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Abstract

Within a novel model of correlated private values/costs (CPV) we investigate how well a

particular market mechanism, the buyer’s bid double auction (BBDA), performs in small and

moderate sized markets: do well behaved equilibria exist and is there rapid convergence to ef-

ficient allocations and prices that accurately identify the market’s underlying state. Using a

combination of theorems and numerical experiments we establish that for two plausible stochas-

tic specifications of costs/values simple equilibria do exist even in small markets. As a function

of market size we bound traders’ strategic behavior and prove rates of convergence to zero of (i)

the allocation’s inefficiency and (ii) the error in estimating the market’s underlying state. These

rates imply that even in moderate sized markets strategic behavior has an inconsequential effect

on the estimate of the market state. We also show that the affiliation condition on traders’

values and costs familiar from auction theory does not imply affiliation of bids and offers and

therefore does not play the same pivotal role as it plays in auction theory in proving existence.

Nevertheless, in the cases we consider, a a solution to the first order condition defines an equi-

librium despite the failure of affiliation among bids and offers. We then extend our model to the

case of correlated interdependent values (CIV). While so far we have been unable to obtain the

same sequence of results as we have secured in the CPV case, we do show that the structure of

equilibria in the CIV case is unchanged. As a consequence we can straightforwardly compute a

substantial sample of equilibria for different market sizes and show that the BBDA’s convergence

properties do not change qualitatively with the introduction of interdependence.

1 Introduction

A market may have both allocative and informational purposes. This is particularly true in security

and commodity markets that are the major centralized markets that collectively play an enormous
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role in modern economies. The allocative purpose is to redistribute goods among the traders

so as to produce gains from trade. The informational purpose is to aggregate cost and benefit

information of active traders into a price that other agents may then use to make decisions that

depend on that price. In small markets traders have incentives to influence the market price in their

favor. This behavior can cause misallocated goods and market prices that are biased relative to

the underlying competitive price. In extreme cases the market may completely breakdown with no

trade at all occurring. But in the simple double auction market that we study strategic incentives

attenuate and improved allocational and informational performance result as the number of traders

in the market becomes larger. In fact, as the number of traders becomes large, strategic incentives

vanish, the allocation approaches the efficient allocation, and price reflects fundamentals accurately,

i.e., the equilibrium converges to the fully revealing rational expectations equilibrium.

Our objective in this paper is to investigate the ability of a particular double auction mechanism

to accomplish the allocational and informational purposes of centralized markets. Analysis of such

markets is challenging: they may be small relative to the competitive ideal, buyers and sellers

have private information concerning their values and costs, and traders’ idiosyncratic values/costs

may be correlated and, perhaps, interdependent. Interdependence means that if a trader’s private

value/cost were to become public, then that knowledge would enable every other trader to sharpen

his estimate of his own cost/value. These characteristics lead us to study double auctions instead of

standard auctions for two main reasons. First, double auctions are more faithful to the fundamental

informational feature of centralized markets in the sense that they model private information on

both the buyer and the seller sides. Second, the results from standard, one-sided auctions do not

and can not carry over to markets with two-sided private information and the asymmetric strategies

that buyers and sellers choose. Theorems from auction theory may provide useful analogies, but

different methods are necessary in order to establish a double auction’s properties and performance.

Four questions guide our inquiry. First, do well behaved equilibria exist and, if so, what are

their structure in markets with small numbers of traders? Second, are the asymptotic results that

establish rapid rates at which strategic behavior disappears and efficiency is approached indicative

of the double auction’s performance in small markets? Third, at what rate is informational ac-

curacy achieved in double auctions? Fourth, does the introduction of interdependence change the

performance of double auctions qualitatively, especially in small markets?

The answers we obtain for these questions are positive: in small markets equilibria exist, the

rates in small markets at which their equilibria converge to efficiency and full information revelation

approximate the asymptotic rates, and the presence of interdependence causes no significant change

in performance. The last point is particularly significant because it implies that in equilibrium the

realized market price of a small double auction market approximates the fully revealing rational

expectations price.

In the formal language of auction theory, our initial focus is a correlated private values (CPV)
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model in which homogeneous, indivisible items are traded. After we gain a good understanding

of this model we then generalize it to the correlated interdependent values (CIV) model and show

that interdependence has little qualitative effect. Throughout there are m potential buyers, each

of whom wishes to buy at most one item, and n potential sellers, each of whom has a single item to

sell. Each trader’s utility is quasilinear in his value/cost and money. The allocation problem of the

market is to reassign the n items to the n traders who value them most highly. The informational

problem is to estimate the underlying state of the market from the realized market price.

We address these problems with the buyer’s bid double auction or BBDA.1 After simultaneously

collecting bids from buyers and asks from sellers, the BBDA sorts the bids/asks from lowest to

highest and selects as the realized market price the upper endpoint of the interval of possible

market-clearing prices. Thus, the market price in the BBDA is the (m+ 1)st order statistic of the

m+ n bids/asks. Trade then occurs at this price.

This price setting rule implies that if a seller’s ask is successful and results in him selling

his unit of the good, then his ask is not the bid/ask that actually sets the market price. This

is because a seller who trades must have submitted an ask aj that is among the m smallest of

m+n bids/asks submitted; it cannot be the (m+ 1)st smallest. Therefore a seller has no strategic

incentive to misrepresent his cost in order to affect his terms of trade. This simplifies the analysis.2

By contrast, if a buyer submits a successful bid bi, then not only will he receive a unit of the good,

but bi may be the (m+ 1)st smallest bid/ask and therefore determine price. This possibility gives

buyer i an incentive to set bi less than his value vi in order to increase his expected gains from trade.

The focus of our analysis is therefore the bidding behavior of buyers. Given honest reporting by

each seller we seek for buyers an increasing strategy B : R → R that constitutes a Bayesian Nash

equilibrium.

We introduce a novel process by which the values and costs of the traders are generated that

contrasts with the standard specification in which values/costs are drawn from a compact segment

of the real line. In our model the market’s state µ ∈ R is drawn from the diffuse, uniform prior on

the real line. It is an improper probability distribution that may informally be thought of as the

“uniform distribution over the entire real line.” For each trader i, an idiosyncratic valuation term εi

is independently drawn from a mean zero, symmetric distribution F . Trader i’s value/cost is then

µ+ εi. The underlying, highly uncertain common component µ creates correlation among traders’

values/costs. If each trader privately observes his value/cost vi = µ + εi, then the environment is

correlated private values (CPV). If instead each trader observes a noisy signal of his value/cost,

1The name originated with the bilateral double auction where “buyer’s bid” refers to the fact that the buyer’s bid
is the price when trade occurs.

2That sellers have the dominant strategy of honestly reporting their costs does not mean, as Jackson and Swinkels
(2005, footnote 6) suggest, that the BBDA can be analyzed “as a one-sided auction with a hidden reserve price
schedule...” It is also the case that honest reporting as a seller’s strategy is asymmetric relative to the equilibrium
strategies of buyers. As discussed below, this asymmetry of behavior particularly complicates the CPV and the CIV
cases and distinguishes the analysis of double auctions from auctions.
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σi = vi+δi = µ+εi+δi, where δi is independently drawn from a mean zero, symmetric distribution

G, then the environment is correlated interdependent values(CIV). Interdependence exists in the

sense that trader i’s signal carries information concerning the state µ and therefore can help every

other trader j refine his estimate of his own value/cost.

Substantively the diffuse prior maximizes the traders’ ex ante ignorance about the expected

location of values/costs on the real line and the likelihood of different market prices. Thus, given any

ζ ∈ R, the buyer ex ante cannot make any statement concerning the probability he will draw vi < ζ

or the probability he will draw vi > ζ; he is just completely uncertain. This maximally challenges

the market mechanism’s ability to discover the market clearing price, estimate the underlying state

µ, and efficiently reallocate the supplied units that sellers bring to market. At the other extreme is

a double auction market in an independent private values (IPV) environment in which each trader

ex ante knows the state of the market µ with certainty and therefore knows the expected price.3

Consequently in IPV markets, except when they are very small, a trader at the interim stage whose

value/cost is not close to the expected price may predict with a high degree of certainty whether

or not he will trade. This contrasts with our specifications of the CPV environment in which each

buyer, no matter what vi he draws, places a 0.5 probability that state µ exceeds his realized vi and

a 0.5 probability that µ is less than his realized vi.

Methodologically the diffuse prior plays the key role in our analysis. The logic is this. In a

Bayesian equilibrium both the structure of the model and other traders’ equilibrium strategies are

common knowledge among all traders as they receive their private signals of value (either vi or cj in

the CPV environment or σi in the CIV environment) and decide what bid/ask to submit. The only

information that is unique to each is his signal of value/cost. Each one’s bid/ask is conditioned

only on it. But every draw is the same in the sense that it gives identical information as to where

other traders’ values/costs are likely to be relative to his own draw. Specifically, if buyer i draws

v′′i ∈ R instead of v′i ∈ R , then his beliefs about another buyer j’s value relative to his own do not

change:

Pr[vj ∈ [v′i, v
′
i + ζ]|v′i] = Pr[vj ∈ [v′′i , v

′′
i + ζ]|v′′i ], (1)

Pr[vj ∈ [v′i − ζ, v′i]|v′i] = Pr[vj ∈ [v′′i − ζ, v′′i ]|v′′i ].

for any ζ ∈ R+. Similar equations hold for his beliefs concerning any seller’s cost. Thus in this

sense the fundamentals of trader i’s decision problem are invariant with respect to his signal.

Consider buyer i’s equilibrium strategy Bi : R → R. For any given vi ∈ R, buyer i underbids

in order to influence price in his favor: the offset λi (vi) = vi − Bi (vi) is necessarily positive.

Conceivably this offset may vary as vi varies. This, even if such an equilibrium exists, seems

implausible behaviorally because it requires all buyers’ offsets to vary with their value even though

3In a IPV environment each trader’s value/cost is independently drawn from a given distribution.
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beliefs about each other’s values/costs remain invariant in the manner equations (1) describe. It

seems more reasonable that each buyer’s offset remains fixed as his value varies. Further, if all

buyers other than buyer i play strategies with fixed offsets, then buyer i’s best response is also to

play a fixed offset. Fixed offsets therefore extend the invariance in values/costs to bids/asks and

reinforce the reasonableness of such strategies.

An offset equilibrium within our model has the analytical virtue that solving for buyer i’s first

order condition at value vi = 0 for the offset λi at which his marginal utility equals zero gives,

for every other vi ∈ R, the offset at which his marginal utility is zero. Moreover, checking that

this solution to the first order condition is a global maximum and therefore an equilibrium is also

simple: for vi = 0, graph the buyer’s utility and check that it is indeed a global maximum. If this

is so for vi = 0, then λi is also a global maximum for any vi ∈ R.
Exploiting this special but reasonable structure permits us to obtain the following sequence of

results for the BBDA in the CPV environment.

Existence. We prove that for a broad class of distributions F a symmetric offset strategy B

exists that is a solution to the first order conditions. We are unable to characterize analytically a

condition on F that guarantees B is an equilibrium and demonstrate the source of the difficulty.

A set of systematic numerical experiments for m,n ∈ {2, 3, . . . , 20}, however, shows that if F is

either the normal or Laplace distribution, then the offset solution is uniquely determined and an

equilibrium.4 Affiliation of bidders’ values is commonly assumed in the analysis of auctions to

insure the sufficiency of the first order approach. We prove in the case in which F is the normal

distribution that affiliation does not play the same role in the theory of double auctions: though

the values/costs of traders are affiliated in this case, each trader’s cost/value is not affiliated with

the order statistics of the other traders’ bids/asks because of the asymmetry of behavior across

the two sides of the market. While affiliation is an extremely useful sufficient condition in auction

theory, it is neither useful nor necessary for existence of pure strategy equilibria in double auctions

for small markets.

Non-existence and its resolution. Fully exploring the universe of distributions F that might

describe the behavior of traders’ idiosyncratic value/cost component εi and checking for each one

whether or not equilibrium exists is beyond this paper’s scope. Nevertheless we have determined

what happens if F is the standard Cauchy. The reason we chose this distribution to check the

robustness of our existence results is the same reason that statisticians commonly use it as a test

case: the Cauchy distribution’s density resembles the standard normal’s density, but also has “fat

tails” that can disrupt asymptotic sampling results. We show two results. First, for the bilateral

4These results complement the existence results of, first, Jackson and Swinkels (2005) showing that a possibly
mixed equilibrium exists for double auctions in the CPV environment and, second, Fudenberg, Mobius, and Szeidl
(2007) showing existence of increasing pure strategy equilibria in large markets.
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case, in which the single buyer in effect makes a take-it-or-leave-it ask to the single seller, no

equilibrium exists. The culprit is the non-existence of the Cauchy’s first moment: the fat downward

tail of the distribution implies that the marginal benefit to the buyer of lowering his bid and thereby

driving down the price he pays when he buys always outweighs the marginal cost of decreasing the

probability that he trades. But, second, in the multilateral case — two or more buyers and two or

more sellers — a perfectly well behaved equilibrium exists for the BBDA.

This is a twist on the analysis of bilateral trade of Myerson and Satterthwaite (1983) who

prove in an IPV model with compact support that trade is necessarily ex post inefficient in any

equilibrium. Trade in contrast is indeterminant in our example because there are no equilibria. In

both their model and in our model, however, increasing the number of traders resolves the failings

of bargaining. We show numerically that an offset equilibrium exists in the case of the standard

Cauchy distribution for a number of values of m = n that are strictly greater than one. This se-

quence of equilibria exhibits the convergence rate that is proven for “regular” distributions in this

paper. While the outcome of bilateral trade is indeterminant in this example, the market outcome

in the BBDA appears to be uniquely determined and asserts itself immediately as bargaining tran-

sitions into a market. This example illustrates the robustness of the double auction and its ability

to protect each bidder from a bid that is interim optimal and ex post catastrophic. Underlying

this good behavior is a technical fact: even with fat tails interior order statistics are typically well

behaved despite first and higher moments not existing.

Allocative efficiency. Let m, n > 1 be fixed integers and let τ ∈ N∗ index a sequence of markets

with τm buyers and τn sellers. The equilibrium underbidding v − B(v) by each buyer is O(1/τ)

for all v and τ and in expectation results in too few units being traded.5 As a consequence, the

expected gains from trade that inefficiently fail to be achieved in the state µ as a fraction of the

potential gains from trade in that state is O(1/τ2). This quadratic rate agrees with rates that have

previously been established for sufficiently large markets when values/costs, possibly correlated, are

drawn from a compact support.6

Informational efficiency. Let q = m/(m+ n) and let ξq denote the qth population quantile of

the distribution F.7 Let pBBDA denote the price in the BBDA when buyers bid strategically and let

5For functions f(t), g(t) : N→ R+, f(t) is O(g(t)) if there exists a constant k ∈ R such that

f(t) ≤ kg(t) for all t ∈ N∗,

and f(t) is Θ(g(t)) if there exists constants k
′
, k
′′

such that

k
′
g(t) ≤ f(t) ≤ k

′′
g(t) for all t ∈ N∗.

6See Satterthwaite and Williams (1989), Williams (1991), and Rustichini, Satterthwaite, and Williams (1994) for
the IPV case and Cripps and Swinkels (2006) and Fudenberg, Mobius, and Szeidl (2007) for the CPV case.

7For q ∈ (0, 1) the population quantile ξq of F is the unique solution to the equation F (ξq) = q.
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p denote the price that would be determined in the BBDA if buyers (contrary to their self-interest)

instead submitted their true values as their bids. Recalling that F is symmetric with zero mean,

if all buyers honestly reported their values, then as the market becomes large p would converge

to µ + ξq. Given prior knowledge of F and therefore ξq, p can be used to estimate µ. The error∣∣pBBDA − (µ+ ξq)
∣∣ is bounded above by the sum

|p− (µ+ ξq)|+
∣∣pBBDA − p∣∣ .

The first of these terms is the sampling error, which represents the error in the estimation that is

inherent from the finiteness of the market. The second term is the strategic error, which is the

error caused by buyer underbidding. The bound on buyer underbidding implies that the expected

strategic error is O(1/τ); results from statistics imply that the expected sampling error is Θ(1/
√
τ).

Thus the strategic error is of strictly higher order than the sampling error and therefore for larger

markets has an insignificant impact upon the estimation of µ+ ξq and µ.8

Asymptotic approximation of equilibrium strategies. As a complement to our analysis of

equilibrium, we analyze a buyer’s decision problem from an asymptotic perspective by determining

the asymptotic limits to the probabilities in his first order condition for the selection of his bid.

For fixed m and n, the solution to this asymptotic first order condition is a uniquely determined

offset strategy. Using the asymptotic approach for the case in which F is the standard normal

distribution we derive an approximate formula for a buyer’s equilibrium offset as a function of m

and n. This provides an approximation to equilibrium bidding behavior in all sizes of markets. As

expected, it exhibits underbidding that is O(1/τ) in magnitude. Numerical investigation suggests

that this approximation is quite good even in small markets. The formula is significant because

there are very few examples of equilibria in the double auction literature.9,10

Correlated interdependent values. Ideally we would exactly replicate this sequence of results

for the CPV environment for the CIV environment. This, however, has proved impossible for us,

at least in this paper. But the diffuse prior in the CIV case does give the same invariance to

8We are unaware of other results in the double auction literature showing the rate at which informational efficiency
is achieved. Vives (2011) in his recent study of supply function equilibria among firms that have private information
concerning their marginal costs obtains analogous results.

9Three examples are as follows. The first example is the linear equilibrium to the split-difference bilateral double
auction Chatterjee and Samuelson (1983) derived when the buyer’s value and the seller’s cost are independent and
uniformly distributed on [0, 1]. The second is the linear equilibria for the BBDA that Satterthwaite and Williams
(1989) and Williams (1991) constructed for arbitrary numbers of buyers and sellers in the independent private value
environment. The third is the equilibria Kadan (2007) constructed for the bilateral case in a CPV environment.

10Examples of equilibrium obtained either through numerical calculation or theoretical derivation are important
both for the insight that they give and because they provide a basis for experimentally testing the theory of double
auctions. Experimental tests of the multilateral k-double auction include Kagel and Vogt (1993) and Cason and
Friedman (1997).
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each trader’s decision problem that its presence gives to each buyer’s decision problem in the CPV

case. This invariance makes it easy to compute equilibria and do numerical experiments when

F and G — the distributions respectively of each trader’s idiosyncratic value/cost component εi

and his noise component δi — are the normal distribution. These experiments confirm that in

the CIV environment offset equilibria exist in small markets and converge towards allocative and

informational efficiency at the same rates as is the case for equilibria in the CPV environment. In

other words, this paper provides new theoretical evidence that fully rational strategic behavior in

a market with two-sided private information and CIV does converge to a fully revealing rational

expectations equilibrium (REE) as the number of traders increases from a small number to a large

number.

Related work. This paper is therefore a step in developing an explicit theory as to how rational,

self-seeking, non-cooperative buyers and sellers trading within a market institution can, as the

number of traders becomes larger, lead to increasingly efficient allocations at a price that increasing

accurately reveals the market’s underlying fundamentals. Game theoretic approaches to this began

with Vickrey (1961), Wilson (1977), Milgrom (1979), and Milgrom (1981) with their initial work

on auctions. The two-sided nature of the problem was first recognized in the papers of Wilson

(1985) and Gresik and Satterthwaite (1989) that began the theoretical study of multilateral double

auctions. Within the IPV environment Satterthwaite and Williams (1989), Williams (1991), and

Rustichini, Satterthwaite, and Williams (1994) established the quadratic rate of convergence to

efficiency of the BBDA and the k-double auction. Relying on Jackson and Swinkels (2005) for

existence, Cripps and Swinkels (2006) in a paper that is notable for allowing buyers multiple units

of demand, sellers multiple units of supply, and a very general definition for the CPV environment

study the efficiency of large double auctions and show that efficiency is approached at the same

quadratic rate as it is in the IPV environment.

Reny and Perry (2006) in an ambitious paper investigate the existence and efficiency of double

auction equilibria when traders’ values/costs may be interdependent.11 Under some technical con-

ditions they prove that if the number of traders is sufficiently large, then an equilibrium in which

each trader’s strategy is increasing with respect to his private signal exists, the resulting allocation

is efficient, and the realized market price p identifies the state of the market µ. A fully revealing

REE exists if the market is large enough. This is a terrific result because, as they observe (p.1233),

interdependence of values/costs “is the hallmark of environments in which rational expectations

are required.”

Reny and Perry’s theorem, as with any theorem, has its limitations: it does not apply to small

markets, it does not establish a rate at which equilibria converge to efficiency, and does not provide

11Their value/signal formulation as well as affiliation/interdependence structure is more general than is the case in
our model.
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insight as to what equilibrium strategies look like. Our results for CIV environments speak to these

limitations by showing existence for small markets, demonstrating that convergence to efficiency

is quadratic as is the case in both IPV and CPV environments, and showing that equilibrium

strategies may take the simple form of a constant offset. In addition, if our model is modified

while still maintaining the diffuse prior assumption, our techniques continue to apply and facilitate

computing solutions to the first order conditions, checking that these solutions are equilibria or

(equally interesting) are not equilibria, and determining their properties if it is an equilibrium.12

This, not surprisingly, has a cost in terms of generality: our model is quite specific with its additive

structure for values/costs and signals as well as its assumption that agents’ prior on the underlying

market state µ is diffuse. We thus see our paper as a complement and not as a substitute to Reny

and Perry (2006), albeit in a less general informational framework.

Finally, it is well-known in the mechanism design literature that statistical dependence among

privately observed types can be used to achieve higher levels of performance than in the case

of independent types.13 In Satterthwaite, Williams, and Zachariadis (2011), we generalize the

McAfee and Reny (1992) mechanism for bilateral trade when the type space is compact to the

multilateral, diffuse prior model considered here. Honest reporting is a Bayesian-Nash equilibrium

in the McAfee-Reny mechanism and its equilibrium allocation is efficient. The truthful reporting by

all traders means that strategic behavior does not cause any error in the aggregation of information

by the market. This raises the following question. Because the adverse consequences of strategic

behavior can be completely avoided with this designed mechanism, what is the purpose of studying

an imperfect mechanism such as the BBDA? One reason is that the transfers of the designed

mechanism are defined in terms of the distribution F , which renders it impractical.14 The BBDA,

in contrast, is defined without reference to the traders’ probabilistic beliefs. In our paper we

explore another reason: it may impose a sizeable ex post loss on a trader and it may require a

substantial ex post monetary subsidy to operate. Our conclusion is that the designed approach

12There is an additional, technical reason why this paper complements Reny and Perry. One of their contributions
is an example (see p. 1246-1248) illustrating how in CPV and CIV environments a trader’s best response strategy may
not be monotone increasing even if other buyers and sellers are playing increasing strategies. This possibility made
it difficult for them to employ the fixed point theorem of Athey (2001) in proving existence. Their workaround is to
show that if the market is sufficiently large, then every trader becomes almost a price taker and, as a consequence,
has a monotone best response to any set of monotone strategies. But overcoming this difficulty and showing existence
by making the market so large that traders’ become essentially price-takers does not give insight into whether their
example that best replies to monotone strategies are not necessarily monotone in small markets — where buyers’ are
definitely not price-takers —is the exception or the rule. Our results show that for small markets the set of specific
CPV and CIV environments in which best replies to monotone strategies are monotone is not empty and includes
some plausible examples.

13This observation originates in Myerson (1981), who constructed an example in which dependence among the
private values of bidders allow the seller of an item to design an auction that extracts all of the possible revenue.
Myerson (1981)’s example was developed into a general result on auctions by Crémer and McLean (1988). It was
further developed as a general result in Bayesian mechanism design by McAfee and Reny (1992).

14This is the Wilson Critique of mechanism design, namely, that probabilistic beliefs are a way to model decision-
making under uncertainty and are not a datum available for the practical definition of an economic mechanism. See
Wilson (1987).
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is a complicated and impractical exercise that achieves modest gains in comparison to a simple

mechanism such as the BBDA.

Outline of the paper. This paper is organized as follows. The model is formally presented

in Section 2. Section 3 presents the first order condition for a strategy B : R → R to define a

Bayesian-Nash equilibrium, assuming that all sellers report honestly and all buyers use B. This

first order condition is the basis for the convergence results and the computation of equilibrium in

this paper. Section 4 derives from this first order condition (i) an invariance property of the first

order condition, which reflects the invariance of a buyer’s decision problem, and (ii) the existence

of an offset strategy that solves the first order condition. Sections 5 presents theoretical results

concerning the sufficiency of this first order condition. Section 6 computes the rates of convergence

of buyer misrepresentation and the inefficiency that it causes to zero. In Section 7 we supplement

the theoretical results on sufficiency with numerical results, and also illustrate numerically several

properties of offset equilibria that were proven in previous sections. Section 8 contains our analysis

of the “fat-tailed” case of the standard Cauchy distribution. Section 9 applies our bound on buyer

misrepresentation to characterize the magnitude of strategic error in estimating a market parameter

in comparison to sampling error that is inherent in the finiteness of a market. Section 10 analyzes

the buyers’ first order condition from an asymptotic perspective and produces a formula for buyer

underbidding in arbitrary sizes of markets in the case of the standard normal distribution. Section

11 applies our analysis of the CPV case to the CIV case. Section 12 concludes. Many proofs are in

the Appendices.

2 Model

The market consists of m potential buyers who seek to buy one unit of the good and n potential

sellers each of whom is endowed with one unit of the good. The process that generates each buyer’s

and seller’s valuation for the good is this. First, µ ∈ R a common component to every buyer’s

value and each seller’s cost is drawn from a diffuse, improper prior distribution that is uniform

over the entire real line. Second, for each buyer i ∈ {1, 2, ...,m} and for each seller j ∈ {1, 2, ..., n}
idiosyncratic terms εi and εj are drawn i.i.d. from distribution F on R. These idiosyncratic

components perturb the common component µ and create values vi = µ + εi for buyers and costs

cj = µ + εj for sellers. Buyers and sellers are risk neutral. If a buyer i trades at price p then his

utility is vi − p, and if seller j trades at price p his utility is p− cj . Buyers and sellers who do not

trade receive zero utility.

Each trader privately learns his value vi or cost cj through a noiseless signal and computes

from his signal his posterior distribution of µ: for buyers Fµ (µ|vi) = F (µ− vi) and analogously

for sellers. His posterior on µ then enables him to compute his joint posterior of the other traders’
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values and costs. The purpose of this structure using a diffuse prior is to create maximal uncertainty

about the market price and to reflect gains from trade that exist in markets due to idiosyncratic

preferences as a result of, for example, differing portfolio positions of individual buyers and sellers.

The mechanism we use to realize these gains from trade is the buyer’s bid double auction. In it

buyers and sellers simultaneously announce their bids and asks that are then sorted in increasing

order: s(1) ≤ s(2) ≤ · · · ≤ s(m) ≤ s(m+1) ≤ · · · ≤ s(m+n). The traders who submit the highest n

bids/asks are assigned the n objects available in the market while the buyers/sellers who submit

the lowest m bids and asks are not assigned an object. Those buyers who are assigned an object

pay the market clearing price p = s(m+1) and those sellers who are not assigned an object receive

that market clearing price.15

We restrict attention to symmetric strategies amongst all buyers and all sellers. Furthermore,

we note that because the market price is set at s(m+1) a seller never affects the price at which he

sells. Therefore, a dominant strategy for him is to report his cost truthfully; let S̃ be this truthful

strategy for sellers. Buyers can affect the market price when they buy and therefore may have an

incentive to underbid. Let B be the buyers’ symmetric strategy that maps values into bids. A pair

of strategies <S̃,B> is an equilibrium if, for each buyer i ∈ {1, . . . ,m} and every vi ∈ R, B(vi)

maximizes his expected utility given that all sellers play S̃ and all other buyers play B.

We make the following assumptions on the strategy B and the distribution F of the idiosyncratic

terms εi and εj .

A1: B is strictly increasing.

A2: lim infv→−∞B
′(v) <∞.

A3: F is absolutely continuous on R with density f , which is positive and continuous on R.

A4: The density f is symmetric about zero, i.e., f(x) = f(−x) for all x ∈ R.

A5: F satisfies

lim
x→−∞

sup
F (x)

f (x)
<∞. (2)

We call an equilibrium < S̃,B > that complies with A1 and A2 on B as regular.

Given A3 and our exclusive focus on increasing strategies, ties between two or more traders’

bids/asks are measure zero events and may be ignored. A4 implies that the mean and the median

of F are both equal to zero and F (x) = F (−x) for all x ∈ R, where F = 1 − F . Notice that A5

is weaker than the assumption that the hazard rate f(x)/F (x) is strictly decreasing, which is a

common assumption in mechanism design.

15If there are ties at s(m+1) then available supply is first assigned to buyers and then to sellers. If supply is
insufficient to supply those buyers at s(m+1) then the available supply is distributed amongst them using a fair
lottery. Finally, if any further supply remains unassigned, then it is distributed back to the sellers at s(m+1) with a
fair lottery. For more details see Satterthwaite and Williams (1989, pages 480-1).
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Remark 1 The normal distribution with mean 0 satisfies the assumptions on F (A3-A5) with A5

holding by virtue of the fact that the normal satisfies the monotone hazard rate condition. The

Laplace distribution with mean 0 also satisfies the assumptions on F , while the Cauchy distribution

does not satisfy A5.

3 The focal buyer’s expected utility and first order condition

Pick a buyer, whom we refer to as the focal buyer, and fix the n sellers’ strategy at S̃ and the m−1

remaining buyers’ strategy at B. Excluding the focal buyer’s bid b, order the bids and asks of the

remaining buyers and sellers into a vector: s(1) ≤ s(2) ≤ · · · ≤ s(m) ≤ s(m+1) ≤ · · · ≤ s(m+n−1).

This is the random vector against which the focal buyer, as a function of his v, chooses his b so

as to maximize his expected utility. To streamline the notation, let x denote s(m), the mth order

statistic of the bid/ask vector, and let y denote s(m+1), the (m+ 1)st order statistic of the bid/ask

vector. Then we have the following cases:

1. If b < x < y, then the price is p = x, the buyer fails to trade, and his utility is 0.

2. If x < y < b, then the price is p = y, the buyer trades, and his utility is v − y,

3. If x ≤ b ≤ y, then the price is p = b, the buyer trades, and his utility is v − b.

Given the value v, the focal buyer chooses his bid b to maximize his expected utility. Observe that

bidding b′ = v dominates bidding b′ > v. Conditional on the focal buyer’s value v and the other m

buyers’ bidding strategy B, let fx(x|v), fy(y|v), and fxy(x, y|v) be the marginal density of x, the

marginal density of y, and the joint density of x and y, respectively. These densities depend on v

since the buyer uses his value to form his posterior beliefs over the other traders’ valuations. The

focal buyer’s expected utility is

π(v, b|B) = vPr[y < b|v]− E [(v − y)χy<b|v] + (v − b) Pr[x ≤ b ≤ y|v]

= vPr[y < b|v]− E [yχy<b|v] + (v − b) Pr[x ≤ b ≤ y|v],

where χ is the indicator function and

Pr[y < b|v] =

∫ b

−∞
fy(y|v)dy,

E [yχy<b|v] =

∫ b

−∞
yfy(y|v)dy,

Pr[x ≤ b ≤ y|v] =

∫ b

−∞

∫ ∞
b

fxy(x, y|v)dydx.

12



Taking derivatives with respect to b and setting the result equal to zero yields the first order

condition for b given v:

πb(v, b|B) =(v − b)
[
fy(b|v) +

∫ ∞
b

fxy(b, y|v)dy −
∫ b

−∞
fxy(x, b|v)dx

]
− Pr[x ≤ b ≤ y|v]

=(v − b)fx(b|v)− Pr[x ≤ b ≤ y|v] (3)

=0.

where πb = ∂π/∂b. In the first line
∫∞
b fxy(b, y|v)dy = fx (b|v) because fxy(x, y|v) = 0 for all y < x.

For the same reason,
∫ b
−∞ fxy(x, b|v)dx = fy (b|v). The third line is the focal buyer’s marginal

utility. Its first term is the focal buyer’s expected gain from increasing his bid by ∆b: he jumps

over x with probability fx(b|v)∆b, goes from non-trading to trading, and earns v − b, which gives

an expected gain of (v− b)fx(b|v)∆b. The second term is the expected cost of increasing his bid by

∆b: with probability Pr[x ≤ b ≤ y|v] his bid b sets the price; increasing b by ∆b forces the market

clearing price he pays up by ∆b, which gives an expected loss of Pr[x ≤ b ≤ y|v]∆b.

Observe that the conditional independence of values and costs with respect to the common

component µ implies that

fx(b|v) =

∫ ∞
−∞

fx(b|µ)fµ(µ|v)dµ,

Pr[x ≤ b ≤ y|v] =

∫ ∞
−∞

Pr[x ≤ b ≤ y|µ]fµ(µ|v)dµ,

where fµ(µ|v) is the conditional on the buyer’s signal v density of µ, fx(b|µ) is the conditional

on µ density of the other traders’ mth order statistic computed at the focal buyer’s bid b, and

Pr[x ≤ b ≤ y|µ] is the conditional on µ probability that the focal buyer sets the price with his bid.

Consequently the formulas for fx(b|µ) and Pr[x ≤ b ≤ y|µ] are the same as in Satterthwaite and

Williams (1989a) with its analysis of the independent private values case.

To spell out the formulas for fx(b|µ) and Pr[x ≤ b ≤ y|µ] three probabilities, Mn,m, Kn,m, and

Ln,m, must be defined. These three probabilities are conditional on µ and assume that in the sample

of interest buyers each play the strategy B (with inverse B−1), and sellers each truthfully ask their

costs. In particular Mn,m (b|B,µ) is the probability that the focal buyer’s bid b lies between s(m)

13



and s(m+1) in a sample of m− 1 buyers’ bids and n sellers’ asks:16

Mn,m(b|B,µ) =
∑

i+j=m
0≤i≤m−1

0≤j≤n

(
m− 1

i

)(
n

j

)
F
(
B−1(b)− µ

)i
F (b− µ)j

· F
(
B−1(b)− µ

)m−1−i
F (b− µ)n−j (4)

where i indexes buyers and j indexes sellers. Also note that, conditional on µ, the probability that

a non-focal buyer with value B−1(b) bids at least b is F
(
B−1(b)− µ

)
because the focal buyer sets

his bid b freely and not in accordance with strategy B that the m− 1 other buyers employ.

Similarly, Kn,m (b|B,µ) is the probability that the focal buyer’s bid b lies between s(m−1) and

s(m) in a sample of m− 1 buyers’ bids and n− 1 sellers’ asks:

Kn,m(b|B,µ) =
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n− 1

j

)
F
(
B−1(b)− µ

)i
F (b− µ)j

· F
(
B−1(b)− µ

)m−1−i
F (b− µ)n−1−j . (5)

Finally, Lm,n (b|B,µ) is the probability that the focal buyer’s bid b lies between s(m−1) and s(m) in

a sample of m− 2 buyers’ bids and n sellers’ asks:

Ln,m(b|B,µ) =
∑

i+j=m−1
0≤i≤m−2

0≤j≤n

(
m− 2

i

)(
n

j

)
F
(
B−1(b)− µ

)i
F (b− µ)j

· F
(
B−1(b)− µ

)m−2−i
F (b− µ)n−j . (6)

Given these formulas, the focal buyer’s marginal utility when his value is v, his bid is b, each

other buyer is playing strategy B, and each seller is truthfully asking his cost is

πb (v, b|B) =(v − b)fx(b|v)− Pr[x ≤ b ≤ y|v]

=(v − b)
∫ ∞
−∞

[nf(b− µ)Kn,m (b|B,µ)] f (µ− v) dµ

+ (v − b)
∫ ∞
−∞

[
(m− 1)f

(
B−1 (b)− µ

)
Ln,m (b|B,µ)

(
B−1

)′
(b)
]
f (µ− v) dµ

−
∫ ∞
−∞

Mn,m (b|B,µ) f (µ− v) dµ. (7)

16So, Mn,m (b|B,µ) = Pr[x ≤ b ≤ y|µ].
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The function (B−1)′(b) is the derivative at b of the non-focal buyers’ inverse bidding function B−1.

It’s value is the rate at which a non-focal buyer’s value v increases as his bid increases. Also, in

the formula, we use the equalities fµ(µ|v) = f(µ− v) and fv(v|µ) = f (v − µ) that follow from the

diffuse prior assumption.

To understand this formula, suppose the focal buyer with value v increases his bid from B (v) = b

to b+ ∆b. Conditional on µ, consider in order the three terms on the right hand side of (7).

1. Pick a seller j and his ask cj . The term nf(b− µ)Kn,m (b|B,µ)×∆b, is the probability that

the buyer’s ∆b increase in his bid causes him to jump over seller j’s ask cj and go from not

trading at b to trading at b+∆B. This switch to trading requires that cj = s(m) in the sample

of m + n − 1 bids/asks the focal buyer faces. Because the focal buyer jumps over seller j,

f (b− µ) × ∆b is the probability cj ∈ (b, b+ ∆b) and Kn,m(b|B,µ) is the probability that,

excluding seller j and the focal buyer, the bids/asks of the other m − 1 buyers and n − 1

sellers bracket cj making it is the marginal ask s(m) that the focal buyer must jump in order

to trade. Finally, the probability f(b − µ)Kn,m (b|B,µ) × ∆b that j is both marginal and

jumped over is multiplied by n because there are n sellers who could be the marginal seller j.

2. Pick a seller k. The term (m− 1)f(B−1 (b)−µ)Ln,m (b|B,µ) ∆b/
(
B−1

)′
(b) is the probability

that the focal buyer by increasing his bid b by ∆b jumps over buyer k’s bid bk = B (vk) and,

moreover, bk = s(m) in the vector of bids/asks the focal buyer faces. As a result the focal

buyer goes from not trading to trading. Derivation of this event’s probability exactly parallels

the derivation of the first term in (7) with one important difference: the probability buyer

k’s bid bk is in the interval (b, b+ ∆b) is ∆bf
(
B−1 (b)− µ

) (
B−1

)′
(b), not f(b− µ)∆b. The

reason is that, B(vk) ∈ [b, b+ ∆b) if and only if vk ∈ [B−1(b), B−1(b+ ∆b)]. The probability

of this event is F [B−1(b+ ∆b)]−F [B−1(b)], which can be approximated with the first degree

Taylor series:

∆b
∂

∂b
F (B−1(b)− µ) = ∆bf

(
B−1 (b)− µ

) d
db
B−1(b)

= ∆bf
(
B−1(b)− µ

)
(B−1)′(b).

3. As explained above, the term Mn,m (b|B,µ) is the probability that the focal buyer’s bid lies

between s(m) and s(m+1) in a sample of m − 1 buyers each playing strategy B (with inverse

B−1) and n sellers each asking their costs. Thus, for the full sample of m bids (including the

focal buyer’s bid of b) and the n asks, Mn,m (b|µ) is the probability that the focal buyer’s bid

b equals s(m+1) and therefore sets the price. Consequently increasing b by ∆b increases his

expected cost of successfully trading by Mn,m (b|B,µ) ∆b,

Finally, the unobservable common component µ must be integrated out of each of the three terms

using the conditional density fµ (µ|v) = f(µ− v).
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4 Properties of regular, symmetric solutions to the first order

condition

In this section we investigate the properties of regular, symmetric solutions to the focal buyer’s

first order condition (FOC). Specifically, we focus on solutions B such that, for all v ∈ R,

πb(v, b|B)|b=B(v) = 0, (8)

where equation (7) defines πb(v, b|B) and <S̃,B> satisfies A1 and A2, so that if <S̃,B> turns out

to be an equilibrium, then it is a regular equilibrium. We consider the case of n ≥ 1 sellers and

m ≥ 2 buyers. The assumption that there are at least two buyers permits the analysis of a buyer’s

first order condition as a differential equation in his strategy B. The section’s main result is that

an offset solution to the first order condition always exists. In order to prove this we first establish

that the vector field that the first order condition implies is invariant with respect to translation

along the 45◦ diagonal of the (v, b) plane. This intermediate result follows from the fact — stated in

the introduction — that each buyer’s decision problem in choosing his bid b is identical irrespective

of where on R his value falls.

4.1 Invariance of the vector field that the FOC defines

Fix the distribution F that satisfies A3—A5. Let B satisfy A1 and A2 and be a fixed point to the

first order condition (8) in the following sense: the focal buyer’s optimal strategy is B conditional

on the other m−1 buyers playing strategy B and the n sellers truthfully asking their costs. The pair

<S̃,B> is then a symmetric solution to the first order condition and, if an appropriate sufficiency

condition is satisfied, it is a symmetric equilibrium. Deriving B is facilitated by working with the

vector field
−→
V that the first order condition (8) defines on the space W = {(v, b) |v > b} ⊂ R2.

That we are seeking a fixed point in B enables us to make an important simplification in

the formulas for Kn,m, Ln,m, and Mn,m. If the focal buyer has value v, then in equilibrium he bids

B (v) = b and, consequently, B−1 (b) = v. Therefore within formula (4) for Mn,m(b|B,µ) the factors

being summed become a function of v, b, and µ instead of a function of b, B, and µ:

F
(
B−1(b)− µ

)i
F (b− µ)j F

(
B−1(b)− µ

)m−1−i
F (b− µ)n−j

= F (v − µ)i F (b− µ)j F (v − µ)m−1−i F (b− µ)n−j .
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Thus the dependence on B drops out. Define

M∗n,m(v, b|µ) =
∑

i+j=m
0≤i≤m−1

0≤j≤n

(
m− 1

i

)(
n

j

)
F (v − µ)i F (b− µ)j F (v − µ)m−1−i F (b− µ)n−j ,

(9)

and in parallel fashion define K∗n,m (v, b|µ) and L∗n,m (v, b|µ) . Similarly on the second line of (7) the

density f
(
B−1 (b)− µ

)
becomes f (v − µ) .

Consequently <S̃,B> is a symmetric solution to the first order condition (8) if, for all pairs

(v, b) ∈W such that b = B (v) ,

πb (v, b|B)|b=B(v) =(v − b)
∫ ∞
−∞

[
nf(b− µ)K∗n,m (v, b|µ)

]
f (µ− v) dµ

+ (v − b)
(
B−1

)′
(b)

∫ ∞
−∞

[
(m− 1)f (v − µ)L∗n,m (v, b|µ)

]
f (µ− v) dµ

−
∫ ∞
−∞

M∗n,m (v, b|µ) f (µ− v) dµ.

=0.

Solve this equation for
(
B−1

)′
(b) to obtain

V ′(v, b) =

∫∞
−∞M

∗
n,mf(v − µ)dµ− (v − b)

∫∞
−∞ nf(b− µ)K∗n,mf (µ− v) dµ

(v − b)
∫∞
−∞(m− 1)f(v − µ)L∗n,mf(µ− v)dµ

(10)

where V ′(v, b) ≡
(
B−1

)′
(b) and we have omitted the arguments of M∗n,m, K

∗
n,m, and L∗m,n for

notational brevity. We define
−→
V to be the vector field that, for (v, b) ∈ W, has value

−→
V (v, b) ≡

(1, V ′ (v, b)) .

Observe that the value of
−→
V depends only on the point (v, b) . The interpretation of its value

at a given point (v′′, b′′) ∈W is that if <S̃,B> is a symmetric solution to the first order condition

in which (i) all m buyers follow the identical strategy B and (ii) b′′ = B (v′′), then the derivative of

B evaluated at v′′ has value 1/B′ (v′′) = V ′ (v′′, b′′) . Thus solutions to the first order condition (8)

can be traced out by following the vector field
−→
V using any point (v, b) ∈W as a starting point.17

The following lemma establishes the invariance property of
−→
V .

Lemma 1 For any (v, b) ∈ R2 and any ρ ∈ R, the vector field
−→
V satisfies

−→
V (v, b) =

−→
V (v + ρ, b+ ρ).

Proof. Let b∗ = b + ρ, v∗ = v + ρ and µ∗ = µ − ρ. The first step is to notice from formulas

17A standard result in differential equations is that a solution v = B−1 (b) to (10) exists that goes through any
given point (v, b) ∈W. See, for example, Arnold (1973, Theorem 7.1).
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(4)-(6) and (9) that the values of M∗n,m(v, b|µ), K∗n,m(v, b|µ) and L∗n,m(v, b|µ) are determined by the

differences b− µ and v − µ. The following formulas thus hold:

M∗n,m(v∗, b∗|µ) = M∗n,m(v, b|µ∗),
K∗n,m(v∗, b∗|µ) = K∗n,m(v, b|µ∗),
L∗n,m(v∗, b∗|µ) = L∗n,m(v, b|µ∗).

Now consider formula (10). We have

V ′(v∗, b∗)

=

∫∞
−∞

[
M∗n,m(v∗, b∗|µ)− nf(b∗ − µ)(v∗ − b∗)K∗n,m(v∗, b∗|µ)

]
f(v∗ − µ)dµ∫∞

−∞(m− 1)f(v∗ − µ)(v∗ − b∗)L∗n,m(v∗, b∗|µ)f(v∗ − µ)dµ

=

∫∞
−∞

[
M∗n,m(v, b|µ∗)− nf(b∗ − µ)(v∗ − b∗)K∗n,m(v, b|µ∗)

]
f(v∗ − µ)dµ∫∞

−∞(m− 1)f(v∗ − µ)(v∗ − b∗)L∗n,m(v, b|µ∗)f(v∗ − µ)dµ

=

∫∞
−∞

[
M∗n,m(v, b|µ∗)− nf(b− µ∗)(v − b)K∗n,m(v, b|µ∗)

]
f(v − µ∗)dµ∫∞

−∞(m− 1)f(v − µ∗)(v − b)L∗n,m(v, b|µ∗)f(v − µ∗)dµ

=

∫∞
−∞

[
M∗n,m(v, b|µ)− nf(b− µ)(v − b)K∗n,m(v, b|µ)

]
f(v − µ)dµ∫∞

−∞(m− 1)f(v − µ)(v − b)L∗n,m(v, b|µ)f(v − µ)dµ

= V ′(v, b)

where the fourth line follows from a change of variable in the integrals in which µ+ρ replaces µ.

4.2 Existence of an offset solution to the first order condition

An offset strategy B for a buyer is a function of the form

B(v) = v − λ

for some constant λ ∈ R. Notice that an offset strategy satisfies A1 and A2. We consider in this

section the existence of offset equilibria of the form <S̃,B> in which each seller j uses his dominant

strategy of asking his cost cj and each buyer i uses the same offset strategy B (vi) = vi − λ. The

first order condition (8) holding almost everywhere is a necessary condition for a strictly increasing

function B to define an equilibrium of the form <S̃,B>.18 We prove in this section that there

exists an offset strategy B in the market with n ≥ 1 sellers and m ≥ 2 buyers that satisfies the

first order condition (10). The proof relies on the Intermediate Value Theorem and the following

lemma.

18The reason is that every strictly increasing function is differentiable almost everywhere, see, for instance, Royden
(1988, p. 96).
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Lemma 2 Consider any δ > 0. There exists a constant L∗(F, δ) > 0 such that

v − b > L∗(F, δ)⇒ V ′(v, b) < δ. (11)

The lemma’s proof is in Appendix A. It implies that

lim
b→−∞

inf V ′(v, b) ≤ 0

for all v.

Theorem 1 For n ≥ 1 and m ≥ 2, a constant λ = λ (F, n,m) ∈ R exists such that the strategy

B(v) = v − λ (12)

satisfies the first order condition (10) at all v ∈ R.

Proof. Fix the value of v∗. Lemma 2 implies that V ′(v∗, b) < 1 for b sufficiently small. It is shown

below that V ′(v, v) =∞ at any v ∈ R. Applying the continuity of the distribution F and its density

f , the Intermediate Value Theorem implies the existence of a value of b∗ at which V ′(v∗, b∗) = 1.

Define λ = v∗ − b∗. The invariance property established in Lemma 1 implies that

V ′(v∗ + ρ, v∗ − λ+ ρ) = V ′(v∗, v∗ − λ) = 1

for all ρ ∈ R. The line

(v∗ + ρ, v∗ − λ+ ρ)ρ∈R

is therefore a solution curve of the vector field
−→
V . This is depicted in Figure 1, which illustrates

the normalized vector field at the points of interest.

It remains to be shown that V ′(v, v) =∞ at any v ∈ R. Returning to (9), notice that

M∗n,m(v, v|µ) =
∑

i+j=m
0≤i≤m−1

0≤j≤n

(
m− 1

i

)(
n

j

)
F (v − µ)i+j F (v − µ)m+n−1−i−j

is nonzero for all v, µ ∈ R. The numerator of V ′(v, b) in (10) thus approaches a nonzero real number

as b converges upward to v while its denominator converges to zero.

Figures 2 (a)-(d) depict the normalized vector field in the case of F being the standard normal

distribution in the case of τm buyers and τn sellers (for τ = 2, 4, 8, 16 and m = n = 1). Notice

the invariance of the vector field as it is translated on the 45◦ diagonal. Inspection of the figures

suggests that the computed offset is unique.
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b

v

b=v

v*

V'(v*,b*)=1

V'(v*,v*)= 8

V'(v*,b*)<0-λ

b=B(v)

Figure 1: This solution curve is the graph of the strategy B(v) = v − λ.

5 Sufficiency of the first order approach

Existence of an offset solution to a buyer’s first order condition leaves open the question as to

whether or not such a solution (or any other solution to the first order condition) defines an

equilibrium. This section addresses the sufficiency of the first order approach, an issue that is

complicated in our model by the statistical dependence of values and costs and the asymmetry of

buyers underbidding and sellers reporting truthfully. The most straightforward approach, which is

both necessary and sufficient, is to graph expected utility and check that it is maximized at the

FOC’s solution. Assuming an offset solution, the invariance of a buyer’s decisions problem implies

that optimality of the offset solution for all v can be checked at a single, specific value of v. This

makes this approach feasible and we use it in all our numerical experiments.

A second approach is to derive a condition on the fundamentals of the model that ensures

sufficiency of the first order approach. We now derive a condition of this type that parallels the

derivation in Milgrom and Weber (1982) of a similar condition for the sufficiency of the first order

approach in auctions. We then discuss the limitation of this condition and, in particular, the reasons

why statistical affiliation of traders’ costs and values cannot play the same useful role in double

auctions as it does in auctions.

Recall that x = s(m) and y = s(m+1) are the mth and the (m+ 1)st order statistics in the sample

of m+ n− 1 bids and asks of the m− 1 buyers (excluding the focal buyer) playing the strategy B
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Figure 2: Solving the differential equation for different values of τ (m = n = 1).

and the n sellers playing the truthful strategy S̃.

Theorem 2 Suppose for all v ∈ R the function B solves the buyer’s first order condition (3) and

satisfies assumptions A1 and A2. A sufficient condition for <S̃,B> to be an equilibrium for the

BBDA with m ≥ 2 buyers and n ≥ 1 sellers is that, for every b ∈ R, the ratio

R(v, b, B,m, n) =
Pr (x < b < y|v)

fx (b|v)
(13)

is decreasing in v > b.

Proof. Function B satisfies at all (v, b) ∈ W the first order condition (3) such that for b = B (v)

we have

πb(v, b|B) = (v − b)fx(b|v)− Pr[x ≤ b ≤ y|v] = 0 (14)
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where W = {(v, b) |v > b} ⊂ R2. A sufficient condition for B to be a symmetric equilibrium is for

(v, b) ∈W,
πb(v, b|B) ≥ 0 if b < B (v)

πb(v, b|B) = 0 if b = B (v)

πb(v, b|B) ≤ 0 if B (v) < b < v

⇔


πb(v, b|B) ≥ 0 if B−1 (b) < v,

πb(v, b|B) = 0 if B−1 (b) = v,

πb(v, b|B) ≤ 0 if v < B−1 (b) < B−1 (v) .

 .

The left-hand column of conditions is the first derivative test on the variable b for a fixed value of v.

The equivalent conditions in the right-hand column are obtained by applying the inverse mapping

B−1 to the variables. They are useful below when we fix the bid b and interpret v as the variable.

Observe that the right column is satisfied if, for any b ∈ R, πb(v, b|B) is increasing in v ≥ b and

equals zero at v = B−1 (b) . Rewrite the focal buyer’s marginal utility (14) as

πb(v, b|B) = (v − b)fx(b|v)− Pr[x ≤ b ≤ y|v]

=
[
(v −B−1 (b)) + (B−1 (b)− b)

]
fx(b|v)− Pr[x ≤ b ≤ y|v]

= fx(b|v)

{
(v −B−1 (b)) +

[
(B−1 (b)− b)− Pr[x ≤ b ≤ y|v]

fx(b|v)

]}
(15)

for any (v, b) ∈ W. We focus on the term in the curly brackets in (15), which determines the sign

of πb(v, b|B). The first term is increasing in v and equals zero at v = B−1 (b) . That the second

term equals zero at v = B−1 (b) is confirmed by substituting B−1 (b) for v into it and noting that

the result equals zero because B solves the first order condition (14):

fx(b|B−1 (b))

{
(B−1 (b)− b)− Pr[x ≤ b ≤ y|B−1 (b)]

fx(b|B−1 (b))

}
= (B−1 (b)− b)fx(b|B−1 (b))− Pr[x ≤ b ≤ y|B−1 (b)]

= 0.

Finally, the second term is increasing in v if the fraction in this expression (which isR(v, b, B,m, n))

is decreasing in v.

The requirement that R(v, b, B,m, n) is decreasing in v > b serves the same purpose for the

BBDA as the requirement that the inverse hazard rate, for any b,

S (v, b, B,m, 1) =
Pr
(
s(m−1) < b|v

)
fs(m−1)

(b|v)
(16)

is decreasing in v serves within the theory of first price auctions with correlated values.19 In each

19See Milgrom and Weber (1982, p. 1106-08). In the auction setting v denotes the value of the focal buyer and
s(m−1) denotes the largest value among the values of the other m − 1 buyers who are competing to buy the single
item being auctioned.
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case the numerator is the marginal expected cost to a buyer from increasing his bid and thereby

driving up the price that he pays and the denominator is the marginal probability of acquiring an

item by increasing his bid. Milgrom and Weber (1982, p. 1107-08) show that in such auctions S
decreasing in v is sufficient for a solution B to the buyer’s first order condition to be an equilibrium

to the auction. They also show that expression (16) is necessarily decreasing if the m buyers’ values

are statistically affiliated. That affiliation of buyers’ values implies satisfaction of the sufficient

condition (16) is useful because a substantial body of research exists establishing conditions under

which common multivariate distributions generate affiliated random vectors. As a consequence

affilation is a crucial part of auction theory’s foundation.

Affiliation, however, cannot serve the same role in establishing sufficiency of the first order

approach in double auctions. While it is straightforward in our model to impose conditions on

F (such as the monotone hazard rate property) that insure that the values/costs of traders are

affiliated, we next show below that it is not in general true that the ordered bids/asks of traders

are affiliated.

Specifically, assume that (for a fixed value of the state µ) the components of the random

vector of buyers’ values and sellers’ costs (v1, . . . , vm, c1, . . . , cn) are affiliated. This is true when-

ever F has a monotone hazard rate, as in the normal distribution. Following Milgrom and We-

ber (1982, pp.1118-1189) and Tong (1990, pp. 130-132), we know that: (i) the components of

the vector of ordered values and costs (t(1), t(2), . . . t(n+m)) are affiliated; (ii) assuming the use of

the offset strategy B(v) = v − λ by buyers, the components of the random vector of bids/asks

(v1 − λ, . . . , vm − λ, c1, . . . , cn) are affiliated; and (iii) the components of the random vector of or-

dered bids/asks (s(1), s(2), . . . s(n+m)) are associated, which is a strictly weaker relationship among

random variables than affiliation.20

Theorem 3 If m ≥ 2 and n ≥ 1, F is the standard normal distribution, and buyers use any offset

strategy, then a buyer’s value is not affiliated with the ordered bids/asks of others.

See Appendix C for the proof.

This theorem should be contrasted with our numerical results that follow in Sections 7 and 8,

wherein offset equilibria that appear to satisfy A1 and A2 are computed in small markets. The

failure of affiliation to hold — even in equilibrium — among ordered bids and asks impedes a proof

of sufficiency of equilibrium; it does not appear, however, to impede the existence and computation

of well-behaved equilibria for common F .21

20In the BBDA with one seller (n = 1) and multiple buyers the seller’s ask is his cost. On the surface this appears
to be a standard auction, albeit with the twist of a hidden reservation value, to which the analysis of Milgrom
and Weber (1982) may be applied. This approach, however, fails because for that analysis a buyer’s value must be
affiliated with the ordered statistics of that hidden reservation value and other buyers’ bids. Theorem 3 establishes
that this needed affiliation does not hold in general.

21Reny and Perry (2006) foresaw the problems that are caused for proving existence of equilibrium in double
auctions by the failure of affiliation. This is an obstacle in small markets that is avoided in Reny and Perry (2006)
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A weakness of condition (13) is that it is not reduced to an interpretable condition directly in

terms of F . The expanded formula for R in the case of an offset strategy suggests the difficulty of

this task: ∫∞
−∞Mn,m(b|B,µ)f (v − µ) dµ∫∞

−∞ [nKn,m(b|B,µ)f (b− µ) + (m− 1)Ln,m(b|B,µ)f (b+ λ− µ)] f (v − µ) dµ
.

or ∫∞
−∞M

∗
n,m(v, b|µ)f (v − µ) dµ∫∞

−∞
[
nK∗n,m(v, b|µ)f (b− µ) + (m− 1)L∗n,m(v, b|µ)f (b+ λ− µ)

]
f (v − µ) dµ

.

The integration, which arises from existence of the common component, together with the formu-

las for M∗n,m, K∗n,m and L∗n,m with their complex summations across event probabilities stymies

reduction to a condition directly in terms of F.

As a substitute in the case of offset solutions, for any given choice of F, it is simple numerically

to check our condition (13) for a solution to be an equilibrium. Specifically, numerically check

that R(v, 0, B,m, n) is decreasing for all v ∈ R+ where the functions M∗n,m, K∗n,m and L∗n,m are

evaluated at (v, 0|µ). The invariance property that Lemma (1) establishes allows us to fix b = 0

and only check that R is decreasing on v ∈ R+. It is not necessary to check that, for every b ∈ R,
R is decreasing for all v > b. This establishes the following corollary:

Corollary 1 Suppose for all v ∈ R the offset strategy B (v) = v − λ solves the buyer’s first order

condition (3) and that, for b = 0,

R(v, 0, B,m, n) =
Pr (x < 0 < y|v)

fx (0|v)
(17)

is decreasing in v for all v ∈ R+. Then B is an offset equilibrium.

Note that the offset λ satisfies the equation R(λ, 0, B,m, n) = λ.

The exception to being unable to reduce the requirement that R is decreasing in v to a simple

condition on F is the bilateral case, m = n = 1. There the (sole) buyer’s utility as a function of

his bid b and his value v is

π(v, b) = (v − b)Fc|v(b|v),

where Fc|v is the distribution function of the seller’s cost c given the buyer’s value v. Hence the

first order condition is

πb(v, b) = 0⇒ v − b =
Fc|v(b|v)

fc|v(b|v)
. (18)

Strengthen A5 to:

through their focus upon the case of a large number of traders. Our paper complements Reny and Perry (2006) by
showing that for the cases we investigate the failure of affiliation is not a problem even in small markets.
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A5′: F has a monotone hazard rate, i.e., f(x)/F (x) is decreasing for all x ∈ R.

This allows us to prove the following result.

Theorem 4 Under assumptions A3-A4 & A5′ the first order condition (18) has a unique, increas-

ing, continuous solution that globally maximizes the buyer’s utility, and is the unique equilibrium

strategy B of the bilateral BBDA. Furthermore, B takes the simple form of an offset strategy,

B(v) = v − λ,

where λ is a positive constant.

The proof, which is in Appendix B, consists of showing how our assumptions map into the assump-

tions in Kadan (2007, Theorem 1). The proof’s key is the affiliation of the random vector (µ, v, c)

that follows from Assumption A5′.

In summary, Theorem 1 shows the existence of an offset solution to the first order condition.

Corollary 1 provides a numerically tractable means to check if such a solution in fact defines an

equilibrium. In Section 7 we report that R is decreasing in v for F normal or Laplacian when B is

an offset solution. Together these three pieces establish a main contribution of the paper: for small

markets well behaved pure strategy equilibria exist for at least some common distributions F .

6 Convergence to truthful revelation and efficiency

Given a constant ϕ ≥ 1 and assumptions A3-A5 on F , the offset solution converges to the buyers’

truthful strategy B̃ (v) = v for all sequences of markets such that

1

ϕ
≤ m

n
,
n

m
≤ ϕ (19)

as m,n → ∞. More specifically, we prove that the misrepresentation, v − B (v), in any regular

equilibrium strategy B is O(1/m) and, second, we prove that convergence to ex post efficiency is

O
(
1/m2

)
. Observe that the bound (19), parameterized by ϕ > 1, on the admissible ratio of buyers

and sellers implies O(1/n) = O(1/m) = O(1/(n ∧m)).

Theorem 5 Consider any ϕ ≥ 1 and values of m ≥ 2 and n ≥ 1 that satisfy (19). There exists a

constant K(F,ϕ) such that any regular equilibrium strategy B in the market with n sellers and m

buyers satisfies the inequality

v −B(v) ≤ K(F,ϕ)

m
(20)

for all v ∈ R.
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The theorem extends the following lemma, which implies that buyer misrepresentation isO(1/m)

at values of v for which B
′
(v) exists and satisfies B′(v) ≤ 1/δ.

Lemma 3 Consider any ϕ ≥ 1 and values of m ≥ 2 and n ≥ 1 that satisfy (19). For any δ > 0,

there exists a constant K(F,ϕ, δ) such that V ′(v, b) ≥ δ only if

v − b ≤ K(F,ϕ, δ)

m
. (21)

The proof of Lemma 3 is in Appendix A. We now apply it to prove Theorem 5.

Proof. Since B is a regular equilibrium strategy assumption A2 implies that we can choose a value

of δ ∈ (0, 1) such that

lim inf
v→−∞

B′(v) <
1

δ
. (22)

Let K(F,ϕ) equal the constant K(F,ϕ, δ) whose existence Lemma 3 guarantees. Lemma 3 states

that the bound v − B(v) ≤ K(F,ϕ)
m holds at values of v for which V ′(v,B(v)) ≥ δ or, equivalently,

for values of v at which B′ (v) exists and satisfies B′(v) ≤ 1
δ .

We now extend this bound to all values of v at which B is differentiable. Pick a v∗ at which B

is differentiable and let ∆ (v∗) denote the set of values of v < v∗ at which B′(v) exists and is less

than 1/δ. This set is nonempty by virtue of (22). Let v = sup ∆ (v∗) and notice that B′(v) ≥ 1/δ

for v ∈ (v, v∗) at which B′ exists. The bound (20) holds at v because it holds at each v ∈ ∆(v∗)

and supv∈∆(v∗)B(v) ≤ B (v) since, by assumption A1, B is strictly increasing. Then

v∗ − v =

∫ v∗

v
dv

<

∫ v∗

v

1

δ
dv

≤
∫ v∗

v
B′(v)dv

≤ B(v∗)−B(v),

where the integral on the third line exists because a strictly increasing function is differentiable

almost everywhere. Rearranging implies v∗ −B(v∗) ≤ v −B(v) and, since bound (20) holds at v,

v∗ −B(v∗) ≤ K(F,ϕ)

m
.

The final step extends bound (20) to values of v∗ at which B′(v∗) does not exist. There exists

an increasing sequence (vt)t∈N∗ such that B′(vt) exists for each t ∈ N∗ and

lim
t→∞

vt = v∗. (23)
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The bound (20) holds at each vt in the sequence, i.e.,

vt −B(vt) ≤ K(F,ϕ)

n ∧m .

We have

lim
t→∞

B(vt) ≤ B(v∗) (24)

because B is increasing. The bound therefore holds at v∗ because of (23) and (24).

For a symmetric equilibrium <S̃,B> in the market with m buyers and n sellers, relative inef-

ficiency is defined as

1− exp. gains from trade in < S̃,B >

the expected potential gains from trade
(25)

or equivalently,

exp. potential gains from trade that are not achieved in < S̃,B >

exp. potential gains from trade
. (26)

Theorem 6 Consider any ϕ ≥ 1 and values of m ≥ 2 and n ≥ 1 that satisfy (19). There exists a

constant κ(F,ϕ) such that the relative inefficiency of any regular equilibrium <S̃,B> in the market

with m ≥ 2 buyers and n ≥ 1 sellers is no more than κ(F,ϕ)/m2.

The proof of Theorem 6 is in Appendix A. The theorem establishes the same bound on relative

inefficiency in each state µ ∈ R. It is thus reasonable to state that ex ante relative inefficiency is

O
(
m−2

)
despite the fact that µ ex ante does not have a proper probability distribution.

Remark 2 Note that if we start from a fixed number m of buyers and n of sellers, and then

consider a sequence of markets with τm buyers and τn sellers for τ ∈ N∗ then the rates reported in

Theorems and 5 and 6 become O(1/τ) and O(1/τ2).

7 A Computational Analysis for the Case of the Standard Normal

Distribution

This section presents the results of a computational analysis of our model in the case of F = Φ, the

cumulative for the standard normal distribution N (0, 1). Our calculations suggest that the offset

solution to the buyer’s first order condition in this case is unique in each size of market, determines

an equilibrium of the BBDA, and defines the only symmetric smooth, regular equilibrium of the

BBDA.

Table 1 presents several equilibrium quantities. We consider τm buyers and τn sellers and

m = n = 1 so that the first column gives the number of traders on each side of the market. Column
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2 computes the solution to the equation V ′(v, v − λ) = 1. GFT in column 3 is the expected

potential gains from trade, and GFTBBDA in column 4 is the expected gains from trade achieved

when buyers use the offset equilibrium λ shown in column 2.22

τ λ GFT GFTBBDA (GFT −GFTBBDA)/GFT

2 0.6896 1.3265 1.2221 0.0795
4 0.3374 2.9008 2.8535 0.0163
8 0.1556 6.0812 6.0653 0.0026
16 0.0762 12.4604 12.4516 0.0007

Table 1: Column 2 is the equilibrium offset solution, column 3 is the expected gains from trade, and
column 4 is the expected gains from trade achieved in the BBDA, all for different sizes of market
τ reported in column 1 (m = n = 1).

The offset as expected from Theorem 5 vanishes at a rate of O(1/τ).23 The difference (GFT −
GFTBBDA)/GFT in column 5 is the ex ante relative expected loss to the traders from using the

inefficient BBDA. The values in column 5 decrease by a factor of roughly four each time that τ

doubles as expected from Theorem 6, which shows that relative inefficiency is O(1/τ2).

Figures 3 (a)-(d) depict the calculations of the optimal offset of column 1 in Table 1, by graphing

the difference V ′(v, b) − 1 in the case of v = 0, b ∈ (0, 1] and τ = 2, 4, 8, 16. The invariance of the

vector field implies that the calculations in the case of v = 0 are representative of this difference

at other values of v (i.e., V ′(0, b) − 1 = V ′(v, v + b) − 1 for all v ∈ R). The right side of the

graphs corresponds to the point (v, b) = (0, 0) in Figure 1, and moving leftward by decreasing b

corresponds to moving vertically down the b-axis in Figure 1. At (v, b) = (0, 0), the normalized

vector field is horizontal because V ′(0, 0) is infinite; one can see V ′(0, b)−1 growing large in Figures

3 (a) - (d) as b decreases to 0. The scale used on the top graph in each figure to show the rapid

increase in V ′(0, b) as b nears 0 makes it difficult to see that V ′(0, b) − 1 declines steadily across

the interval (0, 1]. This is shown over a restricted interval near the offset solution λ from Table 1

in the bottom graphs of the four figures. All four graphs show that V ′(0, λ)− 1 = 0 has a unique

solution, i.e., there is a unique offset solution to the buyer’s first order condition.

We next demonstrate that the offset solution to the first order condition defines an equilibrium

in the BBDA. Figures 4 (a)-(d) depict the maximization of the selected buyer’s utility at the offset

value from Table 1 together with the strict monotone decline of his marginal utility, which changes

from positive to negative at this offset value, for τ = 2, 4, 8, 16. It is assumed in these figures that

the selected buyer has value v = 0 and that all other buyers use the offset strategy that is presented

in Table 1. The graphs numerically demonstrate in each size of market that the selected buyer’s

unique best response to the offset solution to the first order condition is this offset solution itself.

22GFT & GFTBBDA are calculated in a fixed state µ using a Monte Carlo method. GFT has the same value for
all µ, while GFTBBDA has the same value for all µ when all buyers use the same offset strategy.

23In the bilateral case for F = Φ we have that c|v ∼ N (v, 2) and the unique offset solution is 1.0620.
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Figure 3: Focal buyer’s vector field minus one vs his bid b, for v = 0, F the standard normal
distribution, and different size of market τ (m = n = 1).

The graphs therefore suggest that the offset solution to the buyer’s first order condition defines an

equilibrium of the BBDA.

We conclude this example by arguing that the offset equilibrium is in fact the unique symmetric,

smooth and regular equilibrium strategy for buyers in the BBDA in the case of the standard normal

distribution. While the formal results in this paper do not require uniqueness, it is interesting

that calculations suggest that it holds in this benchmark example. The bottom graphs in Figures

3 (a) - (d) suggest that V ′(0, b) is strictly decreasing in −b. Applying the invariance of the vector

field, this is also true for V ′(v, b). The following argument shows that this fact implies that the

offset solution is the only solution to the first order conditions that defines a smooth and regular

equilibrium strategy for buyers. Consider starting at a point in Figure 1 between the line v = b
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Figure 4: Focal buyer’s utility and marginal utility vs his bid b, for v = 0, F the standard normal
distribution, and different market size τ (m = n = 1). Other sellers report honestly, and other
buyers use the offset reported in Table 1.

and the line determined by the offset solution V ′(v, v − λ) = 1 and then solving the buyer’s first

order condition by tracing out a solution curve to the normalized vector field. Because V ′(v, b) is

decreasing in −b, the vector field flattens as b nears v; a solution traced in the direction of decreasing

b therefore runs into the line v = b and fails to define a strategy for all values v. Starting at a

point on the axis v = 0 below the offset solution and moving in the direction of decreasing b, a

solution curve either (i) decreases off to b = −∞ if V ′(v, b) remains positive along the curve or (ii)

reverses direction at a point at which V ′(v, b) changes from positive to negative. A solution in case

(i) violates the bound (20) that is established in the proof of Theorem 5 for all regular solutions

to the first order condition. It must therefore fail to be regular. In case (ii), the solution fails to

define a strategy for the entire real line.
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Figures 2 (a)-(d) depict this uniqueness of equilibrium in the case of the standard normal

distribution and for different size of market τ = 2, 4, 8, 16 (m = n = 1). Each graph is centered

on the point v = b = 0. The line v = b corresponds to honest revelation. The line parallel and

below this line corresponds to the offset solution to the buyer’s first order condition for the value

of the offset given in Table 1. As in the argument above, a solution curve to the vector field that

lies above the offset solution converges into the line v = b and thus fails to define a strategy for

all values of v. A solution curve below the offset solution turns back on itself as b decreases at a

point where V
′
(v, b) changes from positive to negative and thus also fails to define a strategy for

all values of v. The offset solution is thus the only solution to the buyer’s first order condition

that defines a strategy across the entire range of buyer values.
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Figure 5: Focal buyer’s sufficiency condition vs his value v, for v − b = λ, F the standard normal
distribution, and different size of market τ (m = n = 1).

Finally, Figures 5 (a) - (d) depict the ratio R, as given by equation (17), for different values of
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v and b = 0. The figures suggest that the sufficient condition that R is decreasing in v as derived

in Corrolary 1 is satisfied in the case of the normal distribution.

8 Robustness Check: The Case of the Cauchy Distribution

Assumption A5 bounds the effect of the downward tail of the distribution F upon a focal buyer’s

marginal analysis. The Cauchy distribution does not satisfy A5 and hence our convergence proofs

do not apply in this case. We investigate the BBDA in this section in the case of the standard

Cauchy distribution as way to test the dependence of our results upon A5. The Cauchy distribution

is commonly used in statistics to test the robustness of results because (i) the graph of its density

is bell-shaped and similar in appearance to the density of a normal distribution, but (ii) moments

of all orders (including expected value and variance) are not defined for the Cauchy distribution.

Point (ii) is due to the the “fat tails” of the Cauchy distribution, which is the reason that it does

not satisfy A5. The importance of fat tails in the field of finance also supports the testing of a

model of a market mechanism by using the Cauchy distribution.

We find that while the Cauchy distribution is indeed pathological in the bilateral case, the

BBDA resolves this pathology in the multilateral case with as few as two traders on each side

of the market. A buyer in the BBDA equates the marginal benefit from lowering his bid and

thereby decreasing his expected price when he trades to the marginal cost of losing a profitable

trade with the lower bid. We first show in the bilateral case that the marginal benefit from

lowering his bid always exceeds the marginal cost. This reflects the fat downward tail of the

Cauchy distribution, i.e., there always remains a substantial probability of trading for a buyer no

matter how much he lowers his bid. As a consequence, a buyer always has the incentive to lower

his bid further and further, and so an optimal bid does not exist for him. For τ = 2, 4, 8, and 16

(m = n = 1), however, the computation of a buyer’s equilibrium offset is straightforward, a buyer’s

marginal expected utility changes sign from positive to negative at this computed solution, and the

computed equilibrium offsets exhibit the O(1/τ) rate of convergence. This numerical evidence is

discussed after Theorem 7, which concerns the bilateral case.

These results are significant for two reasons. First, they suggest that our convergence results

hold more generally than we are able to prove in our theorems. Assumption A5 is thus effective but

coarse as a sufficient condition for our convergence results. Second, the literature on multilateral

double auctions is motivated by the inefficiency of bilateral trade due to strategic behavior as proven

by Myerson and Satterthwaite (1983). This inefficiency has been shown to diminish rapidly as a

market increases in size. This example points to a different sort of failure in trading in the bilateral

case — nonexistence of equilibrium — that is quickly resolved as the number of traders increases.

While the outcome of trading may be indeterminant in the case of bilateral bargaining, we can

compute a well-defined and well-behaved outcome in the multilateral case. The ability of a market

to resolve the indeterminacy of bargaining is particularly striking in this example because of the
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Cauchy distribution’s pathological properties.

Theorem 7 Consider the BBDA in the case in which m = n = 1 and F is the standard Cauchy

distribution (i.e., location parameter 0 and scale parameter 1). Given honest reporting by the seller,

a buyer’s marginal expected utility is negative for all bids b below the buyer’s value.

The proof is by direct calculation using the formula for the Cauchy cumulative distribution and

density. It is in Appendix B.

Table 2 presents the calculated values of the equilibrium offset λCauchy in the case of the standard

Cauchy distribution for markets with τ traders on each side. Its value roughly falls by half as τ

doubles, reflecting its O(1/τ) rate of convergence. Column 3 displays the ratio between λCauchy

and λGaussian, the equilibrium offset in the case of the standard normal distribution from Table 1.

In the bilateral case of m = 1, the value λCauchy =∞ reflects Theorem 7, while λGaussian = 1.0632

reflects Theorem 4 (see Footnote 23). While the ratio is infinite in the bilateral case, the equilibrium

offsets become comparable in size across the two distributions as soon as the number of traders

increases to 2 on a side. Equilibrium bidding in the multilateral case is thus comparable for the two

distributions. The fat tails of the Cauchy distribution distinguish it from the normal distribution;

while the fat downward tail is crucial in the bilateral case, its impact is bounded and diminishing

in significance as the number of traders increases. The tail of the distribution matters less and

less in a buyer’s decision problem as the number of traders increases as it becomes more likely

that the market price will be near the median value/cost. Figure 6 (a)-(d) depict the graph of

the focal buyer’s marginal utility in the Cauchy case, which changes from positive to negative at

the computed offset. Furthermore, Figure 7 (a)-(d) asks further support of the uniqueness of the

computed offset by plotting the vector field of the focal buyer V ′(0, b) minus 1, and showing how

it is uniquely zero at the computed offset. Sufficiency of the first order approach thus appears to

hold in the case of the Cauchy distribution even though calculations suggest that this distribution

does not satisfy condition (13) for sufficiency of Theorem 2, see Figure 8 (a)-(d).

As a final point, the equilibrium offset does not uniquely maximize a focal buyer’s expected

utility in the case of the Cauchy distribution. Because of the fat downward tail, the expected price

faced by a focal buyer conditional upon his value in this case is negatively infinite when sellers

report honestly and the other buyers bid less than their values.24 As a consequence, all bids b < v

provide the focal buyer with an infinite expected utility. In what sense does the computed offset

represent utility maximization and equilibrium? The answer lies in the use of a distribution with

24The argument for large m is as follows. The distribution of the state µ conditional upon the focal buyer’s value
v is Cauchy with location parameter v and scale parameter 1. The symmetry of the Cauchy distribution implies
that state µ is less than v with probability 1/2. Because of the fat downward tail of the Cauchy distribution, the
expected value of µ conditional on being below v is −∞. Regardless of how the focal buyer bids, the price in the
BBDA is bounded above by the (m + 1)st smallest value/cost among the 2m − 1 values/costs of the other traders.
This is true because the other buyers bid less than their values. This order statistic converges in distribution to µ
as m increases, see Rothenberg, Franklin, and Tilanus (1964)).
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an infinite support as an approximation of a finite world. Truncating the Cauchy distribution to

the support [−c, c] for c > 0 and scaling its density so that its integral over this interval equals one

produces a distribution for which a buyer’s equilibrium offset and corresponding expected utility

are well-defined. This equilibrium offset converges to the value presented in Table 2 as c increases

to infinity. Though the limit of expected utility is infinite, the marginal analysis in the Cauchy

case derives a meaningful limit of the solution to a buyer’s decision problem in the finite case.

τ λCauchy λCauchy/λGaussian

2 1.1656 1.6903
4 0.4936 1.4630
8 0.2235 1.4364
16 0.1053 1.3819

Table 2: Comparison of the equilibrium offsets when traders’ idiosyncratic noise is Cauchy and
Gaussian distributed. Column 1 is the market size τ (m = n = 1), Column 2 is the equilibrium
offset in the Cauchy case, and Column 3 is the ratio of the equilibrium offsets of the Cauchy and
the Gaussian cases.

9 Strategic Error versus Sampling Error

Markets serve both allocative and informative purposes, and strategic behavior by traders can

disrupt a market’s effectiveness in both respects. We have explored in previous sections the

diminishing effect of strategic behavior upon allocative efficiency as the market increases in size.

In this section, we demonstrate that strategic behavior is similarly limited in its effect upon a

market’s ability to aggregate information that is dispersed among its traders.

The informational objective here is to estimate the underlying state µ from the market price,

for once it is determined, the distribution of values and costs is properly specified. Some notation

is needed for this section. For a fixed number m of buyers and n of sellers, we consider markets

with τm buyers and τn sellers for τ ∈ N∗. Let

q =
m

m+ n

and let ξq denote the qth population quantile of F , i.e.,

F (ξq) = q.

Let t(τm+1) denote the (τm + 1)st order statistic among τ (n+m) values/costs and s(τm+1) the

(τm+1)st order statistic among τm bids and τn asks, assuming that buyers use a regular equilibrium

strategy and sellers report honestly. The value s(τm+1) is the market price in the BBDA. We are
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Figure 6: Focal buyer’s marginal utility vs his bid b, for v = 0, F the standard Cauchy distribution,
and different size of market τ (m = n = 1).

interested in s(τm+1) as an estimate of µ + ξq, which is the population quantile given the state µ.

It is assumed in our Bayesian game analysis that a trader knows τm, τn and F ; he therefore can

compute ξq, which means that the market price s(τm+1) enables a trader to estimate the underlying

state µ as s(τm+1) − ξq. This is consistent with Manski (2006), who showed that a competitive

market price estimates a quantile of the underlying distribution of private signals that depends

upon the relative sizes of supply and demand. Our contribution here is to incorporate strategic

behavior into the analysis and then to assess the magnitude of its impact upon the estimation of

the population quantile of interest.25

25This is a weak notion of identifying µ from the market price s(rm+1). A common objective in a prediction
market, for instance, is to produce a price that itself estimates an unknown parameter, such as the probability that a
particular event will occur in the future. The success of a prediction market depends upon the design of the contract
that is traded, which is beyond the scope of this paper. The price s(rm+1) does approximate µ in the special case of
m = n, which we explore numerically below.
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Figure 7: Focal buyer’s vector field minus one vs his bid b, for v = 0, F the standard Cauchy
distribution, and different size of market τ (m = n = 1).

The absolute error in the estimation of µ+ ξq using s(τm+1) is

∣∣s(τm+1) − ξq − µ
∣∣ .

We bound this above as

∣∣s(τm+1) − t(τm+1) + t(τm+1) − ξq − µ
∣∣ (27)

≤
∣∣s(τm+1) − t(τm+1)

∣∣+
∣∣t(τm+1) − ξq − µ

∣∣ .
The term

∣∣s(τm+1) − t(τm+1)

∣∣ is the strategic error, which captures the effect of strategic underbid-

ding of buyers upon the estimation of µ + ξq. The term
∣∣t(τm+1) − ξq − µ

∣∣ is the sampling error,

which reflects the fact that a sample of τ (m+ n) values costs does not perfectly reflect the popu-
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Figure 8: Focal buyer’s sufficiency condition vs his value v, for v − b = λCauchy, F the standard
Cauchy distribution, and different size of market τ (m = n = 1).

lation. Assuming that buyers use a regular equilibrium strategy in each size of market, Theorem

5 implies that ∣∣s(τm+1) − t(τm+1)

∣∣ ≤ K(F,ϕ)

τm
,

i.e., strategic error is a random variable that is O(1/τ) given the fixed values of m and n. The

sampling error in contrast is a random variable distributed on the half line [0,∞); it can be arbi-

trarily small or large. The goal in the remainder of this section is to demonstrate that the sampling

error on average, however, is of strictly larger order than the strategic error. Asymptotically, the

effect of strategic error upon the estimation of µ + ξq will be shown to vanish completely because

of the dominating effect of the sampling error, despite the variability of the sampling error.
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Theorem 8 Suppose that the distribution F satisfies the regulatity condition on its tail given by

lim
x→∞

inf
− log(1− F (x))

log x
> 0. (28)

For fixed m and n and for τ ∈ N∗, we consider sequences of equilibria <S̃,B> in markets with τm

buyers and τn sellers in which S̃ denotes honest revelation and B is regular. For each value of the

state µ, the sampling error satisfies

E
[∣∣t(τm+1) − ξq − µ

∣∣ |µ] ∈ Θ

(
1√
τ

)
,

i.e., there exist constants σ (m,n, F ), σ (m,n, F ) > 0 such that

σ√
τ
≤ E

[∣∣t(τm+1) − ξq − µ
∣∣ |µ] ≤ σ√

τ
(29)

for all τ ∈ N∗.

The result is proven for a fixed value of µ, which we set equal to zero in the proof below

with no loss in generality. As in Theorem 6, it is reasonable to claim that E
[∣∣t(τm+1) − ξq − µ

∣∣]
is Θ (1/

√
τ) despite the improper distribution of µ because the same terms σ/

√
τ , σ/

√
τ bound

E
[∣∣t(τm+1) − ξq − µ

∣∣ |µ] for each value of µ. We first note that t(τm+1) − ξq is asymptotically

normal after a suitable rescaling, i.e.,

lim
τ→∞

Pr

((
t(τm+1) − ξq

) f (ξq)
√
τ (m+ n)√

q (1− q)
≤ t
)

= Φ (t) ,

where Φ denotes the standard normal with mean 0 (see, for example, Arnold, Balakrishnan, and

Nagaraja (1992, Thm. 8.5.1)). The random variable

(
t(τm+1) − ξq

) f (ξq)
√
τ (m+ n)√

q (1− q)

thus converges in distribution to the standard normal. The theorem rests upon the convergence of

the first absolute moment of this statistic to the corresponding first absolute moment of the limiting

standard normal distribution. Condition (28) is sufficient for this convergence. It is satisfied by the

normal distribution with mean 0 and variance σ2, the Laplace distribution with location parameter

0 and scale parameter b > 0, and the Cauchy distribution with location parameter 0 and scale

parameter γ > 0.26

26We verify condition (28) for these distributions using an alternative sufficient condition that is derived as follows.
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Proof. Condition (28) insures that27

lim
τ→∞

E
[∣∣t(τm+1) − ξq

∣∣∣∣µ = 0
]
· f (ξq)

√
τ (m+ n)√

q (1− q)
= EΦ [|x|] . (30)

From (30) it is clear that for sufficiently large τ ,

1

2
√
τ
·K · EΦ [|x|] < E

[∣∣t(τm+1) − ξq
∣∣∣∣µ = 0

]
<

2√
τ
·K · EΦ [|x|] ,

where K denotes the constant

K =

√
q (1− q)

f (ξq)
√

(m+ n)
.

The existence of the constants σ (m,n, F ), σ (m,n, F ) follows immediately.

Sampling error is a random variable whose magnitude can be arbitrarily large or small. This

contrasts with strategic error, which is O(1/τ) in every sample of τm values and τn costs. The

expected value of sampling error is Θ (1/
√
τ), however; it is of strictly larger order than sampling

error. The significance of this point is captured by the following theorem, which states that the

asymptotic distribution of s(τm+1) is the same as the asymptotic distribution of t(τm+1). The

impact of strategic behavior upon the market price as an estimate of the population quantile µ+ ξq

thus vanishes completely in an asymptotic analysis because it is dominated by the randomness of

sampling. A sufficiently large market thus aggregates information as if buyers were telling the

truth instead of acting strategically.

Theorem 9 For fixed m and n and for τ ∈ N∗, we consider sequences of equilibria <S̃,B> in

markets with τm buyers and τn sellers in which S̃ denotes honest revelation and B is regular. For

each value of µ,

t(τm+1), s(τm+1) ∼ AN
(
µ+ ξq,

mn

τ(m+ n)3f2(ξq)

)
,

Applying L’Hôpital’s rule twice,

lim
x→∞

− log(1− F (x))

log x
= lim

x→∞

f(x)
1−F (x)

1
x

= lim
x→∞

xf(x)

1− F (x)
− lim
x→∞

xf
′
(x) + f(x)

−f(x)
= lim
x→∞

xf
′
(x)

−f(x)
− 1.

The second application of L’Hopital’s rule is appropriate only if limx→∞ xf(x) = 0. If it is instead the case that
limx→∞ xf(x) > 0, then we can stop at that point and conclude that

lim
x→∞

− log(1− F (x))

log x
> 0.

It is therefore clear that

lim
x→∞

xf
′
(x)

−f(x)
> 1

is a sufficient condition for F to satisfy (28).
27This result originates in Anderson (1982). We apply here Shorack and Wellner (1986, Theorem 4, p. 475) in

the case of g(x) = |x|. Condition (28) above is assumption (12) of this theorem and its assumption (14) holds for
g(x) = |x| with M = 1 and x∗ = 3.
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i.e., both t(τm+1) and s(τm+1) are asymptotically normal with the same mean and variance.

The proof is in the Appendix E. The theorem implies that t(τm+1) and s(τm+1) are each

asymptotically unbiased, consistent, and asymptotically normal estimators of µ + ξq. The result

concerning t(τm+1) is well-known and was mentioned above. The contributions of the theorem are

(i) the asymptotic normality of s(τm+1) and (ii) the fact that t(τm+1) and s(τm+1) have exactly the

same asymptotic distribution. This is true even though E
[
t(τm+1) − s(τm+1) |µ

]
is strictly positive

for all µ.

9.1 Numerical Example

A numerical example suggests that the adverse effect of strategic behavior upon information aggre-

gation can be insignificant, even in markets with small numbers of traders. We compute the market

clearing price t(τm+1) in the BBDA with no strategic misrepresentation by buyers and the price

s(τm+1) in the BBDA given the use of an equilibrium offset strategy by buyers (for m = n = 1).28

These calculations are carried out for four values of τ , m = n = 1, µ = 0 and F = Φ, the standard

normal distribution. The assumption of m = n = 1 implies that the population quantile of interest

is ξm/(m+n) = ξ1/2 = 0, the median of Φ. The market price s(τm+1) thus directly estimates the

underlying state µ = 0 in this example.

Table 3 compares the variances of t(τm+1) and s(τm+1) with the asymptotic variance that these

random variables share, namely

mn

τ(m+ n)3f2(ξq)
=

1

8τφ2 (0)
.

It is notable how close the values of the three variances are to each other even for these small values

of τ . This suggests that the asymptotic limit can be meaningful for approximations involving

t(τm+1) or s(τm+1) even in relatively small markets.

Because µ = ξ1/2 = 0, the absolute error in this example is
∣∣s(τm+1)

∣∣ and the sampling error

is
∣∣t(τm+1)

∣∣, while the strategic error remains equal to
∣∣s(τm+1) − t(τm+1)

∣∣. Table 4 presents the

expected values of absolute error, sampling error and strategic error for different values of τ . The

absolute error differs from the sum of the sampling and strategic errors because of the use of the

absolute value in (27). As τ doubles, the absolute and sampling errors decrease by a factor of

approximately
√

2 while the strategic error decreases by a factor of approximately 2, which reflects

the respective rates of convergence (1/
√
τ and 1/τ) of these errors. Finally, the table suggests

28The calculations are made using a Monte Carlo method: (i) a 2τ -vector of i.i.d. random variables is drawn from
N (0, 1); (ii) the first τ are identified as buyers’ values and the last τ as sellers’ costs so that the vector has the
form (v1, . . . , vτ , c1, . . . , cτ ); (iii) t(τm+1) is computed by ordering the components of this vector; (iv) the equilibrium
offset λ(τ) that is calculated in Table 1 is subtracted from each value vi to produce the vector of bids and asks
(b1, . . . , bτ , c1, . . . , cτ ), whose components are then ordered to determine s(τm+1). These steps are repeated, which
allows the computation of the sample variances and absolute first moments of interest.
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that strategic error can be insignificant relative to sampling error in estimating the state µ even in

small markets.

τ var
(
t(τm+1)

)
var
(
s(τm+1)

)
1

8τφ2(0)

2 0.3646 0.3834 0.3927
4 0.1887 0.1901 0.1963
8 0.0954 0.0958 0.0981
16 0.0482 0.0483 0.0491

Table 3: The variances of t(τm+1), s(τm+1) and their common asymptotic limit for various sizes τ
of markets.

τ
Exp. Abs. Error
E
[∣∣s(τm+1)

∣∣] Exp. Sampling Error
E
[∣∣t(τm+1)

∣∣] Exp. Strategic Error
E
[∣∣t(τm+1) − s(τm+1)

∣∣]
2 0.4926 0.5329 0.3198
4 0.3457 0.3644 0.1679
8 0.2474 0.2549 0.0819
16 0.1756 0.1782 0.0381

Table 4: Absolute, sampling and strategic errors for various sizes τ of markets.

10 An Asymptotic Analysis of a Buyer’s Decision Problem

The first order condition (7) is complicated and provides little insight directly into a buyer’s decision

problem. We now analyze this equation by identifying the asymptotic values of its probabilities.

The goal of an asymptotic analysis is to replace a complicated calculation with a simpler formula,

thereby identifying what is most fundamental in the problem and facilitating an approximate

solution. This goal is accomplished here; this asymptotic analysis in fact models how a sophisticated

buyer might approach his decision problem in the BBDA, as opposed to using (7).

Identifying the asymptotic probabilities in the first order condition produces the asymptotic

first order condition; we call its solution the asymptotic offset, which approximates the equilibrium

offset that solves (7). Numerical calculations presented below suggest that the asymptotic offset

approximates the equilibrium offset quite well even in small markets for the case of the standard

normal distribution. More importantly, the asymptotic offset is an explicit formula in the market

size that exhibits the rate of convergence of the equilibrium offset to zero. The formula for the

asymptotic offset is noteable because there are few closed-form examples of equilibria in the k-

double auction literature, which has impeded experimental testing of the theory.29 Finally, the

29In particular, as mentioned in the Introduction, we are aware of no closed-form examples of equilibria in the
multilateral case of correlated private values considered in this paper.
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fact that this approximation improves in large markets is significant because it is exactly these

markets in which is most difficult to compute the equilibrium offset.

The formal asymptotic analysis appears in the proof of the theorem below, which is deferred

to Appendix D. We summarize the argument here. For fixed m, n and for τ ∈ N∗, let wτ denote

the difference s(τm+1) − s(τm) in a sample of τn sellers’ asks and τm− 1 buyers’ bids. Rewrite the

focal buyer’s first order condition as

0 = πb (v, b) = (v − b)fs(τm)
(b|v)− Pr[s(τm) ≤ b ≤ s(τm+1)|v]

= (v − b)fs(τm)
(b|v)− Pr[b− s(τm) > 0 & b− s(τm) < wτ |v]

= (v − b)
∫ ∞
−∞

fs(τm)
(b|µ)fµ(µ|v)dµ

−
∫ ∞
−∞

Pr[b− s(τm) > 0 & b− s(τm) < wτ |µ]fµ(µ|v)dµ.

The asymptotic distributions of s(τm) and wτ are now substituted into this formula: a suitable

rescaling of wτ is asymptotically exponential (see Siddiqui (1960)) while Theorem (13) (presented

in Appendix E) states that s(τm) conditional on µ is asymptotically normal with mean ξq + µ.30

The asymptotic first order condition for general distributions F is then

0 = (v − b)f̃s(τm)
(b|v)

−2∆

τ

∫ ∞
−∞

1

1− 2∆
Λ x

f̃s(τm)
(x+ ξq + µ|µ) f(v − b+ ξq + x)dx (31)

−O
(

1

τ2

)
· f̃s(τm)

(b|v),

where f̃s(τm)
denotes the asymptotic density of s(τm) and ∆, Λ are constants that depend on m, n, τ

and ξq. Formulas for these constants are given by (74) and (73) in Appendix D.

At this point, we restrict attention to the standard normal distribution (f = φ) in order to

reduce the integral in (31) and thereby solve the problem in closed form. A Taylor’s approximation

is applied using the fact that the focal buyer realizes that his strategy is O(1/τ). These steps

produce the asymptotic first order condition for the standard normal case

0 = (v − b)f̃s(τm)
(b|v) (32)

−
(

1

(m+ n)φ(ξq)

1

τ + C(m,n)
+O

(
1

τ2

))
f̃s(τm)

(b|v)⇔

0 = (v − b)−
(

1

(m+ n)φ(ξq)

1

τ + C(m,n)
+O

(
1

τ2

))
, (33)

30As before q = m/(m+ n) and ξq = {y : F (y) = q}.
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where

C(m,n) =
mn− (m+ n)2φ2(ξq)

(m+ n)3φ2(ξq)
.

The unique solution of (33) is the asymptotic offset

λ̃ (τ) =
1

(m+ n)φ(ξq)
· 1

τ + C(m,n)
+O

(
1

τ2

)
. (34)

While (31), (33), are (34) are derived under the assumption that v − B(v) is O(1/τ), these

equations do not otherwise depend upon the strategy B. This is true because the magnitude of

underbidding by the other buyers vanishes sufficiently fast that it is inconsequential in the focal

buyer’s decision problem for large τ : the asymptotic distributions of the τmth and (τm+ 1)st order

statistics are the same regardless of whether the sample is bids/asks or true values/costs. In effect,

the asymptotic analysis justifies the focal buyer choosing his bid under the hypothesis that the

other buyers bid honestly. This substantially simplifies his decision problem. Notice also that the

asymptotic offset λ̃ (τ) is a constant that is independent of v. An offset strategy thus uniquely

solves the buyer’s asymptotic first order condition, which motivates our focus upon this form of

strategy in all sizes of markets.

Theorem 10 Consider a sequence of markets with τm buyers and τn sellers for τ ∈ N∗ and the

special case in which F = Φ (f = φ). If the other buyers employ a regular strategy Bτ (·) such

that v − Bτ (v) is of order O(1/τ) for all v ∈ R, then λ̃ (τ) as given in (34) is the unique solution

to the focal buyer’s asymptotic first order condition (32). The asymptotic offset λ̃ (τ) is further

approximated by the simpler formula

λapprox (τ) =
1

(m+ n)φ(ξq)

1

τ
, (35)

in the sense that

lim
τ→∞

λ̃ (τ)

λapprox (τ)
= 1.

Numerical Example. In the case of m = n = 1, we have that q = 1/2, ξ1/2 = 0, f(0) = φ(0) =√
1/(2π), and C(1, 1) = π/4− 1/2, so that

λapprox (τ) =

√
π

2

1

τ
.

Fig. 9 depicts this approximate solution λapprox as compared to the corresponding numerical

calculation λ (τ) obtained from the first order condition (7).Table 10 reports the error and the

relative error in this approximation. We see that the (relative) error in the approximation diminishes
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fast so that the approximate solution performs well even for modest market sizes.
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Figure 9: Approximate Solution.

τ λ λapprox |λapprox − λ| |λapprox−λ|
λ

2 0.6896 0.6267 0.0629 0.0913

4 0.3374 0.3133 0.0241 0.0713

8 0.1640 0.1567 0.0073 0.0447

16 0.0805 0.0783 0.0022 0.0269

Table 5: Approximate Solution.

11 Correlated Interdependent Values

We extend our model in this section to the case in which traders have interdependent values/costs

and correlated private signals (CIV). As before there are m buyers and n sellers whose values/costs

are generated as follows: buyer i’s value is vi = µ + εi and seller j’s cost is cj = µ + εj where the

state µ is drawn from the uniform improper prior on R and the terms εi, εj are i.i.d. according

to the distribution F on R. In this section, however, a trader does not know his value/cost at the

time that he chooses his bid/ask. Instead each trader privately observes a noisy signal concerning

his value/cost prior to his participation in the BBDA. The signals are generated as follows: buyer
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i’s signal σi equals

σi = vi + δi = µ+ εi + δi,

and seller j’s signal σj equals

σj = cj + δj = µ+ εj + δj ,

where the noise components δi, δj are i.i.d. according to the distribution G on R. We assume

that G is absolutely continuous with density g > 0 on R and mean zero. The signals are therefore

unbiased estimators of a trader’s value/cost: E [vi|σi] = σi and E [cj |σj ] = σj . The presence of the

noise components make traders’ values/costs interdependent: if buyer i could somehow learn seller

j’s signal σj , then his expected value E [vi|σi, σj ] 6= σi varies with σj . The reason is that σj allows

i to update his estimate of µ, the result of which causes him to revise his estimate of his own value

vi.

The BBDA, however, requires traders to submit simultaneously and privately their asks/bids,

which prevents each from securing direct information about others’ signals. But immediately after

the simultaneous submission of asks/bids, each trader does observe the realized market price p and

resulting alllocation of the n objects available in the market. This p provides new information about

the magnitude of his own signal relative to the signals of the other traders because the realized

price is either the mth or the (m+ 1)st order statistic of the asks/bids the other traders submit.

A rational trader anticipates the revelation of this information at the interim stage, i.e., after he

knows his signal but before the market price and allocation are realized. His choice of ask/bid, at

the interim stage, essentially matters only in the unlikely event that his planned ask/bid happens

to be very close to the realized price. This is because small adjustments in his ask/bid in that case

determine whether he trades or not. However, although this effect were true for buyers also in the

CPV case, an additional effect is present for both sellers and buyers in the CIV case. Essentially

adding the noise components δ enriches each trader’s decision problem with the issue of inferring

from the event of trading. To see this recall that since the market price is the (m+1)st order statistic

of the submitted asks/bids it asks a lot of information about the common value µ; better knowledge

of µ allows traders to better estimate their own value/cost. These anticipatory adjustments allow

them to (partially) protect against ex post regret, i.e., the well known winner’s or loser’s curse.

Hence, while the BBDA continues to give a seller the incentive to set his ask aj equal to his

expectation of his cost cj , in general this expectation no longer equals σj as a result of what he

anticipates learning from the realized price. Similarly, while the BBDA continues to give a buyer

the incentive to set his bid bi below his expectation of vi in general this expectation no longer equals

his signal σi.

Our goal in this section is not to provide a full treatment of the CIV case. We feel this is

redundant given the richness of the results provided in the CPV case thus far and the natural

connection between the CIV and CPV cases. To this effect we wish to highlight the main points of
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departure from the CPV case. Basically the lack of traders’ knowledge of their value/cost and the

requirement for anticipatory inferences leads us to the introduction of the price taking bid/ask in

the next subsection. There we intuitively — and without resorting to strict arguments — describe

how a trader’s decision problem can be decomposed into two stages, and how his price taking

bid/ask plays the same role in the CIV case that a trader’s value/cost played in the CPV case. We

also exhibit that the price taking bid/ask is not, in general, equal to a trader’s signal for reasons

that have to do with the relative sizes of supply and demand. Then in subsection 11.2 we present

the first order approach not only for buyers (as in the CPV case) but also for sellers. The first

order approach allows us to formalize some of the intuition we built in subsection 11.1 and also

provides the necessary machinery for the numerical results of subsection 11.3. The numerical results

show how simple offset equilibria exist in this case as well, further validating their importance and

prevalence in this environment.

11.1 Some Intuition

Let us begin with the sellers’ problem, which is simpler. The first step for a focal seller — given m

and n, the strategies of the other traders, and the underlying joint distribution of their signals and

values/costs — is to construct the function E[c|σ, x] where x is the mth order statistic of the asks

of the n − 1 remaining sellers, and the bids of all m buyers. To trade a seller’s ask has to be less

than x. We call the focal seller’s ask, a, pivotal when a happens to equal x, i.e., when the focal

seller’s ask is equal to the market price. For signal σ ∈ R, define the seller’s price-taking ask to be

the ask aPT that solves the fixed point equation:

aPT = E[c|σ, x = aPT], (36)

i.e., given σ, he asks exactly his expected value for the good in the event that his ask happens to

be pivotal.

The second step for the focal seller, given his expected cost aPT, is to decide on the ask he will

actually report. This is easy for him because the trading institution is the BBDA and as a seller he

cannot affect the price at which he trades. His optimal strategy is therefore to ask aPT, his value

conditional on σ and being pivotal. Doing so is the essence of price taking. Given a market price p,

then the seller wants to sell his unit of supply if and only if his expected cost is less than or equal

to the realized price. In the BBDA if aPT < x, then x becomes the realized price p, the focal seller

trades, and earns positive utility. If aPT = x, then x becomes the price p, whether the focal seller

trades depends on the realization of a random draw, but in any case he is indifferent whether or

not he trades. If aPT > x, then the focal seller does not trade, which is fine since the return from

trading would be negative. By reporting aPT he obtains exactly the outcome he seeks even though

he must report his ask prior to the price being realized. Notice that asking aPT is not a dominant
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strategy since its computation relies on the mth order statistic of other traders’ ask/bids, which in

turn depends on their equilibrium strategies.

Now focus on buyers. Paralleling the focal seller’s computation of aPT, a focal buyer computes

bPT as a function of his signal σ ∈ R. This gives him his price-taking bid which solves the fixed

point equation

bPT = E[v|σ, x = bPT], (37)

i.e., the right hand side is the updated expectation over his value, given his signal and being pivotal.

Note that here, however, x is the mth order statistic of a different population than for a seller: the

population for the focal buyer are the asks of all n sellers, and the bids of the m − 1 remaining

buyers. For a buyer the second step is more complicated because, as in the CPV case, he can affect

the price and so acts strategically to choose his bid b that is less than his price-taking bid bPT and

that maximizes his expected utility.31 Observe that if — counterfactually — buyers and sellers

both reported their price-taking asks and bids, then there would be no asymmetry between a focal

buyer and a focal seller. Specifically if a buyer and a seller each received the identical signal σ, then

the seller’s price-taking ask aPT would equal the buyer’s price-taking bid bPT.

The implications of interdependence on the traders’ price-taking asks and bids are most easily

seen in the limiting case where we have τm buyers and τn sellers and τ → ∞ while the ratio of

m/(m+ n) = q is held fixed. If all traders report their price-taking asks/bids, which is optimal in

the limit, then the price as well as the relevant order statistics converge to µ+ ξq where H̃ (ξq) = q

and H̃ is the mixture distribution (normalized around the common component µ) of traders’ price-

taking asks and bids. Now ξq is a function of the relative size of the market. Given that both F

and G are zero mean, if q > 0.5 (more buyers than sellers), then ξq > 0. If q = 0.5, then ξq = 0

and if q < 0.5 then ξq < 0.

Thus, for instance, if q > 0.5, then in the limit the market clearing price would converge to

µ+ξq > µ if all traders reported their signals honestly. But each trader with σ ≈ µ+ξq understands

that in expectation he received a positive noise term δ and therefore his signal overestimates his

value/cost. Hence for such traders aPT < σ for sellers and bPT < σ for buyers, i.e., all traders

correct their signals downward before reporting their bids/asks. Similarly if q < 0.5, then all

traders correct their signals upward. Only when q = 0.5 would traders not correct their signals in

the limit; µ + ξq = µ, their signals equal their price taking asks and bids, and realized price is µ,

the median of the reported bids/asks.

31The artificiality of describing the decision as a two step process occurs here. For the buyer choosing the bid b
less than bPT changes his calculation of his price-taking bid. Consequently choosing the bid b and computing the
function bPT must be done simultaneously. This becomes explicit when we present the solution to the buyer’s first
order condition in the next subsection.
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11.2 First Order Approach

We formally derive the first order conditions for the strategies S and B to define an equilibrium in

the CIV case in Appendix F. Our objective below is to present these first order conditions as they

compare to the conditions derived in the CPV case in Section 3.

11.2.1 Buyer’s Expected Utility and First Order Condition

Given signal σ, the focal buyer chooses his bid b to maximize his expected utility. Let x denote the

mth and y the (m+ 1)st order statistics in a sample of m − 1 buyers using strategy B and all n

sellers using strategy S. Conditional on the focal buyer’s signal σ, let fµ(µ|σ) denote the density of

the state µ conditional on the signal σ, and let fBx (x|·), fBy (y|·), and fBxy(x, y|·) be the conditional

densities of x, y, and the joint of x and y respectively. We index the densities and the utility in

the CIV case with a superscript B to distinguish them from the densities in a focal seller’s problem

as discussed below. This distinction was not needed in the CPV case because the strategy of each

seller was straightforward to characterize. The focal buyer’s interim expected utility is

πB(σ, b|B,S) =

∫ ∞
−∞

{∫ b

−∞
fBy (y|µ) (E [v|µ, σ]− y) dy (38)

+

∫ b

−∞

∫ ∞
b

fBxy(x, y|µ) (E [v|µ, σ]− b) dydx
}
fµ(µ|σ)dµ.

To gain insight into this equation, we contrast it with the corresponding equation from the CPV

case:

π(v, b|B) =

∫ ∞
−∞

{∫ b

−∞
fy(y|µ) (v − y) dy (39)

+

∫ b

−∞

∫ ∞
b

fxy(x, y|µ) (v − b) dydx
}
fµ(µ|v)dµ.

We first note that the buyer’s expected utility in (38) now depends upon his signal and both

strategies B and S, whereas in (39) it depends upon his private value v and the strategy B (with

the dependence upon honest revelation by each seller suppressed in the notation). The first term

in each of these two integrals represents the expected utility to the buyer when he trades at a price

below his bid b and the second line represents the expected utility when his bid b sets the price. The

integral in the CIV case is computed with respect to the conditional density fµ(µ|σ) as opposed

to fµ(µ|v), which reflects the difference in his private information between the two cases. Finally,

the focal buyer’s private value v in (39) is replaced by E [v|µ, σ] in (38), reflecting his uncertainty

about his value at the time he bids in the CIV case.

Formula (38) implies the following first order condition for the focal buyer’s optimal choice of
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a bid:

πBb (σ, b|B,S) =

∫ ∞
−∞

{
(E [v|µ, σ]− b) fBx (b|µ)−

∫ b

−∞

∫ ∞
b

fBxy(x, y|µ)dydx

}
fµ(µ|σ)dµ = 0. (40)

We compare this to the first order condition in the CPV case:

πb(v, b|B) =

∫ ∞
−∞

{
(v − b) fx(b|µ)−

∫ b

−∞

∫ ∞
b

fxy(x, y|µ)dydx

}
fµ(µ|v)dµ = 0. (41)

The first term in each integral is the marginal gain from acquiring an item at price b while the

second term is the marginal cost from raising the price at which he trades. The marginal gain is

now E [v|µ, σ]− b.
Finally, we note that the densities are expanded in Appendix F in terms of the probabilities

MB
n,m, KB

m,n, LBm,n. These have the same meaning as presented in the CPV case with two important

differences in the formulas: (i) they now depend not only on B′ and B−1 but also on (the unknown)

S′ and S−1; (ii) instead of F , they are now defined in terms of the convolution H = F ? G of the

distributions F and G, which is the distribution of ε+ δ.

Notice that (40) implies that

b =

∫∞
−∞ E [v|µ, σ] fBx (b|µ)fµ(µ|σ)dµ∫∞

−∞ f
B
x (b|µ)fµ(µ|σ)dµ

−
∫∞
−∞

∫ b
−∞

∫∞
b fBxy(x, y|µ)dydxfµ(µ|σ)dµ∫∞
−∞ f

B
x (b|µ)fµ(µ|σ)dµ

⇒

b = E[v|σ, x = b]− Pr[x < b < y|σ]

fBx (b|σ)
. (42)

As mentioned in Section 11.1 the event {x = b} is when the focal buyer is pivotal, i.e., when he sets

the price (and bidding infinitesimally less would lead to no trade). Hence, the first part of the left

hand side of (42) is the updated expectation of his value given his signal and being pivotal; this is

exactly the pricing-taking bid bPT as defined before in (37). The second term reflects the buyer’s

price impact in the BBDA. Of course the focal buyer’s bid is not going to be equal to bPT since

that satisfies (37), while the optimal bid satisfies (42). It is also clear then that the buyer in the

CIV will underreport his “best estimate” of his value by a positive term similar to the one in the

CPV case where his optimal bid was given by the fixed point equation:

b = v − Pr[x < b < y|v]

fx(b|v)
,

the main difference being the buyer’s knowledge of his value v.
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11.2.2 Seller’s Expected Utility and First Order Condition

Reflecting the pricing rule of the BBDA, a seller’s expected utility and marginal expected utility

differ from a buyer’s in that it does not have a term that corresponds to trade in which his ask sets

the price. In the CIV case, however, a seller must account for the fact that the event of trading

affects his estimate of his own cost.

Consider a focal seller with signal σ and ask a. Let x now denote the mth order statistic and

fSx (x|·) its conditional density for a sample of all m buyers using strategy B and n− 1 sellers using

strategy S. The seller’s ex post utility is determined by the relative sizes of a and x:

• if a < x, then the seller trades at the price of x and receives x− c;

• if a ≥ x, then the seller may or may not trade (based on a random draw) but irrespectively

receives 0.

The ex ante utility of the seller is (x− c)χa<x, and so his interim expected utility is,

πS(σ, a;B,S) =

∫ ∞
−∞

{∫ ∞
a

(x− E [c|µ, σ]) fSx (x|µ)dx

}
fµ(µ|σ)dµ. (43)

Taking the derivative with respect to a one gets the first order condition

πSa (σ, a;B,S) =

∫ ∞
−∞

{
(a− E [c|µ, σ]) fSx (a|µ)

}
fµ(µ|σ)dµ = 0. (44)

The term E [c|µ, σ] reflects the seller’s uncertainty about his cost c. In the private values case, it

reduces to c, which produces the optimal ask of a = c. While the term E [c|µ, σ] does not depend

upon the strategies B and S, they are implicit in the density fSx (a|µ). Because x is the price at

which the focal seller sells when he trades, this density captures the effect of the event of trading

upon his calculation of his marginal expected cost. Similarly as for a buyer from (44)

a =

∫∞
−∞ E [c|µ, σ] fSx (a|µ)fµ(µ|σ)dµ∫∞

−∞ f
S
x (a|µ)fµ(µ|σ)dµ

⇒

a = E[c|σ, x = a]. (45)

As mentioned in Section 11.1 the event {x = a} is when the focal seller is pivotal, i.e., when she sets

the price (and asking infinitesimally less would lead to trade). Hence, this is exactly the pricing-

taking ask aPT as defined in (36). Non-surprisingly this is the seller’s optimal ask given the rules

of the BBDA. As noted before, in (42) and (45) x refers to the mth order statistic of (in general)

different populations.
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Invariance Property. Setting b = B(σ) and a = S(σ) in (40) and (44) produces a pair of

differential equations in the equilibrium strategies B, S that are presented in Appendix F. Our

goal in this section is to explore the robustness of the conclusions we reached in the private values

case to the introduction of interdepence among values/costs. We therefore conjecture a similar

form of offset equilibrium for the CIV model in which B and S have the form

B(σB) = σB − λB, (46)

S(σS) = σS + λS ,

where λB, λS are constants that are not restricted to be positive.

Assuming that traders use offset strategies of the form (46), the following lemma states that

the buyer’s marginal utility πBb (σB, b;B,S) and the seller’s marginal utility πSa (σS , a;B,S) do not

depend upon the values of the signals σB and σS . As a consequence, by solving numerically for

offsets λB and λS that equate both marginal utilities to zero for particular values of the signals σB

and σS , we obtain offsets that solve the first order conditions at all σB and σS . The strategies (46)

defined by these offsets therefore satisfy the first order conditions for equilibrium at all σB and σS ,

with only the sufficiency of the first order approach remaining to be verified in order to demonstrate

equilibrium. The lemma therefore substantially simplifies the calculation of an equilibrium.

Lemma 4 Assume that buyers and sellers use the offset strategies in (46).The marginal utilities

of a focal buyer and focal seller in this case satisfy

πSa (σS , σS + λS ;B,S) = πSa (σS + ρS , σS + ρS + λS ;B,S),

πBb (σB, σB − λB;B,S) = πBb (σB + ρB, σB + ρB − λB;B,S)

for all (ρB, ρS) ∈ R2.

The lemma is proven in Appendix F.

11.3 Numerical Results

For our numerical results, we take εi, εj ∼ N(0, e), δi, δj ∼ N(0, d) for all i and j. Then,

fµ(µ|σ) =
1√
e+ d

φ

(
µ− σ√
e+ d

)
,

E [v|µ, σ] = E [c|µ, σ] =
eσ + dµ

e+ d
.

For d→ 0 we get the CPV model studied in the previous sections.

We produce values of the buyers’ and sellers’ offset for different values of m and n in Tables 6

and 7. To verify that these are equilibrium strategies we plot the utility and marginal utility of the
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focal buyer as a function of his bid (for σ = 0), conditional on other traders following the offset

strategy (λB, λS), see for example Fig. 10 (a) for m = n = 8, e = 1 and d = 0.25. The vertical line

signifies λB. We observe that the focal buyer’s utility is (uniquely) maximized at b = σ − λB and

hence his best response is to imitate the other buyers’ strategy. Now, in Fig. 10 (b) we depict the

counterpart for the focal seller. Again, the seller uniquely chooses to ask a = σ + λS . Therefore,

the computed (λB, λS) constitute an offset equilibrium.

m\n 2 4 8 16

2 1.3404, 0.4124 0.8372, 0.4912 0.3642, 0.6508 −0.0361, 0.8546
4 1.2189, 0.1332 0.7036, 0.2172 0.2657, 0.3948 −0.1128, 0.6192
8 1.2084,−0.1712 0.7431,−0.0787 0.3417, 0.1091 −0.0212, 0.3494
16 1.3011,−0.4677 0.8853,−0.3756 0.5175,−0.1886 0.1754, 0.0614

Table 6: Results for buyers’ and sellers’ offset λB, λS , for different values of m and n (e = 1, and
d = 1).

Observing the values in Tables 6 and 7 recall that a buyer weighs two effects in choosing his

offset: (i) the possibility of affecting price (price impact); (ii) the estimation of his value given his

signal and the event that he trades (price taking). Holding n constant and increasing the number

m of buyers, effect (i) diminishes as the likelihood that a buyer influences price goes to zero, while

effect (ii) increases as a buyer who trades knows that more and more signals (m − 1) are below

his when he trades. As we go down a column in either of these two tables we therefore observe a

buyer’s offset first decreases due to effect (i) and then increase as effect (ii) dominates. Interestingly,

a seller’s offset monotonically increases for fixed m, as n increases. As n increases, a seller who

trades knows that there are an increasing number of signals above his. The effect of increasing n

is therefore to provide increasing evidence to the seller who trades that his signal is relatively low,

causing him to increase his offset. A seller never affects the price at which he trades and so there

is no effect similar to (i) in his selection of his offset.

m λB, λS

2 1.7416, 0.4076
4 1.7164, 0.1532
8 1.7372,−0.1367
16 1.8075,−0.4257
32 1.9118,−0.6945
64 2.0336,−0.9383
128 2.1629,−1.1595

Table 7: Results for buyers’ and sellers’ offset λB, λS , for n = 1 and different values of m (e = 1,
and d = 1).
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Moreover, Table 7 reflects exactly why a double auction with one seller and m buyers is not a

standard one-sided auction. The “reservation price” of the seller, given by his offset in this case,

is neither a given nor an unknown constant, but rather an equilibrium quantity, i.e., it depends

on the buyers’ optimal strategy. From a methodological perspective, as we mentioned, this implies

that a buyer’s signal in this case is not affiliated with the maximum, i.e., the mth order statistic,

of other buyers’ optimal bids and the seller’s “reservation price”, as it is the case for example, in

a standard first price auction. Nonetheless, offset equilibria exist and so our methodology can be

used to compute equilibria of one-sided auctions with an endogenous reservation price.
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Figure 10: Focal trader’s utility and marginal utility. Other sellers use the offset λS = 0.0220, and
other buyers use the offset strategy λB = 0.2053, for m = n = 8, e = 1 and d = .25 (σ = 0).

We now turn our attention to the symmetric case of equal numbers of buyers and sellers m = n.

We fix m = n = 1 and consider different market sizes scaled by τ ∈ N∗ as before. So for different

τ in Table 8 we report the terms corresponding to effects (i) and (ii) for buyers (Columns 2 & 3)

and effect (i) for sellers (Column 4), which is the only effect for them. These of course correspond

to the terms we identified in equations (42) and (45). In particular for buyers it is the sum of the

price taking and the price impact terms that produces their equilibrium bid, while for sellers the

price taking term is exactly their equilibrium ask, i.e.,

−λB = E[v|0, x = −λB]− Pr[x < −λB < y|0]

fBx (−λB|0)
,

+λS = E[c|0, x = +λS ],

The equilibrium (λB, λS) can be also read from the diagonal terms in Table 6. Now the buyer’s price

impact term does not depend on σ, this follows from similar arguments that led to the invariance

result, see Lemma 4. On the other hand, as one would suspect, both the buyer’s and the seller’s
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τ E[v|0, x = −λB] Pr[x<−λB<y|0]
fBx (−λB |0)

E[c|0, x = +λS ]

2 −0.4125 0.9279 0.4125
4 −0.2172 0.4864 0.2172
8 −0.1091 0.2326 0.1091
16 −0.0615 0.1139 0.0615

Table 8: Results for buyers’ price taking term (Column 2), price impact term (Column 3), and
seller’s price taking term (Column 4) vs the market scale factor τ (Column 1) for m = n = 1,
e = 1, and d = 1.

price taking terms do depend on the signal (recall that λB and λS are constants that do not depend

on σ). However, for these offset equilibria the dependence is pretty trivial in the sense that32

E[v|σ, x = σ − λB] = σ + E[v|0, x = −λB],

E[c|σ, x = σ + λS ] = σ + E[c|0, x = +λS ].

Also from the table it is pretty clear that33

E[v|0, x = −λB] = −E[c|0, x = +λS ].

So in Table 8 we isolate the effect in the price taking term that comes from pure hedging rather

than from the different value of a trader’s signal. It is now notable that all terms decrease as we go

down the rows of Table 8 at what appears to be a O(1/τ) rate. The price impact term of Column

3 captures the rate at which the strategic effect of buyers goes away, and hence the O(1/τ) rate is

the same as in the CPV case. The fact that the price taking terms for both buyers and sellers also

go away at a rate of O(1/τ) reflects the increasing meaningfulness of the price (the sample median

in this symmetric case) as an estimate of the state µ as the sample size increases.34 This may see

to contradict our finding in Section 9 that the estimation error (of µ) goes away at a rate Θ(1/
√
τ)

so a slower rate than O(1/τ). However, note that the price taking asks/bids are a hedge to others’

estimate of µ and so they are essentially the best estimate of the market’s estimate, and not of µ

directly. Hence, intuitively we can see why the rate is the square of the estimation rate of µ (this

is similar to our arguments in proving allocation efficiency, see Theorem 26).

Finally, in Figures 11 (a) and (b) we depict the evolution of buyers’ and sellers’, respectively,

offset strategy for size of the market τ for different values of variance of δ, d. For d = 0 a trader’s

signal is equal to her value and hence this is the CPV case. As was proved, and depicted in Fig.

32This is straightforward by observing the expressions for these terms provided in Appendix F.
33In these equations the x are different random variables.
34As τ increases, a seller who sells knows that an increasing number of signals are above his (τm) but this is

counterweighted by the increasing number of signals that are lower (τm− 1). Similarly for a buyer.
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11 (b), in that case sellers report their true values/signals and so the offset is zero for all values

of τ , and buyers underbid strategically. For a specific value of τ we see that both buyers’ and

sellers’ offset increase as the value of d increases. This follows from the fact that the more unsure

traders are of their valuation over the asset the more they want to hedge against this uncertainty.

Moreover, for a given value of d and τ , the buyers’ offset is higher than the sellers’ offset since for

buyers the offsets has also the strategic component (price impact) besides the hedging component

(price taking). As τ grows for all values of d both λB and λS converge to zero (since m = n we

have ξq = 0 and for σ = 0, limτ→∞ aPT = limτ→∞ bPT = 0) and according to the graphs this is at

a rate of 1/τ (benchmark line), that is λB and λS are O(1/τ) as was mentioned before.
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Figure 11: Rate of Convergence to Truth Telling in the CPV & CIV case for different size markets
(m = n = 1 and e = 1).

12 Conclusion

The double auction with its two sided incomplete information, correlated and, perhaps, interde-

pendent values models important aspects of the centralized security and commodity markets that

play a critical role in determining prices in market economies. In this paper we have analyzed small

double auctions for both the CPV and CIV environments using a novel information structure. The

bulk of our analysis is for the CPV environment using the BBDA. For it we prove, given that sellers

follow their dominant strategies of reporting their costs honestly, that symmetric strategies exist

that solve buyers’ first order conditions. We then show that for both the normal and the Laplace

distributions these solutions are in fact equilibria. We also prove that the rates of convergence to

price-taking behavior and to ex post efficiency that are now well-established in the double auction
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literature hold in this model. We add to these convergence results a proof that the effect of strategic

behavior upon the aggregation of information by the market is small relative to the error that is

inherent in the market’s finiteness. Finally, our asymptotic analysis of a buyer’s decision problem

produces a simple formula in the numbers of buyers and sellers that converges to a buyer’s optimal

bidding strategy as the market becomes larger.

Our model’s information structure specifies that traders’ ex ante beliefs concerning the market’s

underlying state µ is a diffuse, uniform prior on the real line. This, together with an additive,

idiosyncratic value/cost term, implies that each trader’s decision problem is invariant with respect

to his own value/cost. Consequently an offset strategy is the plausible and focal equilibrium strategy

for buyers. Computation of this offset strategy is easy for both small and large markets because it

is a one dimensional problem, not a two dimensional problem as is usual in a game of incomplete

information with a continuum of types. Checking that the computed offset strategy is an equilibrium

strategy is also easy because it too is a one dimensional computation. This approach gives us results

for small markets, e.g., it demonstrates that the rates of convergence hold even in such cases. It

also distinguishes our work from much of the double auction literature, which typically addresses

the outcome of a “sufficiently large” market. Together with the formula for approximate equilibria

obtained through the asymptotic analysis, the computed equilibria provide insight into bidding

behavior for a literature in which few equilibria had previously been derived.

After analyzing the BBDA’s performance in the CPV environment we apply the same techniques

to determine its performance in the CIV environment. The further complexity that follows from

adding an additive noise term to each trader’s private, value/cost signal prevents us from proving

either existence of a solution to the buyer’s first order condition or the rates at which equilibria

approach allocational efficiency and informational accuracy. But the invariance of each trader’s

decision problem with respect to his own signal continues to hold. This, just as in the CPV case,

makes both computation of an offset solution to the buyer’s first order condition and checking that

the solution is an equilibrium easy. The one complication is that, with interdependence, each buyer

and each seller is subject to the winner’s/loser’s curse. Systematic numeric experiments where both

the idiosyncratic value/cost term and the noise term are normally distributed establishes that for

this case: (i) equilibria do exist for small markets as well as asymptotically for large markets, (ii) the

rates of convergence for both allocational efficiency and informational efficiency remain unchanged

from the CPV environment, and (iii) the realized market price converges to the REE price as the

market size goes from small to large. The latter result provides new theoretical evidence that REE

prices can be reasonably approximated by a Bayesian Nash equilibrium even in small markets for

the CIV environment, which is exactly the environment for which REE prices are necessary for

allocational efficiency.
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A Some Proofs of Sections 4 and 5

Proof of Lemma 2. The invariance of V ′(v, b) allows us to set v = 0 with no loss of generality.

We also restrict attention to b ≤ v = 0. The functions K∗n,m(0, b|µ), L∗n,m(0, b|µ) and M∗n,m(0, b|µ)

that appear in formula (10) satisfy the bounds

K∗n,m(0, b|µ) ≥ F (−µ)m−1 F (b− µ)n−1 ,

L∗n,m(0, b|µ) ≥ nF (−µ)m−2 F (b− µ)F (b− µ)n−1 ,

and

M∗n,m(0, b|µ) ≤ kn,mF (−µ)m−1 F (b− µ)F (b− µ)n−1 ,

where kn,m in the last formula denotes

kn,m =
∑

i+j=m
0≤i≤m−1

1≤j≤n

(
m− 1

i

)(
n

j

)
.

The bound on K∗n,m(0, b|µ) is obtained by focusing on its i = m− 1, j = 0 term and the bound on

L∗n,m(0, b|µ) is obtained from its i = m− 2, j = 1 term. The bound on M∗n,m(0, b|µ) is obtained by

applying b ≤ v = 0, which implies that the monomial in its ith term satisfies

F (−µ)i F (b− µ)j F (−µ)m−1−i F (b− µ)n−j

≤ F (−µ)i+j−1 F (b− µ)F (b− µ)m−1−i+n−j

= F (−µ)m−1 F (b− µ)F (b− µ)n−1 .

Substitution into (10) and factoring the integrand in the numerator implies that V ′(0, b) is bounded

above by ∫∞
−∞ [kn,mF (b− µ) + nbf(b− µ)]F (−µ)m−1 F (b− µ)n−1 f(−µ)dµ

−(m− 1)nb
∫∞
−∞ F (−µ)m−2 F (b− µ)F (b− µ)n−1 f(−µ)2dµ

. (47)

The integral in the numerator of (47) is now bounded separately over the intervals (-∞, b] and [b,∞).

The proof is completed by showing that: (i) the integral over (-∞, b] divided by the denominator of

(47) converges to zero as b→ −∞; (ii) the integral over [b,∞) is negative for b sufficiently negative.

These two steps are considered separately below.
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Integral over (−∞, b]. This integral is bounded above by∫ b

−∞
kn,mF (b− µ)F (−µ)m−1 F (b− µ)n−1 f(−µ)dµ

≤ kn,m

∫ b

−∞
f(−µ)dµ

= kn,mF (−b)
= kn,mF (b).

The first line follows from b ≤ 0, the second from

F (b− µ)F (−µ)m−1 F (b− µ)n−1 ≤ 1,

and the last equality follows from the symmetry of F . The integral in the denominator of (47)

satisfies ∫ ∞
−∞

F (−µ)m−2 F (b− µ)F (b− µ)n−1 f(−µ)2dµ

≥
∫ 0

−∞
F (−µ)m−2 F (b− µ)F (b− µ)n−1 f(−µ)2dµ

≥ F (b)

∫ 0

−∞
F (−µ)m−2 F (b− µ)n−1 f(−µ)2dµ,

where the last inequality reflects F (b− µ) ≥ F (b) for µ ≤ 0. Combining these two bounds implies∫ b
−∞ [kn,mF (b− µ) + nbf(b− µ)]F (−µ)m−1 F (b− µ)n−1 f(−µ)dµ

−(m− 1)nb
∫∞
−∞ F (−µ)m−2 F (b− µ)F (b− µ)n−1 f(−µ)2dµ

≤ kn,mF (b)

−(m− 1)nbF (b)
∫ 0
−∞ F (−µ)m−2 F (b− µ)n−1 f(−µ)2dµ

=
kn,m

−(m− 1)nb
∫ 0
−∞ F (−µ)m−2 F (b− µ)n−1 f(−µ)2dµ

.

The integrand in the denominator increases as b decreases and the ratio therefore goes to 0 as

b→ −∞.

Integral over [b,∞). This integral equals∫ ∞
b

[
kn,m + nb

f(b− µ)

F (b− µ)

]
F (b− µ)F (−µ)m−1 F (b− µ)n−1 f(−µ)dµ. (48)
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We have b−µ ≤ 0 because µ ≥ b. Our assumptions on F implies the existence of a constant K > 0

such that
f(x)

F (x)
≥ K for x ≤ 0.

The integral (48) is therefore bounded above by∫ ∞
b

[kn,m + nbK]F (b− µ)F (−µ)m−1 F (b− µ)n−1 f(−µ)dµ.

The integrand and hence the integral itself are negative for

kn,m + nbK < 0⇔ b < −kn,m
nK

.

Proof of Lemma 3. The assumption that V ′(v, b) ≥ δ means that attention can be restricted

to v, b such that

v − b ≤ L∗(F, δ) (49)

where L∗(F, δ) is the constant whose value is provided by Lemma 2. Select L > L∗ such that

F (−L)(
F (−2L∗)F (2L∗)

)ϕ , F (L)(
F (−2L∗)F (2L∗)

)ϕ < 1

2
. (50)

The denominator of each ratio on the left side of (50) is constant and so a sufficiently large L will

satisfy the inequalities. The number L is selected with foresight for its use later in the proof.

Formula (10) implies that V ′(v, b) ≥ δ > 0 only if

0 ≤
∫ ∞
−∞

[
M∗n,m − nf(b− µ)(v − b)K∗n,m

]
f(v − µ)dµ. (51)

This integral is now computed over three intervals:

0 ≤
∫ b−L

−∞
M∗n,mf(v − µ)dµ

+

∫ v+L

b−L

[
M∗n,m − nf(b− µ)(v − b)K∗n,m

]
f(v − µ)dµ

+

∫ ∞
v+L

M∗n,mf(v − µ)dµ.

The nf(b−µ)(v−b)K∗n,m term has been dropped from the integrands of the first and third integrals,
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which can only increase their values. This implies that v − b is at most∫ v+L
b−L M∗n,mf(v − µ)dµ∫ v+L

b−L nf(b− µ)K∗n,mf(v − µ)dµ
(52)

+

∫ b−L
−∞ M∗n,mf(v − µ)dµ+

∫∞
v+LM

∗
n,mf(v − µ)dµ∫ v+L

b−L nf(b− µ)K∗n,mf(v − µ)dµ
. (53)

The proof is completed below by showing that that (52) is O (1/(n ∧m)) and (53) is O(2−n∧m).

The bound we seek is thus determined over the states µ near v and b in [b− L, v + L], with states

µ in the tails [−∞, b− L] and [v + L,∞] shown to be relatively inconsequential.

Expression (52) is O (1/(n ∧m)). For µ ∈ [b− L, v + L], the bounds

µ ≥ b− L⇔ b− µ ≤ L (54)

and

µ ≤ v + L⇔ −L ≤ v − µ

hold. The bound (49) then implies

v − µ = v − b+ b− µ ≤ L∗ + L,

and

b− µ = b− v + v − µ ≥ −L∗ − L,

and so

v − µ, b− µ ∈ [−L∗ − L,L+ L∗] . (55)

Turning to the numerator of (52), we have∫ v+L

b−L
M∗n,mf(v − µ)dµ =

∫ v+L

b−L

M∗n,m
nK∗n,m

nK∗n,mf(v − µ)dµ (56)

≤
∫ v+L

b−L

M∗n,m
(n ∧m)K∗n,m

nK∗n,mf(v − µ)dµ

≤ 2

n ∧m

∫ v+L

b−L

F (v − µ)F (b− µ)

F (v − µ)
nK∗n,mf(v − µ)dµ.

The step from the first to the second line follows from the fact M∗n,m/nK
∗
n,m is non-increasing in n
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and in m when m ≥ 2 (see Williams (1991, Lemma 4.2)). The inequality

Mn∧m
Kn∧m

< 2
F (v − µ)F (b− µ)

F (v − µ)

follows from substitution into formulas (5.3) and (5.4) for z(v2, b) of Satterthwaite and Williams

(1989) with v − µ replacing v2, b− µ replacing b, and F replacing F1 and F2.

The fact that v − µ and b− µ lie in the compact interval (55) implies that

F (v − µ)F (b− µ)

F (v − µ)

is bounded above and f(b−µ) is bounded below for µ ∈ [b− L, v + L] . Applying these bounds and

(56), there exists a constant F ∗ such that (52) is at most

F ∗

n ∧m ·
∫ v+L
b−L nK∗n,mf(v − µ)dµ∫ v+L
b−L nK∗n,mf(v − µ)dµ

=
F ∗

n ∧m,

which completes the proof that (52) is O (1/ (n ∧m)).

Expression (53) is O(2−n∧m). Consider first the denominator of (53). Reduce the support of

this integral from [b− L, v + L] to [b− L∗, v + L∗]. Replacing L with L∗ in the analysis (54)-(55)

implies

v − µ, b− µ ∈ [−2L∗, 2L∗]

for µ ∈ [b− L∗, v + L∗]. The fact that v ≥ b together with formula (5) for K∗n,m imply

nK∗n,m(v, b, µ)

≥
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n− 1

j

)
· F (b− µ)m−1 F (v − µ)n−1

≥
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n

j

)
· F (−2L∗)m−1 F (2L∗)n−1 .

Letting

f∗ = inf
x∈[−2L∗,2L∗]

f(x),
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the remaining term in the denominator satisfies∫ v+L∗

b−L∗
f(b− µ)f(v − µ)dµ ≥ (f∗)2 (v − b+ 2L∗)

≥ (f∗)2 (2L∗).

The denominator of (53) is thus at least

∑
i+j=m−1

0≤i,j≤m−1
0≤j≤n−1

(
m− 1

i

)(
n

j

)
· F (−2L∗)m−1 F (2L∗)n−1 (f∗)2 (2L∗). (57)

Turning to the numerator of (53), notice that

µ ≤ b− L⇔ L ≤ b− µ

and

µ ≥ v + L⇔ v − µ ≤ −L.

Applying b ≤ v, Formula (4) implies

M∗n,m ≤
∑

i+j=m
0≤i≤m−1

1≤j≤n

(
m− 1

i

)(
n

j

)
F (v − µ)m F (b− µ)n−1 .

The change of index j + 1→ j implies

∑
i+j=m

0≤i≤m−1
1≤j≤n

(
m− 1

i

)(
n

j

)
=

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n

j + 1

)

=
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n− 1

j

)
n

j + 1

≤ n
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n− 1

j

)
.
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Therefore, for µ ∈ [−∞, b− L],

M∗n,m ≤
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n− 1

j

)
F (L)n−1 , (58)

and for µ ∈ [v + L,∞],

M∗n,m ≤
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n− 1

j

)
F (−L)m . (59)

We now combine the bounds (57), (58) and (59). Notice that

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n− 1

j

)

appears in each of the bounds (57), (58) and (59) and therefore cancels. The ratio (53) is therefore

bounded above with:

F (L)n−1 ∫ b−L
−∞ f(v − µ)dµ+ F (−L)m

∫∞
v+L f(v − µ)dµ

F (−2L∗)m−1 F (2L∗)n−1 (f∗)2 (2L∗)

≤ 1

(f∗)2 (2L∗)
· F (L)n + F (−L)m

F (−2L∗)m F (2L∗)n

≤ 1

(f∗)2 (2L∗)
·
[

F (L)n

F (2L∗)ϕn F (2L∗)ϕn
+

F (−L)m

F (2L∗)ϕm F (2L∗)ϕm

]
≤ 1

(f∗)2 (2L∗)
·
[(

1

2

)n
+

(
1

2

)m]
≤ 1

(f∗)2 (L∗)
·
(

1

2

)n∧m
,

where the bound (50) is applied in the fourth line of this calculation.

Proof of Theorem 6. This proof adapts the argument in Rustichini, Satterthwaite, and Williams

(1994, Thm. 3.2) to the model of this paper. The state µ is fixed. The denominator of relative

inefficiency is the potential gains from trade. In each state µ, the gains from trade are at least

n ∧m times the expected gains from trade λ (F ) between a single buyer and a sngle seller. Notice

that the number λ (F ) is the same in each state µ. The expected gains from trade in state µ are
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therefore at least (n ∧m)λ (F ).

The numerator of relative inefficiency in (26) is the expected value of the efficient trades given

µ that fail to be made because of buyer misrepresentation. Given the lower bound (n ∧m)λ (F )

on the denominator, it remains to be shown that the numerator is O (1/ (n ∧m)). We first show

that the value of a trade that inefficiently fails to occur is O(1/ (n ∧m)). The second step is then

to show that the expected number of trades that inefficiently fail to occur is bounded above by a

constant that does not depend on n or m.

Given a sample of m values and n costs, we first consider the value of a trade between a buyer

with value v and a seller with cost c that occurs in the efficient allocation but does not occur in

the equilibrium < S̃,B >. Let p denote the market price in the BBDA determined by the sample

and by < S̃,B >. This buyer and this seller each fail to trade in the BBDA only if

B(v) ≤ p ≤ c. (60)

Efficiency requires that both should trade only if v is among the largest n costs/values and c is

among the m smallest costs/values. Consequently, trade between this buyer and this seller occurs

in the efficient allocation only if

c ≤ v. (61)

Combining (60) and (61) implies

B(v) ≤ c ≤ v.

Theorem 5 then implies that the value v − c of a trade that inefficiently fails to occur satisfies

v − c ≤ v −B(v) ≤ K

n ∧m.

We suppress the dependence of K upon the distribution F and the bound ϕ on the relative size of

n and m for notational simplicity in this proof.

The proof is completed by bounding above the expected number of trades that inefficiently

fail to occur in the state µ by a constant determined by F that is independent of n, m and µ.

The following notation is used: t(m+1) denotes the (m+ 1)st smallest cost/value in a sample of m

buyers’ values and m sellers’ costs, Ft(m+1)

(
t(m+1) |µ

)
denotes the distribution of t(m+1) conditional

on µ, and L(t(m+1), µ) is the expected number of trades that inefficiently fail to occur given the

realization of t(m+1) in the state µ. The proof is completed by bounding the expected number of

missed trades in the state µ,

∞∫
−∞

L(t(m+1), µ)dFt(m+1)

(
t(m+1) |µ

)
, (62)
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by a constant that does not depend on n, m or µ. The integral (62) is represented as the sum

µ+γ∫
−∞

L(t(m+1) |µ)dFt(m+1)

(
t(m+1) |µ

)
(63)

+

∞∫
µ+γ

L(t(m+1) |µ)dFt(m+1)

(
t(m+1) |µ

)
(64)

where γ is a constant chosen with foresight to its use later in the proof so that

F (γ) ≤ 1

23ϕ
. (65)

The two integrals (63) and (64) are bounded above in separate arguments.

Bounding (63). Because buyers underbid by at most K/(n ∧m), the equilibrium market price

(i.e., the (m+ 1)st bid/ask) necessarily lies in the interval[
t(m+1) −

K

n ∧m, t(m+1)

]
.

The value of a buyer who inefficiently fails to trade must lie (i) at or below t(m+1)+K(F,ϕ)/ (n ∧m)

so that his bid can fall below the market price, and (ii) at or above t(m+1) so that he should in fact

trade. Given µ and t(m+1), the expected number of trades that inefficiently fail to occur is therefore

at most equal to the expected number of buyers’ values in the interval[
t(m+1), t(m+1) +

K(F,ϕ)

n ∧m

]
. (66)

This expected value will be bounded using an upper bound on the density of trader’s cost/value in

this interval given µ.

We now compute the bound on this density. Let x denote a trader’s cost/value above t(m+1).

Conditional on µ and t(m+1), there are n − 1 traders’ values above t(m+1) that are independently

distributed with density
f(x− µ)

F (t(m+1) − µ)
.

This satisfies the bound
f(x− µ)

F (t(m+1) − µ)
≤ f(x− µ)

F (x− µ)
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because x ≥ t(m+1). In particular, for

x ∈
[
t(m+1), t(m+1) +

K

n ∧m

]
(67)

with

t(m+1) ∈ (−∞, µ+ γ], (68)

it is true that

x− µ ≤ t(m+1) +
K

n ∧m − µ ≤ γ +
K

n ∧m ≤ γ +K.

Define

ζ (F ) = sup
y≤γ+K(F,ϕ)

f(y)

F (y)
,

so that
f(x− µ)

F (t(m+1) − µ)
≤ ζ (F )

for x and t(m+1) satisfying (67) and (68).

The expected number of buyers’ values in the interval (66) is therefore at most

1 + ((n− 1) ∧m) ζ (F ) · K

n ∧m ≤ 1 + ζ (F ) ·K,

where the “1” counts the trader’s cost/value equal to t(m+1) and ζ (F ) ·K/ (n ∧m) bounds above

the probability that the cost/value of any of the other n−1 traders above t(m+1) lies in the interval

(66). Because there are m buyers, the term (n− 1)∧m bounds above the number of buyers’ values

that are above t(m+1). The desired bound on (63) is now computed as follows:

µ+γ∫
−∞

L(t(m+1), µ)dFt(m+1)

(
t(m+1) |µ

)
≤

µ+γ∫
−∞

(1 + ζ (F ) ·K) dFt(m+1)

(
t(m+1) |µ

)
≤ 1 + ζ (F ) ·K.

Bounding (64). We focus on the low probability that t(m+1) ≥ µ+ γ. Specifically,

∞∫
µ+γ

L(t(m+1), µ)dFt(m+1)

(
t(m+1) |µ

)
≤

∞∫
µ+γ

(n ∧m) dFt(m+1)

(
t(m+1) |µ

)
(69)

= n ∧m ·
(

1− Ft(m+1)
(µ+ γ |µ)

)
.

The event “t(m+1) ≥ µ+γ” requires that n costs/values be above µ+γ. The term 1−Φ (µ+ γ |µ)

is therefore the probability given µ that at least n in a sample of n + m costs/values are greater
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than or equal to µ + γ. This is calculated by summing over the number i of costs/values below

µ+ γ and then reducing as follows:

1− Ft(m+1)
(µ+ γ |µ) =

m∑
i=0

(
n+m

i

)
F (γ)iF (γ)n+m−i

= F (γ)n
m∑
i=0

(
n+m

i

)
F (γ)iF (γ)m−i

≤ F (γ)n
n+m∑
i=0

(
n+m

i

)
1i1n+m−i

≤ 1

23ϕn
· (1 + 1)n+m

=
1

22ϕn−m

≤ 1

2ϕn
.

The first inequality drops F (γ)iF (γ)m−i < 1 from the ith term, the second inequality increases the

sum by adding terms from i = m + 1 to i = n + m, and the final inequality applies the binomial

formula and the bound (65).

Substitution into (69) implies

∞∫
µ+γ

L(t(m+1), µ)dFt(m+1)

(
t(m+1) |µ

)
≤ n ∧m

2ϕn
< 1,

which completes the proof.

B Bilateral Results

Proof of Theorem 4. Assumptions A1-A5 and A5′, as well as the structure of our model, have

the following implications:

I1: As mentioned, the diffuse prior on µ implies that fµ(µ|v) = fv(v|µ) (similar for costs) for all

(v, µ) ∈ R2.

I2: As also mentioned, the additive structure of values implies than fv(v|µ) = f(v − µ) (similar

for costs) for all (v, µ) ∈ R2.

I3: A3 and A4 imply that f(x)/F̄ (x) is increasing for all x ∈ R.

I4: I2, I3 & A5′ imply that fv(v|µ) is MLRP for all (v, µ) ∈ R2.
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I5: I4 implies that the elements of the random vector

(µ, v1, v2, . . . , vm, c1, . . . , cn),

are affiliated for any m,n ≥ 1, i.e., the density of the vector satisfies the MTP2 property, see

Tong (1990, Page 75).

I6: I5 implies that

∂

∂v

Fc|v(b|v)

fc|v(b|v)
≤ 0,

for all (v, c) ∈ R2, see Milgrom and Weber (1982, Lemma 1), where Fc|v (fc|v) is the distri-

bution (density) of the seller’s cost c given the buyer’s value v.

I7: The diffuse prior of µ and A4 imply that

Fc|v(b|v)

fc|v(b|v)
=
Fc|v(v − c|0)

fc|v(v − c|0)
,

for all (v, c) ∈ R2.35

35Proof that fc|v(c|v) = fc|v(v − c|0):

fc|v(c|v) =

∫ ∞
−∞

f(c− µ)f(v − µ)dµ (from the diffuse prior)

=

∫ ∞
−∞

f(c− v − µ̃)f(0− µ̃)dµ̃ (µ̃ = µ− v)

=

∫ ∞
−∞

f(v − c+ µ̃)f(µ̃)dµ̃ (f(x) = f(−x))

=

∫ ∞
−∞

f(v − c− µ)f(−µ)dµ (µ = −µ̃)

= fc|v(v − c|0).

Proof that Fc|v(c|v) = F c|v(v − c|0):

Fc|v(c|v) =

∫ c

−∞
fc|v(x|v)dx

=

∫ c

−∞
fc|v(v − x|0)dx (from above)

=

∫ ∞
v−c

fc|v(y|0)dy (y = v − x)

= F c|v(v − c|0).
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I8: I6 and I7 imply that

∂

∂c

Fc|v(b|v)

fc|v(b|v)
≥ 0,

for all (v, c) ∈ R2, so notice that in our case the part of assumption (A2) in Kadan (2007)

that we need follows from affiliation and need not be assumed separately.

I9: A3, A5, I6, I7, and I8, see Kadan (2007, Theorem 1), imply that (18) has a unique offset

solution that is the unique equilibrium strategy of this bilateral game

B(v) = v − λ,

where λ is a positive constant.36

Proof of Theorem 7. The example concerns the standard Cauchy distribution, i.e., the Cauchy

distribution with location parameter 0 and scale parameter 1. The buyer’s beliefs conditional on

his value v is therefore that c is Cauchy distributed with location parameter v and scale parameter

2. Using the formula for the cumulative of the Cauchy distribution, we have

π(v, b) = (v − b)
(

1

π
arctan

(
b− v

2

)
+

1

2

)
,

and his marginal expected utility is

πb(v, b) = −
(

1

π
arctan

(
b− v

2

)
+

1

2

)
+ (v − b) 1

π

(
2

4 + (b− v)2

)
.

It is sufficient to consider the case of v = 0 and b ≤ 0, which simplifies the notation to

πb(0, b) = −
(

1

π
arctan

(
b

2

)
+

1

2

)
− b

π

(
2

4 + b2

)
= − 1

π

(
arctan

(
b

2

)
+
π

2
+

2b

4 + b2

)
. (70)

At b = 0 we have

πb(0, 0) = −1

2
< 0,

36The fact that the solution is an offset follows directly from the form of the first order condition

v − b =
F c|v(v − b|0)

fc|v(v − b|0)
.

The positiveness of the offset just follows from rationality of the buyer.
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and

lim
b→−∞

πb(0, b) = 0.

The remainder of the argument shows that

πbb(0, b) < 0

for b < 0, where πbb = ∂2π/∂b2, which implies that πb(0, b) decreases from its limiting value of 0 at

b = −∞ to its value of −1/2 at b = 0. This implies

πb(0, b) < 0

for all b < 0. The buyer’s expected utility thus strictly increases as b becomes more and more

negative.

Working from (70), the second derivative is

πbb(0, b) = − 1

π

(
2

4 + b2
+

8− 2b2

(4 + b2)2

)
= − 1

π (4 + b2)2

(
8 + 2b2 + 8− 2b2

)
= − 16

π (4 + b2)2 < 0,

which completes the proof.

C An Example of Failure of Affiliation

The point of this section is to inquire on whether order statistics of bids/asks are affiliated with

the value (signal) of a focal buyer. Consider m ≥ 2 buyers and n ≥ 1 sellers, where buyer one is

the focal buyer. Conditional on µ their values/costs (v1, . . . , vm, c1, . . . , cn) are independent and

identically distributed. Hence the density of (µ, v1, . . . , vm, c1, . . . , cn) is,

fµ,v1,...,vm,c1,...,cn(x0, . . . , xm+n) = g(x0)Πm+n
i=1 f(xi − x0),

where let g the prior density of µ and f is, as before, the density of the idiosyncratic component ε.

Affiliation requires that

∂2 ln fµ,v1,...,vm,c1,...,cn(x0, . . . , xm+n)/∂xi∂xj ≥ 0,

for all i 6= j and i, j ∈ {0, . . . ,m + n}. For f satisfying assumptions A1-A5 & A5′ (so that the

marginals of values/costs given µ satisfy the MLRP) this is true.
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Now, let s̃(i) be the ith order statistic of (v2, . . . , vm, c1, . . . , cn), then the density of (µ, v1, s̃(1), . . . , s̃(m+n−1))

is

fµ,v1,s̃(1),...,s̃(m+n−1)
(x0, . . . , xm+n) = g(x0)(m+ n− 1)!Πm+n

i=1 f(xi − x0)

= g(x0)f(x1 − x0)(m+ n− 1)!Πm+n
i=2 f(xi − x0),

for x2 ≤ . . . ≤ xm+n. Again the assumptions on f guarantee that fµ,v1,s̃(1),...,s̃(m+n−1)
is affiliated.

Similarly conditional on µ the elements of the vector (v1, b2, . . . , bm, c1, . . . , cn), where bi =

vi − λ, i = {2, . . . ,m}, λ ∈ R, are independent but not identically distributed, in particular,

fµ,v1,b2,...,bm,c1,...,cn(x0, . . . , xm+n) = g(x0)f(x1 − x0)Πm
i=2f(xi + λ− x0)Πm+n

j=m+1f(xj − x0),

this is not an issue however, since the assumptions on f still guarantee affiliation.

Now, let s(i) be the ith order statistic of (b2, . . . , bm, c1, . . . , cn), then the density of (µ, v1, s(1), . . . , s(m+n−1))

David and Nagaraja (2003, Page 98) is

fµ,v1,s(1),...,s(m+n−1)
(x0, . . . , xm+n) = g(x0)f(x1 − x0)Permanent(A),

for x2 ≤ . . . ≤ xm+n, and

A =


f(x2 + λ− x0) . . . f(x2 + λ− x0) f(x2 − x0) . . . f(x2 − x0)

f(x3 + λ− x0) . . . f(x3 + λ− x0) f(x3 − x0) . . . f(x3 − x0)
... · · · ...

... · · · ...

f(xm+n + λ− x0) . . . f(xm+n + λ− x0) f(xm+n − x0) . . . f(xm+n − x0)

 ,

where in each row i ∈ {1, . . . ,m+n−1} there are m−1, f(xi+1 +λ−x0) terms, and n, f(xi+1−x0)

terms. The permanent of a matrix is like the determinant but where all the signs are positive. We

can write this particular permanent as

Permanent(A) = (m− 1)!n!

 m+ n− 1

m− 1

∑
i=1

[
Πm−1
j=1 f

(
xπij + λ− x0

)
Πn
j=1f

(
xπi−j − x0

)]
,

where πi is the ith selection (without loss of generality, arbitrarily ordered) of m− 1 elements out

of the m + n − 1 in {2, . . . ,m + n}, and πij is the jth element (without loss of generality, also

arbitrarily ordered) of the ith selection. So i ∈
{

1, . . . ,

(
m+ n− 1

m− 1

)}
, and j ∈ {1, . . . ,m− 1}.

Furthermore, πi− is every element not picked in the ith selection and πi−j is the jth element (out
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of n) of πi− .37

Now even though f satisfies A1-A5 and A5′ we need to inquire more about the terms in the

square brackets. Consider the partial ∂2 ln fµ,v1,s(1),...,s(m+n−1)
(x0, . . . , xm+n)/∂xk∂xl, for any m +

n ≥ l > k > 1. We have

∂2

∂xk∂xl
ln fµ,v1,s(1),...,s(m+n−1)

(x0, . . . , xm+n) =

∂2

∂xk∂xl
ln



 m+ n− 1

m− 1

∑
i=1

[
Πm−1
j=1 f

(
xπij + λ− x0

)
Πn
j=1f

(
xπi−j − x0

)]

. (71)

Proof of Theorem 3. We will provide an example of failure of affiliation in the case of the the

standard normal, i.e., for f = φ. In this case the term in the square brackets of (71) becomes

Πm−1
j=1 f

(
xπij + λ− x0

)
Πn
j=1f

(
xπi−j − x0

)
=

1
√

2π
m+n−1 exp

−1

2

m+n∑
j=2

(xj − x0)2 + (m− 1)λ2 + 2λ
m−1∑
j=1

(
xπij − x0

) =

1
√

2π
m+n−1 exp

−1

2

m+n∑
j=2

(xj − x0)2 + (m− 1)λ(λ− 2x0) + 2λ
m−1∑
j=1

xπij

 =

1
√

2π
m+n−1 exp

−1

2

m+n∑
j=2

(xj − x0)2 + (m− 1)λ(λ− 2x0)

 exp

−λm−1∑
j=1

xπij



for each i ∈
{

1, . . . ,

(
m+ n− 1

m− 1

)}
, and so after summing over i and taking the logarithm the

relevant term is

ln



 m+ n− 1

m− 1

∑
i=1

exp

−λm−1∑
j=1

xπij



.

37For example if m−1 = n = 3, a particular selection, let π1, of 3 out of 6 elements is {1, 2, 3}, and so π1 = {1, 2, 3},
π11 = 1, and π1− = {4, 5, 6}, π1−2 = 5.
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Let

H (xk, xl;Xkl−) =

 m+ n− 1

m− 1

∑
i=1

exp

−λm−1∑
j=1

xπij

 ,
where Xkl− = {xi : i 6= k, i 6= l, i ∈ {2, . . . ,m+ n}}. Then the partial derivative of interest is

∂2

∂xk∂xl
ln fµ,v1,s(1),...,s(m+n−1)

(x0, . . . , xm+n) =
∂2

∂xk∂xl
ln {H (xk, xl;Xkl−)}

=

∂2H
∂xk∂xl

H − ∂H
∂xk

∂H
∂xl

R2

So we look into the sign of the numerator

∂2H

∂xk∂xl
H − ∂H

∂xk

∂H

∂xl
=

λ2
∑

i∈

1,...,

 m+ n− 1

m− 1


:(k,l)∈πi

exp

−λm−1∑
j=1

xπij

 ∑
i∈

1,...,

 m+ n− 1

m− 1




exp

−λm−1∑
j=1

xπij



−λ2
∑

i∈

1,...,

 m+ n− 1

m− 1


:k∈πi

exp

−λm−1∑
j=1

xπij

 ∑
i∈

1,...,

 m+ n− 1

m− 1


:l∈πi

exp

−λm−1∑
j=1

xπij

 .

After some (tedious) algebra we get that

∂2H

∂xk∂xl
H − ∂H

∂xk

∂H

∂xl
= −λ2 exp[−λ(xk + xl)]H̃ (Xkl−) ,

where H̃ (Xkl−) (available upon request) is a sum of exponentials involving sums of elements of

Xkl−. So we just showed that the partial of interest is negative for any λ 6= 0, and so we have a
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violation of affiliation.38

D Approximate Formula

Proof of Theorem 10. For a fixed number m of buyers and n of sellers, we consider a sequence

of markets with τm buyers and τn sellers for τ ∈ N∗. For every τ we pick a focal buyer, buyer τm

(without loss of generality), with value vτm = v.39

For notational brevity let x, y be the (τm)th, (τm + 1)st, respectively, order statistic of the

population of τ(m + n) − 1 traders, i.e., the whole population excluding the focal buyer. Denote

the length w ≡ y − x with density and distribution fw(·|x, τ) and Fw(·|x, τ), respectively, indexed

by the order statistic x and by the size of the market τ .40 Also let F̄w(·|x, τ) = 1 − Fw (·|x, τ) be

the right-hand distribution of Fw; therefore, conditional on v and τ ,

Pr[x < b < y|v, τ ] = Pr[0 < b− x < y − x|v, τ ]

= Pr[0 < b− x < w|v, τ ]

= Pr[0 < b− x & b− x < w|v, τ ]

=

∫ b

x=−∞

∫ ∞
w=b−x

fxw (x,w|v, τ, µ) dwdx

=

∫ ∞
µ=−∞

∫ b

x=−∞

∫ ∞
w=b−x

fxwµ (x,w, µ− v, τ) dwdxdµ (72)

=

∫ ∞
µ=−∞

∫ b

x=−∞

∫ ∞
w=b−x

fxw (x,w|µ, v, τ) f (µ− v) dwdxdµ

=

∫ ∞
µ=−∞

∫ b

x=−∞

∫ ∞
w=b−x

fxw (x,w|µ, τ) dwdxf (µ− v) dµ

=

∫ ∞
µ=−∞

∫ b

x=−∞

∫ ∞
y=b

fw (w|x, µ, τ) fx (x|µ, τ) dwdxfµ (µ− v) dµ

=

∫ ∞
µ=−∞

∫ b

x=−∞
F̄w (b− x|x, µ, τ) fx (x|µ, τ) dxf (µ− v) dµ.

38Example for m = n = 3, k = 4, l = 5. Using the formula above we get that in this particular case,

∂2H

∂x4∂x5
H − ∂H

∂x4

∂H

∂x5
=

−λ2e−(x4+x5)λ
(
e−2(x2+x3)λ + e−2(x2+x6)λ + e−2(x3+x6)λ + e−(2x2+x3+x6)λ + e−(x2+2x3+x6)λ + e−(x2+x3+2x6)λ

)
< 0.

39Recall that the conditional density of µ given a buyer’s value v is f (µ− v) with distribution F (µ − v), for all
(µ, v) ∈ R2.

40Observe that w is independent of µ and, therefore, of v.
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We are interested in the qth quantile where

q = m/(m+ n).

Hence, as before, F (ξq) = q so that F (ξq + µ− µ) = q. We write

F̄w (b− x|x, µ, τ) = Pr [2 [τ (m+ n)− 1] f (ξq)w > 2 [τ (m+ n)− 1] f (ξq) (b− x) |x, µ, τ ]

= Pr [ŵ > 2 [τ(m+ n)− 1] f (ξq) (b− x) |x, µ, τ ] ,

where ŵ ≡ 2 [τ (m+ n)− 1] f (ξq)w. We have proven that conditional on µ, x is asymptotically

normal, see Theorem 13 (presented in Appendix E). We also have that ŵ is χ2 with two degrees of

freedom and independent of x, see Siddiqui (1960).41 Therefore, letting asymptotic distributions

be denoted by tildes,

¯̃Fŵ (t|x, µ, τ) = exp

(
− t

2

)
, t ∈ R+,

f̃x (t|µ, τ) =
1√

2πΣ2
exp

(
−(t− ξq − µ)2

2Σ2

)
, t ∈ R,

where Σ2 =
mn/(m+ n)2

τ(m+ n)− 1

1

f2 (ξq)
=

Λ

τ
, for,

Λ ≡ mn/(m+ n)2

(m+ n)− 1/τ

1

f2 (ξq)
. (73)

Then the inner integral on the last line of (72) can be asymptotically written as∫ b

x=−∞

¯̃Fŵ (2 [τ(m+ n)− 1] f (ξq) (b− x) |x, µ, τ) fx (x|µ, τ) dx

=
1

2 [(m+ n)− 1/τ ] f (ξq)

∫ ∞
t=0

¯̃Fŵ (τ t|x, µ, τ) f̃x

(
b− t

2 [(m+ n)− 1/τ ] f (ξq)

∣∣∣∣µ, τ) dt
= K

∫ ∞
t=0

¯̃Fŵ (τ t|x, µ, τ) f̃x (b−K t|µ, τ) dt

= K

√
τ

2πΛ

∫ ∞
t=0

[
exp

(
− t

2

)
exp

(
−(b−Kt− ξq − µ)2

2Λ

)]τ
dt,

where we change the variable of integration to t = (b− x) /K, and

K ≡ 1

2 [(m+ n)− 1/τ ] f (ξq)
. (74)

41This result applies even in the presence of two populations because our result on the asymptotic normality of x
with two populations can be applied within the proof in Siddiqui (1960).
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The integral above is equal to

exp

(
−τ

8

4K(b− ξq − µ)− Λ

K2

)
Φ

(√
τ

2

2K(b− ξq − µ)− Λ√
ΛK

)
,

where Φ is the distribution function of the standard normal. To get a simpler expression, though,

we approximate the integral by, see (Fibich and Gavious 2010, Lemma 2),42

K

√
τ

2πΛ

∫ ∞
t=0

[
exp

(
− t

2

)
exp

(
−(b−Kt− ξq − µ)2

2Λ

)]τ
dt

= K

√
τ

2πΛ

1

τ
2

exp

[
− (b−ξq−µ)2

2 Λ
τ

]
1− 2K

Λ (b− ξq − µ)

[
1 +O

(
1

τ

)]

=
2K

τ

1

1− 2K
Λ (b− ξq − µ)

f̃x (b|µ, τ)

[
1 +O

(
1

τ

)]

=

[
2K

τ

1

1− 2K
Λ (b− ξq − µ)

+O

(
1

τ2

)]
f̃x (b|µ, τ) .

Plugging this back into (72) gives,

Pr[x < b < y|v, τ ] =

∫ ∞
µ=−∞

2K

τ

1

1− 2K
Λ (b− ξq − µ)

f̃x (b|µ, τ) f(µ− v)dµ

+O

(
1

τ2

)
f̃x(b|v, τ)

=
2K

τ

∫ ∞
α=−∞

1

1− 2K
Λ α

1√
2πΛ

τ

exp

(
− α

2

2Λ
τ

)
f(λ+ ξq + α)dα

+O

(
1

τ2

)
f̃x(b|v, τ).

where we change the variable of integration to α = b− ξq − µ = b− (µ+ ξq) and λ = v − b.
Up to here we have not specified the distribution of ε. However, to be able to compute the

above integral in closed form and get a simple approximate formula for the offset we are going to

restrict attention to the case of the standard normal distribution.

42This lemma (with trivial modifications) states that for real function R ∈ C2, with r = R′ > 0, and R(∞) = 0
then ∫ ∞

0

Rn(t)dt = − 1

n

Rn+1(0)

r(0)

[
1 +O

(
1

n

)]
.
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Standard normal distribution case. Let the idiosyncratic component ε be standard normal,

i.e., F = Φ (f = φ), so that

f(µ− v) = f(v − µ) = φ(v − µ) = exp(−(v − µ)2/2)/
√

2π.

To calculate the integral above explicitly we will take a series expansion of
[
1− 2K

Λ α
]−1

around

zero, i.e., write

1

1− 2K
Λ α

= 1 +
2K

Λ
α+

[
2K

Λ
α

]2

+O

([
2K

Λ
α

]3
)
.

Substituting and computing the integrals bearing in mind that for any symmetric regular equilib-

rium strategy λ is O (1/τ) yields:

Pr[x < b < y|v, τ ] =
2K

τ

(
1

1 + Λ
τ

+O

(
1

τ

)) 1√
2π
(
1 + Λ

τ

) exp

(
− λ2

2
(
1 + Λ

τ

))
+

+O

(
1

τ2

)
f̃x(b|v, τ)

=

[
2K

τ

1

1 + Λ
τ

+O

(
1

τ2

)]
f̃x(b|v, τ),

where the second line follows from observing that the term in the square brackets in the first line

is exactly equal to f̃x(b|v, τ), i.e., the asymptotic distribution of the (τm)th order statistic given v.

Given this the asymptotic first order condition of the focal buyer is:

(v − b)f̃x(b|v, τ)−
(

2K

τ + Λ
+O

(
1

τ2

))
f̃x(b|v, τ) = 0,

which yields a unique solution for the offset v − b,

λ∗ =
2K

τ + Λ
+O

(
1

τ2

)
=

1

(m+ n)φ(ξq)

1

τ + C(m,n)
+O

(
1

τ2

)
,

where

C(m,n) =
mn− (m+ n)2φ2(ξq)

(m+ n)3φ2(ξq)
.

Using the fact that 1/ϕ < m/n < ϕ we get the following approximate formula for the buyers’

optimal offset strategy,43

λapprox =
1

(m+ n)φ(ξq)

1

τ
,

43What we mean is that λapprox
.
= λ∗ in the sense that limτ→∞ λ

∗/λapprox = 1.
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for arbitrary values of m, n and τ .

E Asymptotic Distributions of Order Statistics

E.1 Asymptotic normality of the qth quantile of the whole sample excluding an

focal buyer

For a fixed number m of buyers and n of sellers, we consider a sequence of markets with τm

buyers and τn sellers for τ ∈ N∗. For every τ we pick an focal buyer, whose value (without loss of

generality) is vτm and look at the vector of bids of the τm − 1 remaining buyers {b1, . . . , bτm−1}
and the vector of asks (or costs since sellers bid truthfully) {c1, . . . , cτn} of the τn sellers. Buyers

play a symmetric regular equilibrium strategy bi = Bτ (vi) for all i (where we are explicitly on the

dependence on τ) and from Theorem 5 and Remark 12,

lim
τ→∞

sup
x∈R

{√
τ
∣∣B−1

τ (x)− x
∣∣} = 0,

which also implies that

lim
τ→∞

sup
x∈R

∣∣B−1
τ (x)− x

∣∣ = 0.

For notational brevity let

λ(x; τ) ≡ B−1
τ (x)− x,

of course λ(x; τ) > 0, for all x ∈ R and τ ∈ N+. However, since we are not constraining attention

to an offset strategy λ(x; τ) need not be a constant for all x given a τ .

Also, define the empirical distribution of the sample of bids and asks of the τ(m+n)−1 traders

remaining after we exclude the focal buyer,

F̃τ(m+n)−1(x) ≡ 1

τ(m+ n)− 1

τm−1∑
i=1

I{bi ≤ x}+
1

τ(m+ n)− 1

τn∑
i=1

I{ci ≤ x}

=
1

τ(m+ n)− 1

τm−1∑
i=1

I{vi ≤ x+ λ(x; τ)}+
1

τ(m+ n)− 1

τn∑
i=1

I{ci ≤ x},

which allows us to define the qth quantile from this population

ξ̃q[τ(m+n)−1] ≡ inf{y : F̃τ(m+n)−1(y) ≤ q},

where I{·} is the indicator function.
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Slightly abusing the notation in the main text for purposes of this section we will denote the

distribution and density of values and consts conditional on µ as Fµ and fµ, respectively. Of course

conditional on µ values and costs are i.i.d. with Fµ(x) = F (x − µ) and fµ(x) = f(x − µ), for all

(x, µ) ∈ R2. As before F̄µ = 1− Fµ. Also by definition

Fµ(x) = lim
τ→∞

1

τ m

τm∑
i=1

I{vi ≤ x}.

The qth quantile of the idiosyncratic component’s distribution is

ξq ≡ inf{y : F (y) ≤ q} = F−1(q),

so that

ξq + µ = F−1
µ (q).

The following result establishes the asymptotic relationship between ξ̃q[τ(m+n)−1] and ξq conditional

on µ.

Theorem 11 For all t ∈ R, and 0 < q < 1,

lim
τ→∞

Pr

√τ(m+ n)− 1
(
ξ̃q[τ(m+n)−1] − ξq − µ

)
√
q(1− q)/f (ξq)

≤ t

 = Φ(t),

where Φ(·) is the standard normal distribution function. So

ξ̃q[τ(m+n)−1] ∼ AN

(
ξq + µ,

q(1− q)
(τ(m+ n)− 1)f2(ξq)

)
.

Proof. This proof is based on the proof of Serfling (1980, Theorem 2.3.3 A).

Let A > 0 be a normalizing constant to be specified later, and put

Gτ(m+n)−1(t) ≡ Pr

√τ(m+ n)− 1
(
ξ̃q[τ(m+n)−1] − ξq − µ

)
A

≤ t


= Pr

(
ξ̃q[τ(m+n)−1] ≤ ξq + µ+ t A

√
τ(m+ n)− 1

−1
)

= Pr
(
F̃τ(m+n)−1

(
ξq + µ+ t A

√
τ(m+ n)− 1

−1
)
≥ q
)
,
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where the last line follows from Serfling (1980, Lemma 1.1.4 (iii)). Let

∆ ≡ ξq + µ+ t A
√
τ(m+ n)− 1

−1
,

then F̃τ(m+n)−1(∆) is a random variable, with mean, and variance44

E[F̃τ(m+n)−1(∆)] =
τm− 1

τ(m+ n)− 1
Fµ(∆ + λ(∆; τ)) +

τn

τ(m+ n)− 1
Fµ(∆),

V ar[F̃τ(m+n)−1(∆)] =
τm− 1

(τ(m+ n)− 1)2
Fµ(∆ + λ(∆; τ))F̄µ(∆ + λ(∆; τ))

+
τn

(τ(m+ n)− 1)2
Fµ(∆)F̄µ(∆).

So

Gτ(m+n)−1(t) = Pr
(
F̃τ(m+n)−1

(
ξq + µ+ tA

√
τ(m+ n)− 1

−1
)
≥ q
)

= Pr

 F̃τ(m+n)−1(∆)− E[F̃τ(m+n)−1(∆)]√
V ar[F̃τ(m+n)−1(∆)]

≥
p− E[F̃τ(m+n)−1(∆)]√
V ar[F̃τ(m+n)−1(∆)]


= Pr

(
F̃ ∗τ(m+n)−1(∆) ≥ c(∆)

)
,

with straightforward definitions for F̃ ∗τ(m+n)−1(∆) and c(∆). By invoking the Lindeberg-Feller

Central Limit Theorem (see Serfling (1980, Theorem 1.9.2 A)) for t = 0 we can get that,

lim
τ→∞

Pr[
√
τ(m+ n)− 1(ξ̃q[τ(m+n)−1] − ξq) ≥ 0] = Φ(0) =

1

2
.

Using the Berry-Esseen Theorem (see Serfling (1980, Theorem 1.9.5) for i.i.d. random variables

and Batirov, Mavenich, and Nagaev (1977)) for i.ni.d. random variables as it is the case here, we

have

sup
x∈R

∣∣∣Pr
(
F̃ ∗τ(m+n)−1(∆) ≤ x

)
− Φ(x)

∣∣∣ ≤ K
β(∆)[

(τ(m+ n)− 1)2 V ar[F̃τ(m+n)−1(∆)]
]3 ,

where K is a universal constant, and

β(x) ≡
τm−1∑
i=1

E
[
|I{vi ≤ x+ λ(x; τ)} − Fµ (x+ λ(x; τ))|3

]
+

τn∑
i=1

E
[
|I{ci ≤ x} − Fµ(x)|3

]
.

44The dependence of ∆ on µ, τ , and t will be suppressed for notational brevity.
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It can be shown that

E
[
|I{vi ≤ x+ λ(x; τ)} − Fµ (x+ λ(x; τ))|3

]
= R(x; τ) R̄(x; τ)

[
R̄2(x; τ) +R2(x; τ)

]
,

E
[
|I{ci ≤ x} − Fµ(x)|3

]
= Fµ(x) F̄µ(x)

[
F̄ 2
µ(x) + F 2

µ(x)
]

where

R(x; τ) ≡ Fµ (x+ λ(x; τ)) ,

R̄(x; τ) ≡ F̄µ (x+ λ(x; τ)) = 1− Fµ (x+ λ(∆; τ)) .

So, ∣∣∣Pr
(
F̃ ∗τ(m+n)−1(∆) ≥ c(∆)

)
− Φ(t)

∣∣∣ ≤ K
β(∆)[

(τ(m+ n)− 1)2 V ar[F̃τ(m+n)−1(∆)]
]3

+ |Φ(t)− Φ (−c(∆))| . (75)

We need to show that

lim
τ→∞

β(∆)[
(τ(m+ n)− 1)2 V ar[F̃τ(m+n)−1(∆)]

]3 = 0. (76)

We have

β(∆)[
(τ(m+ n)− 1)2 V ar[F̃τ(m+n)−1(∆)]

]3 =

(τm− 1)R(∆; τ) R̄(∆; τ)
[
R̄2(∆; τ) +R2(x; τ)

]
+ τnFµ(∆) F̄µ(∆)

[
F̄ 2(∆) + F 2(∆)

][
(τm− 1)R(∆; τ)R̄(∆; τ) + τnFµ(∆)F̄µ(∆)

]3 = ,

(m− 1/τ)R(∆; τ) R̄(∆; τ)
[
R̄2(∆; τ) +R2(x; τ)

]
+ nFµ(∆) F̄µ(∆)

[
F̄ 2(∆) + F 2(∆)

][
(τ2/3m− τ−1/3)R(∆; τ)R̄(∆; τ) + τ2/3 nFµ(∆)F̄µ(∆)

]3 .

Taking the limit of τ →∞, bearing in mind that

lim
τ→∞

λ(∆; τ) = 0,

lim
τ→∞

∆ = ξq + µ,

lim
τ→∞

Fµ(∆) = lim
τ→∞

R(∆; τ) = q,

lim
τ→∞

F̄µ(∆) = lim
τ→∞

R̄(∆; τ) = 1− q,
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yields 0, which proves (76). To complete the proof we have to find appropriate constant A such

that

lim
τ→∞

c(∆) = −t. (77)

We have

c(∆) =
q − E[F̃τ(m+n)−1(∆)]√
V ar[F̃τ(m+n)−1(∆)]

= −
E[F̃τ(m+n)−1(∆)]− Fµ(ξq + µ)√

V ar[F̃τ(m+n)−1(∆)]

= −
τm−1

τ(m+n)−1Fµ(∆ + λ(∆; τ)) + τn
τ(m+n)−1Fµ(∆)− Fµ(ξq + µ)√

τm−1
(τ(m+n)−1)2Fµ(∆ + λ(∆; τ))F̄µ(∆ + λ(∆; τ)) + τn

(τ(m+n)−1)2Fµ(∆)F̄µ(∆)

= − ∆ + λ(∆; τ)− ξq − µ√
τm−1

(τ(m+n)−1)2Fµ(∆ + λ(∆; τ))F̄µ(∆ + λ(∆; τ)) + τn
(τ(m+n)−1)2Fµ(∆)F̄µ(∆)

×
τm−1

τ(m+n)−1Fµ(∆ + λ(∆; τ)) + τn
τ(m+n)−1Fµ(∆)− Fµ(ξq + µ)

∆ + λ(∆; τ)− ξq − µ

= −
τ(m+n)−1√

τ
(∆ + λ(∆; τ)− ξq − µ)√

τ m−1
τ Fµ(∆ + λ(∆; τ))F̄µ(∆ + λ(∆; τ)) + nFµ(∆)F̄µ(∆)

×
τm−1

τ(m+n)−1Fµ(∆ + λ(∆; τ)) + τn
τ(m+n)−1Fµ(∆)− Fµ(ξq + µ)

∆ + λ(∆; τ)− ξq − µ

= −
τ(m+n)−1√

τ
(∆ + λ(∆; τ)− ξq − µ)√

τ m−1
τ Fµ(∆ + λ(∆; τ))F̄µ(∆ + λ(∆; τ)) + nFµ(∆)F̄µ(∆)

×
{

τm− 1

τ(m+ n)− 1

Fµ(∆ + λ(∆; τ)− ξq − µ+ ξq + µ)− Fµ(ξq + µ)

∆ + λ(∆; τ)− ξq − µ

+
τn

τ(m+ n)− 1

Fµ(∆− ξq − µ+ ξq + µ)− Fµ(ξq + µ)

∆− ξq − µ
× ∆− ξq − µ

∆ + λ(∆; τ)− ξq − µ

}
.
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Now, note that

lim
τ→∞

∆ + λ(∆; τ)− ξq − µ = lim
τ→∞

t A
√
τ(m+ n)− 1

−1
+ λ(∆; τ) = 0,

lim
τ→∞

∆− ξq − µ = lim
τ→∞

t A
√
τ(m+ n)− 1

−1
= 0,

so that,

lim
τ→∞

τ m− 1

τ(m+ n)− 1

Fµ(∆ + λ(∆; τ)− ξq − µ+ ξq + µ)− Fµ(ξq + µ)

∆ + λ(∆; τ)− ξq − µ
=

m

m+ n
F ′(ξq) =

m

m+ n
f(ξq),

lim
τ→∞

τn

τ(m+ n)− 1

Fµ(∆− ξq − µ+ ξq + µ)− Fµ(ξq + µ)

∆− ξq − µ
=

n

m+ n
F ′(ξq) =

n

m+ n
f(ξq).

Also,

lim
τ→∞

√
τ m− 1

τ
Fµ(∆ + λ(∆; τ))F̄µ(∆ + λ(∆; τ)) + nFµ(∆)F̄µ(∆) =

√
(m+ n)q(1− q).

Furthermore recall that λ(∆; τ) is O(1/τ) to get

lim
τ→∞

τ(m+ n)− 1√
τ

(∆ + λ(∆; τ)− ξq − µ) = lim
τ→∞

τ(m+ n)− 1√
τ

(
t A
√
τ(m+ n)− 1

−1
+O(1/τ)

)
= lim

τ→∞

(√
τ(m+ n)− 1

τ
tA+O

(
1√
τ

))
=
√
m+ n tA,

and

lim
τ→∞

∆− ξq − µ
∆ + λ(∆; τ)− ξq − µ

= lim
τ→∞

t A
√
τ(m+ n)− 1

−1

t A
√
τ(m+ n)− 1

−1
+ λ(∆; τ)

= lim
τ→∞

t A

tA+O
(

1√
τ

)
= 1.

Putting all these together we get,

lim
τ→∞

c(∆) = − t A√
q(1− q)

f(ξq),

so to get (77) we have to pick,

A =

√
q(1− q)
f(ξq)

.
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Putting (76) and (77) we get from (75) that,

lim
τ→∞

∣∣∣Pr
(
F̃ ∗τ(m+n)−1(∆) ≥ c(∆)

)
− Φ(t)

∣∣∣ = 0,

which establishes the desired result.

E.2 Asymptotic normality of the qth quantile of the whole sample

Now if we have the vector of all buyers’ bids and seller’s asks/costs we can similarly define the

empirical distribution of the whole sample of τ(m+ n) bids and asks,

F̃τ(m+n)(x) ≡ 1

τ(m+ n)

τm∑
i=1

I{bi ≤ x}+
1

τ(m+ n)

τn∑
i=1

I{ci ≤ x}

=
1

τ(m+ n)

τm∑
i=1

I{vi ≤ x+ λ(x; τ)}+
1

τ(m+ n)

τn∑
i=1

I{ci ≤ x},

and its qth quantile

ξ̃q[τ(m+n)] ≡ inf{y : F̃τ(m+n)(y) ≤ q}.

We present the following Theorem that establishes the asymptotic relationship between ξ̃q[τ(m+n)]

and ξq conditional on µ. The proof is identical with that of Theorem 11, with the terms τ m− 1,

and τ(m+ n)− 1 replaced by τ m and τ(m+ n), respectively.

Theorem 12 For all t ∈ R, and 0 < q < 1,

lim
τ→∞

Pr

√τ(m+ n)
(
ξ̃q[τ(m+n)] − ξq − µ

)
√
q(1− q)/f (ξq)

≤ t

 = Φ(t),

where Φ(·) is the standard normal distribution function. So

ξ̃q[τ(m+n)] ∼ AN

(
ξq + µ,

q(1− q)
τ(m+ n) f2(ξq)

)
.

E.3 Relating quantiles to order statistics

We are interested in the

q =
m

m+ n
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quantile. Let sτm:τ(m+n)−1, sτm+1:τ(m+n)−1 be the (taum)th, (τm+1)st order statistic of the sample

of τ(m + n) − 1 traders which excludes the focal buyer; this is of particular importance because

these are the order statistics the focal buyer uses to make his decision of how much to bid. Similarly

let sτm+1:τ(m+n) be the (τm + 1)st order statistic of the sample of all τ(m + n) traders; this is of

particular importance because it is the market price in the BBDA.

Notice that,

τm

τ(m+ n)− 1
=

m

m+ n
+

m

(m+ n)(τ(m+ n)− 1)
=

m

m+ n
+ o

(
1

τ1−ε

)
, τ →∞,

τm+ 1

τ(m+ n)− 1
=

m

m+ n
+

2m+ n

(m+ n)(τ(m+ n)− 1)
=

m

m+ n
+ o

(
1

τ1−ε

)
, τ →∞,

τm+ 1

τ(m+ n)
=

m

m+ n
+

1

τ(m+ n)
=

m

m+ n
+ o

(
1

τ1−ε

)
, τ →∞,

for any small ε > 0. Then we can invoke Serfling (1980, Theorem and Corollary 2.5.2) to get the

asymptotic relationships between sτm:τ(m+n)−1, sτm+1:τ(m+n)−1, sτm+1:τ(m+n) and ξq conditional

on µ.

Theorem 13 We have

(i) sτm:τ(m+n)−1 ∼ AN
(
ξq + µ,

mn/(m+ n)2

[τ(m+ n)− 1] f2(ξq)

)
,

(ii) sτm+1:τ(m+n)−1 ∼ AN
(
ξq + µ,

mn/(m+ n)2

[τ(m+ n)− 1] f2(ξq)

)
,

(iii) sτm+1:τ(m+n) ∼ AN
(
ξq + µ,

mn/(m+ n)2

τ(m+ n) f2(ξq)

)
.

F Correlated Interdependent Values: First Order Approach

F.1 Buyer

Pick a focal buyer with signal σB and unknown value v. Let x, y be the mth and (m + 1)st order

statistic of the other traders’ bids/asks. The selected buyer’s expected utility when he bids b is

πB(σB, b;B,S) =

∫ ∫ ∫
vχx<y<bf

B
vxy(v, x, y|σB)dvdxdy −

∫ ∫ ∫
yχx<y<bf

B
vxy(v, x, y|σB)dvdxdy

+

∫ ∫ ∫
vχx≤b≤yf

B
vxy(v, x, y|σB)dvdxdy −

∫ ∫ ∫
bχx≤b≤yf

B
vxy(v, x, y|σB)dvdxdy,
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where,

fBvxy(v, x, y|σB) =

∫ ∞
−∞

fBvxyµ(v, x, y, µ|σB)dµ =

∫ ∞
−∞

fBxyµ(x, y, µ|v, σB)fv(v|σB)dµ

=

∫ ∞
−∞

fBxy(x, y|µ, v, σB)fµ(µ|v, σB)fv(v|σB)dµ =

∫ ∞
−∞

fBxy(x, y|µ)fµ(µ|v)fv(v|σB)dµ

=

∫ ∞
−∞

fBxy(x, y|µ)f(v − µ)g(σB − v)dµ.

Notice that from the diffuse prior on µ, we have

fµ(µ|σB) = fσ(σB|µ) =

∫ ∞
−∞

f(v − µ)g(σB − v)dv.

Let

h(σB − µ) =

∫ ∞
−∞

f(v − µ)g(σB − v)dv,

i.e.,

h(s) = (f ? g)(s) =

∫ ∞
−∞

f(t) g(s− t)dt,

where ? is the standard convolution operation, and of course H(s) =
∫ s
−∞ h(t)dt. Also let,

V (µ, σB) =

∫ ∞
−∞

vf(v − µ)g(σB − v)dv,

so that

V (µ, σB)

fµ(µ|σB)
= E[v|µ, σB].
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Rewriting the expected utility for the exceptional buyer we have,

πB(σB, b;B,S) =

∫ ∞
−∞

{∫ b

−∞

∫ b

x
fBxy(x, y|µ) (V (µ, σB)− yfµ(µ|σB)) dydx

+

∫ b

−∞

∫ ∞
b

fBxy(x, y|µ) (V (µ, σB)− bfµ(µ|σB)) dydx

}
dµ

=

∫ ∞
−∞

{∫ b

−∞

∫ b

x
fBxy(x, y|µ)

(
V (µ, σB)

fµ(µ|σB)
− y
)
dydx

+

∫ b

−∞

∫ ∞
b

fBxy(x, y|µ)

(
V (µ, σB)

fµ(µ|σB)
− b
)
dxdy

}
fµ(µ|σB)dµ

=

∫ ∞
−∞

{∫ b

−∞

∫ b

x
fBxy(x, y|µ) (E[v|µ, σB]− y) dydx

+

∫ b

−∞

∫ ∞
b

fBxy(x, y|µ) (E[v|µ, σB]− b) dydx
}
fµ(µ|σB)dµ

=

∫ ∞
−∞

{∫ b

−∞
fBy (y|µ) (E[v|µ, σB]− y) dy

+

∫ b

−∞

∫ ∞
b

fBxy(x, y|µ) (E[v|µ, σB]− b) dydx
}
fµ(µ|σB)dµ.

Taking the derivative with respect to b produces the first order condition for the buyers in the CIV

case, ∫ ∞
−∞

{
(E[v|µ, σB]− b) fBx (b|µ)−

∫ b

−∞

∫ ∞
b

fBxy(x, y|µ)dydx

}
fµ(µ|σB)dµ = 0,

which b = B(σB) satisfies in equilibrium. Following similar notation with that of the previous

sections let
∫ b
−∞

∫∞
b fBxy(x, y|µ)dydx = MB

m,n(b;σB, µ,B, S), and we will express fBx (b|µ) in terms

of the probabilities KB
m,n(b;σB, µ,B, S) and LBm,n(b;σB, µ,B, S).

Deriving fBx (b|µ) and MB
m,n(b;µ, σB, B, S). Given µ all other traders’ signals are h(σ − µ).45

Therefore

1. P[B(σ) ≤ B(σB)|µ] = P[σ ≤ σB|µ] = H (σB − µ) .

2. P[S(σ) ≤ B(σB)|µ] = P[σ ≤ S−1 ◦B(σB)|µ] = H
(
S−1 ◦B(σB)− µ

)
.

3. P[B(σB) ≤ B(σ) ≤ B(σB) + ∆b|µ] = P[σB ≤ σ ≤ B−1(B(σB) + ∆b)|µ]. We look for ∆x such

45For other traders’ signals we use a generic σ since subscripting is superfluous.
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that,

σB + ∆x = B−1(B(σB) + ∆b)⇒
B(σB + ∆x) = B(σB) + ∆b.

Now for smooth functions B(·) and small ∆x we have B(σB + ∆x) ≈ B(σB) + ∆xB′(σB)

and so,

B(σB) + ∆xB′(σB) = B(σB) + ∆b⇒
∆x = ∆b/B′(σB).

So,

P[B(σB) ≤ B(σ) ≤ B(σB) + ∆b|µ]/∆b = P[σB ≤ σ ≤ σB + ∆x|µ]/B′(σB)

= h (σB − µ) /B′(σB).

4. P[B(σB) ≤ S(σ) ≤ B(σB) + ∆b|µ] = P[S−1 ◦B(σB) ≤ σ ≤ S−1(B(σB) + ∆b)|µ]. We look for

∆x such that,

S−1 ◦B(σB) + ∆x = S−1(B(σB) + ∆b)⇒
S(S−1 ◦B(σB) + ∆x) = B(σB) + ∆b.

Now for smooth functions S(·) and small ∆x we have S(S−1◦B(σB)+∆x) ≈ B(σB)+∆xS′◦
S−1 ◦B(σB) and so,

B(σB) + ∆xS′ ◦ S−1 ◦B(σB) = B(σB) + ∆b⇒
∆x = ∆b/S′ ◦ S−1 ◦B(σB),

and

P[B(σB) ≤ S(σ) ≤ B(σB) + ∆b|µ]/∆b =
P[S−1 ◦B(σB) ≤ σ ≤ σB + ∆x|µ]

S′ ◦ S−1 ◦B(σB)

=
h
(
S−1 ◦B(σB)− µ

)
S′ ◦ S−1 ◦B(σB)

.

Then let LBm,n(B(σB);σB, µ,B, S) be the probability that from the population of the m+n− 1

remaining traders, another buyer’s ask is the mth order statistic, conditional on σB, µ and strategies
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B, S. Then

LBm,n(B(σB);σB, µ,B, S) =
∑

i+j=m−1
0≤i≤m−2

0≤j≤n

(
m− 2

i

)(
n

j

)
H (σB − µ)iH

(
S−1 ◦B(σB)− µ

)j

·H̄ (σB − µ)m−2−i H̄
(
S−1 ◦B(σB)− µ

)n−j
. (78)

Similarly for a seller making the mth order ask,

KB
m,n(B(σ′);σ, µ,B, S) =

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n− 1

j

)
H (σB − µ)iH

(
S−1 ◦B(σB)− µ

)j

·H̄ (σB − µ)m−1−i H̄
(
S−1 ◦B(σB)− µ

)n−1−j
. (79)

Hence,

fBx (B(σB)|µ) = (m− 1)
h (σB − µ)

B′(σB)
LBm,n(B(σB);σB, µ,B, S)

+n
h
(
S−1 ◦B(σB)− µ

)
S′ ◦ S−1 ◦B(σB)

KB
m,n(B(σB);σB, µ,B, S).

Also,

MB
m,n(B(σB);σB, µ,B, S) =

∑
i+j=m

0≤i≤m−1
0≤j≤n

(
m− 1

i

)(
n

j

)
H (σB − µ)iH

(
S−1 ◦B(σB)− µ

)j

·H̄ (σB − µ)m−1−i H̄
(
S−1 ◦B(σB)− µ

)n−j
. (80)

F.2 Seller

Pick now a focal seller with signal σS , and cost c; let x, y be the mth, (m + 1)st statistic of the

other traders’ bids/asks (different from the ones for the focal buyer). The ex-post utility of the

seller when he asks a is (x− c)χa<x, and so his interim expected utility is,

πS(σS , a;B,S) =

∫ ∫ ∫
(x− c)χa<xfScxy(c, x, y|σS)dcdxdy.

Following similar derivations as before and using symmetry one can arrive at the following,

πS(σS , a;B,S) =

∫ ∞
−∞

{∫ ∞
a

(x− E[c|µ, σS ]) fSx (x|µ)dx

}
fµ(µ|σS)dµ.
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Taking the derivative with respect to a one gets the first order condition for the sellers in the CIV

case, ∫ ∞
−∞

(a− E[c|µ, σS ]) fSx (a|µ)fµ(µ|σS)dµ = 0,

and a = S(σS) in equilibrium. We will express fSx (a|µ) in terms of the probabilitiesKS
m,n(a;σS , µ,B, S)

and LSm,n(a;σS , µ,B, S).

Deriving fSx (a|µ). Similarly with before,

P[S(σ) ≤ S(σS)] = H (σS − µ) ,

P[B(σ) ≤ S(σS)|µ] = H
(
B−1 ◦ S(σS)− µ

)
,

P[S(σS) ≤ S(σ) ≤ S(σS) + ∆b|µ]/∆b =
h (σS − µ)

S′(σS)
,

P[S(σS) ≤ B(σ) ≤ S(σS) + ∆b|µ]/∆b =
h
(
B−1 ◦ S(σS)− µ

)
B′ ◦B−1 ◦ S(σS)

.

Let LSm,n(S(σS);σS , µ,B, S) be the probability that from the population of the m + n − 1

remaining traders, a buyer’s ask is the mth order statistic, conditional on σS , µ and strategies

B, S. Then

LSm,n(S(σS);σS , µ,B, S) =
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n− 1

j

)
H
(
B−1 ◦ S(σS)− µ

)i
H (σS − µ)j

·H̄
(
B−1 ◦ S(σS)− µ

)m−1−i
H̄ (σS − µ)n−1−j .

Similarly for another seller making the mth order ask,

KS
m,n(S(σS);σS , µ,B, S) =

∑
i+j=m−1

0≤i≤m
0≤j≤n−2

(
m

i

)(
n− 2

j

)
H
(
B−1 ◦ S(σS)− µ

)i
H (σS − µ)j

·H̄
(
B−1 ◦ S(σS)− µ

)m−i
H̄ (σS − µ)n−2−j .
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Hence,

fSx (S(σS)|µ) = m
h
(
B−1 ◦ S(σS)− µ

)
B′ ◦B−1 ◦ S(σS)

LSm,n(S(σS);σS , µ,B, S)

+(n− 1)
h (σS − µ)

S′(σS)
KS
m,n(S(σS);σS , µ,B, S).

F.3 Invariance Property

Proof of Lemma 4. We demonstrate this fact for the buyer’s marginal utility. A similar

argument applies for the seller. The buyer’s marginal utility reduces in the case of the offset

strategies B(σB) = σB − λB and S (σS) = σS + λS to∫ ∞
−∞

(E[v|µ, σB]− σB + λB) (m− 1)h (σB − µ)LBm,n(σB − λB;σB, µ,B, S)fµ(µ|σB)dµ

+

∫ ∞
−∞

(E[v|µ, σB]− σB + λB)nh (σB − λB − λS − µ)KB
m,n(σB − λB;σB, µ,B, S)fµ(µ|σB)dµ

−
∫ ∞
−∞

MB
m,n(σB − λB;σB, µ,B, S)fµ(µ|σB)dµ.

Inspection of formulas (78)-(80) for LBm,n, KB
m,n and MB

m,n show that in this case they depend only

on the quantities (σB − µ, σB − λB − λS − µ). We express this by slightly abusing notation and

writing∫ ∞
−∞

(E[v|µ, σB]− σB + λB) (m− 1)h (σB − µ)LBm,n(σB − µ, σB − λB − λS − µ)h (σB − µ) dµ

+

∫ ∞
−∞

(E[v|µ, σB]− σB + λB)nh (σB − λB − λS − µ)KB
m,n(σB − µ, σB − λB − λS − µ)h (σB − µ) dµ

−
∫ ∞
−∞

MB
m,n(σB − µ, σB − λB − λS − µ)h (σB − µ) dµ. (81)

where we have also substituted

fµ(µ|σB) = h (σB − µ) .

Furthermore note that

E[v|µ+ ρB, σB + ρB]− σB + ρB + λB =

∫∞
−∞ vf (v − µ− ρB) g (σB + ρB − v) dv∫∞
−∞ f (v − µ− ρB) g (σB + ρB − v) dv

− σB + ρB + λB

=

∫∞
−∞ (v − ρB) f (v − µ) g (σB − v) dv∫∞

−∞ f (v − µ) g (σB − v) dv
− σB + ρB + λB

= E[v|µ, σB]− σB + λB. (82)
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We are now ready to replace σB with σB + ρB in (81) and show that the value of this integral

does not change:

∫ ∞
−∞
{(E[v|µ, σB + ρB]− σB + ρB + λB) (m− 1)h (σB + ρB − µ)

×LBm,n(σB + ρB − µ, σB + ρB − λB − λS − µ)}h (σB + ρB − µ) dµ

+

∫ ∞
−∞
{(E[v|µ, σB + ρB]− σB + ρB + λB)nh (σB + ρB − λB − λS − µ)

×KB
m,n(σB + ρB − µ, σB + ρB − λB − λS − µ)}h (σB + ρB − µ) dµ

−
∫ ∞
−∞

MB
m,n(σB + ρB − µ, σB + ρB − λB − λS − µ)h (σB + ρB − µ) dµ.

Applying the linear change of variable µ→ µ+ ρB produces∫ ∞
−∞
{(E[v|µ+ ρB, σB + ρB]− σB + ρB + λB) (m− 1)h (σB − µ)

× LBm,n(σB − µ, σB − λB − λS − µ)
}
h (σB − µ) dµ

+

∫ ∞
−∞
{(E[v|µ+ ρB, σB + ρB]− σB + ρB + λB)nh (σB − λB − λS − µ)

× KB
m,n(σB − µ, σB − λB − λS − µ)

}
h (σB − µ) dµ

−
∫ ∞
−∞

MB
m,n(σB − µ, σB − λB − λS − µ)h (σB − µ) dµ.

This reduces to (81) by substituting (82).
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