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Abstract 
 

Heavier vehicles are safer for their own occupants but more hazardous for the occupants of 
other vehicles. In this paper we estimate the increased probability of fatalities from being hit 
by a heavier vehicle in a collision. We show that, controlling for own-vehicle weight, being 
hit by a vehicle that is 1,000 pounds heavier results in a 49 percent increase in the baseline 
fatality probability. Estimation results further suggest that this risk is even higher if the 
striking vehicle is a light truck (SUV, pickup truck, or minivan). We calculate that a second-
best gasoline tax, which accounts for the external risk generated by the gain in fleet weight 
since 1989, is approximately 28 cents per gallon. We further calculate that the total fatality 
externality is roughly equivalent to a gas tax of $1.04 per gallon. We find that the difference 
between a gas tax and an optimal weight varying mileage tax is modest for most vehicles. 
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1. INTRODUCTION 

 

 The average weight of light vehicles sold in the United States has fluctuated 

substantially over the past 35 years. From 1975 to 1980, average weight dropped almost 

1,000 pounds (from 4,060 pounds to 3,228 pounds), likely in response to rising gasoline 

prices and the passage of the Corporate Average Fuel Efficiency (CAFE) standard. As 

gasoline prices fell in the late-1980s, however, average vehicle weight began to rise, and by 

2005 it had attained 1975 levels (US EPA 2009). A rich body of research examines the 

effects of CAFE and gasoline prices on consumers’ vehicle choices (Goldberg 1998; Portney 

et al. 2003; Kleit 2004; Austin and Dinan 2005; Klier and Linn 2008; Bento, Goulder, 

Jacobsen, and von Haefen, 2009; Busse, Knittel, and Zettelmeyer 2009; Li, Timmins, and 

Von Haefen 2009). 

 One question that remains unresolved is how the choices consumers make in 

response to gasoline prices and fuel economy standards affect traffic fatalities. Traffic 

accidents are the leading cause of death for persons under the age of 40, and they are a major 

source of life-years lost.2 Intuitively, heavier cars are safer than lighter cars, and previous 

research has argued that a heavier vehicle fleet is a safer vehicle fleet (Crandall and Graham 

1989). Much of the subsequent transportation safety literature has focused on the effects of 

average vehicle weight on safety, reaching varying conclusions.3 Recent work by Jacobsen 

(2010) explores the traffic safety implications of different fuel economy regulatory schemes 

across ten vehicle classes. The paper uses micro data on fatal accidents and concludes that 

tightening fuel economy standards will not increase fatalities as long as the standards are 

“footprint based” or unified across cars and trucks.4 

                                                
2 Lung cancer, a disease that is generally the result of smoking, kills approximately four times as many 
Americans each year as traffic accidents. However, the average lung cancer decedent is 71 years old while the 
average traffic accident decedent is only 39 years old. The number of life-years lost to traffic accidents is thus 
similar in magnitude to the number of life-years lost to lung cancer.  
3 Much of the transportation safety literature is based on time series correlations between average vehicle 
weight and aggregate fatality rates (Robertson 1991; Khazzoom 1994; Noland 2004, 2005; Ahmad and Greene 
2005). Two exceptions are Kahane (2003) and Van Auken and Zellner (2005), which use micro data containing 
fatal accidents only. They supplement the fatal accident data with data on police-reported accidents from 
several states to estimate the rate at which different types of vehicles enter into collisions. These studies come 
to varying conclusions regarding the sign of the relationship between average vehicle weight and overall fatality 
rates, but all conclude that the magnitude of the relationship is relatively modest. 
4 If the current separation between cars and trucks is maintained and standards are not footprint based, 
Jacobsen estimates that raising CAFE standards by one mile per gallon could increase traffic fatalities by 149 
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 From an economic standpoint an unregulated vehicle fleet must be inefficiently 

heavy. A heavier vehicle is safer for its own occupants but more hazardous for the occupants 

of other vehicles. The safety benefits of vehicle weight are therefore internal, while the safety 

costs of vehicle weight are external. Consumers’ vehicle choices thus have the important 

features of an “arms race.” To date, however, no detailed attempt has been made to quantify 

the external costs of vehicle weight. This figure is essential for determining the socially 

optimal weight of the vehicle fleet, and it cannot be inferred from the effects of average 

vehicle weight or fuel economy regulations on traffic safety. 

 We quantify the external costs of vehicle weight using a large micro data set on 

police-reported crashes for a set of 8 heterogeneous states. Unlike the data sets employed in 

the previous transportation literature or Jacobsen (2010), our data set includes both fatal and 

nonfatal accidents. Using unique vehicle identifiers (VINs), we determine the curb weight of 

each vehicle involved in an accident, thereby minimizing concerns about measurement error 

induced attenuation bias. The rich set of vehicle, person, and accident observables in the 

data set allow us to minimize concerns about omitted variables bias in our coefficients on 

weight. Using these data, we estimate the external effects of vehicle weight on fatalities and 

serious injuries conditional on a collision occurring. 

Two key results emerge from our estimates. First, we show that vehicle weight is an 

important determinant of fatalities in other vehicles in the event of a multivehicle collision; 

our preferred estimate implies that a 1,000 pound increase in striking vehicle weight raises 

the probability of a fatality in the struck vehicle by 49%. When we translate this higher 

probability of a fatality into external costs relative to a small baseline vehicle, the total 

external costs of vehicle weight from fatalities alone are estimated to be $97 billion per year. 

Second, by separately controlling for vehicle weight and whether the striking vehicle is a light 

truck (i.e., a pickup truck or sport utility vehicle), we show that light trucks significantly raise 

the probability of a fatality in the struck car – in addition to the effect of their already higher 

vehicle weight. 

Our unique data set allows us to condition on a collision occurring and ensures that 

our results cannot be generated by differences in collision rates between drivers of lighter 

and heavier vehicles. Nevertheless, driver selection could bias our results if drivers of heavy 

                                                                                                                                            
deaths per year. Jacobsen does not attempt to estimate the causal effect of vehicle weight on fatalities in other 
vehicles, which is the focus of this paper. 



4
 
 
 

 
 

 4 

vehicles have a tendency towards severe accidents. We rule out this possibility through three 

tests. First, we show that vehicle weight does not predict fatalities when two vehicles of 

equal weight collide. This suggests that drivers of heavy vehicles are not predisposed towards 

severe accidents. Second, we show that our estimates persist even when controlling for 

specific vehicle type via make and model fixed effects. Finally, we instrument for striking 

vehicle weight using the number of occupants in the striking vehicle and find estimates that 

are close to our least squares estimates. All three tests suggest that we successfully identify 

the causal effect of vehicle weight on the probability of fatalities in two-car collisions. 

We apply our estimates to consider whether a gasoline tax could internalize most of 

the external costs and conclude that it could. Our calculations suggest that the external costs 

of vehicle weight eclipse any other component in existing estimates of vehicle externalities 

per mile driven (Portney, Parry, Gruenspecht and Harrington, 2003). Furthermore, our 

calculations imply that the level of the optimal gasoline tax is substantially higher than 

previously estimated (e.g. Parry and Small 2005). 

 The paper is organized as follows. Section 2 presents the analytic and empirical 

framework and discusses the previous literature. Section 3 details the data. Section 4 presents 

the main results, and Section 5 presents falsification tests and alternative sources of 

identification to check whether selection bias contaminates our results. Section 6 links the 

results to energy policy implications, focusing in particular on the gasoline tax. Section 7 

concludes. 

 

2. ANALYTIC AND EMPIRICAL FRAMEWORK 

 

 Consumers’ vehicle choices represent a classic example of an externality driven 

“arms race.” Purchasing a heavier vehicle enhances safety for each individual, but also makes 

other roadway users less safe. The net benefit of vehicle weight on traffic fatalities is thus 

smaller than the private benefit of vehicle weight on traffic fatalities; consumers are 

incentivized to purchase heavier vehicles than is socially optimal. 

Figure 1 presents a stylized plot of the marginal private and social costs per mile of 

driving a heavier vehicle against the marginal private benefit per mile of driving a heavier 

vehicle. The marginal private cost of a heavier vehicle is positive due to the higher use of 

inputs to produce heavier vehicles (e.g. more steel, bigger tires, etc.) and the lower fuel 
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efficiency of heavier vehicles. The marginal private benefit of a heavier vehicle is positive but 

decreasing in vehicle weight – heavier vehicles provide increased protection in a collision and 

more cargo capacity, but as size increases the vehicle becomes increasingly difficult to park 

and handle.5 The consumer equates marginal private cost and marginal private benefit and 

buys a vehicle weighing W* pounds. The private operating cost per mile is P*. However, a 

heavier vehicle may impose a cost on other roadway users in the form of increased risk of 

fatalities in a collision with this vehicle, and the driver does not bear this external cost. If 

external costs increase linearly in vehicle weight, as we show is the case, the social marginal 

cost curve lies above the private marginal cost curve by a fixed amount equal to the external 

per mile cost. To maximize social welfare, our stylized consumer should purchase a car 

weighing W** pounds, where W** < W*. The necessary per-mile tax to induce this behavior 

is the marginal external cost of vehicle weight, t*. If the consumer chooses a vehicle of 

weight W*, the external cost from this choice over the socially optimal choice of a vehicle 

weighing W** would be t*·(W**–W*). We calculate this individual cost and aggregate it 

across all individuals to arrive at the total external costs.  

 It is important to note that the primary costs of this “arms race” accrue not in the 

form of traffic fatalities – which on net may change little with a uniform reduction in fleet 

weight – but rather in the form of purchases of larger vehicles that are more expensive to 

construct and operate. In this sense it is similar to a conventional arms race, which need not 

increase the probability of conflict even as both countries spend large amounts on new 

weapons. 

 In principle, liability rules and insurance regulations could internalize many of the 

external costs due to vehicle weight. If drivers of heavy vehicles know that they will be held 

liable for deaths in other vehicles, then they should take these risks into account when 

purchasing their own vehicles. If insurance companies understand that heavier vehicles pose 

more danger to other roadway users, then they should charge higher liability premiums to 

drivers of heavy vehicles. In practice, however, liability rules and insurance regulations fail to 

internalize the fatality risks generated by heavy vehicles. 

                                                
5 At some point the marginal private benefits of weight become negative. For example, few drivers would want 
a 30 foot stretched limousine as their primary vehicle, even if it were luxuriously appointed and heavily 
subsidized. 
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 Tort liability rules are inadequate to internalize fatality risks for two reasons. First, 

liability only applies in cases in which a driver behaves in a negligent manner (White 2004). 

This implies that the driver of any given vehicle will frequently not be liable in the event of 

multivehicle accident. Second, even if found liable, few drivers possess assets that are 

sufficient to cover the cost of a fatality. The value of a statistical life used by the United 

States Department of Transportation in cost-benefit analyses is $5.8 million (2008 dollars), 

but only 7 percent of families in the United States had a net worth exceeding $1 million in 

2001 (Kennickell 2003). 

 Though few drivers can cover the cost of a fatality, liability insurance regulations 

could force most drivers to pay the expected liability costs of operating their vehicles. Again, 

however, the mandated levels of liability insurance are inadequate to cover the costs of a 

fatality. Two states (Florida and New Hampshire) require drivers to carry no liability 

coverage for injuries at all, and 44 states require drivers to carry $25,000 or less in liability 

coverage for each person injured. Only five states require more than $25,000 of liability 

coverage for each person injured (Insurance Information Institute 2010).6 Many drivers 

remain uninsured despite the regulations, and even drivers that carry more than the 

mandated minimums rarely have policies that exceed several hundred thousand dollars of 

coverage. 

 While liability rules and insurance regulations cannot internalize the majority of 

fatality costs, they may internalize a significant fraction of incapacitating injury costs. 

Estimates of the value of an incapacitating injury are far lower than the value of a statistical 

life, and it is plausible that insurance policies carried by many drivers could cover the costs 

of an incapacitating injury.7 For this reason, our policy analysis focuses on external fatality 

costs and ignores external incapacitating injury costs. Accounting for injury costs would 

increase the magnitude of our results, but we cannot accurately estimate what fraction of 

injury costs are already internalized. 

 Previous work on the “arms race” on American roads has focused on the internal 

and external risks posed by the largest vehicles – pickup trucks and sport utility vehicles 

                                                
6 Minnesota and North Carolina each require $30,000 of liability coverage for each person injured, and Alaska, 
Maine, and Wisconsin each require $50,000 of liability coverage for each person injured. None of these states 
are in our data set. 
7 The National Safety Council, for example, estimates the comprehensive cost of an incapacitating injury at 
$214,000 (2008 dollars). In comparison, they estimate the comprehensive cost of a fatality at $4.2 million. 
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(SUVs) – relative to the typical passenger car. White (2004), Gayer (2004), Anderson (2008), 

and Li (2009) all conclude that light trucks (pickups and SUVs) impose significant risks 

relative to passenger cars. This study expands upon that literature by considering the 

fundamental role that vehicle weight plays in determining external risk. We recognize that 

any vehicle that is heavier than the smallest feasible vehicle poses some external risk to other 

roadway users. We quantify that risk and find that the total external costs of vehicle weight 

substantially exceed the external costs that accrue only from light trucks. Our comprehensive 

results span the entire range of the vehicle fleet and allow us to consider the broader 

implications of vehicle weight for energy policy. 

 To measure the effect of vehicle weight on external fatalities under ideal conditions, 

we would randomly assign vehicles of differing weights to drivers and observe the external 

fatality rates by vehicle type. Such an experiment is infeasible in practice, and even an 

analogous study using observational data is impractical due to substantial measurement error 

in vehicle stocks and model-level vehicle miles traveled in most states. Instead, we focus on 

the risk of a fatality conditional on a collision occurring. A key identifying assumption for 

our research design is that vehicle weight has no causal effect on the probability of a 

collision. We discuss this assumption below and conclude that, if it is violated, then the 

effect of vehicle weight on the probability of a collision is likely positive. Our estimates thus 

represent a lower bound on the effect of weight on external fatalities. 

 Consider the expected external fatalities for a vehicle of type i during time interval t. 

For simplicity, assume that t is short enough that the probability of multiple collisions during 

t is effectively zero. 

E fatalitiesit[ ] = E E fatalitiesit | collisionit[ ]!" #$ = E fatalitiesit | collisionit[ ] %P collisionit = 1( )     (1)   

Equation (1) must hold via the law of iterated expectations. It implies that if weight 

has no effect on the probability of a collision, then the total effect of weight on external 

fatalities is proportional to the effect of weight on external fatalities conditional on a 

collision occurring. Weight may affect the probability of a collision in two ways, however. 

First, from an engineering perspective heavier vehicles are less maneuverable and have 

longer braking distances. Even if driver behavior is unchanged, heavier vehicles may 

therefore get into more accidents. Second, heavier vehicles may also affect driver behavior. 

On the margin, drivers may respond to the internal safety benefits of heavy vehicles by 
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increasing their optimal collision rate (Peltzman 1975). Both the physical characteristics of 

heavier vehicles and the potential driver response to heavier vehicles could therefore 

generate a positive effect of vehicle weight on collision rates. 

 Empirical evidence also suggests that, if anything, heavier vehicles have higher 

collision rates than lighter vehicles. Evans (1984) examines the relationship between accident 

rates and vehicle weight using accident data and vehicle registration data from North 

Carolina, New York, and Michigan. He finds that, after conditioning on driver age, 4,000 

pound vehicles have accident rates that are 39 percent higher than 2,000 pound vehicles. 

More recently, White (2004) and Anderson (2008) estimate that light trucks are 13 to 45 

percent more likely to experience multivehicle collisions than passenger cars.8 Of course, 

some of the observed differences in crash rates may be due to driver selection; careless 

drivers may choose heavier vehicles. Nevertheless, both theory and empirical evidence 

suggest that weight may directly increase the probability of experiencing a collision. We thus 

interpret our estimates – which are conditional on a collision occurring – as lower bounds on 

the causal effect of weight on external fatalities. 

 
3. DATA 

 

 The data set consists of the population of police-reported accidents for eight states: 

Florida, Kansas, Kentucky, Maryland, Missouri, Ohio, Washington and Wyoming. These 

data come from the State Data System, maintained by the National Highway Traffic Safety 

Administration (NHTSA). We obtained permission from the head of each state’s police 

force to use the data. The SDS data include information on injuries and fatalities, geographic 

location, weather conditions, use of safety equipment, and driver and occupant 

characteristics. We selected these eight states out of the 32 states currently participating in 

the SDS as they report the vehicle identification number (VIN) for the majority of vehicles 

in the data set. We purchased data tables from DataOne Software to match the first 9 digits 

of the VIN to curb weight data for each vehicle. We therefore observe curbside vehicle 

weight for over 70% of the vehicles in our data set. For analytic purposes, we decompose 

the data set into three sub-samples, two-vehicle crashes, three-vehicle crashes, and single-

                                                
8 Using a different methodology, Gayer (2004) estimates that light truck collision rates may be as much as 200 
percent higher than passenger car collision rates. 
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vehicle crashes. The two-vehicle crash data set is the focus of most of our analyses. It 

contains 6.5 million vehicles with curbside weight data.9 

 One important feature of the SDS data is that accidents only appear in the data set if 

the police take an accident report. According to NHTSA documentation, various estimates 

suggest that only half of all motor vehicle accidents are police reported. While many of the 

unreported accidents are single vehicle accidents, some no doubt involve two vehicles as 

well. This sampling frame could affect our estimates if vehicle weight affects the probability 

of a police report, all other factors held constant. Serious multivehicle accidents will always 

be reported to the police regardless of vehicle weight, but vehicle weight could affect the 

probability that a minor accident is reported to the police. Unlike the probability of a 

collision, there is no a priori reason to believe that vehicle weight must have a positive effect 

on the probability of a police report. On the one hand, collisions involving heavier vehicles 

cause more property damage, all other factors held constant, because more kinetic energy 

must be dissipated.10 On the other hand, some heavier vehicles – pickup trucks – are more 

likely to be involved in rugged work. These trucks may have accumulated more dents, 

reducing the likelihood that they will report property damage from a minor accident. 

 If vehicle weight positively affects the reporting probability of minor accidents, then 

our estimates will represent a lower bound on the effect of weight on external fatalities. If 

vehicle weight negatively affects the reporting probability of minor accidents, however, then 

our estimates of the effect of weight on external fatalities could be upwardly biased. To test 

whether the “ruggedness” hypothesis affects our results, we estimate our regressions while 

limiting the sample to collisions that do not involve any light trucks. This sample restriction 

does not reduce the coefficient estimates.11 We also conduct a series of falsification tests in 

Section 5 that imply that the sampling frame does not bias our results. 

 Table 1 presents summary statistics from our two-vehicle collision data set. This data 

set contains all collisions involving two light vehicles built after 1960. We define a light 

vehicle as any car, pickup truck, SUV, or minivan that weighs between 1,500 and 6,000 

                                                
9 The dataset contains the population of police reported accidents for Florida (1989-2005), Kansas (1990-
2005), Kentucky (1998-2005), Maryland (1989-2005), Missouri (1989-2005), Ohio (1989-2005), Washington 
(1989-2005), and Wyoming (1998-2005). 
10 Kinetic energy is dissipated in a collision through the deformation of materials (i.e., property damage). 
11 In the sample that excludes all collisions involving light trucks, the estimated effects are 10 to 20 percent 
larger than the analogous estimates from the main sample, reported in Table 2. This implies that the 
“ruggedness” hypothesis is not upwardly biasing our main results (see online Appendix Table A1). 
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pounds. We exclude collisions involving heavy trucks. The first two columns report statistics 

for the entire two-vehicle collision data set. The mean vehicle weight in this data set is 3,052 

pounds, and approximately 17.5 percent of vehicles are light trucks (pickups, SUVs, or 

minivans). The average model year is 1992, and the average number of occupants per vehicle 

is 1.44. The probability of a fatality in each vehicle is 0.19 percent (i.e., 0.0019), and the 

probability of a serious injury in each vehicle is 3.0 percent. Alcohol is involved in 

approximately 9 percent of collisions. 

 The last two columns of Table 1 report summary statistics for the estimation sample. 

The estimation sample is smaller than the overall two-vehicle collision sample because we 

drop any collisions in which curbside weight is missing for either vehicle. This restriction 

reduces the sample from 9.7 million observations to 4.8 million observations. Nevertheless, 

the two samples appear similar along most observable measures. We confirm in Section 4 

that the missing weight data do not bias our estimates. 

 

4. SPECIFICATION AND RESULTS 

 

 Consider a collision involving two vehicles, Vehicle 1 and Vehicle 2. Suppose that we 

label Vehicle 1 as the “struck vehicle” and Vehicle 2 as the “striking vehicle.” These labels 

are for expositional purposes only – they do not signify which vehicle may be at fault in the 

collision.12 The external effects of vehicle weight are given by the effect of striking vehicle 

weight on the probability of fatalities in the struck vehicle. The internal effects of vehicle 

weight are given by the effect of struck vehicle weight on the probability of fatalities in the 

struck vehicle. The former is the quantity of policy interest, but we report results for the 

latter as well for comparison purposes. 

 We estimate the conditional expectation of fatalities occurring in the struck vehicle as 

a function of striking vehicle weight, struck vehicle weight, and a rich set of covariates. We 

estimate the conditional expectation function (CEF) using either a linear probability model 

(LPM) or a probit.13 For robustness, we report estimates for both models. 

                                                
12 The labels are symmetric in that each vehicle enters our data set twice, once as the striking vehicle and once 
as the struck vehicle. 
13 The LPM cannot literally be true. Nevertheless, it provides the minimum mean squared error linear 
approximation to the true CEF, and in our case the LPM coefficients are always close to the corresponding 
average marginal effects from the probit models. 
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 We specify the linear probability model as follows: 

 

E struck veh fatalityi | striking veh weighti ,  struck veh weighti ,  X1i ,  X2i ,  Wi[ ]                      (2) 

 = !1striking veh weighti + !2struck veh weighti + X1i"1 + X2i"2 +Wi"3  

 

 In equation (2), !1  represents the coefficient of interest, X1i represents a set of 

characteristics pertaining to the striking vehicle in collision i, X2i represents a set of 

characteristics pertaining to the struck vehicle in collision i, and Wi represents a set of 

characteristics common to both vehicles in collision i. The probit model modifies equation 

(2) as follows: 

 

E struck veh fatalityi | striking veh weighti ,  struck veh weighti ,  X1i ,  X2i ,  Wi[ ]                      (3) 

 = ! "1striking veh weighti +"2struck veh weighti + X1i# 1 + X2i# 2 +Wi# 3( )  

 

 In equation (3), the link function ! is the normal CDF. Therefore, the marginal 

effect of striking vehicle weight varies with striking vehicle weight. For comparability with 

the LPM results, for each probit regression we report the average marginal effect across all 

observations included in that regression.14 

 Table 2 presents results from estimating equations (2) and (3) on the two-vehicle 

collision data set. The number of observations drops by 50 percent relative to the full data 

set because our regressions only include collisions in which vehicle weight is coded for both 

vehicles. Analyses restricted to the subset of states with low rates of missing weight data 

indicate that this constraint does not bias our results.15 Also note that each vehicle appears in 

                                                
14 Some of our probit regressions include fixed effects, raising the possibility of inconsistency due to the 
incidental parameters problem. However, in most cases we have many observations for each fixed effect, and 
as shown in Fernandez-Val (2009), the incidental parameters problem generates a trivial degree of bias in the 
probit model when estimating marginal effects (which are our quantities of interest). 
15 Weight data are missing for vehicles for which we do not have VINs. The percentage of vehicles with 
missing weight data ranges from 11.7 percent (Wyoming) to 52.2 percent (Maryland). When estimating our 
main statistical models on the subset of states with low rates of missing weight data (Ohio, Washington, and 
Wyoming), we find that an additional 1,000 pounds of striking vehicle weight increases the probability of a 
fatality in the struck vehicle by 47 to 52 percent. When estimating the same models on the subset of states with 
high rates of missing weight data (Florida, Kansas, Kentucky, Maryland, and Missouri), we find that an 
additional 1,000 pounds of striking vehicle weight increases the probability of a fatality in the struck vehicle by 
49 percent. The rate of missing weight data thus appears to have no impact on our estimates (see online 
Appendix Table A2). 
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the two-vehicle collision data set twice, once as the struck vehicle and once as the striking 

vehicle. We therefore cluster the standard errors at the collision level to account for 

correlation between observations that pertain to the same collision. 

 The first and second columns in Table 2 include the following covariates: vehicle 

weight, light truck indicators, and year fixed effects. A striking vehicle and struck vehicle 

version of each of the first two variables is included. The first column implies that an 

increase in weight of 1,000 pounds in the striking vehicle is associated with a statistically 

significant 0.10 percentage point increase in the probability of a fatality in the struck vehicle 

(t = 25.0). This coefficient represents a 53 percent increase over the average probability of a 

fatality in a struck vehicle in this sample (0.19 percent). In comparison, an increase in weight 

of 1,000 pounds in the struck vehicle is associated with a smaller 0.04 percentage point 

decrease in the probability of a fatality in the struck vehicle (t = –14.7). Light trucks increase 

the probability of a fatality in the struck vehicle by 0.10 percentage points (51 percent of the 

sample mean), even after controlling for striking vehicle weight (t = 13.7). The results from 

the probit model in column (2) display z-statistics that are similar to the t-statistics in column 

(1), and the average marginal effect generated by the probit model is of similar magnitude to 

the LPM coefficient (0.10 percentage points versus 0.09 percentage points). 

 Subsequent columns in Table 2 add additional covariates to the regressions. Columns 

(3) and (4) add controls for rain, darkness, day of week (weekday versus weekend), Interstate 

highway, a quadratic in model year for each vehicle, and year, hour, and county fixed effects. 

The estimated effect of striking vehicle weight changes little in both the LPM and probit 

models. Columns (5) and (6) add controls for any seat belt usage, a quadratic in driver age, 

indicators for drivers under 21 or over 60, and indicators for male drivers or young male 

drivers. A striking vehicle and struck vehicle version of each of these variables is included. 

The inclusion of these driver characteristics has no impact on the primary coefficient of 

interest (striking vehicle weight). They do, however, increase the magnitude of the struck 

vehicle weight coefficient to –0.09 percentage points (t = –18.4). 

 Column (7) of Table 2 adds city fixed effects and is our preferred specification. City 

fixed effects should absorb any geographic heterogeneity in fatality rates that could be 

correlated with average vehicle weight. This issue would arise if, for example, heavy vehicles 

clustered in rural areas and these areas had deadlier accidents due to a prevalence of 

undivided highways or a sparseness of hospitals. At this point there are too many regressors 
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to reliably estimate a probit model, and for many cities the city fixed effect perfectly predicts 

the fatality indicator, forcing the city to be dropped. We thus estimate only linear probability 

models in columns (7) through (9) of Table 2. The addition of city fixed effects has little 

impact on the coefficient on striking vehicle weight, changing it from 0.11 percentage points 

to 0.12 percentage points (t = 19.8). Column (8) estimates the same specification as column 

(7) but limits the sample to observations for which we have data on the number of 

occupants per vehicle and the seat belt usage of each occupant (two controls we add in the 

next column). This restriction shrinks the sample by 50 percent and reduces the coefficient 

on striking vehicle weight to 0.06 percentage points (t = 9.1). However, the ratio of the 

coefficient to the average fatality rate in the sample remains stable (45 percent). The change 

in the coefficient simply reflects the fact that the restricted sample contains states with a 

lower threshold for reporting accidents, and thus a lower fatality rate per reported accident. 

Column (9) adds controls for the number of occupants per vehicle and seat belt usage rate of 

these occupants. The coefficient on striking vehicle weight is unchanged from column (8). 

 The results in Table 2 suggest that selection bias has little impact on the striking 

vehicle weight coefficient but is a larger issue for the struck vehicle weight coefficient. In 

particular, the addition of driver characteristic controls in columns (5) and (6) has a notable 

impact on the struck vehicle weight coefficient but almost no impact on the striking vehicle 

weight coefficient. When adding covariates one at a time, we find that virtually all of the 

change in the struck vehicle weight coefficient between columns (4) and (6) can be attributed 

to the addition of the controls for driver age. The patterns strongly suggests that older 

drivers tend to drive heavier vehicles and that older drivers are more susceptible to dying in 

crashes. Since there is little correlation between the age of the struck vehicle’s driver and the 

weight of the striking vehicle, however, the addition of driver age controls has no impact on 

the striking vehicle weight coefficient. Stated simply, heavy vehicles do not “seek out” 

elderly drivers to crash into. 

 The results in Table 2 also suggest that the external risk posed by light trucks is not 

due solely to their heavy weight. The coefficient on the indicator for whether the striking 

vehicle is a light truck is positive and statistically significant in every column. In our 

preferred specification, column (7), the coefficient implies that being struck by a light truck 

increases the probability of a fatality by 0.07 percentage points (t = 7.5), even after 

conditioning on striking vehicle weight. This represents a 30 percent increase over the 
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average fatality rate in the sample. In comparison, if we do not control for vehicle weight, 

then the light truck coefficient doubles to 0.15 percentage points (i.e., 0.0015).16 The 

additional risk posed by light trucks may be due to the stiffness of their frames or their 

height incompatibility with other vehicles (Hakim 2003). However, the robustness tests that 

we perform in Section 5 for the vehicle weight coefficient do not carry over to the light truck 

coefficient. Thus we cannot rule out the possibility that a portion of the light truck 

coefficient may represent driver selection effects – i.e., consumers that purchase light trucks 

may drive in an aggressive manner that generates particularly severe collisions. For this 

reason we do not incorporate the light truck coefficient when calculating the total externality 

across all vehicles in Section 6. 

 Table 3 presents results from estimating versions of equations (2) and (3) in which 

the dependent variable is the presence of serious injuries in the struck vehicle. The 

regressions are analogous to those in Table 2, but the dependent variable has changed from 

any fatalities to any serious injuries. The striking vehicle weight coefficients (or marginal 

effects, in the case of probit regressions) in Table 3 are approximately 6 times larger than the 

corresponding coefficients in Table 2. This difference arises because the probability of a 

serious injury in these collisions is approximately 15 times higher than the probability of a 

fatality. In the preferred specification, column (7), a 1,000 pound increase in striking vehicle 

weight raises the probability of serious injuries in the struck vehicle by 0.7 percentage points 

(t = 35.5). This figure represents 20 percent of the average probability of a serious injury in 

this sample. 

 Overall, the pattern of coefficients in Table 3 is similar to the pattern of coefficients 

in Table 2, with one exception. When the dependent variable is the presence of serious 

injuries (Table 3), the magnitude of the struck vehicle weight coefficient is larger than the 

magnitude of the striking vehicle weight coefficient. For example, in the preferred 

specification the striking vehicle weight coefficient is 0.7 percentage points while the struck 

vehicle weight coefficient is –0.8 percentage points. This contrasts with Table 2, in which the 

magnitude of the struck vehicle weight coefficient is always smaller than the magnitude of 

                                                
16 The 0.15 percentage point coefficient represents 62 percent of the average fatality rate in the sample. This 
effect is similar in magnitude to the external effects of light trucks in two-vehicle collisions that White (2004) 
and Anderson (2008) estimate. Anderson (2008), for example, estimates that light trucks increase the 
probability of a fatality in the struck vehicle by approximately 60 percent of the sample average fatality rate. 
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the striking vehicle weight coefficient.17 Since the proportion of serious injuries that 

represent external costs is ambiguous, we focus on fatalities for the remainder of the paper. 

 Table 4 presents results testing for heterogeneity in the effect of striking vehicle 

weight on fatalities. In column (1) we interact the striking vehicle weight variable with 

indicators for whether the striking vehicle is a light truck and whether the struck vehicle is a 

light truck. The interaction coefficients are negative, suggesting that the effect of striking 

vehicle weight is somewhat lower if either vehicle a light truck. However, both coefficients 

are small in magnitude, and neither attains more than marginal significance. In column (2) 

we add a quadratic term in striking vehicle weight. The coefficient on the quadratic term is 

negative, suggesting that the marginal effect of striking vehicle weight may be smaller for 

heavier vehicles. However, the coefficient is again small and statistically insignificant. 

 Columns (3) and (4) replicate columns (1) and (2) but are estimated using the probit 

model instead of the LPM. When using the probit model, the light truck interaction terms 

and the quadratic weight term are highly significant, suggesting non-linear effects from 

striking vehicle weight. In fact, the opposite is true. The probit is an inherently non-linear 

model that forces the marginal effect of vehicle weight to increase in accidents that involve 

heavier striking vehicles.18 Including the light truck interactions or the quadratic weight term, 

however, allows the regression to offset this increase, and the resulting function is much 

closer to a linear function. Figure 2 demonstrates this fact. It plots the estimated marginal 

effects of striking vehicle weight for four models: linear OLS, quadratic OLS, linear probit, 

and quadratic probit.19 The marginal effects of the linear OLS, quadratic OLS, and quadratic 

probit are generally similar, particularly between 2,400 to 4,500 pounds of vehicle weight (a 

range which includes over 80 percent of the vehicles in our sample). In contrast the marginal 

effects of the linear probit model diverge substantially from the marginal effects of the other 

three models. Since both the flexible OLS and flexible probit models suggest that the true 

CEF is approximately linear in striking vehicle weight, and because the probit cannot 

                                                
17 For example, in column (7) of Table 2, the striking vehicle weight coefficient is 0.12 percentage points while 
the struck vehicle weight coefficient is –0.09 percentage points. 
18 The probit marginal effect equals !!!"! ! !, where !!!! represents the standard normal density function. 
Since probability of a fatality is less than 50 percent, !!!"! is increasing in !". The marginal effect of striking 
vehicle weight thus increases in striking vehicle weight. The rate of increase is substantial since the effect of 
striking vehicle weight is large. 
19 The “linear probit” is a model in which there are no higher order terms of striking vehicle weight. It is not 
literally a linear model. The “quadratic probit” is a model in which both striking vehicle weight and striking 
vehicle weight squared appear on the right-hand side. 
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accommodate city level fixed effects, we focus on linear probability models in much of the 

remaining analysis.20 

Though 90 percent of multivehicle collisions involve two vehicles, nine percent 

involve three vehicles, and one percent involve four or more vehicles. Adding 1,000 pounds 

to a vehicle in a three-vehicle collision should increase the risk of a fatality in the other two 

vehicles by less than 49 percent (our preferred estimate from the two-vehicle collision data 

set). This attenuation occurs because the extra mass of the first vehicle is now distributed 

across two other vehicles rather than one other vehicle. We estimate the relationship 

between vehicle weight and fatalities in three-vehicle collisions in Table 5. For expositional 

purposes assume that Vehicle 1 is the struck vehicle and that Vehicles 2 and 3 are the 

striking vehicles. In Table 5 the striking vehicle weight coefficient represents the average 

effect of a 1,000 pound increase in the weight of either Vehicle 2 or 3 (but not both) on the 

probability of a fatality in Vehicle 1. The striking vehicle weight coefficient is positive and 

statistically significant in all specifications, and the magnitude of the coefficient ranges from 

27 to 44 percent of the average probability of a fatality. Our preferred estimate, column (7), 

implies that a 1,000 pound increase in one vehicle raises the probability of a fatality in either 

of the other two vehicles by 34 percent. 

 

5. FALSIFICATION TESTS AND ALTERNATIVE SOURCES OF IDENTIFICATION 

 

 The results in Section 4 demonstrate a strong relationship between striking vehicle 

weight and struck vehicle fatalities. The robustness of this relationship to the inclusion of a 

rich set of accident and driver characteristics, as well as very fine geographic fixed effects, 

suggests that the striking vehicle weight coefficients represent causal effects of weight on 

fatality risk. However, two potential sources of upward bias seem particularly plausible. First, 

driver selection might bias the coefficient estimates if heavier vehicles attract aggressive 

drivers who get into deadlier accidents. Second, the sampling frame might bias the 

coefficient estimates if minor collisions involving heavier vehicles are less likely to be 

                                                
20 For simplicity we assume a linear effect of striking vehicle weight when comparing a gasoline tax to a weight 
varying mileage tax in Section 6. This assumption is conservative in that the fit between the gasoline tax and the 
weight varying mileage tax improves if the true marginal effects decrease below 2,400 lbs and above 4,500 lbs, 
as implied by the quadratic probit. 
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reported to the police, all other factors held constant.21 To test whether either of these 

factors could bias our results, we conduct three exercises. First, we implement a series of 

falsification tests that we benchmark against engineering safety estimates. Second, we 

estimate the effect of striking vehicle weight on fatalities using within-model changes in 

vehicle weight that occur when models are refreshed. Finally, we estimate the effect of 

striking vehicle weight on fatalities using striking vehicle occupants as an instrument for 

weight. 

 

5.1  FALSIFICATION TESTS 

 

 Suppose that heavier vehicles pose no additional risk to other vehicles than lighter 

vehicles do, and that the estimates reported in Section 4 simply reflect the possibility that 

drivers of heavier vehicles are more aggressive (regardless of vehicle weight) or that heavier 

vehicles are less likely to generate police reports. In that case, there should be a strong 

positive correlation between vehicle weight and fatalities or injuries when analyzing two-

vehicle collisions between vehicles of the same weight. These accidents therefore provide an 

opportunity to test whether driver selection bias or sampling frame bias are generating our 

results. 

 It is possible, however, that heavier vehicles are safer than lighter vehicles. In that 

case, a positive driver selection effect might be mitigated by a negative weight effect. Put 

simply, even if drivers of heavier vehicles drive aggressively, our falsification test might 

generate a small coefficient because the heavier vehicles are fundamentally safer. We 

therefore benchmark the results of our falsification tests against the results of NHTSA crash 

tests. NHTSA crash tests entail colliding a vehicle with a concrete barrier; they are meant to 

simulate the results of a collision with a stationary object or a head-on collision with another 

vehicle of similar weight. The primary outcome in the NHTSA crash test is the Head Injury 

Criterion (HIC). This variable is derived from an accelerometer mounted on the crash test 

                                                
21 Note that, unlike the struck vehicle weight coefficients, striking vehicle weight coefficients are unlikely to be 
biased by any correlation between vehicle weight and vehicle safety features. It is plausible that heavier vehicles 
may be more or less likely to have safety features such as airbags, side impact protection beams, and unibody 
construction. However, these safety features will generally be much more helpful to the striking vehicle’s own 
occupants than they are to the occupants of other vehicles that the striking vehicle hits. 
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dummy’s head and measures the forces that the head is exposed to. A higher HIC value 

corresponds to a higher probability of severe or fatal head injury. 

 Table 6 presents results from regressions of HIC scores on vehicle weight using the 

NHTSA crash test data. All regressions include as controls a light truck indicator, a quadratic 

in vehicle model year, and a quadratic in collision speed. The estimation sample in the first 

two columns contains all NHTSA vehicle-to-barrier frontal crash tests conducted from 1973 

to 2009 (the average year is 1996). Column (1) reports regression results when the dependent 

variable is HIC. The results indicate that an additional 1,000 pounds of vehicle weight is 

associated with a statistically insignificant 2.6 percent increase in HIC (15.8 points). Column 

(2) reports regression results when the dependent variable is is an indicator for whether HIC 

exceeds 700. This threshold is of interest because it represents the point at which there is a 

significant (5 percent) chance of severe brain injury (Mertz, Prasad, and Irwin 1997). The 

results indicate that an additional 1,000 pounds of vehicle weight is associated with a 

statistically insignificant 5.6 percent increase in the probability that HIC exceeds 700 (1.6 

percentage points). The composition of vehicles that NHTSA tests is not identical to the 

composition of vehicles on the roadways, however. To account for this fact, we estimate 

regressions in which each test result is weighted by the sales share of the tested vehicle.22 

Columns (3) and (4) report the results from these regressions. The sample size falls because 

we do not have sales share data for every tested vehicle, but the results are qualitatively 

unchanged. An additional 1,000 pounds of vehicle weight is associated with a small, 

statistically insignificant increase in HIC or the probability that HIC exceeds 700. Overall 

there is a weak positive relationship between vehicle weight and HIC values. The point 

estimates suggest that an additional 1,000 pounds of vehicle weight could raise the fatality 

rate by 3 to 7 percent. We thus expect a weak relationship between vehicle weight and 

fatalities in collisions between two equal weight vehicles if our research design is sound. 

Table 7 presents results from regressions in which the estimation sample consists of 

collisions involving two vehicles of similar weight – the difference in vehicle weight cannot 

exceed 200 pounds. In each regression, an indicator for fatalities in the struck vehicle is 

regressed on the average weight of the two vehicles and the set of controls from the 

preferred specification. Column (1) indicates that an increase of 1,000 pounds in average 

vehicle weight predicts a statistically insignificant 7 percent increase in the probability of a 
                                                
22 Vehicle sales share data come from Ward’s Automotive Yearbook. 
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fatality (0.02 percentage points). Column (2) restricts the sample to head-on collisions 

between two vehicles of the same weight, the type of collision simulated by NHTSA. In this 

sample, an increase of 1,000 pounds in average vehicle weight predicts a statistically 

insignificant 14 percent decrease in the probability of a fatality (0.09 percentage points).23 

Columns (3) and (4) replicate columns (1) and (2) but restrict the sample so that the 

difference in vehicle weight cannot exceed 100 pounds. The estimates remain small and 

statistically insignificant but are less precisely estimated. 

 Overall the estimates in Table 7 indicate that there is a weak relationship between 

vehicle weight and fatalities in collisions between two vehicles of equal weight, and we 

cannot reject the hypothesis that this relationship is zero. This finding is consistent with 

NHTSA crash test results (Table 6) and inconsistent with the hypothesis that driver selection 

bias or sampling frame bias is generating the results in Section 4. The most precise estimate 

in Table 7 – column (1) – suggests that increasing average vehicle weight by 1,000 pounds 

raises the fatality rate by 7 percent. This figure falls within the 3–7 percent range implied by 

the NHTSA crash test data. 

In contrast, if the relationship between striking vehicle weight and struck vehicle 

fatalities were generated by driver selection bias or sampling frame bias, then we would 

expect a large positive coefficient on average vehicle weight when two vehicles of equal 

weight collide. The preferred estimate from Section 4 indicates that a 1,000 pound increase 

in striking vehicle weight raises the probability of a fatality in the struck vehicle by 49 

percent. If this coefficient represented driver selection bias, and if two aggressive drivers 

were twice as dangerous as one aggressive driver, then we might expect a 1,000 pound 

increase in both vehicles to raise the probability of a fatality by 98 percent (2*49 = 98). 

However, no coefficient in Table 7 even reaches 10 percent. 

 As an additional set of falsification tests, we examine the relationship between 

vehicle weight and fatalities in collisions involving a single vehicle. If drivers of heavier 

vehicles are more aggressive, then we expect to observe a strong positive relationship 

between vehicle weight and fatalities in these collisions. Table 8 presents results for single-

vehicle collisions. In these collisions, we regress a fatality indicator on vehicle weight and 

other controls. The results in column (1) pertain to all single-vehicle collisions; a 1,000 

                                                
23 The average probability of a fatality is much higher in column (2) than in column (1) because head-on 
collisions are more dangerous than the average collision. 
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pound increase in vehicle weight is associated with a 6 percent increase in the probability of 

a fatality (0.09 percentage points).24 Column (2) pertains to single-vehicle frontal collisions, 

the type of collision simulated by NHTSA. A 1,000 pound increase in vehicle weight is 

associated with a 4 percent increase in the probability of a fatality (0.6 percentage points). 

Columns (3) and (4) present results that are analogous to columns (1) and (2) but are 

estimated using a probit specification instead of a linear probability model. In both columns 

a 1,000 pound increase in vehicle weight is associated with a 3 percent increase in the 

probability of a fatality. In all columns the percentage effects fall within the 3–7 percent 

range implied by the NHTSA crash test data, suggesting no substantial bias due to driver 

selection. 

 

5.2  VEHICLE MODEL FIXED EFFECTS RESULTS 

 

To further establish the robustness of our results, we explore two alternative sources 

of identification. Our first alternative leverages within-model changes in vehicle weight to 

estimate the effect of striking vehicle weight on fatalities. To implement this design we 

include vehicle model fixed effects for the striking vehicle in our preferred specification. The 

effect of striking vehicle weight on fatalities is thus identified off of changes in vehicle 

weight that occur when a vehicle model is refreshed. This design minimizes the impact of 

driver selection as long as the composition of customers for a particular vehicle model 

remains relatively stable when the model is refreshed. 

Table 9 reports results from estimation models that include vehicle model fixed 

effects. Column (1) presents results from our preferred specification estimated on the sample 

for which we have complete vehicle model data. The sample size is substantially smaller than 

our main analytic sample because only five states – Kansas, Kentucky, Maryland, Ohio, and 

Wyoming – report detailed vehicle model data. In this subsample a 1,000 pound increase in 

striking vehicle weight is associated with a 50 percent increase in the probability of a fatality 

in the struck vehicle (0.08 percentage points, t = 8.7). This effect is consistent with the 

estimates from Section 4. Column (2) presents results from the same specification with 

                                                
24 The raw magnitude of the coefficients is much larger in Table 8 than in Table 7 because the fatality rate in 
single-vehicle collisions is approximately 7 times higher than the fatality rate in two-vehicle collisions. This 
occurs because observed single-vehicle collisions tend to be more severe; drivers have no incentive to report 
minor single-vehicle collisions to their insurers or the police. 
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vehicle model fixed effects added.25 A 1,000 pound increase in striking vehicle weight is now 

associated with a 52 increase in the probability of a fatality in the struck vehicle (0.08 

percentage points, t = 4.7). The close correspondence between the two coefficient estimates 

suggests that driver selection does not seriously bias our results. 

  

5.3  INSTRUMENTAL VARIABLES RESULTS 

 

Our second alternate source of identification leverages the number of occupants in 

the striking vehicle as an instrument for striking vehicle weight. The number of occupants in 

the striking vehicle directly affects total striking vehicle weight, so the first condition for an 

instrumental variable – that it be correlated with the regressor of interest – is satisfied. The 

instrumental variables (IV) regression we estimate is: 

 

 

 

struck veh fatalityi = !1striking veh added weight!
i +!2striking veh curb weighti +

                                  X1i" 1 + X2i" 2 +Wi" 3 + #i
       (4) 

 

In this regression,  striking veh added weighti!  equals the number of occupants in 

the striking vehicle multiplied by 164 pounds, which is the average weight of an additional 

occupant circa 2000.26 The regression controls for the curb weight of each vehicle (i.e., 

vehicle weight absent any passengers or cargo) as well as all the covariates from our 

preferred specification. The identification thus comes from variation in the number of 

occupants in the striking vehicle after controlling for the curb weight of the striking vehicle. 

This means that the identifying variation in the IV regression is orthogonal to the variation 

in curb weight that we use in Section 4. 

                                                
25 Across the five states with detailed vehicle model data there are 19,105 make-model combinations. Our 
specification thus includes 19,104 vehicle model fixed effects. 
26 We calculate this figure as follows. First, for the nonrandom subset of accidents for which we have detailed 
occupant characteristics, we tabulate the share of additional occupants that are male adults, female adults, male 
children, and female children. We find that 22.7 percent of additional occupants are male adults, 37.6 percent 
are female adults, 19.5 percent are male children, and 20.2 percent are female children. Using national statistics 
on body weight by gender and age we then compute the average weight of an additional occupant as 0.227*190 
lbs + 0.376*163 lbs + 0.195*110 lbs + 0.202*114 lbs = 149 lbs (Ogden et al. 2004). Finally, we add 15 lbs per 
occupant to account for clothing, outerwear, and personal belongings (149 lbs + 15 lbs = 164 lbs). 
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Nevertheless, it is not obvious that the number of occupants in the striking vehicle 

satisfies the second condition for an instrumental variable – that it be uncorrelated with any 

other factors that affect fatalities in the struck vehicle. It is possible that, even after 

controlling for vehicle curb weight and other characteristics, drivers who carry additional 

occupants in their vehicles drive more aggressively than drivers who do not carry additional 

occupants. If this were true, then our IV estimates would be biased upward. We thus do not 

interpret our IV estimates as being more robust than our OLS estimates. Instead, we 

recognize that the identifying variation in the IV regression is fundamentally different than 

the identifying variation in the OLS regression. If the two regressions produce qualitatively 

similar estimates, this suggests that both are estimating causal effects. If the two regressions 

produce very different estimates, this suggests that one (or both) may be biased. 

The last two columns of Table 9 report coefficients from the instrumental variables 

sample. The IV sample is approximately half the size of our main analytic sample because 

data on the number of occupants is not available in every state. Column (3) presents results 

from estimating the preferred OLS specification (column (7) of Table 2) on the IV sample. 

A 1,000 pound increase in striking vehicle weight is associated with a statistically significant 

0.064 percentage point increase in the probability of a fatality in the struck vehicle (t = 9.1). 

This coefficient represents a 45 percent increase over the average probability of a fatality in a 

struck vehicle, which is consistent with the results in Section 4. Column (4) presents results 

from the IV regression in equation (4). The reported coefficient is !!, the coefficient on 

predicted additional weight in the striking vehicle. An additional 1,000 pounds of occupant 

weight in the striking vehicle is associated with a statistically significant 0.078 percentage 

point increase in the probability of a fatality in the struck vehicle (t = 2.9). This coefficient 

represents a 54 percent increase over the average probability of a fatality in the struck 

vehicle. It is not far from the coefficient in column (3), and we cannot reject the hypothesis 

that the two coefficients are identical. The correspondence between the OLS and IV results 

thus increases our confidence in both estimators. 

 

6. POLICY IMPLICATIONS 

 

 The econometric evidence demonstrates that the impact of heavier striking vehicles 

on fatalities in struck vehicles is statistically significant and robust to the inclusion of an 
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extensive set of vehicle, driver and accident confounders, estimation methods and 

identification strategies. This section explores whether the estimated causal effect of vehicle 

weight on fatalities is economically significant and compares two possible price based 

policies to distribute the external costs across drivers.  

 To quantify the magnitude of the external costs of increased vehicle weight, we 

design the following counterfactual experiment. We consider the externality at the individual 

level, whereby purchasing and driving a heavy vehicle increases the probability of a fatality in 

a collision with other vehicles on the road. We conduct a thought experiment in which an 

individual chooses a vehicle of a certain weight and calculate the external costs from this 

individual’s vehicle choice. We carry out this calculation for each driver on the road while 

holding the remainder of the fleet constant. We sum across individuals to get the total 

externality from all individuals’ vehicle choices. For the purposes of this calculation we 

assume that the individual chooses a vehicle weighing as much as the average car sold in 

2005 (3,449 pounds). We calculate the total external costs against two baseline vehicles that 

the individual could buy – a slightly lighter vehicle and the lightest possible vehicle. The first 

counterfactual vehicle represents the average model sold in 1989, which weighed 2,824 

pounds. The second counterfactual vehicle is the smallest drivable car currently in mass 

production, which weighs approximately 1,900 pounds. In addition we run a scenario that 

incorporates the external cost from pedestrian and motorcycle fatalities. All of our scenarios 

represent partial equilibrium approaches to arriving at total external costs – they assume that 

our regression estimates would not change if the vehicle fleet changed in response to the 

policies considered. Constructing a general equilibrium model is beyond the scope of this 

paper, and we restrict ourselves to providing estimates of the total external costs in the 

context of the current vehicle fleet. 

 Table 10 presents the results from our counterfactual experiments. We assume the 

individual purchases a vehicle weighing 3,449 lbs, or the mean weight of 2005 model year 

vehicles in our estimation sample. The first counterfactual vehicle the individual could have 

purchased weighs 2,824 pounds, or the mean weight of 1989 model year vehicles in our 

estimation sample. From 1989 to 2005, the average model sold gained 625 pounds, with 

heterogeneity in weight gain by model. During this period the Honda Civic gained 457 

pounds, the Toyota Camry gained 515 pounds, and the Ford Explorer gained 490 pounds. 

The Honda Odyssey, a premier minivan, gained 1,060 pounds. Honda’s smallest compact 
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car, the 2010 Honda Fit, weighs 360 pounds more than the 1981 Accord, which is now a full 

size sedan. Similar patterns emerge for most other manufacturers. 

When summed across all individuals, our counterfactual scenario computes the total 

external cost of a 2005 model year vehicle fleet over the representative 1989 model year 

vehicle. Our experiment is robust to the specific distribution of vehicle weight within the 

fleet as the probability of a fatality is linear in striking vehicle weight – the linearity ensures 

that the mean vehicle weight is a sufficient statistic for our policy analysis. We choose 2005 

as our cutoff year as many of the parameters necessary for our full simulation are only 

available as recently as 2005. 

The change in the probability of an external fatality for an individual buying vehicle 

model i weighing wi over a lighter vehicle weighing wcf is given by: 

External Costi  = ! " (wi # wcf ) "P(accident) "VSL    (5) 

For ! we employ our preferred estimate of the causal effect of weight on the 

probability of a fatality in an accident, or 0.119 percentage points for each additional 1,000 

lbs in striking vehicle weight.27 In all experiments we set wi at 3,449 pounds. We calculate the 

probability of a vehicle being involved in a multivehicle collision at 3.65% per year (NHTSA, 

2007).28 We use the DOT value of a statistical life of US$ 5.8 million. 

If our simulated individual chooses a vehicle weighing 3,449 lbs (wi) instead of one 

weighing 2,824 lbs (wcf), she causes an additional 0.000027 external fatalities per year in 

expectation, valued at $157.45. Column (1) of Table 10 shows that the total external cost of 

vehicle weight gain relative to the 1989 baseline vehicle is therefore $35.6 billion per year. 

This figure represents the “weight gain since 1989” scenario but does not encompass the 

total external costs from vehicle weight.  

 Our second counterfactual scenario assumes the individual purchases the 3,449 lb 

vehicle (wi) over a vehicle weighing 1,896 lbs (wcf), which represents the lightest vehicle in 

mass production that can transport at least two adult passengers and is classified as an 

automobile. This is the weight of Toyota’s iQ or roughly the weight of the Mercedes Benz 

Smart Car or the first generation Honda Insight. The intuition behind calculating the total 

external cost using this baseline vehicle is that individuals privately choose the size of the 
                                                
27 For comparison, the probability in our sample of a fatality in a two-vehicle collision (conditional on the 
collision occurring) is 0.23 percent. 
28 We estimate the probability of being involved in an accident by dividing the total number of vehicles 
involved in multivehicle collisions by the total number of registered vehicles in 2005 (BTS, 2010 Table 1-11). 
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externality by choosing a heavier vehicle than required to provide baseline transportation 

services. This calculation recognizes that a driver of a Smart Car poses little risk to other 

roadway users except bicyclists or motorcyclists.29 

If our simulated individual chooses a vehicle weighing 3,449 lbs instead of one 

weighing 1,896 lbs, she causes an additional 0.000067 external fatalities per year in 

expectation, valued at $391.41. Column (2) in Table 10 shows that summed across all 

vehicles this translates into a total external cost of US$88.5 billion per year.  

This scenario, however, ignores the external fatality risks that vehicles pose to 

pedestrians and motorcyclists. Column 3 in Table 10 adds this baseline risk to the 

simulation. In 2005, there were 2,659 motorcycle crash fatalities and 5,864 non-motorist 

fatalities due to fatal crashes (NHTSA 2010). This is equivalent to an external “baseline” 

fatality cost of $49.4 billion. The total external cost of “excess” vehicle weight and baseline 

fatality risk is $137.9 billion.  

The above calculations ignore the impact of higher striking vehicle weight in 

multivehicle collisions with more than two vehicles. The majority of these accidents involve 

three vehicles. Columns 4–6 in Table 10 repeat the simulation above but add the external 

costs in three-vehicle collisions. We assume that striking vehicle weight has half the causal 

effect in three-vehicle accidents as compared to its effect in two-vehicle collisions. This 

assumption is conservative in comparison to our three-vehicle collision estimates in Table 5. 

These calculations add 1,459 fatalities to the iQ scenario and raise the total external costs to 

$146.4 billion.  

 While the magnitude of the total external costs is a straightforward calculation, 

translating it into an optimal policy is not. The externality consists of fatalities in collisions 

with pedestrians, motorcyclists, and other vehicles. These costs, as discussed above, are not 

currently reflected in liability insurance because most coverage levels are far below the VSL 

of US$ 5.8 million. One way to incorporate these external risks is to include them in a per 

mile insurance charge. But in contrast to existing proposals for pay as you drive (PAYD) 

insurance (e.g. Bordoff and Noel 2008), our results demonstrate that the per mile insurance 

charge should vary sharply by weight – a heavier car generates greater expected external 

                                                
29 We do not consider a “zero weight” baseline vehicle because that weight lies far outside the support of our 
data. Furthermore, it is unclear what the counterfactual is if the vehicle does not exist at all. Would the collision 
not occur, or would the struck vehicle instead hit a different vehicle or a roadside object? 
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costs than a lighter car with the same usage. In order to assess a tax that varies per pound 

and per mile, one needs accurate information on vehicle miles travelled (VMT) for each 

individual vehicle, which creates substantial monitoring challenges.  

A practical policy alternative is to distribute the total external costs by raising the 

gasoline tax assessed per gallon. Taxing gasoline is appealing because it is simple and because 

gasoline usage is positively related to both miles driven and vehicle weight. The United 

States consumed 140 billion gallons of gasoline in 2005 (EIA 2010). If we spread the total 

external costs calculated above across 140 billion gallons of gasoline, this translates into 28 

cents per gallon in the “weight gain since 1989” scenario. The total externality due to vehicle 

fatalities when the baseline vehicle is 1,896 pounds translates into a tax of 69 cents per 

gallon. Including pedestrian and motorcycle fatalities translates into a tax of US$1.04 per 

gallon. 

 While the gasoline tax does not differ by the type of vehicle fueled, it is correlated 

with vehicle weight since heavier vehicles have lower fuel economy. Figure 3 plots a lowess 

smoother of miles per gallon (mpg) against vehicle weight, estimated for cars in model year 

2005 using the data from Knittel (forthcoming).30 There is a strong negative, slightly 

nonlinear, relationship between the two variables. A linear regression indicates that an 

additional 1,000 pounds in vehicle weight decreases fuel economy by 4.5 mpg. A gas tax thus 

results in heavier vehicles indirectly paying a higher per mile tax through its correlation with 

vehicle weight. In this sense the gas tax approximates a weight varying mileage tax. 

 A natural question is how close the gasoline tax comes to achieving the desired 

weight varying mileage tax. We perform a back of the envelope calculation using a large set 

of vehicles for which we have vehicle weight and mpg ratings from Knittel (forthcoming). 

The weight based external cost for vehicle type i per VMT is given by  

ci
e
=

! wi!wcf( )"VSL"P accident( )
VMT + cpedmot

e

   (6) 

where ! is again the estimated causal effect of vehicle weight (0.00119), wi is the chosen 

vehicle’s weight, wcf is the baseline vehicle’s weight, VSL is the value of a statistical life and 

P(accident) is the probability of being involved in a multivehicle collision. We calculate ci
e  for 

each model in our database. VMT are held constant for each model at 11,000 miles per year 
                                                
30 For this comparison we require vehicle weight and EPA fuel economy ratings. The latter are not contained in 
our VIN decoder database, but Chris Knittel has graciously shared his model level data on weight and fuel 
economy ratings.  
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and the per mile motorcycle and pedestrian cost is set at 1.65 cents per mile. The average 

value of ci
e  across all models is 5.6 cents per mile. 

The gas tax per mile for model i is given by 

ci
g =

ce
mpgi      (7)

 

where ce  is the average external cost per gallon, calculated as $1.04 in column (6) of Table 

10. This figure includes the motorcycle and pedestrian components as well as three-vehicle 

collisions. For mpgi we use the standard 45/55 weighting of the EPA city and highway fuel 

economy ratings.31 The gas tax per mile therefore only varies across models through 

differences in fuel economy. 

 In the following analysis we compare the gas tax per mile to the weight based 

mileage tax. For the analysis we remove boutique vehicles, which essentially have zero 

market share (e.g. Lamborghini, Ferrari, Bentley), flex fuel vehicles, which have inflated mpg 

ratings for accounting reasons, and a few miscoded observations. We examine vehicles built 

from 1997 to 2006 to approximate the vehicle fleet in the last year of our sample. This 

sample contains 8,201 model-year combinations and includes most cars and light trucks sold 

in the United States during this period. The weight-based tax displays higher variability, with 

a standard deviation of 1.71 cents per mile compared to the gas tax’s standard deviation of 

1.25 cents per mile. 

The difference between the two taxes for model i can be expressed as: 

!i = ci
g " ci

e = # +
ce
mpgi

" $wi

  (8)
 

 

where ! =
" !wcf !VSL !P(accident)

VMT
" cpedmot

e  and ! =
" #VSL #P(accident)

VMT
. We 

keep both ! and " fixed at the values stated previously in this simulation. From equations (6) 

                                                
31 Pre-2008 EPA fuel economy ratings are widely recognized to overstate the actual mileage achieved by the 
average driver. This affects our subsequent analysis because the $1.04 gas tax was derived from actual fuel 
economy rather than the EPA’s forecast fuel economy. We thus rescale the EPA ratings so that the average 
fuel economy in this sample matches the average fuel economy observed nationwide (17.8 mpg), after adjusting 
for weight differences between the two samples. The rescaling factor that achieves this equivalence is 0.73. Our 
conclusions in the subsequent analysis are unchanged if we instead leave the EPA ratings untouched and 
recalculate the gas tax using EPA mileage ratings – in both cases the per mile gas tax closely tracks the weight 
based mileage tax. 
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and (7) we see that the gas tax paid per mile decreases in fuel efficiency and the per mile 

weight tax increases in weight, as expected. However, an interesting relationship emerges for 

the difference between the two pricing tools, given in equation (8). "i is decreasing in better 

fuel efficiency and higher weight. A negative "i means that for vehicle model i, the weight 

tax is higher than the gas tax. Cars most heavily advantaged by the gas tax are therefore 

heavy fuel efficient vehicles (e.g. Mercedes E320 CDI [35.5 mpg; 3835 lbs]). Cars most 

heavily advantaged by the weight tax are gas guzzling lighter vehicles (e.g. Ford GT [18.7 

mpg; 3351 lbs]). 

Figure 4 presents a scatter plot of the gas tax versus the weight tax for all models 

from 1997–2006 in the cleaned Knittel (forthcoming) database. The correspondence 

between the two taxes is quite close. Some models lie on the 45 degree line (e.g. 2002 VW 

Jetta [31.6 mpg; 2893 lbs] and the 2003 Ford Windstar Wagon [23.0 mpg; 3762 lbs]). For 

most models the difference between the two taxes is small, but it can be significant at the 

extremes, ranging from –4.4 cents to 5.1 cents per mile. A one cent difference per mile 

equates to $110 dollars on an annual basis. For 71% of the models in our database the 

absolute value of the difference between the two taxes is less than one cent per mile, and for 

97% of the models the absolute value of the difference is less than 2 cents per mile. The 

average difference between the two taxes is 0.76 cents per mile, which represents 13.5% of 

the average value of the per mile weight tax. 

A related question is what level of gas tax would best mimic the weight tax across all 

models. For any gas tax set at c per gallon, we can write the following equation: 

ci
e = c ! 1mpgi + ! i      (9) 

In this equation, ! ! ! !"#! equals the gas tax per mile for vehicle i (dollars/gallon 

divided by miles/gallon = dollars/mile), and !! equals the difference between the gas tax per 

mile and the weight based mileage tax. If we specify a quadratic loss function we can 

estimate the gas tax that best mimics the weight tax via a least squares regression of the 

weight based mileage tax on the inverse of miles per gallon.32 Each observation in this 

regression is a different vehicle model. The resulting estimate from this OLS regression is 

c = $0.99  per gallon, which is close to our previously computed tax of $1.04 in magnitude 

                                                
32 Equation (9) reveals that we must constrain the intercept to be zero in this regression – the only degree of 
freedom in setting the gas tax comes from choosing c . 
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(though the two quantities are significantly different at the 5% level).33 The total revenue 

raised by either of the gas taxes is close to the total revenue raised by the mileage based tax. 

In all cases the revenues could be redistributed to make the taxes revenue neutral. 

 While many countries charge high gasoline taxes in part to encourage fuel efficiency, 

the United States encourages fuel efficiency through CAFE standards. Though CAFE 

standards represent a de facto tax on weight, they are insufficient to internalize the 

externality presented in this paper. Goldberg (1998) estimates that CAFE increases the price 

of pickup trucks by 0.6 percent and reduces the price of subcompacts by 0.5 percent. This 

equates to a tax on pickup trucks (relative to subcompacts) of approximately $200. The 

gasoline tax discussed above, however, equates to tax on pickup trucks (relative to 

subcompacts) of over $4,000 over the life of the vehicle. 

 

7. CONCLUSION 

 

 The US vehicle fleet has become significantly heavier over the past two decades. The 

average car on the road in 2008 was roughly 530 pounds heavier than the average car on the 

road in 1988, representing a 20 percent increase. This trend has been widely discussed by 

policymakers when contemplating more stringent fuel economy standards or greenhouse gas 

emissions standards. However, it is less widely recognized that an unregulated vehicle fleet is 

inefficiently heavy due to the “arms race” nature of vehicle choice. In this paper we estimate 

the external effects of choosing a heavier vehicle on fatalities in two-vehicle collisions. We 

present robust evidence that increasing striking vehicle weight by 1,000 pounds increases the 

probability of a fatality in the struck vehicle by 40 to 50 percent. This finding is unchanged 

across different specifications, estimation methods, and for different subsets of the sample. 

We show that there are also significant impacts on serious injuries. 

 The external costs of fatalities are currently not internalized in the form of a first- or 

second-best policy. We calculate that the second-best gasoline tax that internalizes the fleet 

weight gain since 1989 is 28 cents per gallon. We further calculate that internalizing the total 

cost of external fatalities due to vehicle weight and operation, including crashes with 

                                                
33 The least squares regression minimizes the sum of squared deviations. We can alternatively estimate a median 
regression to minimize the sum of absolute deviations. The median regression coefficient is $0.98, which is 
virtually identical to the OLS coefficient of $0.99. 
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motorcycles and pedestrians, requires a tax on the order of $1.04 per gallon. Parry and Small 

(2005), applying a lower VSL to monetize other external costs and not accounting for the 

vehicle weight externality, calculate an optimal value of $1.01 per gallon for the US gas tax 

(approximately 60 cents above its current level). Internalizing the vehicle weight externality, 

however, would increase this optimal value substantially. 
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Figure 1: External Costs of Vehicle Weight 

  



Figure 2: Marginal Effects of Striking Vehicle Weight 
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Figure 3: Fuel Economy vs. Weight for 2005 Model Year Light Vehicles 



Figure 4: Sunflower Scatter Plot of Gas Tax vs. Weight Tax for Cars and Trucks  

 
Notes: The graph above displays the joint distribution of the weight tax and gas tax per mile 
for the sample of cars and trucks with model years 1997-2006 from the database provided by 
Knittel (forthcoming). We remove boutique cars, flex fuel vehicles, and a few outliers with 
incorrectly recorded fuel ratings. The sunflower plot bunches multiple observations into 
single flowers, where the number of petals indicates the total number of observations 
represented by the flower. The petals of light flowers represent one observation each and the 
petals of darker flowers represent 12 observations each. 



Mean Sample Size Mean Sample Size
(Std Dev) (Std Dev)

Weight 3,051 lbs 6,540,582 3,059 lbs 4,766,645
(683) (684)

Light Truck 17.5% 9,684,978 16.5% 4,766,645
(38.0) (37.1)

Model Year 1992 8,295,450 1993 3,822,427
(6.5) (5.6)

Accident Year 1998 9,684,978 1998 4,766,645
(4.7) (4.4)

Occupants 1.44 4,662,294 1.41 2,572,454
(1.21) (0.84)

Fatality 0.19% 9,684,978 0.19% 4,766,645
(4.40) (4.35)

Serious Injury 3.0% 9,684,978 2.7% 4,766,645
(17.1) (16.1)

Alcohol Involved 8.9% 4,785,153 8.3% 2,710,906
(28.5) (27.6)

Table 1:  Summary Statistics for Two-Vehicle Collision Data Set

Notes: Both samples are limited to collisions involving two light vehicles built post-1960.
The estimation sample is further limited to collisions in which vehicle weight is non-missing
for both vehicles.

Estimation SampleOverall Sample



Dependent Variable: Presence of  Fatalities in Struck Vehicle

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Weight of  Striking Vehicle (1000s of  lbs) 0.00100 0.14634 0.00101 0.14041 0.00113 0.14375 0.00119 0.00064 0.00063
(0.00004) (0.00500) (0.00005) (0.00566) (0.00005) (0.00639) (0.00006) (0.00007) (0.00007)

Effect of  1000 lb Increase in Striking Vehicle Weight/ 0.00100 0.00089 0.00101 0.00094 0.00113 0.00098 0.00119 0.00064 0.00063
    Percent Increase Over Sample Mean 53% 47% 46% 42% 46% 39% 49% 45% 44%

Weight of  Struck Vehicle (1000s of  lbs) -0.00044 -0.07781 -0.00052 -0.08474 -0.00092 -0.14676 -0.00085 -0.00056 -0.00062
(0.00003) (0.00588) (0.00004) (0.00650) (0.00005) (0.00756) (0.00005) (0.00006) (0.00006)

Striking Vehicle is Light Truck 0.00096 0.12034 0.00093 0.12181 0.00075 0.07915 0.00075 0.00065 0.00065
(0.00007) (0.00904) (0.00008) (0.00973) (0.00010) (0.01099) (0.00010) (0.00011) (0.00011)

Struck Vehicle is Light Truck -0.00030 -0.05527 -0.00039 -0.07862 -0.00032 -0.08661 -0.00004 -0.00020 -0.00014
(0.00006) (0.01065) (0.00007) (0.01139) (0.00008) (0.01279) (0.00008) (0.00009) (0.00009)

Specification OLS Probit OLS Probit OLS Probit OLS OLS OLS

Weather, Time, and County Fixed Effects Yes Yes Yes Yes Yes Yes Yes

Driver Characteristics Yes Yes Yes Yes Yes

City Fixed Effects Yes Yes Yes

Occupants and Seat Belt Usage Yes

Sample Size 4,766,645 4,766,645 3,615,381 3,573,406 3,038,122 3,000,738 2,639,086 1,313,542 1,313,542

Table 2: Effect of  Vehicle Weight on Fatalities

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles. Parentheses contain standard errors clustered at the collision
level. Effects of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000 lb increase in weight across all observations included in the regression. All
regressions include as right-hand-side variables the weight of each vehicle, indicators for whether each vehicle is a light truck, and year fixed effects. Weather, time, and county fixed
effects controls include rain, darkness, day of week (weekday versus weekend), Interstate highway, a quadratic in model year for each vehicle, and year, hour, and county fixed effects.
Driver characteristic controls include quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male drivers, and indicators for any seat
belt usage in the vehicle. The results indicate that there is a strong positive relationship between striking vehicle weight and struck vehicle fatalities and that this relationship is not
sensitive to the inclusion of  a large set of  controls.



Dependent Variable: Presence of  Serious Injuries in Struck Vehicle

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Weight of  Striking Vehicle (1000s of  lbs) 0.00588 0.09248 0.00566 0.08648 0.00637 0.08734 0.00709 0.00311 0.00303
(0.00013) (0.00194) (0.00015) (0.00221) (0.00018) (0.00241) (0.00020) (0.00019) (0.00019)

Effect of  1000 lb Increase in Striking Vehicle Weight/ 0.00588 0.00568 0.00566 0.00550 0.00637 0.00595 0.00709 0.00311 0.00303
    Percent Increase Over Sample Mean 22% 21% 19% 18% 19% 18% 20% 19% 19%

Weight of  Struck Vehicle (1000s of  lbs) -0.00613 -0.10688 -0.00698 -0.11768 -0.00844 -0.13029 -0.00810 -0.00419 -0.00459
(0.00012) (0.00210) (0.00014) (0.00237) (0.00017) (0.00260) (0.00018) (0.00018) (0.00018)

Striking Vehicle is Light Truck 0.00144 0.02390 0.00398 0.07006 0.00367 0.05397 0.00415 0.00273 0.00274
(0.00023) (0.00354) (0.00027) (0.00388) (0.00032) (0.00420) (0.00034) (0.00034) (0.00034)

Struck Vehicle is Light Truck -0.00501 -0.09981 -0.00305 -0.07783 -0.00254 -0.06572 -0.00134 -0.00149 -0.00105
(0.00020) (0.00389) (0.00023) (0.00426) (0.00027) (0.00462) (0.00030) (0.00030) (0.00030)

Specification OLS Probit OLS Probit OLS Probit OLS OLS OLS

Weather, Time, and County Fixed Effects Yes Yes Yes Yes Yes Yes Yes

Driver Characteristics Yes Yes Yes Yes Yes

City Fixed Effects Yes Yes Yes

Occupants and Seat Belt Usage Yes

Sample Size 4,766,645 4,766,645 3,615,381 3,613,483 3,038,122 3,036,352 2,639,086 1,313,542 1,313,542

Table 3: Effect of  Vehicle Weight on Serious Injuries

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles. Parentheses contain standard errors clustered at the collision
level. Effects of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000 lb increase in weight across all observations included in the regression. All
regressions include as right-hand-side variables the weight of each vehicle, indicators for whether each vehicle is a light truck, and year fixed effects. Weather, time, and county fixed
effects controls include rain, darkness, day of week (weekday versus weekend), Interstate highway, a quadratic in model year for each vehicle, and year, hour, and county fixed effects.
Driver characteristic controls include quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male drivers, and indicators for any seat
belt usage in the vehicle. The results indicate that there is a strong positive relationship between striking vehicle weight and struck vehicle injuries and that this relationship is not
sensitive to the inclusion of  a large set of  controls.



Dependent Variable:  Presence of  Fatalities in Struck Vehicle

(1) (2) (3) (4)

Weight of  Striking Vehicle (1000s of  lbs) 0.00120 0.00128 0.17045 0.38894
(0.00006) (0.00031) (0.00794) (0.03962)

Effect of  1000 lb Increase in Striking Vehicle Weight/ 0.00114 0.00114 0.00103 0.00106
    Percent Increase Over Sample Mean 47% 46% 41% 43%

Weight of  Striking Vehicle -0.00010 -0.07322
    *Striking Vehicle is Light Truck (0.00012) (0.01215)

Weight of  Striking Vehicle -0.00024 0.00861
    *Struck Vehicle is Light Truck (0.00012) (0.01522)

Weight of  Striking Vehicle Squared -0.00002 -0.00002 -0.03435
    (0.00004) (0.00004) (0.00643)

Specification OLS OLS Probit Probit

Sample Size 3,038,122 3,038,122 3,000,738 3,000,738

Table 4: Heterogeneous Effects of  Vehicle Weight on Fatalities

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles.
Parentheses contain standard errors clustered at the collision level. Effects of a 1,000 lb increase in striking vehicle weight are
computed as the average effect of a 1,000 lb increase in weight across all observations included in the regression. All
regressions include the following right-hand-side variables: weight of each vehicle, a quadratic in model year for each vehicle,
indicators for whether each vehicle is a light truck, rain, darkness, day of week (weekday versus weekend), Interstate highway,
quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male drivers, indicators
for any seat belt usage in the vehicle, and year, hour, and city fixed effects. The results indicate that the effects of vehicle weight
on fatalities do not vary strongly with striking vehicle weight or body type.



Dependent Variable: Presence of  Fatalities in Struck Vehicle

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Weight of  Striking Vehicle (1000s of  lbs) 0.00092 0.12408 0.00081 0.10791 0.00083 0.10401 0.00087 0.00057 0.00055
(0.00009) (0.01097) (0.00011) (0.01228) (0.00012) (0.01440) (0.00013) (0.00018) (0.00018)

Effect of  1000 lb Increase in Striking Vehicle Weight/ 0.00092 0.00082 0.00081 0.00083 0.00083 0.00080 0.00087 0.00057 0.00055
    Percent Increase Over Sample Mean 44% 39% 34% 31% 32% 27% 34% 33% 32%

Weight of  Struck Vehicle (1000s of  lbs) -0.00056 -0.08773 -0.00069 -0.10660 -0.00108 -0.17143 -0.00087 -0.00052 -0.00056
(0.00010) (0.01648) (0.00012) (0.01844) (0.00015) (0.02203) (0.00015) (0.00021) (0.00021)

Striking Vehicle is Light Truck 0.00060 0.07090 0.00059 0.08169 0.00064 0.07823 0.00062 0.00051 0.00052
(0.00016) (0.01926) (0.00018) (0.02075) (0.00022) (0.02425) (0.00023) (0.00031) (0.00031)

Struck Vehicle is Light Truck -0.00044 -0.07320 -0.00045 -0.08538 -0.00012 -0.04690 0.00020 -0.00048 -0.00046
(0.00019) (0.03270) (0.00022) (0.03466) (0.00027) (0.03975) (0.00028) (0.00035) (0.00035)

Specification OLS Probit OLS Probit OLS Probit OLS OLS OLS

Weather, Time, and County Fixed Effects Yes Yes Yes Yes Yes Yes Yes

Driver Characteristics Yes Yes Yes Yes Yes

City Fixed Effects Yes Yes Yes

Occupants and Seat Belt Usage Yes

Sample Size 510,777 510,777 404,797 363,923 332,046 298,872 301,380 99,366 99,366

Table 5: Effect of  Vehicle Weight on Fatalities in Three-Vehicle Accidents

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving three vehicles. Striking vehicle weight coefficients represent the average
effect of increasing the weight of one striking vehicle by 1,000 pounds; they are the average of the coefficients on the first and second striking vehicles. Parentheses contain standard
errors clustered at the collision level. Effects of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000 lb increase in the weight of one striking
vehicle across all observations included in the regression. All regressions include as right-hand-side variables the weight of each vehicle, indicators for whether each vehicle is a light
truck, and year fixed effects. Weather, time, and county fixed effects controls include rain, darkness, day of week (weekday versus weekend), Interstate highway, a quadratic in model
year for each vehicle, and year, hour, and county fixed effects. Driver characteristic controls include quadratics in driver age, indicators for drivers under 21 or over 60, indicators for
male drivers and young male drivers, and indicators for any seat belt usage in the vehicle. The results indicate that there is a strong positive relationship between striking vehicle weight
and struck vehicle fatalities and that this relationship is not sensitive to the inclusion of  a large set of  controls.



Dependent Variable: HIC HIC>700 HIC HIC>700

(1) (2) (3) (4)

Weight of  Vehicle 15.8 0.016 38.2 0.018
(18.3) (0.019) (43.5) (0.040)

Percentage Effect of 2.6% 5.6% 6.7% 7.2%
  1,000 lb Increase

Sales Share Weighted Yes Yes

Sample Size 5,003 5,003 2,847 2,847

Table 6: Relationship Between Vehicle Weight and NHTSA Crash Test Performance

Notes: Each column represents a separate regression. The estimation sample in the first two
columns contains all NHTSA vehicle-to-barrier frontal crash test results. The estimation sample
in the last two columns contains only crash tests involving vehicles for which we have sales share
data. Parentheses contain standard errors clustered by NHTSA crash test. All regressions include
the following right-hand-side variables: weight of tested vehicle, a quadratic in model year, a light
truck indicator, and a quadratic in collision speed. Sales share weighted regressions are weighted
by the tested vehicle's sales share for a given year. The results indicate that heavier vehicles score
slightly worse in NHTSA crash test results, but that the relationship is small and statistically
insignificant.



Dependent Variable: Presence of  Fatalities in Struck Vehicle

(1) (2) (3) (4)

Average Vehicle Weight in Collision (1000s of  lbs) 0.00015 -0.00085 0.00020 -0.00128
    (0.00017) (0.00104) (0.00023) (0.00133)

Effect of  1000 lb Increase in Average Weight/ 0.00015 -0.00085 0.00020 -0.00128
    Percent Increase Over Sample Mean 7% -14% 9% -24%

Max Weight Difference Between Vehicles 200 lbs 200 lbs 100 lbs 100 lbs

Frontal Collisions Only Yes Yes

Sample Size 491,580 38,380 263,876 20,038

Table 7: Effect of  Vehicle Weight in Collisions Between Two Equal Weight Vehicles

Notes: Each column represents a separate regression. The estimation sample is limited to collisions in which the difference
in weight between the two vehicles is less than 200 lbs (first two columns) or 100 lbs (last two columns). Parentheses
contain standard errors clustered at the collision level. Effects of a 1,000 lb increase in striking vehicle weight are computed
as the average effect of a 1,000 lb increase in weight across all observations included in the regression. All regressions
include the following right-hand-side variables: weight of each vehicle, a quadratic in model year for each vehicle, indicators
for whether each vehicle is a light truck, rain, darkness, day of week (weekday versus weekend), Interstate highway,
quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male drivers,
indicators for any seat belt usage in the vehicle, and year, hour, and city fixed effects. The results indicate that there is a
small, statistically insignificant relationship between vehicle weight and fatalities in collisions between two equal weight
vehicles.



Dependent Variable: Presence of  Fatalities in Struck Vehicle

(1) (2) (3) (4)

Weight of  Vehicle 0.00093 0.00056 0.01345 0.01330
    (1000s of  lbs) (0.00026) (0.00047) (0.00626) (0.01298)

Effect of  1000 lb Increase in Vehicle Weight/ 0.00093 0.00056 0.00045 0.00044
    Percent Increase Over Sample Mean 6% 4% 3% 3%

Collision Type 1 Vehicle 1 Veh, Frontal 1 Vehicle 1 Veh, Frontal

Specification OLS OLS Probit Probit

Sample Size 683,430 214,857 863,819 212,571

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving a single vehicle.
Parentheses contain robust standard errors. Effects of a 1,000 lb increase in vehicle weight are computed as the average effect of
a 1,000 lb increase in weight across all observations included in the regression. All regressions include the following right-hand-
side variables: weight of vehicle, a quadratic in model year, indicators for whether a vehicle is a light truck, rain, darkness, day of
week (weekday versus weekend), Interstate highway, quadratic in driver age, indicators for drivers under 21 or over 60, indicators
for male drivers and young male drivers, indicators for any seat belt usage in the vehicle, and year, hour, and either city fixed
effects (OLS) or county fixed effects (probit). The results indicate that there is a very small positive relationship between vehicle
weight and fatalities in single-vehicle collisions.

Table 8: Effect of  Vehicle Weight on Fatalities in Single-Vehicle Collisions



Dependent Variable: Presence of  Fatalities in Struck Vehicle

(1) (2) (3) (4)

Weight of  Striking Vehicle/ 0.00078 0.00080 0.00064 0.00078
    Additional Weight in Striking Vehicle (1000s of  lbs) (0.00009) (0.00017) (0.00007) (0.00027)

Effect of  1000 lb Increase in Striking Vehicle Weight/ 0.00078 0.00080 0.00064 0.00078
    Percent Increase Over Sample Mean 50% 52% 45% 54%

Specification OLS OLS w/Model FEs OLS IV

Sample Size 892,970 892,970 1,318,012 1,318,012

Table 9: Effect of  Vehicle Weight on Fatalities Using Alternative Sources of  Identification

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles. Parentheses contain
standard errors clustered at the collision level. Effects of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000
lb increase in weight across all observations included in the regression. All regressions include the following right-hand-side variables: weight of
each vehicle, a quadratic in model year for each vehicle, indicators for whether each vehicle is a light truck, rain, darkness, day of week (weekday
versus weekend), Interstate highway, quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male
drivers, indicators for any seat belt usage in the vehicle, and year and hour fixed effects. OLS regressions with model fixed effects contain fixed
effects for each vehicle model and county fixed effects. IV regressions contain city fixed effects and use the number of occupants in the striking
vehicle times 164 lbs per occupant as the instrument for additional weight in the striking vehicle weight. The results indicate that adding model
fixed effects or instrumenting for vehicle weight does not change the estimated effects of  vehicle weight on fatalities.



iQ Baseline
iQ Baseline + 

Peds/Mot
Weight Gain 

Baseline iQ Baseline
iQ Baseline + 

Peds/Mot
(1) (2) (3) (4) (5) (6)

Delta 0.12% 0.12% 0.12% 0.12% 0.12% 0.12%
P(Death|Accident) 0.23% 0.23% 0.23% 0.23% 0.23% 0.23%
Simulated Vehicle Weight (lbs) 3,449 3,449 3,449 3,449 3,449 3,449
Fatalities (2 Vehicle Collisions) 18,694 18,694 18,694 18,694 18,694 18,694
Total Fatalities 18,694 18,694 18,694 20,483 20,483 20,483
Total Cost (Billlion US$) 108 108 108 119 119 119

Baseline Vehicle Weight (lbs) 2,824 1,896 1,896 2,824 1,896 1,896
Counterfactual Fatality Probability in Struck Vehicle 0.15% 0.04% 0.04% 0.15% 0.04% 0.04%
Sum of  Expected Fatalities Across All Vehicles 6,135 15,255 15,255 6,722 16,715 16,715
External Costs Across All Vehicles (Billion US$) 36 88 138 39 97 146

External Cost per Gallon (US$/gallon) 0.25 0.63 0.98 0.28 0.69 1.04
External Cost per VMT (Cents/Mile) 0.01 0.03 0.05 0.01 0.03 0.05

Table 10: Valuing the Traffic Fatality Externality
Two Vehicle Accidents Two and Three Vehicle Accidents

Notes: The simulation assumes the DOT VSL of $5.8 million. The delta coefficient is the estimated coefficient form our preferred specification (7) in table 2.
The value for the P(Death|Accident) is the mean fatality probability for the main regression sample. The simulated vehicle weight of 3,449 is the average weight
of all carsin 2005 in our sample. The total external cost from pedestrian and motorcycle deaths is derived from national FARS data for 2005 and mutiplied by the
DOT VSL. The number of gallons of gas we use for the pergallon calculation is 1.40E+11, which is obtained from EIA (2011). The total number of VMT for
the per mile calculations is obtained from FARS. Finally, in order to determined the total number of two car accidents, we multiply the share of two car
accidents in our sample times the total number of  national accidents in order to arrive at a number of  US total two car accidents. 



Dependent Variable: Presence of  Fatalities in Struck Vehicle

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Weight of  Striking Vehicle (1000s of  lbs) 0.00113 0.18790 0.00118 0.17409 0.00129 0.18243 0.00141 0.00070 0.00069
(0.00005) (0.00643) (0.00006) (0.00741) (0.00007) (0.00843) (0.00007) (0.00008) (0.00008)

Effect of  1000 lb Increase in Striking Vehicle Weight/ 0.00113 0.00104 0.00118 0.00110 0.00129 0.00116 0.00141 0.00070 0.00069
    Percent Increase Over Sample Mean 67% 62% 58% 53% 58% 51% 63% 62% 61%

Weight of  Struck Vehicle (1000s of  lbs) -0.00036 -0.06735 -0.00052 -0.08348 -0.00103 -0.16845 -0.00096 -0.00063 -0.00068
(0.00004) (0.00766) (0.00005) (0.00866) (0.00006) (0.01030) (0.00007) (0.00008) (0.00008)

Specification OLS Probit OLS Probit OLS Probit OLS OLS OLS

Weather, Time, and County Fixed Effects Yes Yes Yes Yes Yes Yes Yes

Driver Characteristics Yes Yes Yes Yes Yes

City Fixed Effects Yes Yes Yes

Occupants and Seat Belt Usage Yes

Sample Size 3,374,741 3,374,741 2,402,157 2,338,923 2,069,802 2,013,910 1,792,640 816,026 816,026

Table A1: Effect of  Vehicle Weight on Fatalities in Accidents Excluding Light Trucks

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two cars – collisions involving light trucks are excluded. Parentheses
contain standard errors clustered at the collision level. Effects of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000 lb increase in weight across
all observations included in the regression. All regressions include as right-hand-side variables the weight of each vehicle and year fixed effects. Weather, time, and county fixed effects
controls include rain, darkness, day of week (weekday versus weekend), Interstate highway, a quadratic in model year for each vehicle, and year, hour, and county fixed effects. Driver
characteristic controls include quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male drivers, and indicators for any seat belt
usage in the vehicle. The results indicate that there is a strong positive relationship between striking vehicle weight and struck vehicle fatalities in collisions involving two cars and that
this relationship is not sensitive to the inclusion of  a large set of  controls.



Dependent Variable: Presence of  Fatalities in Struck Vehicle

(1) (2) (3) (4)

Weight of  Striking Vehicle (1000s of  lbs) 0.00042 0.00120 0.00041 0.00129
(0.00005) (0.00005) (0.00005) (0.00006)

Effect of  1000 lb Increase in Striking Vehicle Weight/ 0.00042 0.00120 0.00041 0.00129
    Percent Increase Over Sample Mean 52% 49% 47% 49%

Percent of  Accidents with Missing Weight Data 27% 57% 27% 57%

Weather, Time, Driver, and City Controls  Yes Yes

Sample Size 1,592,656 3,173,989 1,214,544 2,286,700

Table A2: Effect of  Vehicle Weight on Fatalities for States with High and Low Missing Weight Data

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles
Columns (1) and (3) are estimated using data from states in which a low proportion of observations are missing weight data
(Ohio, Washington, and Wyoming). Columns (2) and (4) are estimated using data from states in which a high proportion of
observations are missing weight data (Florida, Kansas, Kentucky, Maryland, and Missouri). Parentheses contain standard errors
clustered at the collision level. All regressions include as right-hand-side variables the weight of each vehicle, indicators for
whether each vehicle is a light truck, and year fixed effects. Weather, time, driver, and city controls include rain, darkness, day of
week (weekday versus weekend), Interstate highway, quadratics in driver age, indicators for drivers under 21 or over 60,
indicators for male drivers and young male drivers, indicators for any seat belt usage in the vehicle, and year, hour, and city
fixed effects. The results indicate that the relationship between striking vehicle weight and fatalities in the struck vehicle is
identical (in percentage terms) in states with high and low proportions of  accidents that are missing weight data.


