable exception of a lower mean, reflecting a systematic premium for bearing volatility

risk, the summary statistics for the one-month realized volatility measures RVt,t+22 reported in

Table 1 are generally close to those for the VIX. The corresponding time series plots in Figures 6

and 7 also reveal the same general evolution in the two series.

The variance risk premium is formally defined as the difference between the objective and risk-

neutralized expectation of the forward integrated variance. While the risk-neutral expectation

and the actually observed values of IVt,t+N may both be estimated in a completely model-free

fashion by the VIX and the realized volatilities, respectively, the calculation of the objective

expectation Et(IVt,t+N) necessitates some mild auxiliary modeling assumptions. Motivated by the

results in Andersen et al. (2003) that simple autoregressive type models estimated directly for

the realized volatility typically perform on par with, and often better, than specific parametric

modeling approaches designed to forecast the integrated volatility,25 we will here rely on the

HAR-RV model structure first proposed by Corsi (2009), and subsequently used by Andersen et

al. (2007a) among many others, in approximating the objective expectation. Specifically, define

the one-day-ahead expectation by the linear projection of the realized volatility on the lagged

daily, weekly and monthly realized volatilities,

Et(RVt,t+1) = βrv,0 + βrv,1RVt−1,t + βrv,2RVt−5,t + βrv,2RVt−22,t.

The one-month expectation Et(IVt,t+22) = Et(RVt,t+22) is then simply obtained by iterating the

projection forward.26

The summary statistics for the resulting variance risk premium v̂pt = V IX2
t − ÊRVt,t+22,

reported in the last column in Table 1, confirm the positive expected return for selling volatility,

but also show that the magnitude of the premium varies substantially over time. At the same

time, the plots in Figures 6 and 7 indicate much less persistent dependencies in the premium than

25Andersen et al. (2004) have formally shown that for the stochastic volatility models most commonly employed
in the literature, the loss in efficiency from the use of reduced form autoregressive models for the realized volatility
is typically small; see also Sizova (2009).

26The actual estimates for the β’s are directly in line with the results reported in the extant literature and
available upon request.
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for the VIX and the realized volatilities. We next turn to our discussion of the theoretical model’s

ability to match this important feature along with the other key dynamic dependencies observed

in the high-frequency data.

4.2 Model Implied Auto- and Cross-Correlations

A full characterization of the model-implied autocorrelations for the integrated volatility would

require that all of the moving average weights {a(s)}s∈[0,∞) in equation (11) be completely specified.

Importantly, however, as discussed in Section 3.1, any long-run dependencies in these coefficients

directly translate to similar long-run dependencies in the moving average weights {hvx(s)}s∈[0,∞)

that describe the equilibrium process for the V IX2
t in equation (26). The top panel in Figure

4 shows the best fitting model-implied autocorrelations from estimating the slowly hyperbolic

decaying autocorrelation structure in (27) to the actual daily sample autocorrelations for the VIX

starting at a lag length of S = 22.27 The figure also shows the conventional ninety-five percent

confidence intervals for the sample autocorrelations. The model-implied autocorrelations do a

remarkable job at describing the long-run dependencies inherent in the VIX, always falling well

inside the confidence bands. Of course, the fit does not match at all well if extrapolated to the

1-22 day interval, which is to be expected.

One of the key predictions of the theoretical model is that the equilibrium volatility risk

premium is an affine function of the volatility-of-volatility, and thereby is short memory, despite

the fact that the integrated volatility and its risk neutral expectation may both display long-

memory dependencies. Intuitively, as discussed above, everything except for the volatility-of-

volatility gets risk neutralized out in equation (29). This, of course, is consistent with the shape

of the autocorrelation function displayed in Figure 1, which in sharp contrast to the one for the

VIX dies out relatively quickly. As a more formal verification of this distinct implication from the

model, we fitted the functional form in equation (30) to the actual sample autocorrelations for the

variance risk premium. The fit shown in the bottom panel of Figure 4 is again excellent, and the

model-implied autocorrelations easily fall within the ninety-five percent confidence intervals over

the entire 1-90 day range.28

27The R2 from estimating the functional relationship is an impressive 0.993, although this value should be
carefully interpreted because of the strong serial correlation in the residuals from the fit.

28The fitted R2 equals 0.934.
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Figure 4 Model Implied Autocorrelations
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The top panel shows the autocorrelations for the V IX2 volatility index to a lag length of 90 days. The solid line gives the model implied

autocorrelations under the assumption of long-memory in the underlying fundamental volatility process. The bottom panel shows the

autocorrelations for the variance risk premium vp. The solid line gives the model implied autocorrelations. The pair of dashed lines

included in both panels represent ninety-five percent confidence intervals for the corresponding sample autocorrelations based on daily

data from 1990 through 2007.

The observed volatility feedback and leverage effects evident in the dynamic cross-correlations

in Figure 2 arguably present the more challenging and difficult to explain empirical dependen-

cies. Consider first the cross-correlations for the variance risk premium. The negative backward

correlations start out at a slightly larger absolute value than the forward correlations, and both

decay toward zero at what appears to be an exponential rate. This apparent pattern in the cross-

correlations between the premium and leads and lags of the returns is entirely consistent with the

model-implied correlations summarized in (31). The bottom panel in Figure 5 shows the resulting

fit along with the ninety-five percent confidence intervals for the sample cross-correlations.29 The

theoretical model obviously delivers highly accurate predictions for the actually observed dynamic

dependencies between the returns and the variance risk premium.

The theoretical predictions for the VIX-return cross-correlations are not quite as clear-cut as

29The fitted R2’s for the backward and forward correlations equal 0.907 and 0.678, respectively. Of course, some
of the sample cross-correlations used in the fit are not statistically different from zero.
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Figure 5 Model Implied Cross-Correlations

−20 −15 −10 −5 0 5 10 15 20
−0.03

−0.02

−0.01

0

0.01

0.02
VIX2

−20 −15 −10 −5 0 5 10 15 20
−0.03

−0.02

−0.01

0

0.01

0.02
Variance Premium

The top panel shows the sample cross-autocorrelations between the V IX2 volatility index and lags and leads of the returns ranging

from -22 to 22 days. The bottom panel shows the cross-correlations between the variance risk premium vp and the returns. The solid

lines give the cross-correlations implied by the theoretical model. The pair of dashed lines represent ninety-five percent confidence

intervals for the corresponding sample cross-correlations based on high-frequency 5-minute observations from 2003 through 2007.

those for the premium. As discussed in Section 3.2 above, the volatility risk premium in effect

gets confounded with the classical consumption risk premium, and within the general theoretical

model setting there may also be potential side effects from long-range dependence. In parallel

to the model-implied autocorrelations for the VIX, a complete characterization of these separate

effects would require that the underlying fundamental consumption growth rate volatility process

σ2
g,t and the corresponding moving average weights {a(s)}s∈[0,∞) be fully specified. Short of such

a specification, the basic pattern and decay in the cross-correlations may naturally be expected

to adhere to the functional form in (32). The top panel in Figure 5 shows the resulting fit to the

sample cross-correlations.

Comparing the observed backward correlations for the VIX in the left part of Figure 2 to those

for the variance premium in the bottom panel, the dynamic leverage effect is clearly more prolonged
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for the VIX. This slower decay is very well described by the mixed exponential functions shown in

Figure 5. At the same time, the differences between the forward correlations for the VIX and the

premium, and in turn the impact on future returns attributable to the classical consumption risk

premium and mean-variance tradeoff, appear less pronounced. In fact, the relatively fast decay

rates in the empirically observed forward correlations are well described by a single exponential

function for both the premium and the VIX.30.

Summing up the empirical results, the qualitative implications from the new theoretical model

do an admirable job in terms of matching the key dynamic dependencies in the aggregate market

returns and volatilities. The previously documented autocorrelations for the volatility and volatil-

ity risk premium and the puzzling high-frequency based cross-correlation patterns in Figures 1

and 2, may all be explained by the model, with the model predictions well within conventional

statistical confidence intervals.

5 Conclusion

Aggregate stock market volatility exhibits long-memory type dependencies, while the variance

risk premium, defined as the difference between the objective and risk-neutral expectation of the

forward variance, shows much less persistence. Consistent with the well documented leverage and

volatility feedback effects, there is also a distinct and prolonged asymmetry in the relationship

between volatility and past and future returns. We provide the first self-contained equilibrium

based explanation for all of these empirical facts. The return on the aggregate market defined

within the new model depends not only on the prospects of future economic growth, but also on

the current uncertainty about the future economic conditions, thereby explaining the presence of a

separate premium for bearing variance risk through a preference for early resolution of uncertainty.

Our explanation of the empirical facts is entirely risk-based, and depends critically on the

temporal variation in the variance risk premium defined within the model. The wedge between

the objective and risk-neutral expectation of the forward variance may alternatively be interpreted

as a proxy for the aggregate degree of risk aversion in the market, and any temporal variation

in the empirically observed variance risk premium thus indicative of changes in the way in which

30The fitted R2’s for a double exponential for the VIX backward correlations and a single exponential for the
VIX forward correlations equal 0.941 and 0.709, respectively.
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systematic risk is valued (see, e.g., Aı̈t-Sahalia and Lo, 2000; Bollerslev, Gibson and Zhou, 2011;

Gordon and St-Amour, 2004; Vanden, 2005). Although it might be difficult to contemplate sys-

tematic changes in the level of risk aversion at the frequencies emphasized here, time-varying

volatility risk and time-varying attitudes toward risk likely both play a role in explaining the tem-

poral variation in expected returns and risk premia (e.g., Bekaert, Engstrom and Xing, 2009). It

would be interesting to extend the new framework and model developed here to explicitly allow for

changes in the underlying preference parameters and risk-attitudes to help delineate these effects.

This may be especially important in understanding the dynamic dependencies and high-frequency

feedback effects observed during the recent financial crises.
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A Continuous-Time Equilibrium and SDF

The generalized preferences that we use are a continuous-time version of the Epstein-Zin-Weil

discrete-time utility:

Ṽ
1− 1

ψ

t =
(
1− e−ρh

)
C

1− 1
ψ

t + e−ρh
[
EtṼ

1−γ
t+h

] 1− 1
ψ

1−γ
. (A.1)

Assuming that Ṽ 1−γ
t is a semi-martingale, we approximate its conditional expectation over a short

time-interval h by the linear function:

EtṼ
1−γ
t+h ≈ D

(
Ṽ 1−γ

t

)
h + Ṽ 1−γ

t , (A.2)

where D(.) denotes the drift of the argument. Plugging the conditional expectation in (A.2) into

the definition (A.1), and taking limits around h = 0, the drift for the utility may be expressed as

a function of consumption and utility:

D
(
Ṽ 1−γ

t

)
= θρ


1− C

1− 1
ψ

t

Ṽ
1− 1

ψ

t


 Ṽ 1−γ

t .

The original utility Ṽt in (A.1) can be replaced by any ordinally equivalent utility Vt = ϕ(Ṽt),

where the transformation ϕ(.) is strictly increasing. Following Duffie and Epstein (1992b), we

apply the transformation ϕ(.) that is linear in Ṽ 1−γ
t :

Vt =
1

1− γ
Ṽ 1−γ

t .

Given this choice of ϕ(.), the preferences may be simply defined through the recursive condition:

DVt + f(Ct, Vt) = 0, (A.3)

where the normalized drift equals

f(c, v) =
ρ

1− 1
ψ

c1− 1
ψ − [(1− γ)v]1/θ

[(1− γ)v]1/θ−1
. (A.4)

This in effect constitutes the formal definition of the Epstein-Zin-Weil preferences in continuous

time; see also Duffie and Epstein (1992a).
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A.1 SDF in Continuous Time

In this section we derive the exact formula for the Stochastic Discount Factor (SDF) under the

Epstein-Zin-Weil preferences in equation (A.4) as a function of the return on the consumption

asset and the consumption growth rate.

For notational convenience, denote the logarithmic welfare-consumption ratio:

vct ≡ log
Ṽt

Ct

=
1

1− γ
log([1− γ]Vt)− log Ct. (A.5)

The normalized drift in equation (A.4) may then alternatively be represented as:

f(Ct, Vt) = ρθVt

(
e−(1− 1

ψ
)vct − 1

)
.

Duffie and Esptein(1992) have previously derived the SDF for recursive preferences with an arbi-

trary normalized drift f(Ct, Vt):

Mt = exp
∫ t
0 fv(Cs,Vs)ds fc(Ct, Vt). (A.6)

The dynamics for the SDF thus follows from the dynamics of the two partial derivatives,

fc ≡ ∂f

∂Ct

= (1− γ)ρC−γ
t e− log(1−γ)+( 1

ψ
−γ)vct ,

and

fv ≡ ∂f

∂Vt

= θρ(e−(1− 1
ψ

)vct − 1)(1− 1

θ
)− ρ.

Now, note that

V
1/θ
t MtC

1/ψ
t = ρ(1− γ)1−1/θVte

∫ t
0 fvds

Extracting the drift of the process on the left-hand-side of the above equation, taking into account

that the drift of the Vt process equals−f(Ct, Vt), and rearranging the terms, we obtain the following

relation:

D


e

log(1−γ)
θ

ρ


V

1
1−γ

t

Ct




1− 1
ψ

MtCt


 = −MtCt.

In other words,

e
log(1−γ)

θ

ρ


V

1
1−γ

t

Ct




1− 1
ψ
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satisfies the Euler condition for the price-dividend ratio of the consumption asset. Together with

appropriate terminal conditions, this implies that this expression must be equal to the price-

dividend ratio. In logarithm terms, there is a one-to-one correspondence between the price-

dividend ratio of the consumption asset and the welfare-consumption ratio:

log Ψt = − log ρ + (1− 1

ψ
)vct. (A.7)

The formula for the price-dividend ratio implies that the total return satisfies:

dRt

Rt

≡ dSt + Ctdt

St

=
d [ΨtCt]

ΨtCt

+
dt

Ψt

. (A.8)

Combining the definitions of the return in (A.8), the SDF in (A.6), and the price-dividend ratio

in (A.7), we obtain the following relation:

d log Mt + (1− θ)d log Rt +
θ

ψ
d log Ct

= [fv(Ct, Vt)dt + d log fc(Ct, Vt)] + (1− θ)[d log Ct + d log Ψt +
dt

Ψt

] +
θ

ψ
d log Ct

= −ρθdt, (A.9)

where the last equality follows from two identities:

fv(Ct, Vt) + (1− θ)
1

Ψt

= ρθ,

d log fc(Ct, Vt) + (1− θ)[d log Ct + d log Ψt] +
θ

ψ
d log Ct = 0.

The expression for the SDF in equation (A.9) as a function of the return on aggregate consumption

and consumption growth may naturally be seen as the continuous-time version of the similar

discrete-time relationship in Bansal and Yaron (2004). We next proceed to study the asset pricing

implications of the model and this SDF, including expressions for the risk-free rate, the return on

the consumption asset, and the variance risk premium.

B Model Solution Under Short Memory Dynamics

B.1 Pricing of the Consumption and Dividend Assets

Suppose, that the dynamics of the consumption growth gt ≡ dCt

Ct
is determined by the following

system of equations:

dCt

Ct

= (µg + xt)dt + σg,tdW c
t , (B.1)
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dxt = − κxxtdt + σxdW x
t , (B.2)

dσ2
g,t = κσ(µσ − σ2

g,t)dt +
√

qtdW σ
t , (B.3)

dqt = κq(µq − qt)dt + ϕq
√

qtdW q
t , (B.4)

where all of the shocks are uncorrelated. Under the risk-neutral measure the asset return must a

martingale with respect to information at time t, i.e.,

D (MtRt) = 0.

It follows from the formula for the SDF in (A.9) and the definition of the return in (A.8) that

d log (MtRt) = θ(d log Ψt + d log Ct +
dt

Ψt

)− θ

ψ
d log Ct − ρθdt

Substituting the price-dividend ratio Ψt ≡ Ψ(Xt) into the above condition for the drift D (MtRt)

yields the following pricing relation:

θD log Ψ(Xt) +
θ

Ψ(Xt)
+ (1− γ)(µg + xt −

σ2
g,t

2
)− ρθ+

+
θ2

2

d [log Ψ(X), log Ψ(X)]t
dt

+
1

2
(1 − γ)2σ2

g,t = 0, (B.5)

where D log Ψ(Xt) denotes the drift of log Ψ(Xt), and [log Ψ(X), log Ψ(X)]t refers to the quadratic

variation, whose increment characterizes the variance of shocks to log Ψ(Xt). The pricing relation

in (B.5) may now be solved using the first-order approximations similar to Campbell and Viceira

(2002),

1

Ψ(Xt)
= exp(− log Ψ(Xt)) ≈ exp(−log Ψ)− exp(−log Ψ)(log Ψ(Xt)− log Ψ).

In particular, under this linearization it is natural to conjecture that log price-dividend ratio is

linear in the states:

log Ψ(Xt) = A0 + Axxt + Aσσ
2
g,t + Aqqt, (B.6)

and therefore

1

Ψ(Xt)
≈ −κ0 − κ1(A0 + Axxt + Aσσ

2
g,t + Aqqt). (B.7)
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Substituting the conjectured solution for Ψ(Xt) in (B.6) and its inverse value in (B.7) into the

pricing condition (B.5), we find the coefficients:

A0 =
Aσκσµσ + Aqκqµq − κ0 + (1− 1/ψ)µg − ρ + θAxσ2

x

2

κ1

,

Ax =
1− 1

ψ

κx + κ1

Aσ = −γ

2

1− 1
ψ

κσ + κ1

,

Aq =
κq + κ1 −

√
(κq + κ1)2 − θ2A2

σϕ
2
q

θϕ2
q

,

where the value of Aq is the root of a quadratic equation that is bounded away from ∞ as φq goes

to zero. Note that similar to the discrete-time case, the loadings Aσ and Aq are negative for values

of the inter-temporal elasticity of substitution ψ > 1.

Combining the dynamics of dividends Ct and the dynamics of the price-dividend ratio, we

obtain the dynamics for the total log-return under the objective measure:

d log Rt = (
µg + xt

ψ
+ ρ− θA2

xσ
2
x

2
+

(
−1

2
+

γ

2
(1− 1

ψ
)

)
σ2

g,t − Aq(κ1 + κq)qt)dt

+ σg,tdW c
t + AxσxdW x

t + Aσ
√

qtdW σ
t + Aqϕq

√
qtdW q

t . (B.8)

The dynamics for the stochastic discount factor follows from (A.9):

dMt

Mt

= [
γ

2
(1 +

1

ψ
)σ2

g,t − (1− 1

θ
)(κq + κ1)Aqqt − 1

ψ
(µg + xt)− ρ− (θ − 1)A2

xσ
2
x

2
]dt

− γσg,tdW g
t + (θ − 1)[AxσxdW x

t + Aσ
√

qtdW σ
t + Aqϕq

√
qtdW q

t ] (B.9)

The dynamics of SDF readily defines the risk-free rate, the equity premium, and the risk-neutral

probability measure. For example, the risk-free rate is simply given by the drift of the SDF:

rf,t ≡ −Et
dMt

Mt

=
1

ψ
(µg + xt) + ρ +

(θ − 1)A2
xσ

2
x

2
− γ

2
(1 +

1

ψ
)σ2

g,t + (1− 1

θ
)(κq + κ1)Aqqt.

The diffusion part of the SDF (B.9) defines the transition from the processes under the objective

measure to the risk-neutral measure:

dCt

Ct

= (µg − γσ2
g,t)dt + σg,tdW̃ c

t

dxt = (−κxxt + (θ − 1)Axσ
2
x)dt + σxdW̃ x

t
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dσ2
g,t =

(
κσ(µσ − σ2

g,t) + (θ − 1)Aσqt

)
dt +

√
qtdW̃ σ

t (B.10)

dqt =
(
κq(µq − qt) + (θ − 1)Aqϕ

2
qqt

)
dt + ϕq

√
qtdW̃ q

t , (B.11)

where dW̃ c
t , dW̃ x

t ,dW̃ σ
t , and dW̃ q

t are all uncorrelated Brownian motions under the risk-neutral

probability measure.

Consider an arbitrary asset with a general dynamics for dividends:

dDt

Dt

= (µd + φxxt)dt + φσσg,tdW c
t + φσ,xdW x

t + σddW d
t ,

where dW d
t is an idiosyncratic shock, that is independent of any process that drives consumption.

A similar conjecture for the price-dividend ratio

log Ψd(Xt) = Ad
0 + Ad

xxt + Ad
σσ

2
g,t + Ad

qqt,

yields a solution that satisfies no-arbitrage condition:

Ad
x =

φx − 1
ψ

κx + κd
1

Ad
σ = −γ

2

2φσ − 1− 1
ψ

κσ + κd
1

,

Ad
q =

κd
1 + κq −

√
(κd

1 + κq)2 − 2ϕ2
q

(
((θ−1)Aσ+Ad

σ)2

2
+ (θ − 1)Aq(κd

1 − κ1)
)

ϕ2
q

− (θ − 1)Aq,

where κd
0 and κd

1 are coefficients from the linear approximation 1
Ψd(Xt)

≈ −κd
0 − κd

1 log Ψd(Xt).

The equity premium paid on this asset is obtained as the “covariance” between the total return

and the SDF:

πr,t ≡ 1

dt

d
[
Rd,M

]
t

Rd
t Mt

= γφσσ
2
g,t− (θ−1)(AxA

d
xσx +φσ,x)σx− (θ−1)(AσA

d
σ +AqA

d
qϕ

2
q)qt. (B.12)

The instantaneous return is a function of an increment in the price-dividend ratio and the paid

dividends:

d log Rd
t = (ρ +

µg + xt

ψ
+

θ(θ − 1)A2
xσ

2
x − ((θ − 1)Axσx + Ad

xσx + φσ,x)
2

2
− σ2

d

2

− Ad
q(κq + κd

1)qt − (Ad
σ(κσ + κd

1) +
φ2

σ

2
)σ2

g,t)dt

+ φσσg,tdW c
t + (Ad

xσx + φσ,x)dW x
t + Ad

σ

√
qtdW σ

t + Ad
qϕq

√
qtdW q

t + σddW d
t . (B.13)

For the rest of the Appendix B, we will consider the market return that follows the above dynamics.

35



B.2 Variance Premium

The variability of the future asset price is determined by the integrated variance:

IVt,t+N ≡
∫ t+N

τ=t

d [log S, log S]τ =

φ2
σ

∫ t+N

τ=t

σ2
gτdτ + (Ad,2

σ + Ad,2
q ϕ2

q)

∫ t+N

τ=t

qτdτ + N(σ2
d + (Ad

xσx + φσ,x)
2). (B.14)

The variance risk premium by definition is given by the difference between the expected values of

the integrated variance under the objective and risk-neutral measures:

vpt ≡ EQ
t IVt,t+N − EP

t IVt,t+N .

Under the objective measure, the consumption variance σ2
g,t and the volatility-of-volatility qt are

both affine processes with expectations:

EP
t qt+∆t = [qt − µq]e

−κq∆t + µq,

EP
t σ2

g,t+∆t = [σ2
g,t − µσ]e−κσ∆t + µσ.

Under the risk-neutral measure, the volatility-of-volatility qt remains an affine process, with the

mean-reversion κ̃q = κq − (θ − 1)Aqϕ
2
q and the mean µ̃q = κqµq

κ̃q
given by equation (B.11). Thus,

the expectation of qt+∆t under the risk-neutral measure simply equals:

EQ
t qt+∆t = [qt − µ̃q]e

−κ̃q∆t + µ̃q.

The process for the variance σ2
g,t under the risk-neutral measure in equation (B.10) is qualitatively

different. The conditional mean now depends not only on its own value, but also on the current

realization of qt:

EQ
t σgt+∆t = µ̃σ + (σ2

g,t − µ̃σ −∆q)e
−κσ∆t + ∆qe

−κ̃q∆t,

where,

∆q =
(θ − 1)Aσ

κσ − κ̃q

[qt − µ̃q],

and µ̃σ = µσ + (θ−1)Aσ

κσ
µ̃q is equal to the risk-neutral unconditional mean of the variance.
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The differences in the conditional expectations of the state variables under the risk-neutral and

the objective measures can be represented as:

EQ
t qt+∆t − EP

t qt = qt

[
e−κ̃q∆t − e−κ̃q∆t

]
+ κqµq

[
1− e−κ̃q

κ̃q

− 1− e−κq∆t

κq

]
,

EQ
t σ2

g,t+∆t − EP
t σ2

g,t+∆t

(θ − 1)Aσ

= qt

[
e−κ̃q∆t − e−κσ∆t

κσ − κ̃q

]
+ µ̃q

[
1− e−κσ∆t

κσ

− e−κ̃q∆t − e−κσ∆t

κσ − κ̃q

]
.

Since exp(−x) and (1− exp(−x))/x are both decreasing functions in x, it follows that EQ
t qt+∆t >

EP
t qt for κ̃q < κq (Aq < 0). Similarly, it it is possible to show that for any positive κ̃q, κσ,

and ∆t, the expressions in square brackets in the second equation above are both greater than

zero. Thus, the variance and volatility-of-volatility are both expected to be higher under the risk-

neutral measure. Since the integrated variance in (B.14) depends on future values of qt and σ2
g,t,

the variance premium vpt ≡ EQ
t IVt,t+N − EP

t IVt,t+N must be positive.

Going one step further, the variance premium may be expressed as:

vpt = βpr,0 + βpr,1qt, (B.15)

where

βpr,0 = φ2
σ(µ̃σ − µσ)

[
N − 1− e−κσN

κσ

]
+ (µ̃q − µq)(A

d,2
σ + Ad,2

q ϕ2
q)

[
N − 1− e−κqN

κq

]
− βpr,1µ̃q,

βpr,1 = φ2
σ

[
1− e−κ̃qN

κ̃q

− 1− e−κσN

κσ

]
(θ − 1)Aσ

κσ − κ̃q

+ (Ad,2
σ + Ad,2

q ϕ2
q)

[
1− e−κ̃qN

κ̃q

− 1− e−κqN

κq

]
.

The expression in (B.15) is obtained by taking the difference between the expectations of the

integrated variance under the objective measure,

EP
t IVt,t+N = φ2

σ

(
µσN +

1− e−κσN

κσ

(σ2
g,t − µσ)

)

+ (Ad,2
σ + Ad,2

q ϕ2
q)

(
µqN +

1− e−κqN

κq

(qt − µq)

)
+ N(σ2

d + (Ad
xσx + φσ,x)

2),

and under the risk-neutral measure,

EQ
t IVt,t+N = βV IX,0 + βV IX,σσ

2
g,t + βV IX,qq

2
t , (B.16)

where

βV IX,0 =
(
φ2

σµ̃σ + (Ad,2
σ + Ad,2

q ϕ2
q)µ̃q + σ2

d + (Ad
xσx + φσ,x)

2
)
N − βV IX,σ2µ̃σ − βV IX,qµ̃q,
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βV IX,σ = φ2
σ

1− e−κσN

κσ

,

βV IX,q = φ2
σ

(θ − 1)Aσ

κσ − κ̃q

[
1− e−κ̃qN

κ̃q

− 1− e−κσN

κσ

]
+ (Ad,2

σ + A2
qϕ

d,2
q )

1− e−κ̃qN

κ̃q

.

As discussed further in the main text, the expectation under the risk-neutral measure corresponds

directly to the VIX2 volatility index, hence the subscript notation for the β’s.

B.3 Return-Volatility Cross-Correlations

The return over a short time-interval ∆t is approximately equal to:

∆ log Rd
t ≈ (ρ +

µg + xt

ψ
− Ad

q(κq + κd
1)qt − (Ad

σ(κσ + κd
1) +

φ2
σ

2
)σ2

g,t+

+
θ(θ − 1)A2

xσ
2
x − ((θ − 1)Axσx + Ad

xσx + φσ,x)
2

2
− σ2

d

2
)∆t+

+ φσσg,t∆W c
t + (Ad

xσx + φσ,x)∆W x
t + Ad

σ

√
qt∆W σ

t + Ad
qϕq

√
qt∆W q

t + σd∆W d
t .

where the operator ∆ denotes the increment to the process over the [t, t + ∆] time-interval. The

variance of the return equals:

Var(∆ log Rt) =

(
β2

R,σVar
(
σ2

g,t

)
+ β2

R,qVarqt +
1

ψ2
Varxt

)
(∆t)2+

+ µσφ
2
σ∆t +

(
Ad,2

σ + Ad,2
q ϕ2

q

)
µq∆t + ∆t(σ2

d + (Ad
xσx + φσ,x)

2),

where βR,σ = −(Ad
σ(κσ + κd

1) + φ2
σ

2
) and βR,q = −Ad

q(κ1 + κd
q).

From equation (B.15), the variance premium is directly proportional to qt. Hence, the corre-

lation between the premium and the return is solely determined by the correlation of the return

with the qt process. The covariance between qt and a future return, ∆ log Rt+l and l > 0, is equal

to the covariance of qt with the drift part of the return:

cov(qt, ∆ log Rt+l) = e−κqlVarqtβR,q∆t, l ≥ 0.

The covariance of qt with the past return, ∆ log Rt−l and l < 0, consists of two parts. The covari-

ance with the drift e−κqlVarqtβR,q∆t, and the covariance with the diffusive part Ad
qϕqcov(qt,

√
qt−l∆W q

t−l) =

Ad
qϕ

2
qµqe

−κql∆t. Combining these effects, the cross-correlation function for the variance risk pre-

mium and the returns may be conveniently expressed as:

corr(qt, ∆ log Rt+l) =

(
VarqtβR,q + Il<0A

d
qϕ

2
qµq

)
e−κq |l|∆t√

Varqt

√
Var(∆ log Rt)

,
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for any value of l.

The expression for the VIX2
t ≡ EQ

t IVt,t+N in (B.16) involves a linear function of qt and the

variance σg,t, with loadings βV IX,q and βV IX,σ, respectively. The covariance of the VIX2
t with any

future return depends solely on the covariance with the drift of the return:

cov(VIX2
t , ∆ log Rt+l) =

(
βR,σβV IX,σVarσ2

g,te
−κσl + βR,qβV IX,qVarqte

−κql
)
∆t.

The covariance of the VIX2
t with past returns includes the covariances with the drift and the

diffusion:

cov(VIX2
t , ∆ log Rt−l) = βV IX,σ βR,σe

−κσlVarσ2
g,t∆t + βV IX,σ Ad

σcov(σ2
g,t,
√

qt−ldW σ
t−l)+

+βV IX,q βR,qe
−κqlVarqt∆t + βV IX,q Ad

qϕqcov(qt,
√

qt−ldW q
t−l)

=
((

βR,σVarσ2
g,t + Ad

σµq

)
βV IX,σe

−κσl +
(
βR,qVarqt + Ad

qϕ
2
qµq

)
βV IX,qe

−κql
)
∆t.

Combining these expressions, the cross-correlations between the VIX2
t and the returns may be

succinctly written:

corr(VIX2
t , ∆ log Rt+l) =(

βR,σVarσ2
g,t + Il<0A

d
σµq

)
βV IX,σe

−κσ |l|∆t +
(
βR,qVarqt + Il<0A

d
qϕ

2
qµq

)
βV IX,qe

−κq |l|∆t√(
β2

V IX,σVarσ2
g,t + β2

V IX,qVarqt

)
Var(∆ log Rt)

,

for any value of l.

C Calibration Details

Table 2 shows the parameter values used in the calibration and their sources. Apart from the

parameters governing the volatility dynamics, all of the values are taken directly from the existing

literature with a few small adjustments to ensure a well defined model solution. In particular, the

three preference parameters, ρ, γ and ψ, are all in the generally agreed upon reasonable range,

and directly in line with the values used by Bansal and Yaron (2004). To allow for accurate log-

linear approximations and internally consistent calibration results, we explicitly solve for the two

log-linearization parameters κ1 and κd
1 within the model.31

The actual calibration results reported in Table 3 generally reveal a close match between the

model-implied and observed sample moments taken from the existing literature, and well within

31For further discussion along these lines, see also Beeler and Campbell (2009).
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acceptable accuracy tolerances traditionally used in the macro-finance literature.32 The only

exception being the variability of the short-rate. The empirically low variability of the short-rate

presents a well known difficulty for many equilibrium models. It is intimately related to the value

of the inter-temporal elasticity of substitution, or ψ, and the variance of σ2
g,t, as discussed in more

detail in Bansal and Yaron (2004).

The variability of the V IX2 and the variance risk premium are both extremely difficult, if not

impossible, to reliable estimate with the limited time span of available data, and we purposely do

not report any observed values for these statistics in the table.33 Nonetheless, the model-implied

values of
√

Var(VIX2
t ) = 100.6 and

√
Var(vpt) = 29.37 are arguably both on the high side. This

excess variability of the two variance measures stems from the assumption about the underlying

economic uncertainty and the corresponding processes parameters, as formally discussed in Section

3.1. By assuming a short-memory process for σ2
g,t, the calibration underestimates the persistence in

V IX2, and in turn overestimates the model-implied variation. This is in part due to the fact that

the two volatility factors, σ2
g,t and qt, are assumed to be independent. This assumption facilitates

a direct study of the two separate sources of risk. The drawback, however, is that the variance

premium is significantly reduced relative to a model with correlated volatility risk, as in, e.g.,

Drechsler and Yaron (2011) where the volatility-of-volatility is effectively an affine function of the

variance. It is possible to alleviate this constraint within the basic model setup by allowing for

correlated volatility shocks, i.e., corr(dW q
t , dW σ

t ) > 0. We purposely did not pursue that channel

here to keep the two effects naturally separated. Alternatively, the model could be extended to

incorporate non-Gaussian shocks, as in Drechsler and Yaron (2011) and Wachter (2010), to help

break the algebraic constraints on the volatility of qt for a given volatility of σ2
g,t. Such an extension

would allow for a larger variance premium, while keeping the overall volatility constant. The same

modification could also help decrease the variability of the short-rate, which increases with the

variance of σ2
g,t, but is not very sensitive to the variance of qt.

Everything else equal, a more persistent qt process also increases the value of Aq, and in turn

the sensitivity of the pricing kernel to innovations in qt. However, it is important to note that

32The values of κ1 = 0.00052 and κd
1 = 0.0037 solved for within the model and the corresponding implied annual

price-dividend ratio of 22.61 also closely matches the 25.56 sample value reported in Bansal and Yaron (2004).
33To illustrate, on estimating

√
Var(VIX2

t ) and
√

Var(vpt) with data from 2007 through the end of 2008, the
summary statistics reported in Table 1 increase from 23.70 to 93.60 and 12.62 to 55.41, respectively.
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Table 2 Calibration Parameters

Parameter Source

Preferences

ρ − log(0.999) BYa

γ 7.50 BYa

ψ 2.50 BYa

Consumption Growth

µg 0.0015 BY

κx − log(0.960) BYa

σx 0.044
√

µσ BY

Dividend Growth

µd 0.0013 BYa

φx 3.0 BY

φσ 4.0
√

0.55 BYa,K

φσx 0.0 K

σd 4.0
√

0.45 µ
1/2
σ BYa,K

Volatility

µσ 0.00782 BY

κσ − log(0.760) BST

µq 0.350× 10−6 BST

κq − log(0.0001) BST

ϕq 0.07 BST

Note: BYa and BY denote small adjustments to, or values taken directly from, Bansal and Yaron (2004); BST denotes values calibrated

by the authors; K denotes values from Kiku (2008).

even if qt was constant, a sufficiently persistent variance process could still generate a non-trivial

variance risk premium within the model. Of course, the persistence of the qt process also plays

an important role in determining the return predictability over longer horizons inherent in the

variance risk premium recently highlighted by Bollerslev et al. (2009). The additional calibrations

discussed in the supplementary web-accessible appendix further illustrates this point and other

longer-run return predictability relations.
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Table 3 Calibration Results

Observed Source Calibration

System Dynamics

Consumption†
E(gt) 1.80 BY 1.80√

Var(gt) 2.93 BY 2.70

Dividends†
E(dt) 1.54 DY 1.54√

Var(dt) 13.69 DY 10.81

Correlations†
Corr(gt, gt−1) 0.43 DY 0.18

Corr(dt, dt−1) 0.14 DY 0.10

Corr(dt, gt) 0.59 DY 0.74

Model Implied Moments

Returns†
E(rf,t) 0.82 DY 1.19√

Var(rf,t) 1.89 DY 4.43

E(rm,t − rf,t) 6.23 DY 5.95√
Var(rm,t) 19.37 DY 19.17

Volatility and Premium

E(VIX2) 32.81 BST 37.87

E(vpt) 8.96 BST 7.25

Note: † indicates the reported value is appropriately annualized to ease interpretation. E(rm,t − rf,t) and
√

Var(rm,t) refer to the

equity premium and the equity return standard deviation, respectively. For sources, BST denotes values reported in Table 1 above;

BY refers to values taken from Bansal and Yaron (2004); DY denotes values from Drechsler and Yaron (2011).
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D General Model Solution

In this section we consider more flexible volatility dynamics, and abstract from the difference

between consumption and dividend assets. We assume that the process for the consumption

variance has a general MA-representation:

σ2
g,t = σ2 +

∫ t

−∞
a(t− s)

√
qsd.W σ

s (D.1)

This specification includes the short-memory model in equation (B.3) above as a special case, but

importantly allows for much richer dynamic dependencies, including long-memory in which the

a(t− s) coefficients decrease at a slow hyperbolical rate. We maintain the identical short-memory

process for the volatility-of-volatility in equation (B.4), but, for simplicity, focus only on the case

of the constant expected consumption growth:

dCt

Ct

= µgdt + σg,tdW c
t ,

The pricing relation in (B.5) remains the same. In parallel to the solution method for the

short-memory model used above, the linearization of the price-dividend ratio reduces the problem

to a system of linear equations. In general, all the shocks in (D.1) need to be included in the

conjectured solution for the dividend-price ratio:

log Ψt = A0 + Aqqt +

∫ t

−∞
A(t− s)

√
qsdW σ

s . (D.2)

Following Rogers (1997), if the price is a semi-martingale, as it must be to prevent arbitrage,

and A(t) exists and is differentiable at zero, the dynamics of the price-dividend ratio may be

decomposed into separate drift and diffusion terms:

d log Ψt =

[
Aqκq(µq − qt) +

∫ t

−∞
A′(t− s)

√
qsdW σ

s

]
dt + Aqϕq

√
qtdW q

t + A(0)
√

qtdW σ
t .

Now, substituting the conjectured solution into the pricing equation imply that the loadings on

the variance shocks must satisfy:

A′(t− s)− κ1A(t− s) =
γ(1− 1

ψ
)

2
a(t− s),

for all t ≥ s. Solving this system along with the constant and the loading on qt in equation (D.2)

we obtain:

A(t) = −
∫ +∞

t

γ(1− 1
ψ
)

2
eκ1(t−τ)a(τ)dτ, (D.3)
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Aq =
κq + κ1 −

√
(κq + κ1)2 − θ2ϕ2

qA(0)2

θϕ2
q

, (D.4)

A0 =
Aqκqµq − κ0 + (1− 1

ψ
)µg − ρ− γ

2
(1− 1

ψ
)σ2

κ1

. (D.5)

If absolute values of the coefficients a(t) are decreasing in t (or grow at a rate less than exponential)

and |a(t)| < ∞, then A(t) is well-defined and A′(0) = κ1A(0) +
γ(1− 1

ψ
)

2
a(0) is finite.

Substituting the solution for the price-dividend ratio into the expression for the SDF, it follows

that

dMt

Mt

=

[
−µg

ψ
− ρ +

γ

2
(1 +

1

ψ
)σ2

g,t + (
1

θ
− 1)(κ1 + κq)Aqqt

]
dt

− γσg,tdW c
t + (θ − 1)Aqϕq

√
qtdW q

t + (θ − 1)A(0)
√

qtdW σ
t .

As before, the risk-free rate is simply defined by the drift of Mt:

rrf
t = − Et

dMt

Mtdt
=

µg

ψ
+ ρ− γ

2
(1 +

1

ψ
)σ2

g,t + (1− 1

θ
)(κ1 + κq)Aqqt.

Since d log Rt = d log Ct + d log Ψt + Ψ−1
t dt, and therefore

d log Rt = D log Rtdt + σg,tdW c
t + Aqϕq

√
qtdW q

t + A(0)
√

qtdW σ
t , (D.6)

The equity premium for the consumption asset equals:

πr,t = γσ2
g,t + (1− θ)[A2

qϕ
2
q + A(0)2]qt = γσ2

g,t + 2

(
1

θ
− 1

)
(κq + κ1)Aqqt. (D.7)

And, the dynamics of the return is determined by:

d log Rt =

[
ρ +

µg

ψ
+ [−1

2
+

γ

2
(1− 1

ψ
)]σ2

g,t − (κq + κ1)Aqqt

]
dt

+ σg,tdW c
t + Aqϕq

√
qtdW q

t + A(0)
√

qtdW σ
t .

The integrated variance may generally be expressed as:

IVt,t+N =

∫ t+N

t

σ2
g,τdτ + (A2

qϕ
2
q + A(0)2)

∫ t+N

t

qτdτ. (D.8)

The expected value of the integrated variance under the objective measure equals:

EP
t IVt,t+N = σ2N +

∫ t

−∞

[∫ t+N

t

A(τ − s)dτ

]√
qsdW σ

s

+ (A2
qϕ

2
q + A(0)2)

[
µqN +

1− e−κqN

κq

(qt − µq)

]
.

44



The expectation under the risk-neutral measure is:

EQ
t IVt,t+N = σ2N +

∫ t

−∞

[∫ t+N

t

A(τ − s)dτ

]√
qsdW σ

s

+ EQ
t

∫ t+N

t

∫ τ

t

A(τ − s)
√

qsdW σ
s dτ + (A2

qϕ
2
q + A(0)2)

[
µ̃qN +

1− e−κ̃qN

κ̃q

(qt − µ̃q)

]
,

(D.9)

where κ̃q = κq−(θ−1)Aqϕ
2
q refers to the mean-reversion of qt under the risk-neutral probability, and

µ̃q = κq/κ̃qµq denotes the corresponding expectation. Moreover, under the risk-neutral measure:

EQ
t

√
qsdW σ

s = EQ
t [
√

qsdW̃ σ
s + (θ − 1)A(0)qsds] = (θ − 1)A(0)(µ̃q + e−κ̃q(s−t)(qt − µ̃q))ds.

Consequently, the variance risk premium defined by the difference between EQ
t IVt,t+N and EP

t IVt,t+N

is again a linear function of qt:

vpt = βpr,0 + βpr,1qt, (D.10)

with the two coefficients now defined by:

βpr,0 = (θ − 1)A(0)µ̃q

∫ t+N

t

∫ τ

t

A(τ − s)(1− e−κ̃q(s−t))dsdτ+

+ (A2
qϕ

2
q + A(0)2)

[
µ̃q(N − 1− e−κ̃qN

κ̃q

)− µq(N − 1− e−κqN

κq

)

]
,

βpr,1 = (θ − 1)A(0)

∫ t+N

t

∫ τ

t

A(τ − s)e−κ̃q(s−t)dsdτ+

+ (A2
qϕ

2
q + A(0)2)

[
1− e−κ̃qN

κ̃q

− 1− e−κqN

κq

]
.
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E Time Series Plots

Figure 6 Volatility Measures, Daily Sample
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The figure shows the V IXt implied volatility index, the realized volatility RV
1/2
t,t+22, and the volatility risk premium v̂pt = V IXt −

Et(RVt,t+22)1/2 over the January 2, 1990 to October 31, 2007 sample period. All of the volatility measures are plotted at the monthly

frequency in annualized percentage units. The realized volatilities are constructed from the summation of high-frequency five-minute

squared returns. The expectations for the future variances ÊtRVt,t+22 are based on the HAR-RV forecasting model discussed in the

text.
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Figure 7 Volatility Measures, 5-Minute Sample
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The figure shows the V IXt implied volatility index, the realized volatility RV
1/2
t,t+22, and the volatility risk premium v̂pt = V IXt −

Et(RVt,t+22)1/2 over the September 23, 2003 to August 31, 2007 sample period. All of the volatility measures are plotted at the daily

frequency in annualized percentage units. The realized volatilities are constructed from the summation of high-frequency five-minute

squared returns. The expectations for the future variances ÊtRVt,t+22 are based on the HAR-RV forecasting model discussed in the

text.
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