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Abstract

We study optimal executive compensation in a fully dynamic framework where the CEO

consumes in multiple periods, can undo the contract by privately saving, and can also

temporarily inflate the stock price. Despite the complex setup, we obtain a simple closed-

form contract. It yields clear predictions for how the optimal level and sensitivity of

pay varies with the CEO’s tenure and the contracting environment. The contract can be

implemented by a “Dynamic Incentive Account”: the CEO’s expected pay is escrowed

into an account, a proportion of which is invested in the firm’s stock and the remainder

in cash. The account features state-dependent rebalancing and time-dependent vesting.

If the stock price falls, cash in the account is used to buy additional shares. Unlike the

repricing of options, this re-incentivization does not come for free and so the CEO is not

rewarded for failure. The account vests gradually both during the CEO’s employment

and after he quits, to deter short-termist actions before retirement.
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1 Introduction

Many classical models of CEO compensation consider only a single period, or multiple periods

but a single terminal consumption. However, the optimal static contract may be ineffective in

a dynamic world. In reality, securities given to incentivize the CEO may lose their power over

time: if firm value declines, options fall out-of-the-money and bear little sensitivity to the stock

price. The CEO may be able to engage in private saving, to achieve a higher future income

than intended by the contract, in turn reducing his effort incentives. Single-period contracts

can encourage the CEO to engage in short-termism, i.e. inflate the current stock price at the

expense of long-run value. In addition to the above challenges, a dynamic setting provides

opportunities to the firm — it can reward effort with future rather than current pay.

This paper analyzes a dynamic model that allows for all of the above complications, which

are likely important features in reality. We take an optimal contracting approach that allows for

fully history-dependent contracts without restrictions to particular contractual forms. The key

challenge of a dynamic setting with risk aversion, private saving and short-termism is that the

contract is typically very complex and can only be solved numerically, which makes it difficult

to see the intuition and understand which features of the setting are driving which aspects of

the contract. Our main methodological contribution is to achieve a surprisingly simple optimal

contract. The model’s closed form solutions allow the economic forces behind the contract to

be transparent, its economic implications to be clear, and a simple practical implementation

using the standard instruments of cash and stock.

In the full model, the CEO engages in effort, private saving and short-termism, and the

contract must achieve incentive compatibility in all three actions. The model’s tractability

allows us to see clearly the effect of switching these actions on and off, and thus isolate the

role that each plays in determining the contract. In the simplest model, the CEO chooses only

effort.

In the optimal contract, log pay is a linear function of current and all past stock returns.

Therefore, the rewards for exerting effort to increase the current return are spread over all

future periods, to achieve intertemporal risk-sharing. The return in any given period affects

log pay in all future periods to the same degree — the first-period return has the same effect on

second-period log pay as it does on first-period log pay. Moreover, in an infinite-horizon model,

this sensitivity is constant across periods. Log pay is affected by returns in all past periods to

the same degree — the first-period return and the second-period return have the same effect on

second-period log pay. With a finite horizon, the sensitivity is increasing over time, as found

empirically by Gibbons and Murphy (1992). Log pay is more sensitive to current than past

returns, and the sensitivity to the current return intensifies as the CEO becomes older. This is

because there are fewer periods over which to spread the reward for effort, and so the reward

in the current period must increase. This effect is absent in the infinite-horizon model. We

thus generate a similar prediction to the model of Gibbons and Murphy, but without invoking
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career concerns.

When the CEO has the possibility of private saving, the contract must remove his incentives

to undo the contract by doing so. Even if his compensation were flat, he would have a motive

to save if his own level of impatience differs from that of the aggregate economy, as the latter

determines the interest rate. Moreover, the presence of incentive compensation exposes him

to risk which he may wish to insure against. We show that, while the contract sensitivity is

affected by the model horizon, it is unaffected by whether the CEO can save privately. Instead,

the possibility of private saving affects the level of pay, causing it to increase faster over time.

Rising pay effectively saves for the CEO, removing the incentive for him to do so privately.

That the wage should rise with tenure provides a potential explanation for seniority-based pay,

which differs from existing explanations based on internal labor markets. The growth rate of

consumption is increasing in the level of incentives and is thus faster for CEOs with stronger

incentives (e.g. due to more severe agency problems), and accelerates over time in a finite

model where incentives rise over time. However, while the possibility of private saving affects

the level of pay, it has no affect on the strength of incentives.

We finally allow the CEO to engage in short-termism / myopia, e.g. by changing account-

ing policies or scrapping positive-NPV projects. The contract must change in several ways

to prevent such behavior. When myopia is infeasible, the CEO’s post-retirement income is

independent of firm performance after departure, since he cannot affect it. When myopia is

feasible, he can now affect post-retirement returns by engaging in short-termism prior to de-

parture. Thus his post-retirement income must become sensitive to firm returns, to deter such

actions. In addition, the contract sensitivity now rises over time, even in an infinite-horizon

model. The CEO benefits from short-termism as it boosts current pay, but the cost is only suf-

fered in the future and thus has a discounted effect. An increasing sensitivity offsets the effect

of discounting by ensuring that the CEO loses more dollars in the future than he gains today.

The rate of this increase and the extent of the CEO’s exposure to returns after retirement are

greater if the CEO is more impatient. Moreover, these direct changes to the sensitivity of the

contract further induce indirect changes to the level of pay. As the sensitivity rises to deter

myopia, the CEO is exposed to greater risk, in turn requiring higher pay to compensate.

The optimal contract can be implemented in the following simple manner. When appointed,

the CEO is given a “Dynamic Incentive Account” (“DIA”): a portfolio of which a given fraction

is invested in the firm’s stock and the remainder in (interest-bearing) cash. Mathematically,

the fraction of pay in stock equals the dependence of log pay on the stock return, and so it

represents the contract’s sensitivity. As time evolves, and firm value changes, this portfolio

is constantly rebalanced to ensure the fraction of stock remains sufficient to induce effort at

minimum risk to the CEO. A fall in the share price reduces the equity in the account below

the required fraction; this is addressed by using cash in the account to purchase stock. If the

stock appreciates, some equity can be sold without falling below the threshold, to reduce the

CEO’s risk.
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The following numerical example illustrates the role of rebalancing. The CEO is considering

whether to voluntarily forgo one week’s annual leave to work on a project that will increase firm

value by 10%, or take his entitled holiday which is worth 6% of his salary to him. (The higher

the salary, the more the holiday is worth since he can spend his salary on holiday.) If salary

is $10m, the holiday is worth $600,000. If the CEO has $6m of stock, working will increase its

value by 10%, or $600,000, thus deterring the holiday. Therefore, his $10m salary will comprise

$6m of stock and $4m of cash. Now assume that the firm’s stock price has suddenly halved,

so that his stock is worth $3m. His total salary is $7m and the holiday is worth $420,000,

but working will increase his $3m stock by only $300,000. To induce effort, the CEO’s gains

from working must be $420,000. This requires him to have $4.2m of stock, and is achieved by

using $1.2m of cash in the account to purchase new stock. Importantly, the $1.2m additional

equity is not given to the CEO for free, but accompanied by a reduction in cash to $2.8m. This

addresses a concern with the current practice of restoring incentives after stock price declines

by repricing options — the CEO is rewarded for failure.

The DIA also features gradual vesting: the CEO can only withdraw a percentage of the

account in each period. This has three roles. First, it achieves consumption smoothing. Second,

it addresses the effort problem in future periods, by ensuring that the CEO has sufficient equity

in the future to induce effort. These two roles exist even if short-termism is not feasible, and

requires vesting to be gradual during the CEO’s employment. Third, it addresses the myopia

problem in the current period, by preventing the CEO from inflating earnings and cashing

out. This role requires vesting to be gradual even after the CEO retires. Gradual vesting is

a more effective solution to short-termism than the clawbacks recently proposed. Clawbacks

are a “cure” to recoup compensation that was paid out prematurely; gradual vesting achieves

“prevention” of the premature payouts in the first place. While the former requires an explicit

decision by the board and is costly to implement, the latter allows the contract to run on

auto-pilot and requires no board involvement after the contract is set up.

In sum, the DIA has two key features, which each achieve separate objectives. State-

dependent rebalancing ensures that the CEO always exerts effort in the current period. Time-

dependent vesting ensures that the CEO has sufficient equity in future periods to induce effort,

and abstains from myopia in the current period. Critical to this simple implementation is the

fact that, even though consumption depends on the entire history of returns, the ratio of con-

sumption to promised wealth (and thus the vesting fraction) and the level of incentives (and thus

the fraction of stock to which the account must be rebalanced) are both history-independent.

In particular, the wealth in the account is a sufficient state variable for consumption in that

period; the sequence of past returns that generated that level of wealth is immaterial.

The model thus offers theoretical guidance on how compensation might be reformed to

address the problems that manifested in the recent crisis, such as short-termism and weak

incentives after stock price declines. A number of commentators (e.g. Bebchuk and Fried

(2004), Holmstrom (2005), Bhagat and Romano (2009)) have argued that lengthening vesting
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horizons may deter myopia. We provide a theoretical framework that allows to analyze and

augment these verbal arguments (in particular, showing that gradual vesting is optimal even if

short-termism is not feasible). While those papers focus only on lengthening vesting horizons,

the DIA is critically different as it involves not only delayed vesting but also rebalancing.

Delayed vesting alone only solves the myopia problem and does not ensure that the CEO’s

effort incentives are replenished over time — even if the CEO must hold onto his options, they

have little incentive effect if they are out of the money. Moreover, in contrast to the above

verbal proposals, we formally solve for the vesting fraction in a number of cases to study the

optimal horizon of incentives — in particular, it is not always the case that lengthening the

vesting horizon (i.e. reducing the vesting fraction) improves efficiency. In an infinite-horizon

model, the vesting fraction is constant over time, and lower if private saving is possible. The

agent wishes to save to insure himself against the risk imposed by equity pay; a lower vesting

fraction provides automatic saving and removes these incentives. In a finite-horizon model,

the fraction is increasing over time — since the CEO has fewer periods over which to enjoy his

wealth, he should consume a greater percentage in later periods.

Other theories also formally model the optimal vesting horizon. The critical difference is

that, in those papers, vesting and rebalancing are the same event — the CEO can only sell

his securities (i.e. rebalance his portfolio) when they vest. Those papers point out that early

vesting is sometimes desirable — in Chaigneau (2009) and Peng and Roell (2009), it allows the

CEO to reduce his risk by trading his stock for cash; in Bhattacharyya and Cohn (2009) and

Brisley (2006), this risk reduction encourages the CEO to take efficient risky projects. Thus,

there is a trade-off between the benefits of early rebalancing and the costs of early vesting. In

the first three papers, firms choose short-vesting stock to permit early rebalancing, even though

it leads to some myopia. Brisley analyzes options where rebalancing is only necessary upon

strong performance, since only in-the-money options subject the CEO to risk. Therefore, as

in our model, state-dependent rebalancing is efficient. Since rebalancing and vesting are the

same event in Brisley (options can only be sold when they vest), this requires state-dependent

vesting. Indeed, Bettis et al. (2010) document that performance-based (i.e. state-dependent)

vesting is increasingly popular, where vesting is accelerated upon high returns.1 However, this

may induce the CEO to inflate the stock price (an action not featured in Brisley) and cash out.

Here, vesting and rebalancing are separate events, allowing risk reduction without inducing

myopia. High returns permit sales of equity (i.e. rebalancing) but critically the proceeds

remain in the account (vesting is not accelerated) in case the returns are subsequently reversed.

Our framework uses two separate instruments — vesting and rebalancing — to achieve the two

separate goals of inducing effort and deterring myopia without any trade-off.

This paper is related to the dynamic agency literature, such as DeMarzo and Sannikov

(2006), DeMarzo and Fishman (2007), He (2009a), Sannikov (2008), Biais et al. (2007, 2010)

1State-dependent vesting is also featured in the “Bonus Bank” advocated by Stern Stewart, where the amount

of the bonus that the executive can withdraw depends on the total bonuses accumulated in the bank.
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and Garrett and Pavan (2009, 2010). The optimal contract in these papers is typically highly

complex (except if risk-neutrality is assumed, in which case private saving is a non-issue), and

they do not incorporate short-termism. Lacker and Weinberg (1989), Goldman and Slezak

(2006), Peng and Roell (2009) and Hermalin and Weisbach (2009) study short-termism (in

the form of manipulation) in a static setting. To our knowledge, He (2009b) is the only other

dynamic model featuring effort, myopia and private saving. His setup requires a discrete action

choice and linear cost functions, private borrowing is ruled out, and the contract can only be

solved numerically. This paper considers a fairly general setting featuring all three decisions, yet

still obtain a closed-form contract which allows clear economic intuition and simple implemen-

tation. We do so by using the framework of Edmans and Gabaix (2011a) (“EG”) which allows

us to deliver closed-form contracts in a multi-period setting; however, EG restrict the CEO to

consume in the final period only and thus cannot study private saving or short-termism, nor do

they consider how to implement the contract. Holmstrom and Milgrom (1987) similarly have

only terminal consumption. Allowing for intermediate consumption significantly complicates

the problem. If the agent cannot save privately, the principal must solve for how to redistribute

payments optimally over time to minimize the cost, creating extra optimality conditions. If

the agent can save privately, the principal must solve for how to deter him from redistributing

consumption to time periods with higher marginal utility, creating extra constraints.

That the optimal contract exhibits memory (i.e. current pay depends on past output) was

first derived in Lambert (1983) and Rogerson (1985), who consider a two-period model where

the agent only chooses effort. We extend it to a multi-period model where the agent can also

save and inflate earnings. Moreover, the execution of the contract through an incentive account

and thus wealth- rather than pay-based compensation allows a memory-dependent contract to

be implemented simply. Bolton and Dewatripont (2005) note that a “disappointing implication

of [memory-dependence] is that the long-term contract will be very complex,” which appears to

contradict the relative simplicity of real-life contracts. This complexity is indeed unavoidable

if the CEO is rewarded exclusively through new flows of pay, as these flows will have to depend

on the entire history of past outcomes.2 Importantly, our contract can be implemented with a

wealth-based account rather than with flow pay. A fall in the share price reduces the CEO’s

wealth and thus his entire path of future consumption. Future consumption is thus sensitive to

past returns without requiring new flows of pay to be history-dependent.

In allowing for private saving, the paper makes an additional methodological contribution.

To our knowledge, it is the first to derive sufficient conditions to guarantee the validity of the

first-order approach to solve a multi-period agency problem with private saving and borrowing.3

The first-order approach replaces the agent’s incentive constraints against complex multi-period

2While long-term incentive plans (LTIPs) are used in practice and relatively simple, they typically depend

on only a few years of performance rather than the entire history of performance as suggested by the model.
3Abraham, Koehne and Pavoni (2010) provide sufficient conditions for the first-order approach with private

saving and borrowing in a two-period model, but these conditions are not sufficient for more than two periods.
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deviations with weaker local constraints (first-order conditions), with the hope that the solution

to the relaxed problem satisfies all constraints.4 This method is often valid if private saving is

impossible (hence the one-shot deviation principle), but problematic when the agent can engage

in joint deviations to save and shirk. This is because saving insures against future shocks to

income and thus reduces effort incentives. Our technique involves linearizing the agent’s utility

function and showing that, if the cost of effort is sufficiently convex, the linear utility function is

concave in leisure (it is automatic that there is no incentive to save under linear utility). Since

the actual utility function is concave, linearized utility is an upper bound for the agent’s actual

utility. Thus, since there is no profitable deviation under a linear utility function, there is no

profitable deviation under the actual utility function either. This technique may be applicable

in other agency theories to verify the sufficiency of the first-order approach.

This paper is organized as follows. Section 2 presents the model setup and Section 3 derives

the optimal contract when the CEO has logarithmic utility, as this version of the model is most

tractable. Section 4 shows that the key results continue to hold under general CRRA utility

and autocorrelated noise. It also provides a full justification of the contract: it derives sufficient

conditions that ensure that the agent will not undertake global deviations, and shows that the

principal does not want to implement a different effort level. Section 5 extends the model to

allow for myopia, and Section 6 concludes. The Appendix A contains main proofs, and the

Internet Appendix contains further peripheral material.

2 The Core Model

We consider a multiperiod model featuring a firm (also referred to as the “principal”) which

employs a CEO (“agent”). The firm pays a terminal dividend  (“earnings”) in the final

period  , given by

 =  exp

Ã
X
=1

(  +  )

!
 (1)

where  represents baseline firm size and   ∈ [0 ̄] is the agent’s action (“effort”). The action
  is broadly defined to encompass any decision that improves firm value but is personally

costly to the manager. Low   can refer to shirking, diverting cash flows or extracting private

benefits.   is noise, which is independent across periods, has a log-concave density, and is

bounded above and below by  and ̄. (Section 4.1 allows for autocorrelated noises).

The goal of this paper is to achieve a tractable contract in a dynamic setting, to allow clear

implications. Holmstrom and Milgrom (1987) show that tractability can be obtained under the

joint assumptions of exponential utility, a financial cost of effort, continuous time and Gaussian

4Another method of verifying the validity of the first-order approach is to verify global incentive compatibility

of each individual solution numerically rather than finding conditions on primitives that ensure validity. For

example, see Werning (2001), Dittmann and Maug (2007) and Dittmann and Yu (2010). See also Kocherlakota

(2004) for the analytical challenges of dynamic agency problems with private savings.
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noise. We wish to allow for general noise distributions, decreasing absolute risk aversion (given

empirical evidence), discrete time (for clarity) and non-financial effort costs. Many actions do

not involve a monetary expenditure; moreover, as we will discuss, a multiplicative rather than

financial cost of effort is necessary to generate empirically consistent predictions. We thus use

the framework of EG who achieve tractability without the above assumptions by specifying

that, in each period , the agent privately observes   before choosing his action  . This

timing assumption forces the incentive constraints to hold state-by-state (i.e. for every possible

realization of  ) and thus tightly restricts the set of admissible contracts, leading to a simple

solution to the principal’s problem.5 The timing is also featured in models where the CEO sees

total output before deciding how much to divert (Lacker and Weinberg (1989), DeMarzo and

Fishman (2007), Biais et al. (2007)), and where the CEO observes the “state of nature” before

choosing effort (Harris and Raviv (1979), Sappington (1983) and Baker (1992), and Prendergast

(2002)). Note that it does not render the CEO immune to risk — in every period, except the

final one, his action is followed by noise. Appendix B shows that the contract has the same

form in continuous time, where  and  are simultaneous.

After action  is taken, the principal observes a public signal of firm value, given by:

 =  exp

Ã
X

=1

( + )

!


The incremental news contained in , over and above the information known in period − 1
(and thus contained in −1) can be summarized by  = ln − ln−1, i.e.

 =  +  (2)

With a slight abuse of terminology, we call  the firm’s “return”.
6 By observing , the principal

learns , but not its components  and . The agent’s strategy is a function (1    −1 )

that specifies how his action depends on the current noise and the return history. After  (and

thus ) is publicly observed, the principal pays the agent . We allow for a history-dependent

contract in which pay (1    ) depends on the entire history of returns.
7

5Edmans and Gabaix (2011b) use this framework to achieve tractability in a market equilibrium model of

CEO compensation under risk aversion.
6 is the actual increase in the expected dividend as a result of the action and noise at time . Given rational

expectations, the innovation in the stock return is the unexpected increase in the stock price. In turn, the stock

price is the discounted expected dividend and includes the expected future effort levels. Assuming zero risk

premium for simplicity, the stock price is thus:

 =  exp

Ã
X

=1

( + ) + ( − ) (∗ −+ ln [ ])

!


where  is the risk-free rate. Therefore, the firm’s actual log return is ln − ln−1 =  − ∗ +− ln[ ].
7A fully general contract can involve the income  depending on messages sent by the agent regarding .

We later derive a sufficient condition under which the optimal contract implements a fixed action,  , in every
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Having received income , the agent consumes  and saves ( − ) at the continuously

compounded risk-free rate . The agent may borrow as well as save, i.e. ( − ) may be

negative. Such borrowing and saving are unobserved by the principal. Following a standard

argument (see, e.g., Cole and Kocherlakota (2001)), we can restrict attention to contracts in

which the agent chooses not to save or borrow in equilibrium, i.e.  = .
8 Any contract in

which the CEO chooses to save to achieve a different consumption profile can be replaced by

an equivalent contract providing the same consumption profile directly, so there is no loss of

generality in focusing on contracts in which there is no private saving. Note this means that (as

is standard) we are only uniquely solving for the agent’s consumption profile, not his income

profile. It could be that the principal could implement the same consumption profile with a

different income profile, and the agent would voluntarily choose to save away from this income

profile to achieve exactly the consumption profile intended by the agent.

The agent’s per-period utility over consumption  ∈ [0∞) and effort  is given by

 (())  (3)

where  () = − ln (), the utility cost of taking action , is an increasing, convex function. 
is a CRRA utility function with relative risk aversion coefficient   0, i.e.  () = 1− (1− )

if  6= 1, and  () = ln for  = 1.

The agent lives in periods 1 through  ≤  and retires after period  ≤  . After retirement,

the firm replaces himwith a newCEO and continues to contract optimally.9 The agent discounts

future utility at rate , so that his total discounted utility is given by:

 =

X
=1

(()) (4)

As in Edmans, Gabaix and Landier (2009), effort has a multiplicative effect on both CEO

utility (equation (3)) and firm earnings (equation (1)). Multiplicative preferences ( ( ) =

 (())) consider private benefits as a normal good (i.e. the utility they provide is increasing

in consumption), consistent with the treatment of most goods and services in consumer theory.

They are also common in macroeconomic models: in particular, they are necessary for labor

supply to be constant over time as wages rise; with additive preferences, leisure falls to zero as

period. Hence, on the equilibrium path, there is a one to one correspondence between  and , which makes

messages redundant: see EG for a formal proof. We allow the contract to depend on messages when providing

the optimality of a fixed target action in Section 4.3. Similarly, we restrict the analysis to deterministic contracts;

EG show that assuming that noise has a log-concave distribution (in addition to non-increasing absolute risk

aversion, which we have) is sufficient to rule out stochastic contracts.
8As is standard, the CEO can save in the risk-free rate but not the stock, otherwise the CEO would be able

to undo the contract and give himself a flat salary. Insider trading is illegal in nearly all countries.
9This assumption means that  = ̄ for   . However, it could easily be weakened. The stock return after

the CEO’s retirement is driven only by deviations in the successor’s effort level from the market’s expectations

(plus noise), so any publicly observed contract would have the same effect.
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the wage increases.10 With a multiplicative production function, the dollar benefits of working

are higher for larger firms. Under the literal interpretation of  as effort, initiatives can be

“rolled out” across the entire firm and thus have a greater effect in a larger company; under the

interpretation of cash flow diversion, a large firm has more resources to steal.11 The manager

thus has a linear effect on the firm’s stock return. Edmans et al. show that multiplicative

specifications are necessary to deliver empirically consistent predictions for the scaling of various

incentive measures with firm size.

The principal is risk-neutral and uses discount rate . Her objective function is thus:

max
(=1)(=1 )



"
− −

X
=1

−

#

i.e. the expected discounted dividend, minus expected pay. The individual rationality (IR)

constraint is that the agent achieves his reservation utility of  i.e.



"
X
=1

(())

#
= 

The incentive compatibility constraints require that any deviation (in either the action or

consumption) by the agent reduces his utility, i.e.



"
X
=1

(b(̂))# ≤ 

for all alternative effort strategies (̂  = 1    ) and feasible consumption strategies (b  = 1     ) 
A consumption strategy is feasible if it satisfies the budget constraint

X
=1

− ≤
X
=1

−

We use the notation  and ̂ to highlight that the agent’s effort strategy affects the proba-

bility distribution over return paths.

The problem is complex because contracts are history-dependent, the agent can privately

save, and the principal must choose the optimal effort level. Our solution strategy is as fol-

lows. We first consider a deterministic (but possibly time-varying) sequence of target actions

(∗   = 1  ) and conjecture that the optimal contract involves binding local constraints.

Following this conjecture we (i) derive the necessary local constraints that a candidate contract

10Bennardo, Chiappori and Song (2009) show that a multiplicative utility function can rationalize perks.
11See Bennedsen, Perez-Gonzalez and Wolfenzon (2009) for empirical evidence that CEOs have the same

percentage effect on firm value, regardless of firm size.
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must satisfy in Section 3.1; (ii) find the cheapest contract that satisfies these constraints (Theo-

rem 1 in Section 3.2) and show that the constraints bind (Theorem 2 in Section 4.1); (iii) derive

a sufficient condition under which the candidate contract is also fully incentive-compatible, i.e.

prevents global deviations (Theorem 3 in Section 4.2); (iv) verify that if firm size  is suffi-

ciently large, the optimal contract indeed involves a deterministic path of target actions: the

highest effort level ∗ =  is implemented in each period (Theorem 4 in Section 4.3).

Note that we do not require part (iv) and Theorem 4 if we wish to focus on implementing a

given sequence of target actions (the first stage of Grossman and Hart (1983)) rather than also

determining the optimal effort level (the second stage of Grossman and Hart). Indeed, many

contracting papers focus exclusively on solving for the optimal contract to implement a given

effort level, rather than jointly solving for the optimal action (see, e.g., Dittmann and Maug

(2007), Dittmann, Maug and Spalt (2010)) given the substantial complexity of the latter.

3 Log Utility

3.1 Local Constraints

A candidate contract must satisfy two local constraints. The effort (EF) constraint ensures that

the agent exerts the target effort level ( = ∗ ). The private savings (PS) constraint ensures

that the agent consumes the full income provided by the contract ( = ). To highlight the

effect of allowing for private savings on the contract, we also consider a version of the model

in which private savings are impossible (i.e. the principal can monitor savings), and so the PS

constraint is not imposed.

Consider an arbitrary contract (  = 1     ), a consumption strategy (  = 1     ) and

an effort strategy (  = 1    )  Recall that  and  depend on the entire history (1    )

and  depends on (1    −1 ) To capture history-dependence,  denotes the expectation

conditional on (1    ). We first address the EF constraint and consider a local deviation in

the action  after history (1    −1 ) The effect on CEO utility is



∙







+





¸


Since  = 1 and  = 
0()0(()), the EF constraint is:

EF : 

∙




¸
= (−0())0(())  ∈ (0 ) (5)



∙




¸
≥ (−0())0(())  = .

We next consider the PS constraint. If the CEO saves a small amount  in period  and
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invests it until + 1 his utility increases to the leading order by:

−

∙




¸
 +

∙


+1

¸


To deter private saving or borrowing, this change should be zero to the leading order, i.e.

PS : ()
0(()) = 

£
+1(+1)

0(+1(+1))
¤
 (6)

This is the standard Euler equation for consumption smoothing: discounted marginal utility

()
0(()) is a martingale. Intuitively, if it were not a martingale, the agent would

privately reallocate consumption to the time periods with higher marginal utility.

The Euler equation contrasts with the “Inverse Euler Equation” (IEE), which applies to

agency problems without the possibility of private saving and thus the PS constraint, when

utility is additively separable in consumption and effort (e.g. Rogerson (1985) and Farhi and

Werning (2009)). In our model, utility becomes additive if () = ln, and the IEE is:

IEE: − = 

£
−−−1+1

¤
. (7)

The inverse of the agent’s discounted marginal utility −−, which equals the marginal

cost of delivering utility to the agent, is a martingale. If (7) did not hold, the principal would

shift the agent’s utility to periods with a lower marginal cost of delivering it. This argument is

invalid for  6= 1, because the agent’s marginal cost of effort depends on his consumption when
utility is nonadditive.

3.2 The Contract

We now derive the cheapest contract that satisfies the local constraints. We first consider log

utility as the expressions are most tractable, since the agent consumes the same amount in

each period. In addition, it allows us to consider the model both with and without the PS

constraint, since with log utility, the IEE applies in the case where there is no PS constraint.

Section 4 considers  6= 1.

Theorem 1 (Log utility.) The cheapest contract that satisfies the local constraints and imple-

ments  = ∗ ∀  is as follows. In each period , the CEO is paid a compensation  which

satisfies:

ln  = ln 0 +

X
=1

 +

X
=1

 (8)
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where  and  are constants. The sensitivity  is given by

 =

(
0(∗)

1+++− for  ≤ 

0 for   
(9)

If private saving is impossible, the constant  is given by:

 = + ln − ln[(∗+)] (10)

If private saving is possible,  is given by:

 = + ln + ln[−(
∗
+)] (11)

The initial condition 0 is chosen to give the agent his reservation utility 

Heuristic proof. Appendix A contains a full proof; here we present a heuristic proof in a

simple case that gives the key intuition. We consider  =  = 2,  = 1,  = 0, ∗1 = ∗2 = ∗

and impose the PS constraint. We wish to show that the optimal contract is given by:

ln 1 = 0 (∗)
1

2
+ 1 ln 2 = 0 (∗)

³1
2
+ 2

´
+ 1 + 2 (12)

for some constants 1 (the equivalent of ln 0 + 1 in the Theorem) and 2 that make the IR

constraint bind.

Step 1: Optimal log-linear contract

We first solve the problem in a restricted class where contracts are log-linear, i.e.:

ln 1 = 11 + 1, ln 2 = 211 + 22 + 1 + 2 (13)

for some constants 1, 21 2, 1 2. This first step is not necessary but clarifies the economics,

and is helpful in more complex cases to guess the form of the optimal contract.

First, intuitively, the optimal contract entails consumption smoothing, i.e. shocks to con-

sumption are permanent. This implies 21 = 1. To prove this, the PS constraint (6) yields:

1 = 1

∙
1

2

¸
= (1−21)11

£
−22−2

¤
 (14)

This must hold for all 1. Therefore, 21 = 1 and 2 = ln1
£
−22

¤
, as in (11).

Next, consider total utility  :

 = ln 1 + ln 2 −  (1)−  (2)

= 211 + 22 −  (1)−  (2) + 21 + 2
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From (5), the two EF conditions are 2

h

1

i
≥ 0 (∗) and 2

h

2

i
≥ 0 (∗), i.e.:

21 ≥ 0 (∗)  2 ≥ 0 (∗) 

Intuitively, the EF constraints should bind (proven in the Appendix), else the CEO is exposed

to unnecessary risk. Combining the binding version of these constraints with (13) yields (12).

Step 2: Optimality of log-linear contracts

We next verify that optimal contracts should be log-linear. Equation (5) yields:  (ln 2) 2 ≥
0 (∗). The cheapest contract involves this local EF condition binding, i.e.

 (ln 2) 2 = 0 (∗) ≡ 2 (15)

Integrating yields the contract:

ln 2 = 22 + (1)  (16)

where  (1) is a function of 1 which we will determine shortly. It is the integration “constant”

of equation (15) viewed from time 2.

We next apply the PS constraint (6) for  = 1:

1 = 1

∙
1

2

¸
= 1

h 1

22+(1)

i
= 1

£
−22

¤
1

−(1) (17)

Hence, we obtain

ln 1 =  (1) + (18)

where the constant  is independent of 1. (In this proof, ,  0 and  00 are constants

independent of 1 and 2.) Total utility is:

 = ln 1 + ln 2 + 0 = 22 + 2(1) + 2 + 0 (19)

We next apply (5) to (19) to yield: 20 (1) ≥ 0 (∗)  Again, the cheapest contract involves

this condition binding, i.e. 20 (1) = 0 (∗)  Integrating yields:

 (1) = 0 (∗)
1

2
+ 00 (20)

Combining (20) with (18) yields: ln 1 = 0 (∗) 1
2
+ 1, for another constant 1. Combining

(20) with (16) yields:

ln 2 = 0 (∗)
³1
2
+ 2

´
+ 1 + 2

for some constant 2. ¥
The contract’s closed-form solutions allow transparent economic implications. (8) shows

that time- income should be linked to the return not only in period , but also in all previous
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periods. Therefore, changes to  (due to effort or shocks) boost log pay in the current and

all future periods equally. Since the CEO is risk-averse, it is efficient to spread the effect of

effort and noise over the future. Indeed, Boschen and Smith (1995) find empirically that firm

performance has a much greater effect on the NPV of future pay than current pay.

We now consider how the contract sensitivity changes over time. We consider the case of

a fixed target action (∗ = ∗ ∀ ) so that the changes in the contract’s sensitivity are not

driven by changes in the implemented effort level. (9) shows that, in an infinite horizon model

( =  →∞), the sensitivity is constant and given by:

 =  = (1− ) 0 (∗)  (21)

This is intuitive: the contract must be sufficiently sharp to compensate for the disutility of

effort, which is constant. Thus, not only does  have the same effect on log consumption in

every period, but also ln  is affected by the return in every period to the same degree. The

sensitivity to the current-period return is decreasing in the discount rate — if the CEO is more

impatient (lower ), it is necessary to reward him today rather than in the future.

However, for any model with finite life  , (9) shows that  is increasing over time. To

understand the intuition for this increasing sensitivity, we distinguish between the increase in

lifetime utility for exerting effort () and the increase in current utility ( = );

the latter also equals the increase in current log consumption ( ln ). Since the disutility

of effort is constant, the lifetime utility reward for effort, , must also be constant. When

there are fewer remaining periods over which to smooth out this lifetime increase, the increase in

current utility () must be higher. By contrast, Gibbons and Murphy (1992) generate an

increasing current sensitivity because the lifetime increase in utility  rises over time, to

offset falling career concerns. In Garrett and Pavan (2009), the current sensitivity rises over time

because  increases to minimize the agent’s informational rents. Here,  is constant

since we have no adverse selection or career concerns; instead the increase in  stems

from the reduction in consumption smoothing possibilities as the CEO approaches retirement.

Both Gibbons and Murphy (1992) and Cremers and Palia (2010) document that incentives

increase with CEO tenure.

As in the infinite-horizon case, the sensitivity to the current return decreases with discount

rate . In the finite-horizon case,  also determines the speed at which incentives rise over time.

If the CEO is more patient, the contract involves greater consumption smoothing to begin

with, and so is more greatly affected by the decline in consumption smoothing possibilities as

retirement approaches. Thus, incentives increase particularly rapidly for more patient CEOs.

While  depends on the model horizon, it is independent of whether private saving is

possible — this only affects . Since private saving does not affect the agent’s action and thus

firm returns, the sensitivity of pay to returns is unchanged. Instead, it alters the time trend in

the level of pay. The log expected growth rate in pay is, from (8): ln [−1] = +ln
£


¤
.

15



If private saving is impossible, substituting for  using (10) yields:

ln [−1] = + ln ,

which is constant over time and independent of risk. The risk-free rate  is determined by

the time preference of the aggregate economy. If and only if the CEO is more patient than

the representative agent, then the growth rate is positive, as is intuitive. If private saving is

possible, (11) yields:

ln [−1] = + ln + ln[−] + ln[]

In the limit of small time intervals (or, equivalently, in the limit of small variance of noises 2),

this yields:

ln [−1] = + ln + 2
2
 

Thus, the growth rate of consumption is always greater where private saving is possible. This

faster upward trend means that the contract effectively saves for the agent, removing the need

for him to do so himself. This result is consistent with He (2009b), who finds that the optimal

contract under private savings involves a wage pattern that is non-decreasing over time.12 The

model thus predicts a positive relationship between the wage and tenure, which is consistent

with the common practice of seniority-based pay. Cremers and Palia (2010) confirm this re-

lationship empirically. Moreover, the growth rate depends on the risk to which the CEO is

exposed, which is in turn driven by his sensitivity to the firm’s returns , and the volatility of

firm returns . CEOs with stronger incentives (e.g. because the agency problem is more severe)

or who work in riskier firms will have pay growing more rapidly over time. This is intuitive:

a rising level of pay insures the CEO from risk, removing the need for him to do so himself.

Furthermore, in a finite-horizon model,  is increasing over time and so the growth rate of

consumption rises with tenure, i.e. pay accelerates over time.

We can also calculate how much the expected cost of compensation rises if private saving is

possible and the principal must impose the PS constraint — i.e. the cost to the principal of her

inability to monitor the CEO’s private savings. We follow the analysis of Farhi and Werning

(2009) for this calculation.

Corollary 1 (Cost of Private Savings). Define Λ = (Expected cost of contract imposing PS)

/ (Expected cost of contract without imposing PS), and consider  =  = ∞ and ∗ = ∗ ∀.
We have Λ ≥ 1 and:

Λ =
1− 

1− Θ
22


− Θ22

1− 

12Lazear (1979) has a back-loaded wage pattern for incentive, rather than private saving considerations (the

agent is risk-neutral in his model). Since the agent wishes to ensure he receives the high future payments, he

induces effort to avoid being fired. Similarly, in Yang (2009), a back-loaded wage pattern induces agents to

work to avoid the firm being shut down.
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using the notation Θ22 = ln
£
−

¤
+ ln

£
+

¤
. In the limit of small time intervals, Θ ∼

 = (1− ) 0 (∗) and Λ ∼ 
− 22

1−  (1− 22 (1− )).

The ratio Λ increases in the risk borne by the agent, 22 as this affects his desire to save.

In addition, from (21) we see that Λ is closer to one when the agent is more patient.

The contract in Theorem 1 also has implications for the appropriate measure of incentives.

Taking first differences of this contract yields:

ln  − ln −1 =  +  (22)

The percentage change in CEO pay is linear in the firm’s return , i.e. the percentage change

in firm value. Thus, the relevant measure of incentives is the percentage change in pay for a

percentage change in firm value (“percent-percent” incentives), or equivalently the elasticity of

CEO pay to firm value; in real variables, this equals the fraction of total pay that is comprised of

stock. This elasticity/fraction must be  to achieve incentive compatibility and is independent

of firm size. “Percent-percent” incentives are relevant because effort has a multiplicative (i.e.

percentage) effect on both CEO utility and firm value.

Empiricists have used alternative statistics to measure incentives — Jensen and Murphy

(1990) calculate “dollar-dollar” incentives (the dollar change in CEO pay for a dollar change in

firm value) and Hall and Liebman (1998) measure “dollar-percent” incentives (the dollar change

in CEO pay for a percentage firm return.) By contrast, Murphy (1999) advocates elasticities

(“percent-percent” incentives) on empirical grounds: they are invariant to firm size and thus

comparable across firms of different size (as found by Gibbons and Murphy (1992)), and firm

returns have greater explanatory power for percentage than dollar changes in pay. Thus, firms

behave as if they target percent-percent incentives. However, he notes that “elasticities have no

corresponding agency-theoretic interpretation.” Our framework provides a theoretical justifica-

tion for using elasticities to measure incentives. Edmans et al. (2009) show that multiplicative

preferences and production functions generate elasticities as the incentive measure, which mo-

tivates their use here (equations (1) and (3)).13 Their result was derived in a one-period model

with a risk-neutral CEO; we extend it to a dynamic model with risk aversion and private saving.

The contract in Theorem 1 involves binding local constraints and implements  = ̄. The

remaining steps are to show that the agent will not undertake global deviations (e.g. make large

single-action changes, or simultaneously shirk and save) and that the principal cannot improve

by implementing a different effort level or allowing slack constraints. Since these proofs are

equally clear for general  as for log utility, we delay them until Section 4.

13Peng and Roell (2009) also use a multiplicative specification and restrict analysis to contracts where log

pay is linear in firm returns. This paper endogenizes the contract form and thus provides a microfoundation for

considering only loglinear contracts.
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3.2.1 A Numerical Example

This section uses a simple numerical example to show most clearly the economic forces behind

the contract. We first set  = 3,  = 3,  = 1, ∗ = ∗ and 0 (∗) = 1. From (9), the contract

is:

ln 1 =
1

3
+ 1

ln 2 =
1

3
+

2

2
+ 2

ln 3 =
1

3
+

2

2
+

3

1
+ 3

where  =
P

=1 . An increase in 1 leads to a permanent increase in log consumption — it

rises by 1
3
in all future periods. In addition, the sensitivity  increases over time, from

13 to 12 to 11. The total lifetime reward for effort  is a constant 1 in all periods.

We now consider  = 5, so that the CEO lives after retirement. The contract is now:

ln 1 =
1

5
+ 1 (23)

ln 2 =
1

5
+

2

4
+ 2

ln 3 =
1

5
+

2

4
+

3

3
+ 3

ln 4 =
1

5
+

2

4
+

3

3
+ 4

ln 5 =
1

5
+

2

4
+

3

3
+ 5

Since the CEO takes no action from  = 4, his pay does not depend on 4 or 5. However, it

depends on 1, 2 and 3 as his earlier efforts affect his wealth, from which he consumes.

3.3 Implementation: the Dynamic Incentive Account

The contract derived in Section 3.2 can be implemented in at least two ways. First, it can be

implemented using purely flow-based pay: the principal simply pays the agent the amount 

given by Theorem 1. Second, it can be implemented using a wealth-based account, as described

in Proposition 1 below.

Proposition 1 (Contract Implementation via a Dynamic Incentive Account). In a finite-

horizon model, the contract in Theorem 1 can be implemented as follows. The present value of

the CEO’s expected pay is escrowed into a “Dynamic Incentive Account” (“DIA”) at the start

of  = 1.14 A proportion 1 is invested in the firm’s stock and the remainder in interest-bearing

14If the CEO has any initial wealth, it is also placed in the DIA. In reality, managers of start-ups often

co-invest in their firm. Note that the stock pays the firm’s actual return. As noted in footnote 6,  is not the
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cash. At the start of each subsequent period , the DIA is rebalanced so that the proportion

invested in the firm’s stock is . A deterministic fraction  vests at the end of each period and

can be withdrawn for consumption. The vesting fraction is given by:

 =  = 1

"
X
=

−(−)


=+1 +

#

(i) If private saving is impossible and ∗ = ∗ ∀ ,  has a particularly simple form and is

given by  = (1− ) 
¡
1− −

¢
.

(ii) In an infinite-horizon model in which private saving is possible, ∗ = ∗ ∀ , and noise 
is i.i.d., the contract can be implemented by a DIA with  =  = 1− £¤ £−¤  1−,
as long as   0.

The rebalancing of the DIA ensures that  of the agent’s wealth is invested in stock at all

time, so that his percent-percent incentives equal . This rebalancing addresses a common

problem of options: if firm value declines, their delta and thus incentive effect is reduced. Un-

rebalanced shares suffer a similar problem, even though their delta is 1 regardless of firm value.

The relevant measure of incentives is not the delta of the CEO’s portfolio (which represents

dollar-dollar incentives) but the CEO’s equity as a fraction of his wealth (percent-percent in-

centives). When the stock price falls, this fraction, and thus the CEO’s incentives, are reduced

— intuitively, when the firm becomes smaller, effort has a smaller dollar impact (given a mul-

tiplicative production function) and so a greater dollar value of stock is necessary to preserve

effort incentives.

The DIA addresses this problem by exchanging stock for cash, to maintain the fraction at

. Importantly, the additional stock is accompanied by a reduction in cash — it is not given for

free. This addresses a major concern with repricing options after negative returns to restore

incentives — the CEO is rewarded for failure.15 On the other hand, if the share price rises, the

stock fraction grows. Therefore, some shares can be sold for cash, reducing the CEO’s risk,

without incentives falling below . Indeed, Fahlenbrach and Stulz (2009) find that decreases

in CEO ownership typically follow good performance.16 Core and Larcker (2002) study stock

ownership guidelines, whereby boards set minimum requirements for executive shareholdings.

In 93% of cases, the requirements relate to the value of shares as a multiple of salary: consistent

with our model, this involves rebalancing (giving additional stock after the price has fallen to

firm’s actual return, but the actual return plus a constant. This does not affect the implementability with stock

because it only changes the constant , which rises by (
∗ −+ ln [ ]).

15Achraya, John and Sundaram (2000) show that the cost of rewarding failure may be outweighed by the

benefit of reincentivization, and so repricing options can be optimal. The rebalancing in the DIA achieves the

benefit of reincentivization without the cost of rewarding failure.
16Fahlenbrach and Stulz (2009) measure CEO ownership by the percentage of shares outstanding (dollar-

dollar incentives), rather than percent-percent incentives . Thus, ownership must fall (rise) with good (bad)

performance to keep  constant.
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maintain a constant multiple) and implies targeting of percent-percent incentives. The idea of

rebalancing incentive portfolios is similar to the widespread practice of rebalancing investment

portfolios: both are ways of maintaining desired weights in response to stock price changes.

The DIA thus features dynamic rebalancing to ensure that the EF constraint is satisfied in

the current period. This rebalancing is state-dependent: if the stock price rises (falls), stock is

sold (bought) for cash. The second key feature of the DIA is gradual vesting. This vesting is

time-dependent: regardless of the account’s value, the CEO can only withdraw a percentage 

in each period for consumption. The fraction  is history-independent. This gradual vesting

has two roles. First, it achieves consumption smoothing. Second, it ensures that the EF

constraint is satisfied in future periods, by guaranteeing that the CEO has sufficient wealth in

the account for the principal to “play with” so that she can achieve the required equity stake by

rebalancing this wealth. If the CEO is allowed to fully withdraw his wealth from the account,

his wealth would be outside the principal’s control and so she would not be able to rebalance it.

This motivation exists during the CEO’s employment only — the account fully vests in period

. The CEO is not exposed to returns after period  as he cannot affect them and so any

exposure would merely subject him to unnecessary risk. Note that this motivation for gradual

vesting contrasts existing verbal arguments based on deterring myopic actions (e.g. Bebchuk

and Fried (2004), Holmstrom (2005), Bhagat and Romano (2009)). While we show in Section

5 that allowing for such actions provides an additional case for gradual vesting, the core model

demonstrates that gradual vesting is optimal even if short-termism is not possible.

Moreover, in contrast to the above verbal arguments on the vesting horizon, Proposition

1 explicitly solves for the optimal vesting rate in a number of benchmark cases. This al-

lows us to analyze the economic forces that affect the vesting rate. If private saving is fea-

sible and the model horizon is infinite, part (i) specializes to  = 1 − . Thus, the vest-

ing fraction is time-independent, just like the contract sensitivity . If the horizon is finite,

 = (1− ) 
¡
1− −

¢
and is increasing over time. This is intuitive: since the CEO has

fewer periods over which to enjoy his wealth, he should consume a greater percentage in later

periods. Part (ii) shows that, in an infinite horizon model where private saving is possible, we

have   1− . The agent would like not to hold stock as it carries a zero risk premium, but is

forced to invest %. He thus wishes to save to insure himself against this risk. To remove these

incentives, we have   1 −  so that the account grows faster than it vests, thus providing

automatic saving. In both (i) and (ii), the vesting fraction increases when the CEO is more

impatient (i.e.  is lower), as is intuitive.

One aspect of a wealth-based implementation that we do not model explicitly is the funding

of the DIA by the firm. In the simplest case of Proposition 1, the present value of the CEO’s

future salary is placed in the account when he is initially appointed. Alternatively, the firm

may smooth out these contributions over time by funding the account gradually. In addition,

the DIA (regardless of how it is funded) represents only one implementation of the contract.

Other implementations are possible: rather than setting up an account and rebalancing, the
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principal can simply pay the agent  in each period, i.e. implement the contract with purely

flow compensation. The DIA implementation highlights the economic interpretation of such a

payment scheme: it has the same effect as if the NPV of the CEO’s future pay was escrowed,

rebalanced and gradually vested. The interest in showing that the contract can be implemented

via a wealth-based account is that this allows consumption to be history-dependent, without

new flows of pay having to depend on past returns in a complex manner, as discussed in the

Introduction.

4 Generalization and Justification

This section is divided as follows. Section 4.1 generalizes our contract to all CRRA utility

functions and autocorrelated noise, and shows that the local EF constraint must bind. Section

4.2 derives sufficient conditions for the contract to be fully incentive compatible (i.e. deters

global deviations) and Section 4.3 proves that, if the firm is sufficiently large, the optimal

contract indeed involves a deterministic effort level — it requires  = ̄ after every history.

Section 4.4 discusses the role played by each of the assumptions in generating the model’s key

results.

4.1 General CRRA Utility and Autocorrelated Signals

The core model assumes that the signal  was the firm’s stock return and so it is reasonable

to assume the noises  are uncorrelated. However, in private firms, there is no stock return;

for some public firms, the stock is illiquid and thus an inaccurate measure of performance.

Therefore, alternative signals of effort must be used such as profits. Unlike stock returns, shocks

to profits may be serially correlated. This subsection extends the model to such a case. We

assume that  follows an (1) process with autoregressive parameter , i.e.  = −1 + 

 ∈ [0 1] where  are independent and bounded above and below by  and .

We also now allow for a general CRRA utility function. Note that for  6= 1, the IEE is not
valid if private savings are impossible, so we only consider the case where the PS constraint is

imposed. We define  = −(1−)(
∗
 ) for  ≤  and  =  otherwise. The optimal contract

is given in Theorem 2 below. Even though the principal must rule out private savings, she still

has freedom in the choice of the contract (and so the optimization problem remains complex) if

she wishes to implement a boundary action (Theorem 4 gives sufficient conditions under which

a boundary action is optimal.) With a boundary action, the principal could use a contract with

a greater sensitivity than necessary. Theorem 2 proves that this is suboptimal.

Theorem 2 (General CRRA utility, autocorrelated noise, with the PS constraint.) The cheap-

est contract that satisfies the local constraints and implements  = ∗ ∀  is as follows. In each
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period , the CEO is paid  which satisfies:

ln  = ln 0 +

X
=1

 ( − −1) +
X

=1

 (24)

where  and  are constants and 0 = 0. The sensitivity  is given by:

 =

⎧⎪⎨⎪⎩
(

0(∗)−+1)
= 


=+1



(1−)[(+∗−∗−1)+]

 + +1 for  ≤ 

0 for   

(25)

The constant  is given by:

 = + ln − (1− )(∗)1=+1 + ln
£
−(+

∗
−∗−1)

¤
for  ≤  (26)

The initial condition 0 is chosen to give the agent his reservation utility .

If  =  =∞ and ∗ = ∗ ∀ , the sensitivity (25) simplifies to a constant  = , where 

is given by (44) in Appendix A. In the limit of small time intervals, and when  = 0, we have:

 =
1−

q
1− 2( − 1)20(∗)2 (−1)−ln 



( − 1)20(∗)  (27)

and  =  = (+ ln )  − ∗ − 222.

Equation (24) shows that moving from log to general CRRA utility but retaining indepen-

dent noise has little effect on the functional form of the optimal contract, which remains in

closed-form and independent of the noise distribution. Similarly,  only affects the specific

values of  and  rather than the functional form. The time trend of the contract sensitivity

and the implementation via the DIA remain the same. The difference is that the parameters

 and  are somewhat more complex. To understand the economic forces that determine ,

consider the benchmark case where  = 0,  =  and ∗ = ∗, ∀. Then, the sensitivity (25)
becomes

 =


1−
P

=
£


1−


¤0 (∗)  (28)

which stems directly from the EF condition. Under plausible parameterizations of the model

(e.g., small time intervals, or ln  +  is close to 0), when  ≥ 1, the sensitivity increases

over time up to  = 0 (∗) and is steeper if the agent is more risk averse (higher ) and less

patient (lower ), and stock return volatility is higher. (The full derivations are in Appendix

C.) Intuitively, these changes decrease the utility the agent derives from future consumptions,P

= [
1−
 ], which is in the denominator of (28). Since future rewards are insufficient to

induce effort, the CEO must be given a higher sensitivity to current consumption.
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Equation (24) shows that, with autocorrelated signals, the optimal contract links the per-

centage change in CEO pay in period  to innovations in the signal ( − −1) between  and

− 1, rather than the absolute signal in period . This is intuitive: since good luck (i.e. a posi-
tive shock) in the last period carries over to the current period, the contract should control for

the last period’s signal to avoid paying the CEO for luck. Similarly, if there is an industry-wide

component to , the optimal contract will filter out this component, just as it filters out −1.

Thus, relative performance evaluation can be combined with the contract.

4.2 Global Constraints

We have thus far derived the best contract that satisfies the local constraints. We now verify

that this contract also satisfies the global constraints, i.e. the agent will not undertake global

deviations. The following analysis derives a sufficient condition on  to guarantee this.

The contract in Theorem 2 pays the agent an income , given by:

ln  = ln 0 +

X
=1

( +  − (−1 + −1)) +
X

=1

 (29)

The following Theorem states that if the cost function  is sufficiently convex and the target

effort level does not rise too rapidly over time, the CEO has no profitable global deviation.

Theorem 3 (No global deviations are profitable.) Consider the maximization problem:

max
 adapted



"
X
=1


¡


−()¢# (30)

with
P

=1 
− ( − ) ≥ 0 and  satisfying (29). If function  is sufficiently convex (i.e.

inf 
00 () is sufficiently large) and  − +1 ≥ 0 ∀ , the solution of this problem is  ≡ 

 ≤  and  = ∗  ∀. There is no global deviation from the recommended policy that makes

the agent better off.

The role of the condition on the convexity of the cost function is standard. The intuition for

the condition that  − +1 ≥ 0 ∀  is that, if the target effort level (and thus contract slope
) rises rapidly over time, the agent will shirk in period . This will reduce the period  return

 and thus his consumption , but increase his wage in all future periods — if noise is highly

autocorrelated ( is high), then the combination of a low  and high returns in future periods

will fool the principal into thinking that the agent exerted higher effort in periods +1 onwards

than he actually did. Formally, the problem becomes non-concave. Thus, we require either

low autocorrelation in the noise (low ) or the target action not to rise too rapidly over time.

Indeed, in Theorem 4 we show that, if firm size  is sufficiently large, the optimal contract

involves a constant effort level.
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The proof, in the Appendix, may be of general methodological interest. It involves three

steps. First, we reparameterize the agent’s utility from a function of consumption and effort

to one of consumption and leisure, where the new variable, leisure, is defined so that utility is

jointly concave in both arguments. Second, we construct an “upper-linearization” function: we

create a surrogate agent with a linear state-dependent utility. Third, we prove that any global

deviation by the surrogate agent weakly reduces his utility. It is automatic that there is no

motive to save under linear utility. Turning to effort, if the cost of effort  is sufficiently convex,17

the PV of the agent’s income is concave in leisure. Since utility is linear in consumption, and

consumption equals income, utility is concave in leisure and so there is no profitable deviation.

Since our original agent’s utility function is concave, his utility is the same as the surrogate

agent’s under the recommended policy, and weakly lower under any other policy. Thus, any

deviation also reduces the original agent’s utility. The third step is a Lemma that shows that

the PV of income is a concave function of actions under suitable reparameterization. It thus

may have broader applicability to other agency theories, allowing the use of the first-order

approach to significantly simplify the problem.

4.3 The Optimality of High Effort

This section derives conditions under which the principal wishes to implement the boundary

effort level  = ̄ in every period and after every history. We refer to  as “high effort”, to use

similar terminology to models with discrete effort levels (e.g. high, medium, low) in which the

high effort level is typically optimal.

Theorem 4 (High effort is optimal if the firm is sufficiently large.) Assume that inf
∈()  () 

0 and sup∈() 
00 () 02 () ∞, where  is the probability density of . There exists ∗ such

that if baseline firm size   ∗, implementing  = ̄ is optimal.

The intuition is as follows. For any alternative contract satisfying the incentive constraints,

we compare the benefits and costs of moving to a high effort contract. The benefits are multi-

plicative in firm size. The costs comprise the direct disutility from working, the risk premium

required to compensate the CEO for a variable contract, and the change in CEO’s informa-

tional rent (which are all a function of the CEO’s wage). Since the CEO’s wage is substantially

smaller than firm size, the benefits of high effort outweigh the costs. In practice, a boundary

effort level arises because there is a limit to the number of productive activities the CEO can

undertake to benefit the principal. Under the literal interpretation of  as effort, there is a

finite number of positive-NPV projects available and a limit to the number of hours a day the

17See Dittmann and Yu (2010) for a similar convexity condition to ensure that the local optimum is globally

optimal. They consider a one-period model where private savings are not possible, but the CEO chooses risk

as well as effort.
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CEO can work while remaining productive. Under the interpretation of  as rent extraction, 

reflects zero stealing.

The complexity in the proof lies in deriving an upper bound on the informational rent

(which stems from the CEO’s private information about the noise ) and the risk imposed

on the CEO from incentives (which depends on the CEO’s ability to self-insure via privately

saving). Any change in the implemented effort level requires adjusting the wage not only in a

particular period for the whole range of noises, but also across time periods to deter private

saving. Implementing  = ̄ in period  requires the time- contract to change. Moreover,

the change in the time- contract has a knock-on effect on the time − 1 contract, which must
change to deter saving between time  − 1 and time . The change in the time  − 1 contract
impacts the time  − 2 contract, and so on: due to private saving, the contract adjustments
“resonate” across all time periods. It is this non-separability which significantly complicates the

problem. These complications are absent in EG, who derive a similar result in a single-period

model.

This above result may be of use for future theories by simplifying the contracting problem.

Grossman and Hart (1983) solved the one-period contracting problem in two stages: finding

the cheapest contract that implements a given effort level, and then finding the optimal effort

level. Solving both stages is typically highly complex; indeed, Grossman and Hart can only do

so numerically. The idea that the benefits of effort are orders of magnitude higher than the

costs simplifies the problem — since high effort is optimal, the second stage of the contracting

problem is solved and so the analysis can focus exclusively on the first stage.

4.4 Discussion of Modeling Assumptions

This subsection discusses which of the model’s assumptions are necessary for its key results.

We view the paper’s main contributions as threefold:

E. (Economic): Economic insights on the forces that drive the optimal contract, e.g. how the

sensitivity  and level  of pay change over time and depend on the environment; how

the CEO remains exposed to firm returns after retirement if short-termism is possible.

T. (Tractability): Achieving a simple, closed-form optimal contract in a dynamic setting

with private saving and short-termism.

I. (Implementation): The contract can be implemented with a wealth-based account, with

state-dependent rebalancing and time-dependent vesting (I1). The account contains the

standard instruments of stock and cash (I2)

Note that (E) and (I) are distinct implications. The contract in Theorem 1 can always

be implemented with flow pay, i.e. paying the CEO an amount  in every period, and all the

economic implications of the contract would follow. (I) refers to only one simple implementation.
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We now discuss the roles played by the main assumptions in generating the above results:

A1. CRRA utility and multiplicative preferences. We consider these assumptions together as

they are closely intertwined — the former (latter) means that an agent’s allocation to

risky assets (leisure) is proportional to his wage. EG show that these assumptions are

not necessary for a simple contract if there is only terminal consumption. However, they

are important in a model with intermediate consumption as they lead to multiplicative

separability and key variables scaling with the wage. To understand the importance of

multiplicative preferences for (T), assume  =  and consider the final period . With

multiplicative preferences, the incentive measure is the elasticity of pay to firm value. This

elasticity must be , irrespective of the level of pay in period  — and is thus independent

of the history of past returns. The principal can thus defer the rewards for performance

in prior periods (to smooth consumption) without distorting effort incentives. Deferral

affects the level of pay in period  but not effort incentives, as long as the elasticity

remains .

Multiplicative preferences also mean that the whole promised wealth of the agent in

period 1 is multiplicative in 1(1), promised wealth at period 2 conditional on 1 is

multiplicative in 2(1 2)
18, and so on. In other words, a shock to 1 has a multiplicative

effect on consumption in all future periods. Moreover, when we also have CRRA utility,

this multiplicative effect is the same in every future period, for optimal risk-sharing. If 1

falls by 2% log consumption falls by  × 2% in the current and all future periods, where
 is a constant. Thus, rewards for performance are smoothed in a simple manner, and

this smoothing is also independent of the history of past returns — for example, the effect

of 2 on 2   is independent of 1.
19 Together, both assumptions mean that, although

consumption is history-dependent,  is history-independent and so the dynamic contract

is a simple extension of the static contract.

The assumptions also allow a wealth-based implementation, i.e. (I1). Since wealth is a

multiple of consumption, consumption is a fraction of wealth. We can therefore implement

the contract by investing the CEO’s wealth into instruments that yield 1(1) in the

first period, allowing him to consume a fraction 1, then rebalancing by investing the

remainder of his wealth in instruments that yield 2(1 2) as a function of 2, and so

on. The thresholds to which the account must be rebalanced  are history-independent,

since the elasticity is history-independent. Furthermore, since the return in a particular

period has the same effect on all future consumptions, the ratio of current consumption

18We require 2 (1 2) = 1 (1)  (2), 3(1 2 3) = 2 (1 2)  (2) etc., i.e. multiplicative separability.
19With multiplicative preferences but without CRRA, the smothing is complex and history-dependent. Con-

sider a 2-period model with ( ) = (). We have 2(1 2) = (1)
22 , and PS yields 1() =

1

h
(1)

22()
i
. Even though 1 has a multiplicative effect on 2, solving for the magnitude of this ef-

fect (1) is highly complex.
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to the sum of all future consumptions (i.e. wealth) is a constant and is independent of

past shocks. Thus, the CEO’s promised wealth is a sufficient statistic for his current

consumption — the sequence of past returns that led to the CEO accumulating this level

of wealth is irrelevant. Since consumption depends on current wealth alone, the vesting

fraction  is history-independent.
20

Multiplicative separability is not necessary for (T) — additive separability with CARA

utility and additive preferences would also work (see Appendix E); the above arguments

apply but with dollar amounts replacing percentage amounts. However, the model would

predict that dollar-percent incentives are the relevant measure and independent of pay

and firm size (contrary to evidence, e.g. Jensen and Murphy (1990)). Moreover, it would

not permit a wealth-based implementation, i.e. (I1). With multiplicative preferences, the

relevant measure of incentives is percent-percent incentives, which equals the fraction of

wealth that is in stock. Regardless of the level of wealth, it can always be rebalanced to

ensure that the fraction is at the required level. By contrast, dollar-percent incentives

equal the dollar value of equity. If the value of the account falls below the required

dollar equity holding, there is no way that it can be rebalanced to restore the CEO’s

equity holdings to this threshold, since cash cannot be negative owing to limited liability.

Put differently, if a fall in returns reduces future consumption by a fixed dollar amount,

after sufficiently many periods of low returns, the required future consumption would be

negative.

Multiplicative preferences are not necessary for (E). In any model with myopia, the CEO

must remain tied to firm returns after he retires. The time trend in  is determined by

consumption smoothing motives and the time trend in  is determined by the need to

save for the agent; neither hinge on the specific preference formulation.

A2. Multiplicative production function. This assumption is used in the proof of the optimality

of  =  in Theorem 4. It is a sufficient, rather than necessary condition for this result — as

long as the dollar benefits of effort are increasing in (although not necessarily proportional

to) firm size,  =  will be optimal if the firm is sufficiently large. Moreover, as discussed

at the end of Section 4.3, Theorem 4 is not needed if we wish to focus on the cheapest

contract to implement a given target action. The multiplicative production function is

only necessary to implement the contract using stocks, i.e. (I2). With a multiplicative

production function, the CEO’s action affects the firm’s return, and stocks are sensitive

to the firm’s return.

20One could argue that it is always possible to implement a contract with rebalancing and vesting, where the

vesting fraction  and rebalancing target  are complex functions of the past history, and so (I1) does not hinge

on our assumptions (A1). However, such an implementation would be complex; the key role of assumptions

(A1) is to allow  and  to be history-independent.
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A3. Noise-before-action timing. This timing assumption was convenient for the derivation of

the contract by forcing the EF constraints to hold state-by-state. With reversed “action-

before-noise” timing, the contract becomes complex even in a static model (see, e.g.,

Grossman and Hart (1983)). In particular, the solution typically does not feature a

constant elasticity of pay to firm value. However, the paper’s other insights, aside from

(I2), remain valid. We sketch the general argument using a simple example.

Consider a one-period problem, in which principal minimizes the cost of providing incen-

tives to exert effort , with log utility and “action-before-noise” timing. First, it can be

shown that, with log utility, if () solves the problem when the agent’s expected utility is

 , then for any   0, × () solves the problem with expected utility  +ln . In other

words, to deliver a higher expected utility, the principal must scale up all payments by

the same fixed constant, regardless of the realized returns. The timing assumption only

matters for the actual form of  () (with “noise-before-action” timing, () has a partic-

ularly simple form: it is a multiple of  for some constant ; with “action-before-noise”

timing,  () a multiple of () for some general function ) — but the above “scaling”

result holds regardless of the timing.

Moving to  =  = 2, the above claim means that the return at  = 2 affects pay at  = 2

multiplicatively. Therefore, the contract must have the form:

2(1 2) = 1(1)2(2)

for 2 ≡  and some function 1. The PS constraint yields:

1(1) = 1(1)−

for the constant  = ln[−2(2)], analogous to (11). Thus, 2(1 2) and 1(1) are

affected by 1 in the same manner. Finally, 1 is the solution to a static problem where

the CEO’s utility of consumption is 2 ln 

In sum, the two-period dynamic problem with private saving can be reduced to two static

problems: solving for functions 1 and 2. Thus, while the static problem is complex,

the dynamic model represents a simple extension: each static problem can be solved

independently without complex history-dependence. Thus, much of (T) is preserved.

Moreover, promised wealth at period 2 conditional on 1 is multiplicative in 2(1 2) and

so on, and so (I1) is preserved. At  = 1, the principal must invest the funds into an

instrument that yields 1(1). At  = 2, regardless of 1, she must invest the funds into

an instrument that yields 2(2). With noise-before-action timing,  () =  ×  so the

instrument was a combination of cash and stock; with reversed timing,  () is not linear

in  and so in general the instrument will not be cash and stock, so we do not have (I2).

Appendix B shows that the contract retains the same form in continuous time, where the
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noise and action are simultaneous.

5 Short-Termism

We now study how our basic contract changes when the agent can inflate the firm’s returns,

focusing on the log utility case for simplicity. Following on from Theorem, 4 we assume that

∗ =  ∀ . Short-termism is broadly defined to encompass any action that increases current

returns at the expense of future returns. This includes real decisions such as scrapping positive-

NPV investments (see, e.g., Stein (1988)) or taking negative-NPV projects that generate an

immediate return but have a downside that may not manifest for several years (such as sub-

prime lending), earnings management, and accounting manipulation.

We model short-termism in the following manner. In each period  ≤ , at the same time as

taking action , the agent also chooses a vector of myopic actions = {1(+1) (+)}.
A single myopic activity (+) ∈ [0] (for an upper bound   0) changes the returns

from  =  +  to

0 =  +  ([(+)]) for  = 

0+ = + −(+) for  = + 

0 =  for  6=  + 

Short-termism raises returns in period  by  ([(+)]) (the function  (·) will be specified
shortly) and decreases them in period  +  by (+). This specification allows the CEO

to engage in myopia state-by-state: the negative effect of short-termism  depends on the

realized return + and thus the state of nature +. Thus, the CEO can choose the states

in which the costs of myopia are suffered. Giving the agent great freedom to inflate earnings

restricts the set of admissible contracts that the principal can write to deter myopia, and thus

leads to a simple solution to the contracting problem. This is similar to how specifying the

noise before the action leads to tractability in the core model, as discussed in Section 2. In

practice, CEOs can engage in short-termism by scrapping certain investments that pay off only

in certain states of the world — for example, investing to increase the safety of a factory pays

off if there is a disaster; expanding the capacity of a factory pays off only if demand turns out

to be high.

We have 1 ≤  ≤  , where  is the “release lag” of the myopic activity: the number of

periods before its negative consequences become evident. For example, if the agent manipulates

accounting to delay the realization of expenses for five years,  = 5.  ≤ − is the maximum
possible release lag. The function  ([(+)]) captures the efficiency of earnings inflation:

a greater  (·) means that a given future reduction in returns  [(+)] translates into a
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greater boost today. We assume  (0) = 0, 
0
  0, 

00
  0 and

 ≡ 0 (0) 
−

 []
 (31)

so that 0    1. This assumption is sufficient to guarantee that all myopic actions are

inefficient and create a first-order loss on firm value by reducing the expected terminal dividend,

as proven in Appendix E.

5.1 Local Constraint

If the agent engages in a small myopic action (+) at time , his utility changes to the

leading order by



∙




¸
 [ (e+)] +

∙
−(e+)

∙


+
| e+¸¸ 

We require that, for every (+) ≥ 0, the change in utility is nonnegative, i.e.



∙




¸
 [ (e+)] +

∙
−(e+)

∙


+
| e+¸¸ ≤ 0 i.e.



∙




¸

R
 (+) (+)+ −

R
 (+) (+)

∙


+
| e+ = +

¸
+ ≤ 0

This leads to the following No Myopia (NM) constraint:

NM : ∀+ 

∙




¸
 −

∙


+
| e+ = +

¸
≤ 0 (32)

To interpret the conditioning, consider the case  = 3. The second expectation is conditioned

on ()≤ and +3, but not on +1 nor +2.

5.2 The Contract

There are now three local constraints: EF, PS and NM. We seek the cheapest contract that

satisfies these three constraints, i.e. induces zero myopia, zero private saving and high effort.

The intuition behind implementing zero myopia is similar to that behind high effort as proven

in Theorem 4: the benefits of preventing short-termism are multiplicative in firm size and thus

orders of magnitude greater than the costs, which are a function of the CEO’s salary. Relatedly,

using a similar argument to Theorem 3, we conjecture that the contract that satisfies the three

local constraints will also satisfy the global constraints if the function  (·) (which captures
the efficiency of inflation) is sufficiently concave, analogous to the sufficient condition on the

convexity of the cost of effort  (·) in Theorem 3. Given the high complexity of the proofs of
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Theorems 3 and 4, we do not provide analogous proofs here.

Proposition 2 below gives the cheapest contract that satisfies the three local constraints.

Proposition 2 (Log utility, myopia possible.) The cheapest contract that satisfies the local

constraints for high effort, zero private saving and zero myopia is as follows. In each period ,

the CEO is paid  which satisfies:

ln  = ln 0 +

X
=1

 +

X
=1



where  and  are constants. The sensitivity  is given by:

 =

(


1+++− for  ≤ +

0 for   +
 (33)

with 1 = 0(̄). For   1,  is defined recursively as:

 =

⎧⎨⎩ max1≤≤
n
0(̄) 


−

o
for  ≤ 

max−≤≤
n



−

o
for    ≤ +



If private saving is impossible, the constant  is given by:

 = + ln − ln[(̄+)]

If private saving is possible,  is given by:

 = + ln + ln[−(̄+)]

The initial condition 0 is chosen to give the agent his reservation utility 

From (33), the possibility of short-termism has three effects on the contract sensitivity,

which must change to prevent such actions. First, in the core model, there are two motivations

for time-dependent vesting: consumption smoothing and the need to maintain sufficient equity

in the DIA to satisfy the EF constraints in future periods. These motivations exist during the

CEO’s employment only and full vesting occurs in period . Where myopia is possible, time-

dependent vesting has an additional motivation — to satisfy the NM constraint in the current

period, by preventing the CEO from inflating the current stock price and immediately cashing

out. This motivation exists both during the CEO’s employment and after retirement. Thus,

gradual vesting continues after retirement and the account only fully vests in period  + ,

since myopia allows the CEO to affect firm returns up to period + . While we are unaware

of any large-scale studies, anecdotal evidence is consistent with such lock-ups. The severance
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agreement of Stanley O’Neal (ex-CEO of Merrill Lynch) states that: “the unvested restricted

stock and restricted stock units will continue to vest in accordance with their original schedules.”

During employment, equity grants are often restricted in practice: Kole (1997) finds a typical

vesting horizon of 2-3 years. A number of firms are lengthening their horizons in the aftermath

of the financial crisis: many commentators argued that short vesting periods in certain firms

encouraged myopia in the crisis.21

Second, the contract sensitivity  is higher in each period, because the contract must now

satisfy NM as well as EF. Third,  trends upwards more rapidly over time. Short-termism

allows the CEO to increase the time- return and thus his time- consumption. Even though

the return at time +  will be lower, the effect on the CEO’s utility is discounted. Therefore,

an increasing sensitivity is necessary to deter myopia, so that he loses more dollars in the future

than he gains today to offset the effect of discounting. For example, in an infinite horizon model

where myopia is impossible, (21) shows that the sensitivity is constant. (33) shows that the

sensitivity is increasing over time if short-termism is possible.

The magnitude of the above three changes depends on the CEO’s incentives to inflate

earnings, which are determined by two forces. The benefit to the CEO of short-termism is that

he boosts current returns and thus pay, which outweighs the negative effect on future returns

owing to discounting. The discount rate  determines the size of this benefit. The cost is that

myopia is inefficient, as the current boost to returns exceeds the future cost. For local myopic

actions, the parameter  determines the size of the cost. Overall, when  is higher and 

is lower, the CEO’s incentives to inflate earnings are greater; thus, the CEO is given greater

exposure to returns after retirement, and the contract sensitivity is higher in every period and

increases more rapidly over time.

Moreover, all of the above changes to the sensitivity  also affect the constant term .

Thus, if private saving is possible, the increase in  causes the level of the contract to grow

more rapidly over time, providing automatic saving for the agent. While the possibility of

myopia only has a direct effect on the sensitivity of pay, this spills over into an indirect effect

on the level of pay.

A specific example conveys the economics of the contract more clearly. Let  =  for some

 ∈ (0 1), i.e. a myopic action hidden for  periods increases current returns by , a factor

that decreases at a constant rate  per year of hiding. This natural benchmark allows for the

slopes  in (33) to be defined explicitly rather than recursively. These are given as follows.

Corollary 2 Suppose that  ∈ (0 1)  = . If   , then  = 0 () for  ≤  and

21For example, Angelo Mozilo, the former CEO of Countrywide, sold over $100m of stock prior to his firm’s

collapse; Bebchuk, Cohen and Spamann (2010) estimate that top management at Bear Stearns and Lehman

earned $1.4bn and $1bn respectively from cash bonuses and equity sales during 2000-8; a November 20, 2008

Wall Street Journal article entitled “Before the Bust, These CEOs Took Money Off the Table” provides further

examples. Johnson, Ryan and Tian (2009) find a positive correlation between corporate fraud and unrestricted

(i.e. immediately vesting) stock compensation.
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 = 0 () ()− for    ≤ + . If  ≥ , then  = 0 () ()−1 for  ≤ + .

We consider an infinite horizon model ( =  =∞) for comparison with the sensitivity in
the absence of myopia,  = (1− ) 0 () from (21).  depends on whether  ≶ , owing to

the above trade-off arguments. If   , myopia is sufficiently inefficient that the benefit is

less than the cost. Thus, the contract in the core model (equation (21)) is already sufficient to

deter short-termism and need not change. If   , the CEO does have incentives to inflate

earnings under the original contract, and so the sensitivity must increase to

 = (1− ) ()
−1

0 () 

The ()
−1
term demonstrates that the sensitivity is not only greater in every period than in

the core model, but is also increasing over time. The more impatient the CEO, the greater the

incentives to inflate earnings, and so the greater the required increase in sensitivity over time

to deter myopia. In a finite horizon model,  is already increasing if myopia is impossible; the

feasibility of short-termism causes it to rise even faster.

5.2.1 Numerical Example

We return to the last numerical example from Section 3.2.1 to demonstrate the effect of myopia

on the contract. If  = 1, the contract changes from (23) to:

ln 1 =
1

5
+ 1

ln 2 =
1

5
+

2

4
+ 2

ln 3 =
1

5
+

2

4
+

3

3
+ 3

ln 4 =
1

5
+

2

4
+

3

3
+

14

2
+ 4

ln 5 =
1

5
+

2

4
+

3

3
+

14

2
+ 5

The CEO’s income now depends on 4, otherwise he would have an incentive to boost 3 at

the expense of 4. The sensitivity to 4 depends on the efficiency of earnings inflation 1; in

the extreme, if 1 = 0, myopia is impossible and so there is no need to expose the CEO to

returns after retirement. The contract is unchanged for  ≤ 3, i.e. for the periods in which
the CEO works. Even under the original contract, there is no incentive to inflate earnings at

 = 1 or  = 2 because there is no discounting, and so the negative effect of myopia on future

returns reduces the CEO’s lifetime utility by more than as the positive effect on current returns

increases it. Appendix D allows for a variable cost of effort and shows that the possibility of

short-termism forces the contract to change in  ≤  even if there is no discounting.
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6 Conclusion

This paper presents a new framework for studying CEO compensation in a fully dynamic model

while retaining tractability. The model allows the CEO to consume in each period, privately

save, and temporarily inflate returns. The model’s closed-form solutions yield clear implications

for the economic drivers of both the level of pay and the sensitivity of pay to performance. Pay

depends on stock returns in the current and all past periods, and the sensitivity to a given

return is constant over time. The relevant measure of incentives is the percentage change in

pay for a percentage change in firm value. This required elasticity is constant over time in an

infinite horizon model where short-termism is impossible, and rising if the horizon is finite or if

short-termism is possible, even in the absence of career concerns. Deterring myopia also requires

the CEO to remain sensitive to firm returns after retirement. By contrast, the feasibility of

private saving only impacts the level of pay. It augments the rise in compensation over time,

removing the need for the CEO to save himself.

The optimal contract can be implemented using a mechanism that we call a “Dynamic

Incentive Account”. The CEO’s expected pay is placed into an account, of which a certain

proportion is invested in the firm’s stock. The account features state-dependent rebalancing to

ensure that, as the stock price changes, the CEO always has sufficient incentives to exert effort

in the current period. It also features time-dependent vesting during employment, to ensure

that the CEO exerts effort in future periods, and after retirement to deter myopia.

Our key results are robust to a broad range of settings: general CRRA utility functions,

all noise distributions with interval support, and autocorrelated noise. However, our setup

imposes some limitations, in particular that the CEO remains with the firm for a fixed period.

Abstracting from imperfect commitment problems allows us to focus on a single source of

market imperfection — moral hazard — and is common in the dynamic moral hazard literature

(e.g. Lambert (1983), Rogerson (1985), Biais et al. (2007, 2009)). An interesting extension

would be to allow for quits and firings. As is well-known (e.g. Bolton and Dewatripont (2005)),

the possibility of quitting significantly complicates intertemporal risk-sharing since the agent

may leave if his continuation wealth is low; firings may provide an additional source of incentives

(as analyzed by DeMarzo and Sannikov (2006) and DeMarzo and Fishman (2007) in a risk-

neutral model).22 We leave those extensions to future research.

22The implementation of the contract via the DIA will involve the CEO forfeiting a portion of the account if

he leaves early. Indeed, such forfeiture provisions are common in practice (see Dahiya and Yermack (2008)).
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A Proofs

A.1 Proof of Theorem 1

This is a direct corollary of Theorem 2.

A.2 Proof of Proposition 1

The present value of future pay on the equilibrium path is given by  = 

hP

= 
−(−)

i
,

where  = 0
P

=1+. We have −1 − −1 = −−1 []. The contract in Theorem 1

implies  = −1 [] 
−1

£


¤
. Thus,

 = (−1 − −1) 
 

−1 []


 is obtained by investing the residual value −1− −1 in a continuously rebalanced portfolio

with a proportion  in stock and the remainder in interest-bearing cash. ($1 invested at time

− 1 in such an asset yields −1
£


¤
, because both stock and cash have an expected

return of .) This is precisely the implementation via a DIA.

To derive the vesting fractions, we have

 =  = 

"
X
=

−(−)

#
(34)

= 1

"
X
=

−(−)


=+1 +

#

In certain benchmark cases these terms collapse into simple expressions:

(i) If private saving is impossible, the IEE gives us that inverse discounted marginal util-

ity −− is a martingale. Thus  = 
¡
1− −

¢
 (1− ) which yields  =  =

(1− ) 
¡
1− −

¢
.

(ii) If private saving is possible and the model horizon is infinite, the problem is stationary;

given CRRA, the CEO consumes a constant fraction  of his wealth in each period and so

 = . We have:

 = + ln + ln
£
−(̄+)

¤



£
+

¤
= 

£

¤


£
−

¤
= ∗

where

∗ = 
£

¤

£
−

¤
.
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Hence, for  ≥ ,



£
−(−)

¤
= 

−
∗

and

 = 

" ∞X
=

−(−)

#
= 

" ∞X
=

−∗ 

#
=  (1− ∗) .

This yields  =  = 1− 
£

¤

£
−

¤
as required.

A.3 Proof of Theorem 2

Case   . For   ,  is independent of the CEO’s actions. Since the CEO is strictly risk

averse,  will depend only on 1  . Therefore either the PS constraint (6) or the IEE (if

 = 1) immediately give

ln (1  ) = ln (1  ) + 0 (35)

for some constants 0 independent of the returns.

Case  ≤  Suppose that for all 0,  ≥ 0  , the optimal contract 0 is such that

ln 0(1  0) = (1  ) + 00 +

0−1X
=+1

( − +1) + 0  (36)

for some function , constants , and  as in the Theorem. The PS constraint yields


−
 = 

+1




£

−
+1

¤
= 

£
−+1+1

¤
−(1)+−+1+ln+1−ln (37)

We therefore have23

ln  = (1  ) + +1 +  (38)

for the appropriate constant .

The EF constraint requires that in the case when ∗ ∈ (0 )

0 ∈ argmax


(1  −1 
∗
 +  + ) (39)

Since  is differentiable, this yields (5) (see EG, Lemma 6), i.e.


1−
 +1 +




 (1 −1 

∗
 +  + )

X
=



¡
1−

¢
= 

1−0(∗ ) (40)




 (1 −1 

∗
 +  + ) =

 (
0(∗ )− +1)P

= 
Q

=+1

h
(1−)[(+

∗
−∗−1)+(−−1)]

i :=  − +1

23Equation (38) can also be derived from the IEE if  = 1
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The second equivalence above follows from the fact that for   



£
1−

¤
= 

1−
 

h
(1−)


=+1[(+∗−∗−1)+(−−1)]

i
= 

1−


Y
=+1



h
(1−)[(++

∗
−∗−1)+(−−1)]

i
In the case when ∗ =  in an analogous way we get:



−
 (1 −1 +  + ) ≥  (

0()− +1)P

= 
Q

=+1

h
(1−)[(+

∗
−∗−1)+(−−1)]

i (41)

We now show that (41) binds. First, (41) implies that for any 0 ≥  (see EG, Lemma 4)

 (1 −1 
0)− (1 −1 ) ≥ ( − +1)(

0 − ) (42)

and it can be inductively shown that 0 ≤ −+1 ≤ 0() Consider now the contract (0)≤
that coincides with ()≤ for   , and for  ≥  0 are as in (36) and (38) with (1  ) =

(1  −1) + ( − +1), where (1  −1) is chosen to satisfy

−1

"
(0 )

1−
(1  )

1− 

#
= −1

"
()

1−
(1  )

1− 

#
 (43)

Condition (42) guarantees that the random variable ln  (1 −1 e) is weakly more dis-
persed than ln 0 (1 −1 e)  It also follows from the EF that both ln  (1 −1 ·) and
ln 0 (1 −1 ·) are weakly increasing. These facts, together with (43), imply that for the
convex function  and increasing function , where −1() = 1−

1− , () =
(1−)
1− for  6= 1 and

() = , () =  for  = 1, we have (see EG, Lemmas 1 and 2):

−1[
0
 (1  )] = −1

£
 ◦  ◦ ln 0 (1  )

¤ ≤ −1 [ ◦  ◦ ln (1  )] = −1[(1  )]

In the same way we show that −1[0(1  )] ≤ −1[(1  )] for any  ≥  Conse-

quently the contract (0)≤ is cheaper than ()≤ , and so indeed (41) must bind.

Integrating out this equality we establish that for 0 ≥ ,

ln 0(1  0) = (1  −1) + 00 +

0−1X
=

( − +1) + 0 

where  are as required. Writing 0 = ln 0 and  =  − −1 establishes (24).

We now determine the values of the constants . First, we have 
−
0 = − ln 0 = 

£

−


¤
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for  ≤  for all  This yields, for all :



X
=1

 = + ln  +

X
=1

ln
£
−(+

∗
−∗−1)

¤


yielding (26). When the PS constraint is not imposed, we use (7) to derive (10) analogously.

Equation (25) becomes simpler in the limit case  =  = ∞ when ∗ =  ∀. Then
the problem is stationary, and  and  are constant. To characterize them, define () =


£
(1−)[(+̄(1−))+]

¤
where  = + ln + ln

£
−(+̄(1−))

¤
, so that

() = 
£
(1−)

¤ ¡

£
−

¤¢ 1−
 

1−

(+ln )



Then from (25), we have  =
0(̄)−∞
=[()]

− + , i.e.

 = (0(̄)− )(1− ()) +  (44)

In the limit of small time intervals, when  = 0,  satisfies:

 = 0(̄)

µ
− ln +  − 1


(+ ln ) +

 − 1
2

22
¶

= 0(̄)

µ
( − 1)− ln 


+

 − 1
2

22
¶

The value of  is the root that goes to a finite limit as  → 1:

 =
1−

q
1− 2( − 1)20(̄)2 (−1)−ln 



( − 1)20(̄) (45)

Indeed, as  → 1,  → 0(̄) (− ln ), which is the solution from the log case in the limit of

small time intervals.

A.4 Proof of Theorem 3

We divide the proof into the following steps.

Step 1. Change of variables. Consider the new variable ,  ≤ , and per period utility

functions ( ) defined as:

 =

(
−() if  = 1


−() 1−  if  6= 1  ( ) =

(
ln  +  if  = 1

1−()

1− if  6= 1 

where  = (1 − ) and let  = ().  measures the agent’s leisure and  is the

“production function” from leisure to effort, which is decreasing and concave. The new variables
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are chosen so that  ( ) is jointly concave in both arguments.

Let 
¡
()≤  ()≤

¢
=
P

=1 
( ) be total discounted utility and consider the max-

imization problem:

max
 adapted


£

¡
()≤  ()≤

¢¤
 (46)

with
P

=1 
− ( − ) ≥ 0 and  satisfying

ln  = ln 0 +

X
=1

( + ()− (−1 + (−1))) +
X

=1

 (47)

for () = ∗ for   . Problems (46) and (30) are equivalent: ()≤ and ()≤ solve

(46) if and only if (())≤ and ()≤ solve (30). The utility function 
¡
()≤  ()≤

¢
is

jointly concave in ()≤ and ()≤

Step 2. Deriving an “upper linearization” utility function. Consider ∗ () =

0 exp
¡P

=1 ( + (∗)− (−1 + (∗−1))) +
P

=1 
¢
, the consumption for the recom-

mended sequence of leisure on the path of noises  = ()≤ (where (∗ ) = ∗ ), under

no saving. For any path of noises  = ()≤ we introduce the “upper linearization” utility

function b:

b

¡
()≤  ()≤

¢
=  +

X
=1

( − ∗ ())



+

X
=1

( − ∗ )



 (48)

where  

and 


are evaluated at the (noise dependent) target consumption and leisure

levels (∗ ())≤  (
∗
 )≤). Since  = 

¡
()≤  ()≤

¢
is jointly concave in ()≤ and

()≤, we have:

b

¡
()≤  ()≤

¢ ≥ 
¡
()≤  ()≤

¢
for all paths  ()≤  ()≤.b

¡
(∗ ())≤  (

∗
 )≤

¢
= 

¡
(∗ ())≤  (

∗
 )≤

¢
for all paths .

Hence, to show that there are no profitable deviations for  , it is sufficient to show that there

are no profitable deviations for  b. Moreover, since


 b


= 


¡
(∗ ())≤  (

∗
 )≤

¢


=
(

∗
 )
−

−


when private savings are allowed, the PS constraint (6) implies that 
 


is a martingale.

Therefore, the agent is indifferent about when he consumes income , and so we can evaluate

 b for  ≡ . Since the agent has no motive to save, we only need to show that he has no

motive to change leisure (and thus effort).24 We also let utility be a function of ()t≤ since it

24For the same reason, it is satisfactory that we have linearized utility at the recommended consumption level.
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fully determines the process of income ()t≤ and thus consumption ()t≤ .

The results are summarized in the following Lemma.

Lemma 1 (Upper linearization.) Let e (()≤) = b

¡
()≤  ()≤

¢
for b defined as in

(48) and  as in (47), and consider the following maximization problem:

max
 adapted


he (()≤)

i
 (49)

If the target leisure level (∗ )≤ solves the maximization problem (49) then (
∗
 )≤ and (

∗
 )≤

solve the maximization problem (46).

Step 3. Pathwise concavity of utility in leisure for  = 1. We must demonstrate that

expected utility is jointly concave in leisure ()≤ if the cost function  is sufficiently convex.

For  = 1, we can do so by proving pathwise concavity, i.e. that b is concave for every path

of noises. (We will deal with the case  6= 1 in step 4). We have:

e (()≤) =
X
=1

(ln ∗ ()− 1) +
X
=1

 +

X
=1




=1 (()−∗−((−1)−∗−1))+ ln  (50)

Joint concavity of (50) in ()≤ is equivalent to the joint concavity of “PV of income”

function

 (()≤) =
X
=1




=1 (()−∗−((−1)−∗−1))+ ln  (51)

To prove the latter we will use the following general Lemma.

Lemma 2 (Concavity of present values.) Let

(()≤ ) =
X
=1




=1 ()

where  ∈ R and all  are twice differentiable functions. Suppose that for every :

sup
£
202 + 00

¤ ≤ 0 (52)

for  =
P

=0 
 sup 2. Then the function  is concave.

Loosely speaking, the Lemma states that, if  are sufficiently concave, then the “present

value of income” function  (()≤) associated with them is also jointly concave in the sequence

of decisions ()≤ . This is non-trivial to prove when  →∞: for sufficiently large , exp ( ())

Since expected linearized utility does not depend on the agent’s saving strategy, we can evaluate it with respect

to an arbitrary savings strategy such as no saving (i.e. consuming the recommended amount).
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is a convex function of , because its second derivative is exp ( ()) 
¡


0
()

2
+ 00 ()

¢
, which

is positive for sufficiently large . It is discounting (expressed by   1) that allows the income

function to be concave.

We use Lemma 2 to prove the following result.

Lemma 3 (Concavity of present value of income.) The present value of income

 (()≤) =
X
=1




=1 (()−∗−((−1)−∗−1))+ ln 

is jointly concave in leisure ()≤

Step 4. Concavity of expected utility in leisure for  6= 1. When  6= 1, linearized
utility e is:

e (()≤) =
X
=1



1− 
∗ ()

1−
µ



(∗ )1−

¶

+

X
=1

(∗ )

1−
0 


=1 (()−∗−((−1)−∗−1)+(1−))+(1−)  (53)

Unlike when  = 1, the second term in (53), i.e. the “PV of income function’, now depends on

noise . We therefore cannot prove pathwise concavity of linearized utility, and instead prove

concavity of expected utility directly.

Expected utility is given by


he(()≤)

i
= 

"
X
=1

 +

X
=1

()


=1[(()−∗−((−1)−∗−1))+ln((1−))+(1−)]+ ln −(1−)(∗ )
#

= 

"
X
=1

 + ()

X
=1




=1[(()−∗−((−1)−∗−1))+ln((1−))+(1−)]+ ln −(1−)(∗ )
#


where () = 


=1[(1−)−ln((1−))]+(1−) ln 0 is a martingale. The second equality

follows from the law of iterated expectations and () being a martingale.

We use Lemma 2 to prove the following result.

Lemma 4 (Concavity of modified present value of income.) The modified present value of

income

 0(()≤) =
X
=1




=1[(()−∗−((−1)−∗−1))+ln((1−))+(1−)]+ ln −(1−)(∗ )
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for () = ∗ if   , is pathwise jointly concave in leisure ()≤

We now conclude the proof of the Theorem. From Theorem 2,  e satisfies the first-order

conditions at (∗ )≤. From step 4,  e is also concave in ()≤, and so the target leisure level

(∗ )≤ solves the maximization problem (49). Therefore, from Lemma 1, (∗ )≤ and (
∗
 )≤

solve the maximization problem (46), establishing the result.

A.5 Proof of Theorem 4

This proof is in the Internet Appendix.

A.6 Proof of Proposition 2

We now impose the NM constraint. Proceeding inductively as in the proof of Theorem 2, we

have a contract of the form:

ln  = ln 0 +

X
=1

 +

X
=1



with  as in the statement of Proposition 2, and  deterministic lowest nonnegative values

such that the EF and NM constraints are satisfied, i.e.:

 : 0(̄) ≤ 
¡
1 + +    −

¢
for  ≤  (54)

 : 
¡
++ 

¢
 ≤ +

¡
+++ 

¢
, for 0 ≤  ≤ , 0 ≤  ≤ (55)

Defining  = 
¡
1 + +    −

¢
, this can be rewritten:

0(̄) ≤  for  ≤ 

 ≤ + for 0 ≤  ≤ , 0 ≤  ≤

This yields the values described in the Proposition.
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