
Altruistically Unbalanced Kidney Exchange∗

Tayfun Sönmez†

Boston College
M. Utku Ünver‡

Boston College

This Draft: October 2011

Abstract

Although a pilot national live-donor kidney exchange program was recently
launched in the US, the kidney shortage is increasing faster than ever. A new
solution paradigm is able to incorporate compatible pairs in exchange. In this
paper, we consider an exchange framework that has both compatible and in-
compatible pairs, and patients are indifferent over compatible pairs. Only two-
way exchanges are permitted due to institutional constraints. We explore the
structure of Pareto-efficient matchings in this framework. The mathematical
structure of this model turns out to be quite novel. We show that under Pareto-
efficient matchings, the same number of patients receive transplants, and it is
possible to construct Pareto-efficient matchings that match the same incompat-
ible pairs while matching the least number of compatible pairs. We extend the
celebrated Gallai-Edmonds Decomposition in the combinatorial optimization
literature to our new framework. We also conduct comparative static exercises
on how this decomposition changes as new compatible pairs join the pool.
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1 Introduction

In the last decade, market design found an unexpected practical application in kidney
exchange. What started as a scholarly interaction between economists, transplant sur-
geons, and immunology experts led to the establishment of the New England Program
for Kidney Exchange (NEPKE) in 2004, the first kidney exchange program to utilize
a formal mechanism. NEPKE’s example was followed in 2005 by the Johns Hopkins
Kidney Exchange Program and Alliance for Paired Donation (APD). These devel-
opments resulted in an amendment to the National Organ Transplant Act (NOTA)
in 2007 clarifying that kidney exchanges are not in violation of this federal law, and
subsequently a pilot national kidney exchange program was created in the U.S. in
2010.

To put the contribution of the current paper into perspective, it is helpful to
describe how the collaboration between economists and transplantation community
evolved over the years. In the early 2000s, economists observed that the two main
types of kidney exchanges conducted in the U.S. corresponded to the most basic
forms of exchanges in a house allocation model [Abdulkadiroğlu and Sönmez, 1999].
Building on this setup, they formulated a kidney exchange model and proposed a
top trading cycles and chains (TTCC) mechanism [Roth, Sönmez, and Ünver, hence-
forth, RSÜ, 2004]. In their simulations RSÜ [2004] have shown that, in contrast to
the 45 percent of the patients with willing donors who cannot receive a transplant
in the absence of kidney exchanges, fewer than 10 percent would remain without a
transplant under the TTCC mechanism. When economists shared their findings with
Dr. Francis Delmonico, then president-elect of UNOS (the federal entity that now
runs the national pilot kidney exchange program in the U.S.), he expressed two reser-
vations about the proposed kidney exchange model. First of all, RSÜ [2004] allowed
for potentially large exchanges that would be logistically hard to implement since
all transplants in an exchange need to be carried out simultaneously. The second
concern was that RSÜ [2004] assumed strict preferences between compatible kidneys,
which is contrary to the general tendency in the U.S. where doctors assume that two
compatible living-donor kidneys have essentially the same survival rates, regardless of
the “genetic distance” between the patient and the donor [Gjertson and Cecka, 2000,
Delmonico, 2004]. To address these concerns, RSÜ [2005a] proposed a second model
that restricted the size of kidney exchanges to two patient-donor pairs and assumed
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that patients are indifferent between compatible kidneys. RSÜ [2005a] observed that
their pairwise kidney exchange model is an application of a well-analyzed problem
in discrete-optimization literature,1 some of the techniques of which was recently im-
ported to economic theory by Bogolomania and Moulin [2004] for two-sided matching
markets.2 The optimal-matching methodology proposed by RSÜ [2005a] became the
basis of practical kidney exchange throughout the world including at NEPKE, APD,
the National Matching Scheme for Paired and Pooled Donation in the UK, and most
recently the National Kidney Paired Donation Pilot Program in the U.S., although
all of these programs allow for three-way exchanges based on findings of RSÜ [2007]
and Saidman et al. [2006].

An earlier, abstract version of the RSÜ [2005a] model was extensively analyzed
in the 1960s. One of the most important contributions to this literature was that of
Gallai [1963, 1964] and Edmonds [1965], who characterized the set of Pareto-efficient
matchings. This result is known as the Gallai-Edmonds Decomposition (GED) The-
orem, and it plays a central role in our current paper. One of the corollaries of
the GED Theorem has a very plausible implication for pairwise kidney exchange:
The same number of patients are matched at every Pareto-efficient matching. This
means that, regardless of how the kidney exchange programs determine patient pri-
orities, the same number of patients are matched. Hence a program never matches a
high-priority patient at the expense of multiple patients under the pairwise priority
mechanisms offered in RSÜ [2005a]. This result does not hold for the TTCC mech-
anism. Hence, it gives pairwise priority mechanisms an edge from a medical ethics
perspective. However the elegance of the structure of Pareto-efficient matchings come
at a very high cost to efficiency: In contrast to the TTCC mechanism, the number
of patients who remain without a transplant more than triples under the pairwise
priority mechanisms. To explain this large difference, we need to describe the basic
mechanics for kidney transplantation.

A patient with a healthy and willing live donor might not be able to receive his
kidney either because of blood-type incompatibility or because of tissue-type incom-

1See Lovasz and Plummer [1986] and Korte and Vygen [2002] for comprehensive surveys of this
literature.

2See Yilmaz [2011a] for an application of this two-sided matching approach in kidney exchange.
In his model, Yilmaz assumes any size of exchange is feasible and considers “list” exchanges as well
as regular exchanges. He comes up with an egalitarian matching mechanism by treating patients
and kidney donors as two sides of the market.
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patibility. There are four blood types, A, B, AB, O, where 44 percent of the U.S.
population have O blood type, 42 percent have A blood type, 10 percent have B blood
type, and 4 percent have AB blood type. Furthermore:

• an O blood-type donor is blood-type compatible with all patients,

• an A blood-type donor is blood-type compatible with only A and AB blood-type
patients,

• a B blood-type donor is blood-type compatible with only B and AB blood-type
patients,

• and an AB blood-type donor is blood-type compatible with only AB blood-type
patients.

This very important asymmetry in blood-type compatibility relation makes O blood-
type donors highly sought after and O blood-type patients highly vulnerable. Based
on the U.S. blood-type distribution given above, the odds for blood-type incompati-
bility are about 35 percent between a patient and a random donor.

A donor might also be tissue-type incompatible with his paired patient. Zenios,
Woodle, and Ross [2001] report that the odds for tissue-type incompatibility are
about 11 percent between a patient and a random donor. Consistent with figures for
random pairs, a large majority of incompatible pairs are blood-type incompatible.

The key observation here is the following: With the exception of A blood-type pa-
tients with B blood-type donors and B blood-type patients with A blood-type donors,
a blood-type-incompatible pair cannot be mutually compatible with any blood-type-
incompatible pair. Hence any such pair has to receive a kidney from a blood-type-
compatible pair. In a regime where patients are assumed to be indifferent between
all compatible pairs, the only blood-type compatible pairs available for exchange are
those that are tissue-type incompatible. In contrast, in a regime where patients have
strict preferences over compatible pairs, essentially all pairs are available for exchange.
This is by far the most important reason for the large efficiency gap between the RSÜ
[2004] TTCC mechanism and RSÜ [2005a] pairwise priority mechanism. Blood-type
O patients with blood-type A, B, or AB donors, and blood-type A or B patients with
blood-type AB donors face much stronger competition for a fraction of tissue-type
incompatible pairs in a program that excludes compatible pairs from the kidney ex-

4



change pool. This highly vulnerable group makes up more than 25 percent of all
pairs.

Once it became clear that pairwise exchange among incompatible pairs will leave
about half of these incompatible pairs without a transplant, economists were able to
convince the transplantation community to be more flexible about the size of accept-
able exchanges. RSÜ [2007] and Saidman et al. [2006] have shown that the percentage
of incompatible pairs who receive transplants increases to 60 percent if three-way ex-
changes are allowed in addition to two-way exchanges, although larger exchanges,
and especially those larger than four-way exchanges, essentially have minimal impact
on efficiency. Based on these results, all major kidney exchange programs, including
the pilot national kidney exchange program in the U.S., adopted mechanisms that
allow three-way exchanges. One negative implication of this flexibility is the loss of
the GED-type structure of Pareto-efficient matchings. In particular, the number of
patients receiving transplants can differ between two Pareto-efficient matchings, and
hence the priority mechanism used by NEPKE might no longer maximize the number
of patients receiving transplants. That is perhaps a small price to pay in comparison
to the gains from three-way exchanges, but there is an alternative that not only dra-
matically increases the efficiency gains from kidney exchange but also preserves the
GED structure of Pareto-efficient matchings.

Inclusion of three-way exchanges was not the only suggestion economists made
to increase the number of patients who can benefit from kidney exchange. RSÜ
[2005b] proposed the inclusion of compatible pairs in the kidney exchange pool even
if they do not strictly benefit from an exchange. They reported that the inclusion
of compatible pairs in the kidney exchange pool would produce the largest efficiency
gains in comparison to a number of other design modifications that also improve the
efficiency. Assuming a pool of 100 pairs, they have shown that the percentage of
patients who remain without a transplant can be reduced to less than 10 percent if
compatible pairs are included in the exchange pool. This dramatically improved effi-
ciency is due to the elimination of the above-discussed asymmetry, essentially solving
the root of the problem. The idea of a kidney exchange between an incompatible
pair and a compatible pair was not new; it was first introduced by Ross and Woodle
[2000] as an altruistically unbalanced kidney exchange. Ironically Ross and Woodle
[2000] themselves condemned this type of exchange as morally inappropriate on the
grounds of potential coercion, even though they had not fully closed the door on its
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implementation. They concluded:

Empirical data of the attitudes of potential and former organ donors and
living kidney recipients would be useful to prove or disprove our concerns.

This strong objection resulted in altruistically unbalanced kidney exchange receiving
no attention until RSÜ [2005b] strongly advocated for the inclusion of compatible
pairs in exchange pools. This message has reached the transplantation community,
and a number of recent papers in the transplantation literature make a convincing
case for altruistically unbalanced kidney exchange.3 Gentry et al. [2007] verify the
large efficiency gains from the inclusion of compatible pairs in the exchange pool and
advocate for this paradigm change in kidney exchange. Ratner et al. [2010] report
a survey of 52 patients with compatible donors who were asked whether they would
be willing to participate in an exchange. Less than 20 percent were opposed to the
idea. This study presents a stark contrast to the long-held mainstream belief in the
transplantation community regarding compatible pairs’ attitudes toward altruistically
unbalanced kidney exchange. Ratner et al. [2010] also report three altruistically un-
balanced exchanges conducted at Columbia University as a proof of concept involving
four compatible pairs. Thanks to these compatible pairs, five additional patients re-
ceived transplants. Columbia University currently has an altruistically unbalanced
kidney exchange program, the first one that we are aware of. As the attitude toward
altruistically unbalanced kidney exchange has improved, some medical ethicists have
started questioning the grounds on which the medical community has been opposed
to these types of exchanges in the first place. Steinberg [2011] states:

Despite their utilitarian value transplant ethicists have condemned this
type of organ exchange as morally inappropriate. An opposing analy-
sis concludes that these exchanges are examples of moral excellence that
should be encouraged.

Motivated by this paradigm change, in this paper, we consider a pairwise kidney
exchange model in which both compatible and incompatible pairs are available for
exchange. Our main focus is understanding the structure of Pareto-efficient matchings

3Other economists also became interested in this paradigm. Nicolò and Rodriguez-Álvarez [2011]
introduce a model that incorporates compatible pairs to kidney exchange under the assumption that
patients have strict preferences over the ages of compatible donors. They study Pareto-efficient and
non-manipulable mechanisms in this domain.
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and in particular the role of compatible pairs in this structure. In our main result
(Theorem 1) we show that the GED Theorem extends to this natural structure,
and in particular the number of patients who receive transplants is the same across
all Pareto-efficient matchings (Proposition 1). As we have argued before, this is
very plausible from a medical ethics perspective. We also show that the choice of
incompatible pairs can be separated from the choice of compatible pairs under any
Pareto-efficient mechanism (Proposition 2). This result implies that the number
of compatible pairs needed to participate in a Pareto-efficient matching is the same,
regardless of the choice of incompatible pairs who benefit from the exchange (Corollary
1). This corollary is particularly important, since policy makers may wish to minimize
the number of compatible pairs participating in exchanges, and Corollary 1 implies
that this potential policy puts no restriction on the choice of incompatible pairs. In
contrast to RSÜ [2005a], which builds on the discrete-optimization literature, here we
have no results that we can directly utilize from the earlier literature, although the
original GED Theorem provides us with a convenient starting point for the inductive
proof of our main result. Our proof technique is also of independent interest as it
allows us to carry out a useful comparative static exercise: We fully characterize the
impact of the addition of one compatible pair to a problem, and among other things,
we show that the entire patient population (weakly) benefits from the inclusion of a
compatible pair. In contrast to the use of three-way exchanges that require kidney
exchange programs to make hard distributional choices to increase the number of
patients who benefit from kidney exchange, inclusion of compatible pairs in the pool
benefits the whole population and in particular hard-to-match O blood-type patients.

2 The Model

A pair consists of a patient and a donor. A pair is compatible if the donor of the
pair can medically donate her kidney to the patient of the pair and incompatible
otherwise. Let NI be the set of incompatible pairs and NC be the set of compatible
pairs. Let N = NI ∪ NC be the set of all pairs. The donor of pair x is compatible
with the patient of pair y if the donor of pair x can medically donate a kidney to
the patient of pair y. Two distinct pairs x, y ∈ N are mutually compatible if the
donor of pair x is compatible with the patient of pair y and the donor of pair y is
compatible with the patient of pair x.
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For any pair x ∈ N , let %x denote its preferences over N . Let �x denote the
strict preference relation and ∼x denote the indifference relation associated with %x.
The preferences of a pair are dictated by the patient of the pair who is indifferent
between all compatible kidneys and who strictly prefers any compatible kidney to
any incompatible kidney. In addition, the patient of an incompatible pair strictly
prefers remaining unmatched (i.e. keeping his donor’s incompatible kidney) to any
other incompatible kidney. Therefore, for any incompatible pair i ∈ NI ,

• x ∼i y for distinct x, y ∈ N with a compatible donor for the patient
of pair i,

• x �i i for any x ∈ N with a compatible donor for the patient of pair i,

• i �i x for any x ∈ N without a compatible donor for the patient of
pair i,

and for any compatible pair c ∈ NC ,

• x ∼c y for distinct x, y ∈ N with a compatible donor for the patient
of pair c,

• c �c x for any x ∈ N without a compatible donor for the patient of
pair c.

Throughout the paper we assume that two-way exchanges are feasible only when at
least one of the pairs is incompatible.4 A two-way exchange is ordinary if it is an
exchange between two incompatible pairs that are mutually compatible. A two-way
exchange is altruistically unbalanced if it is an exchange between an incompatible
and a compatible pair that are mutually compatible.

The feasible exchange matrix R = [rx,y]x,y∈N identifies all feasible exchanges
where

rx,y =

{
1 if y ∈ N \ {x}, x, y are mutually compatible, and x or y ∈ NI

0 otherwise.

For any x, y ∈ N with rx,y = 1, we refer to the pair (x, y) as a feasible exchange.
4Clearly there is no benefit from an exchange between two compatible pairs in our model.
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An altruistically unbalanced kidney exchange problem (or simply a prob-
lem) (N,R) consists of a set of pairs and its feasible exchange matrix.

A matching is a set of mutually exclusive feasible exchanges. Formally, given a
set N of pairs, a matching is a set µ ⊆ 2N

2 such that

1. (x, y) ∈ µ and (x, y′) ∈ µ implies y = y′,

2. (x, y) ∈ µ and (x′, y) ∈ µ implies x = x′, and

3. (x, y) ∈ µ implies rx,y = 1.

Here (x, y) ∈ µ means that the patient of both pairs receive a kidney from the donor
of the other pair. LetM(N,R) denote the set of all matchings for a given problem
(N,R).5

For any µ ∈ M(N,R) and (x, y) ∈ µ, define µ(x) ≡ y and µ(y) ≡ x. Here x and
y are matched with each other in µ. For any µ ∈ M(N,R) and x ∈ N with no
y ∈ N \ {x} such that (x, y) ∈ µ, define µ(x) ≡ x. Here x is unmatched in µ. For
any matching µ, let Mµ denote the set of pairs that are matched in µ. Formally,

Mµ = {x ∈ N : µ(x) 6= x}.

Observe that an incompatible pair receives a transplant in a matching µ only if it is
matched in µ whereas a compatible pair receives a transplant whether it is matched or
not. For any matching µ, let T µ denote the set of all pairs who receive a transplant
in µ. Formally,

T µ = {x ∈ NI : µ(x) 6= x} ∪NC .

Let Iµ refer to the set of incompatible pairs that are matched in µ. That is,

Iµ =Mµ ∩NI = T µ ∩NI .

Similarly let Cµ refer to the set of compatible pairs that are matched in µ. That is,

Cµ =Mµ ∩NC .

5The ordering of pairs in a feasible exchange is not important, thus (x, y) = (y, x) in our notation.
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3 Pareto-Efficient Matchings

Throughout this section, fix a problem (N,R). For any µ, ν ∈ M, µ Pareto-
dominates ν if µ (x) %x ν (x) for all x ∈ N and µ (x) �x ν (x) for some x ∈ N .
A matching µ ∈ M is Pareto efficient if there exists no matching that Pareto-
dominates µ. Let E ⊆M be the set of Pareto-efficient matchings.

When there are no compatible pairs, it is well-known that the same number of
incompatible pairs is matched at each Pareto-efficient matching. In our model, what
is critical is who receives a transplant (rather than who is matched). In our first
result, we show that the number of the pairs who receive a transplant is the same in
any two Pareto-efficient matchings and that number is the maximum number of pairs
that can receive a transplant in a matching:

Proposition 1 A matching µ ∈M is Pareto efficient if and only if |T µ| = maxη∈M |T η|.
Hence, for any two Pareto-efficient matchings µ, ν ∈ E, |T µ| = |T ν |.

Proof. [Proof of Proposition 1] First, we show that if |T µ| = maxη∈M |T η| then µ is
Pareto efficient. Suppose that µ ∈ M is such that |T µ| = maxη∈M |T η| and suppose
that there exists a matching ν ∈M that Pareto-dominates µ. Then all pairs receiving
a transplant in µ also receive a transplant in ν and at least one other incompatible
pair that does not receive a transplant in µ receives it in ν. Thus, |T ν | > |T µ|,
contradicting |T µ| = maxν∈M |T ν |.
Next, we show that for two matchings µ, ν ∈M that are such that |T µ| > |T ν |, there
exists a matching that Pareto-dominates ν. This will prove that if a matching µ is
Pareto efficient then |T µ| = maxη∈M |T η|. Let µ, ν ∈ M be such that |T µ| > |T ν |.
Let a0 ∈ T µ \ T ν . Since patients of compatible pairs always receive a transplant,
a0 ∈ NI and therefore a0 ∈Mµ. Construct the sequence {a0, a1, . . . , ak} ⊆Mµ ∪Mν

as follows:

a1 = µ (a0) , a2 = ν(a1), . . . ak =

{
µ (ak−1) if k is odd
ν (ak−1) if k is even

and where the last element of the sequence, ak, is unmatched either in µ or in ν (i.e.
ak ∈ (Mµ \Mν)∪ (Mν \Mµ)). Observe that by construction, a0 is matched in µ but
not in ν, whereas a1, . . . , ak−1 are all matched in both µ and ν. Also observe that
(a`, a`+1) is a feasible exchange for any ` ∈ {0, 1, . . . , k − 1}.

10



There are three cases to consider:

Case 1. ak ∈ T ν \ T µ:

This case, indeed, does not help us to construct a matching that Pareto-
dominates ν. However, since

(i) |T µ| > |T ν |, and

(ii) any pair that is not at the two ends of the sequence receives a transplant
in both µ and ν,

there exists a0 ∈ T µ \ T ν such that the last element of the above constructed
sequence ak is such that ak 6∈ T ν \T µ. Hence Case 1 cannot cover all situations.

Case 2. ak ∈Mµ \Mν :

Since ak is matched in µ but not in ν, k is odd. Consider the following matching
η ∈M:

η = (ν \ {(a1, a2) , (a3, a4) , . . . , (ak−2, ak−1)})∪{(a0, a1) , (a2, a3) , . . . , (ak−1, ak)} .

We have T η = T ν ∪ {a0, ak}. Since a0 6∈ T ν , matching η Pareto-dominates
matching ν.

Case 3. ak ∈ NC and ak ∈Mν \Mµ:

Since ak is matched in ν but not in µ, k is even. Consider the following matching
η ∈M:

η = (ν \ {(a1, a2) , (a3, a4) , . . . , (ak−1, ak)})∪{(a0, a1) , (a2, a3) , . . . , (ak−2, ak−1)} .

Observe that ak is matched in ν but not in η whereas a0 is matched in η but
not in ν. But since ak 6∈ NI , T η = T µ ∪ {a0} and therefore matching η Pareto-
dominates matching ν.

Since there exists a0 ∈ T µ \ T ν where either Case 2 or Case 3 applies, matching ν is
Pareto inefficient.

Our next result shows that the choice of compatible pairs to be matched at a
Pareto-efficient matching can be separated from the choice of incompatible pairs.
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Proposition 2 Let µ, ν ∈ E be two Pareto-efficient matchings. Then there exists a
Pareto-efficient matching η ∈ E such that Mη = Cµ ∪ Iν.

Proof. [Proof of Proposition 2] Let µ, ν be as in the statement of the proposition.
By Proposition 1, |T µ \ T ν | = |T ν \ T µ|. If T µ = T ν then η = µ and we are done.
Otherwise let a0 ∈ T µ \ T ν . Note that a0 ∈ NI (since only incompatible pairs
can receive a transplant in one matching but not in another). We will construct a
matching that matches ak together with all elements ofMµ except a0 ∈ NI . Repeated
application of this construction yields the desired matching η.

Construct the sequence {a0, a1, . . . , ak} ⊆Mµ ∪Mν as follows:

a1 = µ (a0) , a2 = ν (a1) , . . . ak =

{
µ (ak−1) if k is odd
ν (ak−1) if k is even

and where the last element of the sequence, ak, is unmatched either in µ or in ν (i.e.
ak ∈ (Mµ \Mν) ∪ (Mν \Mµ)). Observe that (a`, a`+1) is a feasible exchange for any
` ∈ {0, 1, . . . , k − 1}.

There are three cases to consider:

Case 1. k is odd:

In this case both a0 and ak are matched in µ, but not in ν. Consider the
matching

ν ′ = (ν \ {(a1, a2) , (a3, a4) , . . . , (ak−2, ak−1)})∪{(a0, a1) , (a2, a3) , . . . , (ak−1, ak)} .

By construction, Mν′ = Mν ∪ {a0, ak}. Moreover, while ak may not be an
incompatible pair, a0 is, and hence T ν ⊂ T ν

′ . Therefore ν ′ Pareto-dominates ν,
contradicting the Pareto efficiency of ν.

Case 2. k is even with ak ∈ NC :

In this case ak, a compatible pair, is matched in ν but not in µ. In contrast, a0,
an incompatible pair, is matched in µ but not in ν. Consider the matching

ν ′ = (ν \ {(a1, a2) , (a3, a4) , . . . , (ak−1, ak)})∪{(a0, a1) , (a2, a3) , . . . , (ak−2, ak−1)} .

By construction, Mν′ \Mν = {a0}, whereas Mν \Mν′ = {ak}. Since a0 is an
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incompatible pair while ak is not, T ν ⊂ T ν
′ . Therefore ν ′ Pareto-dominates ν,

contradicting the Pareto efficiency of ν.

Since Cases 1 and 2 each yield a contradiction, for each a0 ∈ T µ \T ν , the last element
ak of the above constructed sequence {a0, a1, . . . , ak} should be an incompatible pair
and k should be even. We next consider this final case.

Case 3. k is even with ak ∈ NI :

In this case ak is matched in ν, and therefore, by construction, ak ∈ T ν \ T µ.
Consider the matching

µ′ = (µ \ {(a0, a1) , (a2, a3) , . . . , (ak−2, ak−1)})∪{(a1, a2) , (a3, a4) , . . . , (ak−1, ak)} .

By construction, Mµ′ = (Mµ \ {a0}) ∪ {ak}. So in comparison with matching
µ, matching µ′ matches incompatible pair ak instead of incompatible pair a0.
Observe that |T µ′ ∩ T ν | = |T µ ∩ T ν |+ 1 while Cµ = Cµ′ . If |T ν \ T µ| = 1, then
η = µ′ is the desired matching and we are done. Otherwise, since Case 3 is the
only viable case we can repeat the same construction for any a0 ∈ T µ \ T ν to
obtain the desired matching η.

In the present context, the involvement of compatible pairs in exchange is purely
altruistic and it may therefore be plausible to minimize the number of compatible
pairs matched at Pareto-efficient matchings. An immediate corollary of Proposition
2 is that the number of compatible pairs who exchange kidneys can be minimized
without affecting the choice of incompatible pairs.

Corollary 1 Let µ ∈ E. Then there exists η ∈ E be such that Iη = Iµ and |Cη| ≤ |Cν |
for any ν ∈ E.

3.1 The Priority Mechanisms

The experience of transplant centers is mostly with the priority allocation systems
used to allocate cadaver organs. NEPKE has recently adopted a variant of a priority
allocation system for ordinary kidney exchanges. Priority mechanisms can be easily
adapted to the present context.
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Let |NI | = n. A priority ordering is a one-to-one and onto function π : {1, . . . , n} →
NI . Here incompatible pair π(k) is the kth highest priority pair for any k ∈ {1, . . . , n}.

For any problem, the priority mechanism induced by π picks any matching
from a set of matchings Enπ which is obtained by refining the set of matchings in n

steps as follows:

• Let E0π =M (i.e. the set of all matchings).

• In general for k ≤ n, let Ekπ ⊆ Ek−1π be such that

Ekπ =

{ {
µ ∈ Ek−1π : µ (k) 6= k

}
if ∃µ ∈ Ek−1π s.t. µ (k) 6= k

Ek−1π otherwise
.

Each matching in Enπ is referred to as a priority matching and they all match the
same set of incompatible pairs. By construction, each matching in Enπ is Pareto effi-
cient. Observe that by Proposition 1 there is no trade-off between priority allocation
and the number of transplants that can be arranged. In our model, all patients are
indifferent between any two matchings in Enπ , and hence, the priority mechanism can
pick any one of them. Nevertheless, there can be other considerations affecting this
selection, such as minimizing the number of compatible pairs that are matched.

4 The Structure of Pareto-Efficient Matchings and

Comparative Statics

For any problem (N,R), partition the set of pairsN = NI∪NC as {U(N,R), O(N,R), P (N,R)}
where

U(N,R) = {x ∈ NI : ∃µ ∈ E (N,R) s.t. µ (x) = x} ,

O(N,R) = {x ∈ N \ U(N,R) : ∃y ∈ U(N,R) s.t. ry,x = 1} ,

P (N,R) = N \
(
U(N,R) ∪O(N,R)

)
.

That is, U(N,R) is the set of incompatible pairs each of which remains unmatched
at a Pareto-efficient matching. We refer to U(N,R) as the set of underdemanded
pairs. Set O(N,R) is the set of pairs that are not underdemanded and have a
mutually compatible underdemanded pair. We will refer to O (N,R) as the set of
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overdemanded pairs. Set P (N,R) is the remaining set of pairs, and we will refer to
it as the set of perfectly matched pairs. Theorem 1, which we will shortly state,
will justify this terminology. We refer to this decomposition of pairs as the demand
decomposition of problem (N,R).

For any K ⊂ N , let RK = [rx,y]x,y∈K be the feasible exchange submatrix for
the pairs in K. We refer to (K,RK) as a subproblem of (N,R). A subproblem
(K,RK) is connected if for any x, y ∈ K there exist x1, x2, ..xm ∈ K with x1 = x

and xm = y such that for all ` ∈ {1, ...,m− 1}, rx`,x`+1 = 1. A connected subproblem
(K,RK) is a component of (N,R) if there is no other connected subproblem (L,RL)

such that K $ L.
Consider the subproblem

(
N \O (N,R) , RN\O(N,R)

)
obtained by removal of all

pairs in O (N,R).
We refer to a component (K,RK) of

(
N \O (N,R) , RN\O(N,R)

)
as a dependent

component if K ⊆ NI and |K| is odd. We refer to a component (K,RK) of(
N \O (N,R) , RN\O(N,R)

)
as a self-sufficient component if K ∩ NC 6= ∅ or |K|

is even. We will justify this choice of terminology in the theorem presented below.
Let D denote the set of dependent components. Let S denote the set of self-sufficient
components.

The following result characterizes the structure of the set of Pareto-efficient match-
ings for problem (N,R).

Theorem 1 Given a problem (N,R), let (K,RK) be the subproblem with K = N \
O (N,R) (i.e. the subproblem where all overdemanded pairs are removed) and let µ
be a Pareto-efficient matching for the original problem (N,R). Then,

1. For any pair x ∈ O (N,R), µ (x) ∈ U (N,R) .

2.

(a) For any self-sufficient component (L,RL) of (K,RK), L ⊆ P (N,R), and

(b) for any incompatible pair i ∈ L ∩NI , µ (i) ∈ L \ {i} .

3.

(a) For any dependent component (J,RJ) of (K,RK), J ⊆ U (N,R), and for
any pair i ∈ J , it is possible to match all remaining pairs in J with each
other.
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(b) Moreover, for any dependent component (J,RJ) of (K,RK) , either

i. one and only one pair i ∈ J is matched with a pair in O (N,R) in
the Pareto-efficient matching µ, whereas all remaining pairs in J are
matched with each other (so that all pairs in J are matched), or

ii. one pair i ∈ J remains unmatched in the Pareto-efficient matching µ,
whereas all remaining pairs in J are matched with each other (so that
only i remains unmatched among pairs in J).

Our proof strategy will be based on an induction on the number of compatible
pairs, as this approach helps us to execute a very useful comparative static exercise on
how the structure of Pareto-efficient matchings evolves with the addition of a single
compatible pair to the pool of pairs. These comparative static results will be proven
inside the proof of the theorem as Claims 1 and 6.

We will invoke a well-known result from graph theory due to Hall [1935] in our
proof. We first state this theorem here and then prove Theorem 1:

Hall’s Theorem Consider a graph with two finite sets X, Y such that each member
of X is connected with some members of Y. For any X ′ ⊆ X, let N (X ′,Y) ⊆ Y
denote the set of members of Y each of which are connected with at least one member
of X ′. Then, we can match each x ∈ X with a distinct connected member of Y if and
only if

∀X ′ ⊆ X, |N (X ′,Y)| ≥ |X ′|.

Proof. [Proof of Theorem 1] We use an induction on the number of compatible
pairs. Fix s ≥ 0. Let N have s + 1 compatible pairs including pair c. Let N−c =
N \ {c}. Clearly N−c has s compatible pairs. Let (N−c, R−c) be the problem such
that R−c = RN−c . The initial step, i.e., the case with no compatible pairs, was proven
by Gallai [1963, 1964] and Edmonds [1965], and we refer to this result as the Gallai-
Edmonds Decomposition (or GED for short) Theorem. Now, for induction, we make
the following assumption:

Inductive Assumption Theorem 1 holds for problem (N−c, R−c).

Since U(N,R) ⊆ NI , c 6∈ U(N,R). Depending on whether it is mutually compat-
ible with an underdemanded pair of (N−c, R−c) or not, our proof strategy will differ.
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Below we show that when the latter is the case, nothing changes for the demand
decomposition except c becoming a perfectly matched pair of (N,R):

Claim 1 If c is not mutually compatible with any pair in U(N−c, R−c) then

1. U(N,R) = U(N−c, R−c),

2. O(N,R) = O(N−c, R−c), and

3. P (N,R) = P (N−c, R−c) ∪ {c}.

Moreover, Theorem 1 holds for problem (N,R).

Proof of Claim 1 We will prove U(N,R) = U(N−c, R−c), Part 1, which will immedi-
ately prove Parts 2 and 3 of the claim.

• First, we will show that U(N,R) ⊇ U(N−c, R−c): Let η′ ∈ E(N−c, R−c). We
must show that η′ ∈ E(N,R). Suppose not. Then there exists a matching
µ ∈ M(N,R) that Pareto-dominates η′ under (N,R). Observe that µ(c) 6=
c, for otherwise µ ∈ M(N−c, R−c) and it would Pareto-dominate η′ under
(N−c, R−c) as well. Therefore, since c is not mutually compatible with any pair
in U(N−c, R−c), µ(c) ∈ O(N−c, R−c) ∪ P (N−c, R−c). Let µ′ = µ \ {(µ(c), c)}.
Since µ Pareto-dominates η′ under (N,R), |Iµ| > |Iη′ |. Hence, |Iµ′| ≥ |Iη′|. As
µ′ ∈ M(N−c, R−c), by Proposition 1, this inequality should hold with equality
and µ′ ∈ E(N−c, R−c). Recall that compatible pairs can only be matched with
incompatible pairs. Thus, µ(c) is an incompatible pair. However, µ(c) is un-
matched under µ′, contradicting µ(c) ∈ O(N−c, R−c) ∪ P (N−c, R−c). Thus,
η′ ∈ E(N,R). This implies E(N,R) ⊇ E(N−c, Rc), which in turn implies
U(N,R) ⊇ U(N−c, R−c).

• Next, we will show that U(N,R) ⊆ U(N−c, R−c): We have already shown that
E(N,R) ⊇ E(N−c, R−c). This together with Proposition 1 imply for any µ ∈
E(N,R) and µ′ ∈ E(N−c, R−c), |Iµ| = |Iµ′ |. Let i ∈ U(N,R) and ν ∈ E(N,R)
such that ν(i) = i. Let µ′ ∈ E(N−c, R−c). Observe that c is not matched under
µ′ and µ′ ∈ E(N,R). By Proposition 2, there exists η ∈ E(N,R) such thatMη =

Cµ′ ∪ Iν . Since c 6∈Mη, η ∈M(N−c, R−c). Moreover since Iη = Iν , E(N,R) ⊇
E(N−c, R−c) along with Proposition 1 imply η ∈ E(N−c, R−c). Observe that
η(i) = i. Thus i ∈ U(N−c, R−c), and hence U(N,R) ⊆ U(N−c, R−c).
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Finally, we will show that Theorem 1 holds for (N,R). Parts 1,2,3 of the claim
along with the inductive assumption – Theorem 1 Parts 2(a) and 3(a) for (N−c, R−c)
– together imply that Parts 2(a) and 3(a) of Theorem 1 hold for problem (N,R).
By the inductive assumption – Theorem 1 Parts 1 and 3(b) for (N−c, R−c) – the
maximum number of pairs in U(N−c, R−c) = U(N,R) will be matched in a matching
of (N−c, R−c) or (N,R), if we match each pair in O(N−c, R−c) = O(N,R) with a pair
in U(N−c, R−c) = U(N,R), and for each D ∈ D(N−c, R−c), we match (1) at most
one pair in D with a pair in O(N−c, R−c) = O(N,R), and (2) |D| − 1 pairs of D with
each other. Thus, Theorem 1 Parts 1 and 3(b) also hold for problem (N,R). These
parts in turn imply that Theorem 1 Part 2(b) holds for problem (N,R). �

Claim 1 covers the easier of the two cases. We will next build the machinery
needed for the harder case through a series of claims.

For any Q ⊆ O(N−c, R−c) ∪ {c} and F ⊆ D(N−c, R−c), let

N (Q,F) ≡ {F ∈ F : ∃ a ∈ Q and i ∈ F such that ri,a = 1}.

That is, the “neighbors” of pairs in Q among dependent components of F are repre-
sented by the set N (Q,F). 6

First, we present the following corollary to the inductive assumption:

Claim 2 For all Q ⊆ O(N−c, R−c), |N
(
Q,D(N−c, R−c)

)
| > |Q|.

Proof of Claim 2 Suppose that for some Q ⊆ O(N−c, R−c), |N
(
Q,D(N−c, R−c)

)
| ≤

|Q|. Then, by the inductive assumption, as all overdemanded pairs are matched
in all efficient matchings of (N−c, R−c) to underdemanded pairs (by Part 1), with
at most one from a dependent component (by Part 3), it should be the case that
|Q| = |N

(
Q,D(N−c, R−c)

)
|. But then, as all overdemanded pairs are always matched

in an efficient matching, each pair in Q will be matched with a pair in a distinct com-
ponent of N

(
Q,D(N−c, R−c)

)
(by Part 3(a) of the inductive assumption) and all

remaining pairs in a component of N
(
Q,D(N−c, R−c)

)
will be matched with another

pair in the component (by Part 3(b) of the inductive assumption), and in particular,
all pairs in all components of N

(
Q,D(N−c, R−c)

)
will always be matched at all effi-

6For simplicity, when it is not ambiguous, we will simply refer to a component by its set of pairs,
i.e., we will refer to F ∈ F instead of (F,R−cF ) ∈ F .
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cient matchings of (N−c, R−c), contradicting that such pairs are underdemanded. We
showed that for all Q ⊆ O(N−c, R−c), |N

(
Q,D(N−c, R−c)

)
| > |Q|. �

Our next claim easily follows from Claim 2:

Claim 3 Let c be mutually compatible with a pair in U(N−c, R−c). Then for all
Q ⊆ O(N−c, R−c) ∪ {c}, |N

(
Q,D(N−c, R−c)

)
| ≥ |Q|.

Proof of Claim 3 If Q = {c}, then by the hypothesis of the claim and the inductive as-
sumption that implies U(N−c, R−c) =

⋃
D∈D(N−c,R−c)D, we have |N

(
Q,D(N−c, R−c)

)
| ≥

1 = |Q|. If Q 6= {c}, then let Q′ = Q \ {c}. We have |N
(
Q,D(N−c, R−c)

)
| ≥

|N
(
Q′,D(N−c, R−c)

)
| ≥ |Q′| + 1 ≥ |Q|, where the second inequality follows from

Claim 2. �

We are ready to identify pairs whose roles in the structure of Pareto efficient
matchings will differ between problems (N,R) and (N−c, R−c). Let c be mutually
compatible with an underdemanded pair of (N−c, R−c). Define

• Q̂ ≡
⋃{

Q ⊆ O(N−c, R−c) ∪ {c} : |N (Q,D(N−c, R−c))| = |Q|
}
;

• F̂ = N
(
Q̂,D(N−c, R−c)

)
; and

• F̂ =
⋃
F∈F̂ F .

Observe that by Claim 2, either c ∈ Q̂ or Q̂ = ∅.

Claim 4 |N (Q̂,D(N−c, R−c))| = |Q̂|. Thus, Q ⊆ Q̂ for any Q ⊆ O(N−c, R−c) ∪ {c}
such that |N (Q,D(N−c, R−c))| = |Q|.

Proof of Claim 4 SupposeQ′, Q′′ ⊆ O(N−c, R−c)∪{c} are such that |N (Q,D(N−c, R−c))| =
|Q| for each Q ∈ {Q′, Q′′}. It suffices to show that |N

(
Q′′ ∪ Q′,D(N−c, R−c)

)
| =

|Q′′ ∪Q′|. Suppose not. This and Claim 3 together imply

|Q′′ ∪Q′| < |N
(
Q′′ ∪Q′,D(N−c, R−c)

)
|. (1)

Let F ′′ = N
(
Q′′,D(N−c, R−c)

)
. Observe that

|F ′′| = |Q′′|, (2)
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and
N
(
Q′′ ∪Q′,D(N−c, R−c)

)
= F ′′ ∪N

(
Q′ \Q′′,D(N−c, R−c) \ F ′′

)
. (3)

By Relations 1 and 3,

|Q′′|+|Q′\Q′′| = |Q′′∪Q′| <
∣∣N (Q′′∪Q′,D(N−c, R−c))∣∣ = |F ′′|+∣∣N (Q′\Q′′,D(N−c, R−c)\F ′′)∣∣

(4)
Relation 4 and Relation 2 together imply

|Q′ \Q′′| <
∣∣N (Q′ \Q′′,D(N−c, R−c) \ F ′′)∣∣. (5)

Let F∩ = N
(
Q′′ ∩Q′,D(N−c, R−c)

)
. Then

N
(
Q′′ ∩Q′,D(N−c, R−c)

)︸ ︷︷ ︸
=F∩

⊆ N
(
Q′′,D(N−c, R−c)

)︸ ︷︷ ︸
=F ′′

. (6)

and
N
(
Q′ \Q′′,D(N−c, R−c) \ F ′′

)
⊆ N

(
Q′ \Q′′,D(N−c, R−c) \ F∩

)
. (7)

Relations 5 and 7 imply

|Q′ \Q′′| <
∣∣N (Q′ \Q′′,D(N−c, R−c) \ F∩)∣∣. (8)

Also observe that

N
(
Q′,D(N−c, R−c)

)
= N

(
Q′′ ∩Q′,D(N−c, R−c)

)︸ ︷︷ ︸
=F∩

∪ N
(
Q′ \Q′′,D(N−c, R−c) \ F∩

)
.

(9)
Relation 9 along with

∣∣N (Q′,D(N−c, R−c))∣∣ = |Q′| imply

|Q′′∩Q′|+|Q′\Q′′| = |Q′| =
∣∣N (Q′,D(N−c, R−c))∣∣ = |F∩|+∣∣N (Q′\Q′′,D(N−c, R−c)\F∩)∣∣.

(10)
Finally, we obtain the contradiction we have sought: Relations 8 and 10 imply

|Q′′ ∩Q′| > |F∩| =
∣∣N (Q′′ ∩Q′,D(N−c, R−c))∣∣,

contradicting Claim 3. Thus,
∣∣N (Q′′ ∪Q′,D(N−c, R−c))∣∣ = |Q′′ ∪Q′|. �
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Next define

• G = D(N−c, R−c) \ F̂ .

We will use the following claim to invoke Hall’s Theorem to prove Theorem 1 for the
harder of our two cases.

Claim 5 Let c be mutually compatible with a pair in U(N−c, R−c). Then for any
F ∈ G,

∀Q ⊆
(
O(N−c, R−c) ∪ {c}

)
\ Q̂, |N

(
Q,G \ {F}

)
| ≥ |Q|.

Proof of Claim 5 Fix Q ⊆
(
O(N−c, R−c) ∪ {c}

)
\ Q̂ and F ∈ G.

If |N (Q,G)| < |Q|, then

|N
(
Q̂∪Q,D(N−c, R−c)

)
| = |N

(
Q̂,D(N−c, R−c)

)
|︸ ︷︷ ︸

=|F̂ |=|Q̂|

+ |N (Q,G)| < |Q̂|+ |Q| = |Q̂∪Q|,

contradicting Claim 3 as Q̂ ∪Q ⊆ O(N−c, R−c) ∪ {c}.
If |N (Q,G)| = |Q|, then

|N
(
Q̂∪Q,D(N−c, R−c)

)
| = |N

(
Q̂,D(N−c, R−c)

)
|︸ ︷︷ ︸

=|F̂ |=|Q̂|

+ |N (Q,G)| = |Q̂|+ |Q| = |Q̂∪Q|.

But this contradicts the maximality of Q̂ (i.e. the second part of Claim 4) since
Q̂ ∪Q ⊆ O(N−c, R−c) ∪ {c}. Hence,

∀Q ⊆ O(N−c, R−c) \ Q̂, |N (Q,G)| > |Q|.

Thus, we have

∀Q ⊆ O(N−c, R−c) \ Q̂, |N
(
Q,G \ {F}

)
| ≥ |Q|.

�

Finally, using the above preparatory claims, we characterize the demand decom-
position when c is mutually compatible with a pair in U(N−c, R−c):

Claim 6 Let c be mutually compatible with a pair in U(N−c, R−c). Then
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1. U(N,R) = U(N−c, R−c) \ F̂ ,

2. O(N,R) =
(
O(N−c, R−c) ∪ {c}

)
\ Q̂ , and

3. P (N,R) = P (N−c, R−c) ∪ Q̂ ∪ F̂ .

Moreover, Theorem 1 holds for problem (N,R).

Proof of Claim 6

• First, we will show that U(N,R) ⊇ U(N−c, R−c)\F̂ : Recall that G = D(N−c, R−c)\
F̂ . Fix i ∈ U(N−c, R−c) \ F̂ . By Part 3(a) of Theorem 1 for (N−c, R−c), i ∈ F
for some F ∈ G. In several steps, we will construct a matching µ ∈ M(N,R),
which leaves i unmatched, and show that it is efficient under (N,R).

? By Claim 5

∀Q ⊆
(
O(N−c, R−c) ∪ {c}

)
\ Q̂, |N (Q,G \ {F})| ≥ |Q|. (11)

By Relation 11 and Hall’s Theorem, we can match each pair in
(
O(N−c, R−c)∪

{c}
)
\ Q̂ with a pair in a distinct component of G \{F}. Let µ match such

pairs with each other. At this point some components of G \ {F} have
only one pair matched in µ, whereas the rest have all pairs unmatched. By
Part 3(a) of Theorem 1 for (N−c, R−c), we can also match still-unmatched
|D| − 1 pairs in any component D ∈ G \ {F} with each other and all pairs
in F \ {i} with each other. Let µ match also such pairs with each other.
Observe that µ(i) = i.

By the definition of D(N−c, R−c) and construction of Q̂, any pair that
belongs to any dependent component D in G is mutually compatible with
only pairs in D or

(
O(N−c, R−c)∪{c}

)
\Q̂. Also recall that each dependent

component in G consists of an odd number of incompatible pairs. Thus,
so far,

µ ∈ arg max
ν∈M(N,R)

∣∣∣T ν ∩ [(U(N−c, R−c) \ F̂) ∪ [
(
O(N−c, R−c) ∪ {c}

)
\ Q̂]

]∣∣∣,
(12)

i.e., the maximum possible number of pairs in the set
(
U(N−c, R−c)\ F̂

)
∪[(

O(N−c, R−c) ∪ {c}
)
\ Q̂
]
receive a transplant in µ.
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? Claim 3 together with Q̂ ⊆ O(N−c, R−c) ∪ {c} imply

∀Q ⊆ Q̂, |N
(
Q,D(N−c, R−c)

)
| ≥ |Q|. (13)

Hence, we can invoke Hall’s Theorem through Relation 13 once again and
match each pair in Q̂ with an incompatible pair in a distinct dependent
component in F̂ . Let µ match such pairs with each other. At this point,
as |F̂ | =

∣∣N (Q̂,D(N−c, R−c))∣∣ = |Q̂|, one pair in each D ∈ F̂ is matched
in µ. By Part 3(a) of Theorem 1 for (N−c, R−c), we can also match yet-
unmatched |D| − 1 pairs in each dependent component D ∈ F̂ with each
other. Let µ further be constructed to match such pairs with each other.
Thus, µ matches all pairs in Q̂ ∪ F̂ with each other, and so far µ is well
defined. Moreover,

µ ∈ arg max
ν∈M(N,R)

|T ν ∩ (Q̂ ∪ F̂ )|, (14)

i.e., the maximum possible number of pairs in the set Q̂ ∪ F̂ receive a
transplant in µ.

? By Part 2(b) of Theorem 1 for (N−c, R−c), we can further construct µ such
that all incompatible pairs in P (N−c, R−c) are matched with other pairs
in P (N−c, R−c). Hence, µ is well defined and µ ∈ M(N,R). Moreover,
having matched all incompatible pairs in P (N−c, R−c),

µ ∈ arg max
ν∈M(N,R)

|T ν ∩ P (N−c, R−c)|, (15)

i.e., the maximum possible number of pairs in the set P (N−c, R−c) receive
a transplant in µ.

By Equations 12, 14, and 15, |T µ| = maxν∈M(N,R) |T ν |. This together with
Proposition 1 implies µ ∈ E(N,R). Since µ(i) = i, we have i ∈ U(N,R).

• Next, we will show that U(N,R) ⊆ U(N−c, R−c) \ F̂ : It is possible to match all
incompatible pairs in F̂ ∪ Q̂∪P (N−c, R−c) with other pairs in the same set, as
the matching µ constructed above does that. By the definition of D(N−c, R−c)
and construction of Q̂, any pair that belongs to any dependent component
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D in G = D(N−c, R−c) \ F̂ is mutually compatible with only pairs in D or(
O(N−c, R−c)∪{c}

)
\Q̂. Also recall that such a component D consists of an odd

number of incompatible pairs. Thus, to maximize the number of incompatible
pairs matched under (N,R), we need to match all pairs in

(
O(N−c, R−c)∪{c}

)
\

Q̂ with pairs in U(N−c, R−c)\F̂ , at most one pair from eachD ∈ G with a pair in(
O(N−c, R−c)∪{c}

)
\Q̂, and |D|−1 pairs of D with each other. This is possible,

as matching µ constructed above does just that. Hence, as by Proposition 1
any efficient matching ν ∈ E(N,R) maximizes the number of incompatible
pairs matched, we should have all incompatible pairs in F̂ ∪ O(N−c, R−c) ∪
P (N−c, R−c) matched in ν, implying any unmatched incompatible pair under ν
must belong NI \

{
F̂ ∪O(N−c, R−c)∪P (N−c, R−c)

}
= U(N−c, R−c)\ F̂ . Hence

U(N,R) ⊆ U(N−c, R−c) \ F̂ .

Thus, U(N,R) = U(N−c, R−c) \ F̂ , i.e., Part 1 of the claim holds, which in turn im-
plies Parts 2 and 3 of the claim. These parts and the inductive assumption – Theorem
1 Parts 2(a) and 3(a) for (N−c, R−c) – together imply that Parts 2(a) and 3(a) of The-
orem 1 hold for problem (N,R). Recall that to maximize the number of incompatible
pairs matched under (N,R), we need to match all pairs in

(
O(N−c, R−c) ∪ {c}

)
\ Q̂

with pairs in U(N−c, R−c) \ F̂ , at most one pair from each D ∈ G = D(N−c, R−c) \ F̂
with a pair in

(
O(N−c, R−c)∪ {c}

)
\ Q̂, and |D| − 1 pairs of D with each other. This

with Proposition 1 implies that Part 1 and Part 3(b) of Theorem 1 hold for problem
(N,R), which in turn implies Part 2(b) of Theorem 1 holds for problem (N,R). �

We conclude the section with three remarks on the structure of Pareto-efficient
matchings:

Remark 1 Observe that Claims 1 and 6 in the proof of the theorem give a com-
plete picture of the evolution of the demand decomposition when a new compatible
pair c joins the pool:

• If c is not mutually compatible with a pair in U(N−c, R−c), the overdemanded
set and the set of dependent components do not change; on the other hand,
each self-sufficient component of (N,R) is either a self-sufficient component of
(N−c, R−c) or a super component that includes c and possibly some other self-
sufficient components of (N−c, R−c).
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• If c is mutually compatible with a pair in U(N−c, R−c), the overdemanded set
is determined through removal of pairs in Q̂ from the prior overdemanded set
union {c}, and

? each dependent component of (N,R) is a dependent component of (N−c, R−c)
that is not covered by the set F̂ ;

? each self-sufficient component of (N,R) is either a self-sufficient component
of (N−c, R−c) or is a super component containing the pairs in Q̂ ∪ F̂ ,
which have newly joined the perfectly matched set, and possibly some
self-sufficient components of (N−c, R−c).

Remark 2 The number of incompatible pairs (un)matched in an efficient match-
ing (when a compatible pair joins the pool) can fully be determined through the same
statistic prior to the addition of compatible pair c: In the problem (N,R),

• If c is not mutually compatible with a pair in U(N−c, R−c), then any efficient
matching of (N,R) leaves |U(N−c, R−c)| − (|O(N−c, R−c)| − |D(N−c, R−c)|) in-
compatible pairs unmatched, the same number as an efficient matching of the
problem (N−c, R−c).

• if c is mutually compatible with a pair in U(N−c, R−c), then any efficient match-
ing of (N,R) leaves |U(N−c, R−c)| − (|O(N−c, R−c)| − |D(N−c, R−c)|) − 1 in-
compatible pairs unmatched, one less than an efficient matching of the problem
(N−c, R−c).

This remark requires a short proof:
The first bullet point is proven as follows: By E(N−c, R−c) ⊆ E(N,R) and Propo-

sition 1, |T µ′ | = |T µ| for all µ′ ∈ E(N−c, R−c) and µ ∈ E(N,R). By Theorem 1, any ef-
ficient matching of (N−c, R−c) leaves |U(N−c, R−c)|−(|O(N−c, R−c)|−|D(N−c, R−c)|)
incompatible pairs unmatched. So does any efficient matching of (N,R).

The second bullet point is shown as follows: Let i ∈ U(N−c, R−c) be such that
ri,c = 1. For an efficient matching µ′ ∈ E(N−c, R−c) with µ′(i) = i, we have µ =

µ′ ∪{(i, c)} ∈ M(N,R). Thus, µ matches one more incompatible pair than µ′, which
leaves |U(N−c, R−c)|−(|O(N−c, R−c)|−|D(N−c, R−c)|) incompatible pairs unmatched
by Theorem 1. Suppose µ /∈ E(N,R). Then, by Proposition 1, there is a matching
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ν ∈ M(N,R) that matches more incompatible pairs than µ. Matching ν would
necessarily match c. Matching ν ′ = ν \ {(c, µ(c))} will match one more incompatible
pair than µ′ and ν ′ ∈ M(N−c, R−c). This through Proposition 1 contradicts µ′ ∈
E(N−c, R−c) . Thus, µ ∈ E(N,R), completing the proof of Remark 2.

Remark 3 One other observation regards Corollary 1, which states the possibility
of minimizing the number of compatible pairs matched in any efficient matchings.
Theorem 1 immediately places a constraint on which compatible pairs need to be
matched at all efficient matchings, while we have more flexibility in deciding which
ones to match or not: The compatible pairs in NC ∩ O(N,R) should be matched at
every efficient matching. On the other hand, the number of required compatible pairs
in NC ∩ P (N,R) can be optimized so that the minimum number of compatible pairs
in this set are matched at an efficient matching.

5 Conclusion

Motivated by the increased willingness of the transplantation community to consider
altruistically unbalanced kidney exchanges, we analyzed the impact of including com-
patible pairs in kidney exchange pools. We have shown that the GED structure that
is available in the absence of compatible pairs is also preserved when compatible pairs
are present. Not only is the elegant structure of the set of Pareto efficient matchings
preserved, the role played by compatible pairs is also highly intuitive and structured.
We have shown that the inclusion of each compatible pair benefits the entire patient
population, and thus unlike other design considerations that provide efficiency gains
at the expense of harming various subsets of patients, inclusion of compatible pairs
provides much larger gains without any adverse distributional effects.

Motivated by our analysis, Yilmaz [2011b] considers the impact of inclusion of
two-way list exchanges to the system rather than altruistically unbalanced kidney
exchanges. The idea is the integration of incompatible pairs who are willing to ex-
change the donor’s live kidney with a deceased donor kidney. He shows that the
graph-theoretic structure of his model can be interpreted as an extension of the graph-
theoretic structure of our model. However, despite the close relation between the two
models, he shows that a GED-like decomposition no longer exists in his framework.
In particular, the number of patients who receive live donor transplants no longer
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remain the same across Pareto-efficient matchings. His analysis shows that the GED
structure cannot be taken for granted even in a relatively small modification to our
model.
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