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Low-Latency Trading 
 

 
 
 

Abstract 
 
This paper studies market activity in the “millisecond environment,” where computer 
algorithms respond to each other almost instantaneously. Using order-level NASDAQ 
data, we find that the millisecond environment consists of activity by some traders who 
respond to market events (like changes in the limit order book) within roughly 2-3 ms, 
and others who seem to cycle in wall-clock time (e.g. access the market every second). 
We define low-latency activity as strategies that respond to market events in the 
millisecond environment, the hallmark of proprietary trading by a variety of players 
including electronic market makers and statistical arbitrage desks. We construct a 
measure of low-latency activity by identifying “strategic runs,” which are linked 
submissions, cancellations, and executions that are likely to be parts of a dynamic 
strategy. We use this measure to study the impact that low-latency activity has on market 
quality both during normal market conditions and during a period of declining prices and 
heightened economic uncertainty. Our conclusion is that increased low-latency activity 
improves traditional market quality measures such as short-term volatility, spreads, and 
displayed depth in the limit order book.  
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I. Introduction  

Our financial environment is characterized by an ever increasing pace of both 

information gathering and the actions prompted by this information. Speed is important 

to traders in financial markets for two main reasons. First, the inherent fundamental 

volatility of financial securities means that rebalancing positions faster could result in 

higher utility. Second, irrespective of the absolute speed, being faster than other traders 

can create profit opportunities by enabling a prompt response to news or market-

generated events. This latter consideration appears to drive an arms race where traders 

employ cutting-edge technology and locate computers in close proximity to the trading 

venue in order to reduce the latency of their orders and gain an advantage. As a result, 

today’s markets experience intense activity in the “millisecond environment,” where 

computer algorithms respond to each other at a pace 100 times faster than it would take 

for a human trader to blink.  

While there are many definitions for the term “latency,” we view it as the time it 

takes to learn about an event (e.g., a change in the bid), generate a response, and have the 

exchange act on the response.1

An important question is, who benefits from such massive investment in 

technology? After all, most trading is a zero sum game, and the reduction in fundamental 

 Exchanges have been investing heavily in upgrading their 

systems to reduce the time it takes to send information to customers as well as to accept 

and handle customers’ orders. They have also begun to offer traders the ability to co-

locate the traders’ computer systems next to theirs, thereby reducing transmission times 

to under a millisecond (a thousandth of a second). As traders have also invested in the 

technology to process information faster, the entire event/analysis/action cycle has been 

reduced for some traders to a few milliseconds. 

                                                 
1 More specifically, we define latency as the sum of three components: the time it takes for information to 
reach the trader, the time it takes for the trader’s algorithms to analyze the information, and the time it takes 
for the generated action to reach the exchange and get implemented. The latencies claimed by many trading 
venues, however, are usually defined much more narrowly, typically as the processing delay measured 
from the entry of the order (at the vendor’s computer) to the transmission of an acknowledgement (from the 
vendor’s computer).  
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risk mentioned above would seem very small for time intervals on the order of several 

milliseconds. There is a new set of traders in the market who implement low-latency 

strategies, which we define as strategies that respond to market events in the millisecond 

environment. These traders now generate most message activity in financial markets and 

according to some accounts also take part in the majority of the trades.2

Our goal in this paper is to examine the influence of these low-latency traders on 

the market environment. We begin by studying the millisecond environment to ascertain 

how low-latency strategies affect the time-series properties of market activity. We then 

ask the following question: how does the interaction of these traders in the millisecond 

environment impact the quality of markets that human investors can observe? In other 

words, we would like to know how their combined activity affects attributes such as the 

short-term volatility of stocks, the total price impact of trades, and the depth of the 

market. To investigate these questions, we utilize NASDAQ order-level data (TotalView-

ITCH) that are identical to those supplied to subscribers and which provide real-time 

information about orders and executions on the NASDAQ system. Each entry 

(submission, cancellation, or execution of an order) is time-stamped to the millisecond, 

and hence these data provide a very detailed view of activity on the NASDAQ system.  

 While it appears 

that intermediated trading is on the rise (with these low-latency traders providing 

liquidity to other market participants), it is unclear whether intense low-latency activity 

harms or helps market quality.  

We find that the millisecond environment shows evidence of two types of 

activities: one by traders who respond to market events and the other by traders who 

seem to operate according to a schedule (e.g., access the market every second). The 

activity of the latter creates periodicities in the time-series properties of market activity 

based on wall-clock time. We believe that low-latency activity (i.e., strategies that 

respond to market events) is the hallmark of proprietary trading by electronic market 

making firms and statistical arbitrage operations conducted by hedge funds and other 
                                                 
2 See, for example, the discussion of high-frequency traders in the SEC’s Concept Release on Equity 
Market Structure. 
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financial firms. On the other hand, the periodicity is more likely generated by the activity 

of agency algorithms employed to minimize trading costs of buy-side money managers. 

The interaction among different types of algorithms gives rise to intense episodes of 

submissions and cancellations of limit orders that start and stop abruptly, but these 

episodes aren’t necessarily associated with elevated execution rates. In other words, 

intense high-frequency activity in the millisecond environment need not translate into a 

surge in high-frequency trading.  

We use the data to construct “strategic runs” of linked messages that describe 

dynamic order placement strategies. By tracking submissions, cancellations, and 

executions that can be associated with each other, we create a measure of low-latency 

activity. We use a simultaneous equation framework to examine how the intensity of low-

latency activity affects market quality measures. We find that an increase in low-latency 

activity lowers short-term volatility, reduces quoted spreads and the total price impact of 

trades, and increases depth in the limit order book. If our econometric framework 

successfully corrects for the simultaneity between low-latency activity and market 

attributes, then increased activity of low-latency traders is beneficial to the traditional 

benchmarks of market quality. 

Furthermore, we employ two distinct sample periods to investigate whether the 

impact of low-latency trading on market quality (and the millisecond environment in 

general) differs between calm days and periods of declining prices and heightened 

uncertainty. Over October 2007, our first sample period, stock prices are relatively flat or 

slightly increasing. Over our second sample period, June 2008, stock prices are declining 

(the NASDAQ index is down 8% in that month) and uncertainty is high following the fire 

sale of Bear Stearns. We find that the millisecond environment with its various attributes 

is rather similar across the two sample periods. More importantly, higher low-latency 
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activity enhances market quality in both environments, and is especially beneficial in 

reducing volatility for small stocks during stressful times.3

Our paper relates to the small but growing strands in the literature on speed in 

financial markets and algorithmic trading. In particular, Riordan and Storkenmaier 

(2008), Easley, Hendershott, and Ramadorai (2009), and Hendershott and Moulton 

(2009) examine market-wide changes in technology that reduce the latency of 

information transmission and execution, but reach conflicting conclusions as to the 

impact of such changes on market quality. There are several papers on algorithmic 

trading that characterize the trading environment on the Deutsche Boerse (Gsell (2008), 

Gsell and Gomber (2008), Groth (2009), Prix, Loistl, and Huetl (2007), Hendershott and 

Riordan (2009)), and two papers that study U.S. markets: Hendershott, Jones, and 

Menkveld (2009) and Brogaard (2010). None of these papers study the characteristics of 

the millisecond environment, but the latter two papers attempt to evaluate the impact of 

algorithmic trading on market quality in the U.S., a goal we share as well.

    

4

The rest of this paper proceeds as follows. The next section describes our sample 

and data. Section III characterizes the new trading environment. We provide evidence on 

the intensity, periodicity, and episodic nature of activity in the millisecond environment, 

and construct a measure of low-latency activity designed to capture dynamic strategies. 

Section IV studies how the activity of low-latency traders in the millisecond environment 

influences traditional attributes of market quality such as liquidity and short-term 

volatility. In Section V we discuss related papers and place our findings within the 

context of the literature. Section VI concludes the paper with a discussion of low-latency 

trading from economic and regulatory perspectives.  

 

                                                 
3 We note that this does not imply that the activity of low-latency traders would help curb volatility during 
extremely brief episodes such as the “flash crash” of May 2010, in which the market declined by about 7% 
over a 15-minute interval before partially rebounding.   
4 The joint CFTC/SEC report on the “flash crash” of May 6, 2010, looks at the role of high-frequency 
trading in this extreme episode (U. S. Commodity Futures Trading Commission and the U.S. Securities and 
Exchange Commission, 2010). Although much can be learned from extreme events, our study, in contrast, 
uses sample periods that are longer and arguably more representative. 
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II. Data and Sample  

II.A. NASDAQ Order-Level Data 

The NASDAQ Stock Market is a pure agency market. It operates an electronic limit order 

book that utilizes the INET architecture (which was purchased by NASDAQ in 2005).5

The NASDAQ data we use, TotalView-ITCH, are identical to those supplied to 

subscribers, providing real-time information about orders and executions on the 

NASDAQ system. These data are comprised of time-sequenced messages that describe 

the history of trade and book activity. Each message is time-stamped to the millisecond, 

and hence these data provide a detailed picture of the trading process and the state of the 

NASDAQ book. We are able to observe four different types of messages in the 

TotalView-ITCH dataset: (i) the addition of a displayed order to the book, (ii) the 

cancellation of a displayed order, (iii) the execution of a displayed order, and (iv) the 

execution of a non-displayed order.     

 

All submitted orders must be price-contingent (i.e., limit orders), and traders who seek 

immediate execution need to price the limit orders to be marketable (e.g., a buy order 

priced at or above the prevailing ask price). Traders can designate their orders to display 

in the NASDAQ book or mark them as “non-displayed,” in which case they reside in the 

book but are invisible to all traders. Execution priority follows price, visibility, and time. 

All displayed quantities at a price are executed before non-displayed quantities at that 

price can trade. 

With respect to executions, we believe that the meaningful economic event is the 

arrival of the marketable order. In the data, when an incoming order executes against 

multiple standing orders in the book, separate messages are generated for each standing 

order. We view these as a single marketable order arrival, so we group as one event 

multiple execution messages that have the same millisecond time stamp, are in the same 

direction, and occur in a sequence unbroken by any non-execution message.  The 

                                                 
5 See Hasbrouck and Saar (2009) for a more detailed description of the INET market structure.   
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component executions need not occur at the same price, and some (or all) of the 

executions may occur against non-displayed quantities. 

II.B. Sample 

Our sample is constructed to capture variation across firms and across market conditions. 

We begin by identifying all common, domestic stocks in CRSP that are NASDAQ-listed 

in the last quarter of 2007.6

 Our second sample period is June 2008 (21 trading days), which represents a 

period of heightened uncertainty in the market, falling between the fire sale of Bear 

Stearns in March of 2008 and the Chapter 11 filing of Lehman Brothers in September. 

During June, the S&P 500 Index lost 7.58%, and the NASDAQ Composite Index was 

down 7.99%. In this sample, we continue to follow the firms used in the October 2007 

sample, less 29 stocks that were acquired or switched primary listing. For brevity, we 

refer to the October 2007 and June 2008 samples as “2007” and “2008,” respectively. 

 We then take the top 500 stocks, ranked by market 

capitalization as of September 30, 2007. Our first sample period is October of 2007 (23 

trading days). The market was relatively flat during that time, with the S&P 500 Index 

starting the month at 1,547.04 and ending it at 1549.38. The NASDAQ Composite Index 

was relatively flat but ended the month up 4.34%. Our October 2007 sample is intended 

to reflect a “normal” market environment.  

 In our dynamic analysis we use summary statistics constructed over 10-minute 

intervals. To ensure the accuracy of these statistics, we impose a minimum message 

count cutoff. A firm is excluded from a sample if more than ten percent of the 10-minute 

intervals had fewer than 250 messages. Google and Apple are excluded due to 

computational limitations. Net of these exclusions, the 2007 sample contains 345 stocks, 

and the 2008 sample contains 394 stocks. 

                                                 
6 NASDASQ introduced the three-tier initiative for listed stocks in July of 2006. We use CRSP’s 
NMSIND=5 and NMSIND=6 codes to identify eligible NASDAQ stocks for the sample (which is roughly 
equivalent to the former designation of “NASDAQ National Market” stocks). 
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Table 1 provides summary statistics for the stocks in both sample periods using 

information from CRSP and the NASDAQ dataset. Panel A summarizes the measures 

obtained from CRSP. In the 2007 sample, market capitalization ranges from $789 Million 

to $276 Billion, with a median of slightly over $2 Billion. The sample also spans a range 

of trading activity and price levels. The most active stock exhibits an average daily 

volume of 77 million shares; the median is about one million shares. Average closing 

prices range from $2 to $272 with a median of $29. Panel B summarizes data collected 

from NASDAQ. In 2007 the median firm had 27,130 order submissions (daily average), 

24,374 cancellations, and 2,489 executions.7

III.   Characterizing the New Trading Environment 

 Statistics for the 2008 sample are similar. 

III.A. Intensity, periodicity, and High-Frequency Episodes 

III.A.a Intensity 

Current market observers often comment on the rapid pace of activity. In fact, the typical 

average message rate is unremarkable. The sum of the median numbers of submissions 

cancellations, and executions for 2007 is 53,993. With 23,400 seconds in a 6.5 hour 

trading session, a representative average message arrival rate is about 2.3 messages per 

second. 

The average, however, belies the intensely episodic nature of the activity. To 

illustrate this, we estimate the hazard rate for the inter-message durations. The hazard rate 

is the message arrival intensity (for a given stock), conditional on the time elapsed since 

the last message (for that stock). Figure 1 depicts graphs of the hazard functions for two 

types of messages: (i) those that do not involve the execution of trades (arrivals and 

cancellations of nonmarketable limit orders), and (ii) executions of trades (against both 

displayed and non-displayed limit orders). Panel A presents the hazard rates up to 100 

                                                 
7 These counts reflect our execution grouping procedure. In 2007, for example, the mean number of order 
submissions less the mean number of order cancellations implies that the mean number of executed 
standing limit orders is 41,447–37,126=4,321. This is above the reported mean number of executions 
(3,593) because a single marketable order may involve multiple standing limit orders. As we describe in 
Section II.A, we group executions of standing limit orders that were triggered by a single marketable order 
into one event. 
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ms, while Panel B shows the hazard rates up to 1000 ms (i.e., one second). The hazard 

rates we observe in the market exhibit three striking characteristics: a very high initial 

level, a rapid decline, and (in the case of non-execution events) a small number of 

apparent peaks. 

In the first millisecond (after the preceding message) the hazard rate for 

submissions/cancellations is 334 messages per second in 2007, and 283 messages per 

second in 2008, i.e., roughly one hundred times the average arrival intensity. These high 

values, however, rapidly dissipate. In 2008, the initial hazard rate drops by about 90 

percent in the first ten milliseconds, and by about 98% in the first hundred milliseconds.  

A declining hazard rate is consistent with event clustering. This is a common 

feature of financial data, and is often modeled statistically by dependent duration models 

(e.g., Engle and Russell (1998), and Hautsch (2004)). From an economic perspective, 

variation in trading intensity has long been believed to reflect variation in information 

intensity. While the information can be diverse in type and origin, it is often viewed as 

relating to the fundamental value of the stock and originating from outside the market 

(e.g., a news conference with the CEO or a change in an analyst’s earnings forecast). At 

horizons of extreme brevity, however, there is simply not sufficient time for an agent to 

be reacting to anything except very local market information.8

While the hazard rate graphs are dominated by the rapid decay, they also exhibit 

local peaks. Over the very short run (Panel A), submissions/cancellations have distinct 

peaks in both the 2007 and 2008 samples at around 60 ms. The magnitude of the peaks is 

rather large. For example, the peak at around 60 ms in the 2007 sample implies a hazard 

rate that is twice as large as the hazard rate one would get by averaging the rates a few 

 The information is about 

whether someone is interested in buying or selling, and it may lead to a transient price 

movement rather than a permanent shift.  

                                                 
8 It is unlikely that the time it takes to process and extract the pricing-relevant implications of fundamental 
information (e.g., statements made by the CEO of a firm) is as low as 2-3 ms. Furthermore, the frequency 
of fundamental information events is so low that orders reacting to such events are unlikely to generate 
observable peaks in the hazard rates that are computed from tens of thousands of observations for each 
stock (in one month).  
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milliseconds before and after this specific duration. There are also discernible peaks at 

11-12 ms. These are somewhat less visible because they occur in a region dominated by 

the rapid decay. They are nevertheless about 30% higher than the average surrounding 

values. These peaks do not appear as distinctly in the execution hazard rates. The latter, 

however, also peak around 2-3 ms, a feature discussed in more detail below. Over a 

longer interval (Panel B), submissions/cancellations exhibit peaks around 100 and 

(partially visible) 1,000 ms. 

What do these peaks represent?  The peaks at 60, 100 and 1,000 ms correspond to 

“natural” rates (1,000 times per minute, ten times per second, and once per second), and 

so may reflect algorithms that access the market periodically. The peaks at shorter 

durations, however, may represent strategic responses to market events, and so serve as 

useful indications of effective latency.  Both possibilities warrant further investigation. 

We turn next to the periodicities, deferring the analysis of strategic responses to Section 

III.A.c. 

III.A.b Periodicity 

To further characterize the periodicities, we examine the level of activity in wall-clock 

time (the hazard rate analyses are effectively set in event time). The timestamps in the 

data are milliseconds past midnight. Therefore for a given timestamp t, the quantity 

( )mod ,1000t is the millisecond remainder, i.e., a millisecond time stamp within the 

second. Assuming that message arrival rates are constant or (if stochastic) well-mixed 

within a sample we would expect the millisecond remainders to be uniformly distributed 

over the integers {0,1,…,999}.   

The data, however, tell a different story.  Panel A of Figure 2 depicts the sample 

distribution of the millisecond remainders. The null hypothesis is indicated by the 

horizontal line at 0.001. The distributions in both sample periods exhibit marked 

departures from uniformity. Both feature large peaks occurring shortly after the one-

second boundary (at roughly 10-30 ms), and also around 150 ms. Broad elevations occur 

around 600 ms. We believe that these peaks are indicative of automated trading systems 
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that periodically access the market, near the second and the half-second.  These intervals 

are substantially longer than the sub-100 ms horizon that characterizes the elevated 

hazard rates. 

In other words, unlike low-latency traders who respond to market-created events, 

these algorithms submit an order and periodically revisit it. These periodic checks would 

also be subject to latency delays. For example, even if an algorithm is programmed to 

revisit an order exactly on the second boundary, any response would occur subsequently. 

The time elapsed from the one-second mark would depend on the latency of algorithm 

(i.e., how fast the algorithm receives information from the market, analyzes it, and 

responds by sending messages to the market). The observed peaks at 10-30 ms or at 150 

ms could be generated by clustering in transmission time (due to geographic clustering of 

algorithmic trading firms), technology, or simply the large volume handled by particular 

firms. 

To investigate whether there might exist longer periodicities, we construct the 

sample distribution of timestamps mod 10,000 (Figure 2, Panel B). These graphs are 

dominated by the strong one-second cycles, but also appear to contain two- and ten-

second variations. 

III.A.c Response Time 

Our definition of low-latency trading is “strategies that respond to market events in the 

millisecond environment.”  Although any event might be expected to affect all 

subsequent events, our interest here is the speed of response.  It is therefore reasonable to 

focus on conditioning events that seem especially likely to trigger rapid reactions. One 

such event is the improvement of a quote. An increase in the bid may lead to an 

immediate trade (against the bid) as potential sellers race to hit it. Alternatively, 

competing buyers may race to cancel and resubmit their own bids to remain competitive 

and achieve or maintain time priority. We call the former response a same-side execution, 

and the latter response a same-side submission/cancellation. Events on the sell side of the 

book, subsequent to a decrease in the ask price, are defined similarly.  
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 Our analysis requires only a slight change to the estimation of the hazard rates 

depicted in Figure 1. These earlier results are unconditional in the sense that they reflect 

durations subsequent to events of all types. The present characterization focuses on 

hazard rates subsequent to order submissions that improve the quote. Figure 3 (Panel A) 

depicts the conditional hazard rates for same-side events (pooled over bid increases and 

ask decreases). 

 In the discussion of Figure 1, we noted small local peaks at approximately 2-3 ms. 

These peaks are much more sharply defined in the conditional analysis of Figure 3, 

particularly for executions. This suggests that the fastest responders are subject to 2-3 ms 

latency.  For comparison purposes, we note that human reaction times are generally 

thought to be on the order of 200 milliseconds (Kosinski (2010)). It is therefore 

reasonable to assume that these responses represent actions by automated agents (various 

types of trading algorithms). The figure suggests that the time it takes for some low-

latency traders to observe the market event, process the information, and act on it is 

indeed very short.  

 The hazard rates depicted in Panel B of Figure 3 are conditional on an order 

cancellation that resulted in the deterioration of the quote (a drop in the bid or increase in 

the ask). Peaks at 2-3 ms are visible for same-side submissions and cancellations, 

presumably reflecting the repricing of orders pegged to the same-side quote. For 

executions, the peak is very small in 2007 and non-existent in 2008. Perhaps 

unsurprisingly, withdrawal of a bid (for example) does not induce sellers to chase it. 

III.A.d High-Frequency Episodes  

Both the short-term intensity dependence and clock-time periodicity could in principle be 

modeled statistically with standard time series decomposition techniques. Our attempts to 

accomplish this (with spectral and wavelet analysis), however, were not very fruitful.  

Despite this, certain idiosyncrasies of the decompositions did reveal to us another 

characteristic of the millisecond environment. Much high-frequency activity is not only 

episodic, but is also strikingly abrupt in commencement and completion.  
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Panel A of Figure 4 shows both submissions and cancellations (the bars) and 

cumulative executions (the dashed line) for ticker symbol INWK (InnerWorkings Inc.) on 

June 2, 2008 at about 2:08pm.9

Panel B of Figure 4 shows another such episode in ticker symbol SANM 

(Sanmina-SCI Corp.) on June 17, 2008 at around 12:07pm, while Panel C of the figure 

presents an episode in GNTX (Gentex Corp.) on June 12, 2008 at around 12:18pm. They 

all share the same features: (i) a sudden onset of intense activity of submissions and 

cancellations of limit orders that stops abruptly after a short period of time, and (ii) lack 

of change in the pattern of executions before, during, or after these high-frequency 

episodes. These figures suggest to us that the term “high-frequency trading” that is used 

to describe some low-latency activity is generally a misnomer: there is indeed high-

frequency activity, but it does not lead necessarily to intense trading. It simply manifests 

in intense submissions and cancellations of orders. And while the episodes in Figure 2 

last from one minute and twenty seconds to three minutes, other episodes we have 

observed could last only a couple of seconds but contain thousands of messages.

 The first noteworthy feature of this figure is that the burst 

of high-frequency submissions and cancellations (around 100 messages per second) starts 

suddenly and stops abruptly after about one minute and forty seconds. The level of 

activity during this time is over 100 times the level of activity in terms of submissions 

and cancellations before and after the episode. The second noteworthy feature of the 

figure is that the number and pattern of executions (in the dashed line) does not change 

much during this high-frequency episode.  

10

                                                 
9 One could identify these episodes simply by looking at (many) plots of submission and cancellation 
counts. Our attention was drawn to them, however, by wavelet decompositions that flagged particularly 
strong components in message activity at various frequencies.  Measures we constructed from the wavelet 
analysis were unable to consistently characterize the intensity of low-latency responses to market events, 
but they quickly located the instances of high-frequency activity discussed here.  

  

10 A recent newspaper article notes that such episodes are called “quote stuffing” by practitioners 
(Lauricella and Strasburg (2010)). Some suspect that these are used by proprietary traders to manipulate 
prices and create profit opportunities for executing trades. While this is certainly possible, our observation 
that there is no change in the pattern of executions during or immediately after many of these episodes 
suggests that the story behind this phenomenon may be more complex. 
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 The millisecond environment therefore consists of activity by some traders who 

respond to market events and others who seem to cycle in wall-clock time. This activity 

could give rise to intense episodes of submissions and cancellations of limit orders that 

start and stop abruptly, but these episodes need not be accompanied by intensified trading 

in the stocks. Before we proceed to measure low-latency trading and investigate its 

impact on market quality, it is useful to discuss the types of market participants whose 

activities shape the millisecond environment.   

III.B. The Players: Proprietary Algorithms and Agency Algorithms 

Much trading and message activity in U.S. equity markets is commonly attributed to 

trading algorithms.11 However, not all algorithms serve the same purpose and therefore 

the patterns they induce in market data and the impact they have on market quality could 

depend on their specific objectives. Broadly speaking, however, we can categorize 

algorithmic activity as agency or proprietary. Agency algorithms are used by buy-side 

institutions to minimize the cost of executing trades in the process of implementing 

changes in their investment portfolios. Proprietary algorithms are used by electronic 

market makers, hedge funds, proprietary trading desks of large financial firms, and 

independent statistical arbitrage firms, and are meant to profit from the trading 

environment itself (as opposed to investing in stocks).12

Agency Algorithms (AA) are used by buy-side institutions and the brokers who 

serve them to buy and sell shares. They have been in existence for about two decades, but 

the last ten years have witnessed a dramatic increase in their appeal due to decimalization 

(in 2001) and increased fragmentation in U.S. equity markets (following Reg ATS in 

1998 and Reg NMS in 2005). These algorithms break up large orders into pieces that are 

 

                                                 
11 The SEC’s Concept Release on Equity Market Structure cites media reports that attribute 50% or more of 
equity market volume to proprietary algorithms (the “high-frequency traders”). A report by the Tabb Group 
(July 14, 2010) suggests that buy-side institutions use “low-touch” agency algorithms for about a third of 
their trading needs.  
12 Sellberg (2010) refers to these two categories as “alpha-preserving” (agency) and “alpha-creating” 
(proprietary) algorithms. 
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then sent over time to multiple trading venues.13

The key characteristic of AA is that the choice of which stock to trade and how 

much to buy or sell is made by a portfolio manager who has an investing (rather than 

trading) horizon in mind. The algorithms are meant to minimize execution costs relative 

to a specific benchmark (e.g., volume-weighted average price or market price at the time 

the order arrives at the trading desk), and they are typically developed by sell-side 

brokers or independent software vendors to serve buy-side clients. Their ultimate goal is 

to execute a desired position change. Hence they essentially demand liquidity, even 

though their strategies might utilize nonmarketable limit orders. 

 The algorithms determine the size, 

timing, and venue for each piece depending on order-specific parameters (e.g., the 

desired horizon for the execution), algorithm-specific parameters that are estimated from 

historical data, real-time market data, and feedback about the executions of earlier pieces.  

Proprietary Algorithms (PA) are more diverse, and relative to AA, more difficult 

to concisely characterize. Nonetheless, these algorithms often belong to the following 

two broad categories: (i) electronic market making, or (ii) statistical arbitrage trading.   

Electronic (or automated) market makers are dealers who buy and sell for their 

own account in a list of securities. These firms use algorithms to generate buy and sell 

limit orders and dynamically update these orders based on real-time data. Like traditional 

dealers, they often profit from the small differences between the bid and ask prices and 

aim at carrying only a small inventory. Another source of profit for such firms is the 

liquidity rebates offered by many trading venues. These rebates (typically a quarter of a 

penny per share) are offered to attract liquidity providers and are funded by execution 

fees paid by liquidity demanders.  

Statistical arbitrage trading is carried out by the proprietary trading desks of larger 

financial firms, hedge funds, and independent specialty firms. They analyze historical 

data for individual stocks and groups of assets in a search for trading patterns (within 

assets or across assets) that can be exploited for profit. These profit opportunities might 

                                                 
13 See, for example, Bergan and Devine (2005). 
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represent temporary deviations from perceived patterns (e.g., pairs trading) or stem from 

identification of a certain trading need in the market (e.g., a large trader that attempts to 

execute an order and temporarily changes the time-series behavior of prices). Broadly 

speaking, most of these strategies rely on convergence of prices and the expectation that 

the market price will revert after temporary imbalances. Some of these traders attempt to 

profit from identifying the footprints of buy-side algorithms and trading ahead of or 

against them. Their goal is to profit at the expense of buy-side institutions by employing 

algorithms that are more sophisticated than typical AA (Donefer (2010)).14

Because AA and PA differ in their goals, they differ in the specifications of their 

algorithms and their technology. AA are based on historical estimates of price impact and 

execution probabilities across multiple trading venues and over time, and often require 

much less real-time input except for tracking the pieces of the orders they execute. For 

example, volume-weighted average price algorithms attempt to distribute executions over 

time in proportion to the aggregate trading and achieve the average price for the stock. 

While some AA offer functionality such as pegging (e.g., tracking the bid or ask side of 

the market) or discretion (e.g., converting a nonmarketable limit buy order into a 

marketable order when the ask price decreases), typical AA do not require millisecond 

responses to changing market conditions.  

   

We believe that the clock-time periodicity we have identified in Section III.A.b is 

driven by these AA. Some algorithms simply check market conditions and execution 

status every second (or several seconds) and respond to the changes they encounter. Their 

orders reach the market with a lag that depends on the configurations and locations of 

their computers, generating the sample distributions of remainders. The similarities 

between the 2007 and 2008 samples suggest phenomena that are pervasive and do not 

disappear over time or in different market conditions.15

                                                 
14 The SEC’s Concept Release on Equity Market Structure provides more information about these strategies 
and categorizes them into three groups: arbitrage (usually between related securities or markets), structural 
(exploiting market structure features or inference about trading interest), and directional (momentum and 
reversal trading based on anticipation of an intraday price movement).  

  

15 One could suggest that even if a significant fraction of market participants were to have their algorithms 
cycle in a one-second frequency, the occurrence times would be more smoothly distributed due to 
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One might conjecture that these patterns cannot be sustainable because 

sophisticated algorithms will take advantage of them and eliminate them. While there is 

no doubt that PA respond to such regularities, these responses only serve to accentuate 

the clock-time periodicities rather than eliminate them. In other words, as long as 

someone is sending messages in a periodic manner, their actions will provoke strategic 

responses by others who monitor the market continuously (the low-latency traders) and 

these responses will tend to amplify the periodicity. Since some PA supply liquidity to 

AA, it is conceivable that clustering at certain times helps AA execute their orders by 

increasing available liquidity. Furthermore, the clustering of AA means that the provision 

of liquidity by one investor to another at those times is higher even without elevated PA 

activity. As such, AA that operate in calendar time would have little incentive to change, 

making these patterns we identify in the data persist over time. 

In contrast to AA, the hallmark of PA is speed: low-latency capabilities. Their 

need to respond to market events distinguishes them from AA. Therefore, these traders 

invest in co-location and advanced computing technology to create an edge in strategic 

interactions. While AA are used in the service of buy-side investing and hence can be 

justified by the social benefits often attributed to delegated portfolio management (e.g., 

diversification), the social benefits of PA are more elusive. If we consider electronic 

market making to be an extension of traditional market making, it provides the service of 

bridging the intertemporal disaggregation of order flow in continuous markets. Unlike 

traditional dealers, however, these electronic market making firms have no explicit 

obligations with respect to market presence or market quality, an issue we further discuss 

in Section VI.  

The social benefits of other types of low-latency trading are more difficult to 

ascertain. One could view them as aiding price discovery by eliminating transient price 

disturbances, but such an argument in a millisecond environment is tenuous. After all, at 

such speeds and for such short intervals it is difficult to determine the price component 
                                                                                                                                                 
randomness in clock synchronizations. We believe, however, that the periodicity can be initiated even by a 
few, relatively large, market participants. 
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that constitutes a real innovation to the true value of the security as opposed to a 

transitory influence. The social utility in identifying buy-side interest and trading ahead 

of it is even more problematic.  

Furthermore, the race to interact with the market environment faster and faster 

requires investing vast resources in technology. PA are at the forefront of such 

investment, but they are not alone: AA providers respond by creating algorithms that 

enable clients to implement somewhat more sophisticated strategies that respond to 

market conditions along pre-defined parameters. Even exchanges such as NASDAQ get 

into the game by offering clients simple algorithms like pegging or discretionary orders 

through a platform that is operated by the exchange and connects directly to the execution 

engine.16

III.C. Strategic Runs 

 These algorithms collectively constitute “low-latency trading,” and invite the 

question of whether they harm or improve the market quality perceived by long-term 

investors. We attempt to answer this question in Section IV, but in order to accomplish 

this we first discuss our measure of low-latency activity.     

The evidence to this point has emphasized message timing. One would ideally like to 

track low-latency activity in order to decipher its impact on the market.  Before turning to 

the methodology we use to track the algorithms, it is instructive to present two particular 

message sets that we believe are typical. It appears that at least some of the activity 

consists of algorithms that either “play” with one another or submit and cancel repeatedly 

in an apparent attempt to trigger an action on the part of another algorithm. 

Panel A of Table 2 is an excerpt from the message file for ticker symbol ADCT 

on October 2, 2007 beginning at 09:51:57.849 and ending at 09:53:09.365 (roughly 72 

seconds). Over this period, there were 35 submissions (and 35 cancellations) of orders to 

buy 100 shares, and 32 submissions (and 32 cancellations) of orders to buy 300 shares. 

                                                 
16 NASDAQ’s RASH (Routing and Special Handling) protocol enables clients to use advanced 
functionality such as discretion (predetermined criteria for converting standing limit orders to marketable 
orders), random reserve (of partially non-displayed limit orders), pegging (to the relevant side of the market 
or the midquote), and routing to other trading venues.  
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The pricing of the orders caused the bid quote to rapidly oscillate between $20.04 and 

$20.05. The difference in order sizes and the brief intervals between cancellations and 

submissions suggest that the traffic is being generated by algorithms responding to each 

other.17

Panel B of Table 2 describes messages (for the same stock on the same day) 

between 09:57:18.839 and 09:58:36.268 (about 78 seconds). Over this period, orders to 

sell 100 shares were submitted (and quickly cancelled) 142 times. During much of this 

period there was no activity except for these messages. As a result of these orders, the ask 

quote rapidly oscillated between $20.13 and $20.14.  

 

The underlying logic behind each algorithm that generates such strategic runs of 

messages is difficult to reverse engineer. It could be that some algorithms attempt to 

trigger an action on the part of other algorithms (e.g., canceling and resubmitting at a 

more aggressive price) and then interact with them. Whatever the reasoning, it is clear 

that an algorithm that repeatedly submits orders and cancels them within 10 ms does not 

intend to interact with human traders (whose response time would probably take more 

than 200 ms even if their attention were focused on this particular security). These 

algorithms operate in their own space: they are intended to trigger a response from (or 

respond to) other algorithms. Activity in the limit order book is dominated nowadays by 

this kind of interaction between automated algorithms, in contrast to a decade ago when 

human traders still ruled. How, then, do these algorithms affect the environment that the 

human traders observe? How is such activity related to market quality measures 

computed over minutes rather than milliseconds? In order to answer these questions, we 

need to create a measure of the activity of these low-latency traders. 

We construct such a measure by identifying “strategic runs,” which are linked 

submissions, cancellations, and executions that are likely to be parts of a dynamic 

strategy. Since our data do not identify individual traders, our methodology no doubt 
                                                 
17 When a similar sequence of events was discussed with a group of practitioners, one person pointed out 
that the sequence could have been generated by a single player intending to give the appearance of multiple 
competing buyers. Fictitious trades (“wash sales”) are clearly considered illegal in the US, but this scenario 
would not involve trades, only quotes. 
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introduces some noise into the identification of low-latency activity. We nevertheless 

believe that other attributes of the messages can used to infer linked sequences. In 

particular, our “strategic runs” (or simply, in this context, “runs”) are constructed as 

follows. Reference numbers supplied with the data unambiguously link an individual 

limit order with its subsequent cancellation or execution. The point of inference comes in 

deciding whether a cancellation can be linked to either a subsequent submission of a 

nonmarketable limit order or a subsequent execution that occurs when the same order is 

resent to the market priced to be marketable. We impute such a link when the 

cancellation is followed within one second by a limit order submission or by an execution 

in the same direction and for the same size. If a limit order is partially executed, and the 

remainder is cancelled, we look for a subsequent resubmission or execution of the 

cancelled quantity. In this manner we construct runs forward throughout the day.  

Our procedure links roughly 60 percent of the cancellations in the 2007 sample, 

and 55 percent in the 2008 sample. Although we allow up to a one second delay from 

cancellation to resubmission, most resubmissions occur much more promptly. The 

median resubmission delay in our runs is one millisecond. The length of a run can be 

measured by the number of linked messages.  The simplest run would have three 

messages, a submission of a nonmarketable limit order, its cancellation, and its 

resubmission as a marketable limit order that executes immediately (i.e., an “active 

execution”). The shortest run that does not involve an execution is a limit order that was 

submitted, cancelled, resubmitted, and cancelled or expired at the end of the day. Our 

sample periods, however, feature many runs of 10 or more linked messages and the 

longest run we identify has 93,243 messages. We identify about 57 million runs in the 

2007 sample period and 78 million runs in the 2008 sample period.  

Panel A of Table 3 presents summary statistics for the runs. We observe that 

around 80% of the runs have 3 to 9 messages, but the longer runs (10 or more messages) 

constitute approximately half of the messages that are associated with strategic runs. The 

proportion of runs that are (at least partially) executed is 33.57% in 2007 and 27.34% in 

2008. Interestingly, 22.74% of the 2007 runs (17.77% in 2008) achieve passive execution 
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(when a nonmarketable limit order in the run is hit by an incoming marketable order). 

This is notable because it can be interpreted as an average fill rate for runs, and stands in 

contrast to the fill rate for individual limit orders, which is much lower.18

About 10.95% (9.64%) of the runs in the 2007 (2008) sample period end with a 

switch to active execution. That is, a limit order is cancelled and replaced with a 

marketable order. These numbers attest to the importance of strategies that pursue 

execution in a gradual fashion. In the combined 2007 and 2008 samples there are a total 

of 57,848,674 executions. There were (combined) 13,799,814 runs that realized active 

executions.  Since all runs by definition start with a nonmarketable limit order, we can 

determine that 23.9% (13,799,814/57,848,674) of all executions were preceded by an 

attempt to obtain a passive execution. This highlights the fluidity with which liquidity 

suppliers and demanders, often modeled as distinct populations, can in fact switch roles. 

 

Our methodology to impute links between orders no doubt results in 

misclassifications that introduce an error into the analysis. It is certainly possible that a 

given cancellation is erroneously linked with a subsequent limit order submitted by a 

different trader. For a run with many resubmissions to arise solely as an artifact of such 

errors, however, there would have to be an unbroken chain of spurious linkages. This 

suggests that longer runs are likely to be more reliable depictions of the activity of actual 

algorithms than shorter runs. We therefore use runs of 10 or more messages to construct a 

measure of low-latency traders that we use in the rest of the analysis. While the 10-

message cutoff is somewhat arbitrary, these runs represent about a half of the total 

number of messages that are linked to runs in each sample period, and we also believe 

that such longer runs characterize the episodes associated with intense high-frequency 

activity as in Figure 4.  

Panel B of Table 3 shows the elapsed time from the beginning to the end of runs 

of 10 or more messages. It is interesting to note that many of the runs between 10 and 99 

messages start and end within a tenth of a second (there are 497,317 such runs in 2007 
                                                 
18 The low fill rate of limit orders seems to characterize the modern electronic limit order book 
environment.  Hasbrouck and Saar (2009) report a fill rate of 7.99% for a 2004 sample of Inet data. 
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and 180,675 in 2008). Nonetheless, most of these runs evolve over one to ten minutes, 

and time to completion of a run in general increases in the number of messages. Still, the 

intensity of the high-frequency episodes we describe in Figure 4 is reflected in the fact 

that many of the very long runs (1000 messages and above) start and end within a single 

minute.  

IV. Low-Latency Trading and Market Quality 

Agents who engage in low-latency trading and interact with the market over millisecond 

horizons are at one extreme in the continuum of market participants. Most investors 

either cannot or choose not to engage the market at this speed.19

We therefore seek to characterize the influence of low-latency trading on 

measures of liquidity and short-term volatility observed over 10-minute intervals 

throughout the day. Measures such as the range between high and low prices in these 

intervals, the effective and quoted spreads, and the depth of the exchange’s limit order 

book should give us a sense of market quality. And while we would likely not capture 

 These investors’ 

experience with the market is still best described with the traditional market quality 

measures in the market microstructure arsenal. Hence, it is natural to ask, how does low-

latency activity with its algorithms that interact in milliseconds relate to depth in the 

market or the range of prices that can be observed over minutes or hours? This question 

does not have an obvious answer. It seems to resemble the challenge faced by physicists 

when attempting to relate quantum mechanics’ subatomic interactions to our daily life 

that appears to be governed by Newtonian mechanics. However, if we believe that 

healthy markets need to attract longer-term investors whose beliefs and preferences are 

essential for the determination of market prices, then market quality should be measured 

using time intervals that are easily observed by these investors.  

                                                 
19 The recent SEC Concept Release on Equity Market Structure refers in this context to “long-term 
investors … who provide capital investment and are willing to accept the risk of ownership in listed 
companies for an extended period of time” (p. 33). 
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every instance of PA in each interval of time, the strategic runs we have identified in the 

previous section could be used to construct a measure of low-latency activity.  

IV.A. Measures and Methodology 

To measure the intensity of low-latency activity in a stock in each ten-minute interval we 

use the time-weighted average of the number of strategic runs of 10 messages or more the 

stock experiences in the interval (RunsInProcess).20

We use our NASDAQ order-level data to compute several measures that represent 

different aspects of market quality: a measure of short-term volatility and three measures 

of liquidity. The first measure, HighLow, is defined as the highest midquote in an interval 

minus the lowest midquote in the same interval. The second measure, EffSprd, is the 

average effective spread (or total price impact) of all trades on NASDAQ during the ten-

minute interval (where the effective spread of a trade is computed as the absolute value of 

the difference between the transaction price and the prevailing midquote). The third 

measure, Spread, is the time-weighted average quoted spread (ask price minus the bid 

price) on the NASDAQ system in an interval. The fourth measure, NearDepth, is the 

time-weighted average number of (visible) shares in the book up to 10 cents from the best 

posted prices.   

 Higher values of RunsInProcess 

indicate greater low-latency activity.   

Although a ten-minute window is a reasonable interval over which to average the 

market quality measures, it is sufficiently long (particularly for the low-latency traders) 

that the analysis must confront the issue of simultaneity. For example, while we aim to 

test whether low-latency trading affects short-term volatility, it is quite possible that 

short-term volatility attracts or deters low-latency activity and hence affects the number 

of runs that we can observe in the interval.  

                                                 
20 The time-weighting of this measure works as follows. Suppose we construct this variable for the interval 
9:50:00am-10:00:00am. If a strategic run started at 9:45:00am and ended at 10:01:00am, it was active for 
the entire interval and hence it adds 1 to the RunsInProcess measure. A run that started at 9:45:00am and 
ended at 9:51:00am was active for one minute (out of ten) in this interval, and hence adds 0.1 to the 
measure. Similarly, a run that was active for 6 seconds within this interval adds 0.01.  
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To address this problem we propose a two-equation simultaneous equation model 

in which one of the endogenous variables is RunsInProcess (our low-latency activity 

measure) and the other endogenous variable is the market quality measure (i.e., we 

estimate the model separately for HighLow, EffSprd, Spread, and NearDepth). This 

variable is indicated in the specifications by the placeholder MktQuality. The key to 

estimating such a model is to identify an instrument for market quality that does not 

directly affect RunsInProcess and an instrument for RunsInProcess that does not directly 

affect market quality in the stock.  

As an instrument for RunsInProcessi,t (the number of runs of 10 messages or more 

in stock i in interval t) we use the average number of runs of 10 messages or more in the 

same interval for the other stocks in our sample (excluding stock i), denoted RunsNotIt. 

Low-latency activity is determined by the number of players in the low-latency field 

(e.g., how many electronic market makers and statistical arbitrage firms are using low-

latency strategies), by the state of the limit order book and stock-specific trading activity 

in the interval, and by market conditions that affect how aggressive low-latency firms are 

during that time. The instrument RunsNotIt is determined by the number of low-latency 

firms and how active they are in the market during that interval, but at the same time it 

does not utilize information about stock i and hence is not a direct determinant of the 

liquidity or volatility of stock i in interval t, rendering it an appropriate instrument. 

Furthermore, while the submissions and cancellations of limit orders as part of a strategic 

run in stock i would be reflected in our liquidity measures for that stock (e.g., they would 

directly influence the quoted spreads), strategic runs in other stocks do not create a 

mechanical change in the liquidity measures of stock i.21

                                                 
21 One could argue that if liquidity measures such as effective spreads were to contain a large common 
factor, our cross-stock aggregated measure of strategic runs (RunsNotI) could affect this common factor 
(and hence partially determine the effective spread of stock i). While in principle this is a legitimate 
concern, liquidity commonality over short horizons (like the 10-minute intervals used here) is small. In 
particular, Hasbrouck and Seppi (2001) look at quoted and effective spreads aggregated over 15-minute 
intervals for 24 Dow stocks. They find little evidence for a common factor in these liquidity proxies: For 
quoted spreads, only about 8% of the total variation is explained by the first principal component, while no 
significant common factor is identified for the effective spreads.   
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As an instrument for market quality we use a measure that is closely related to the 

liquidity of the stock in the interval, but does not directly determine the number of 

strategic runs in that stock. Our chief measure is the dollar effective spread (absolute 

value of the distance between the transaction price and the midquote) computed for the 

same stock and during the same time interval only from trades executed on other (non-

NASDAQ) trading venues. This variable is denoted EffSprdNotNASi,t, and is computed 

using the TAQ database.  This instrument reflects the general liquidity of the stock in the 

interval, but it does not reflect the activity on NASDAQ and hence would not be directly 

determined by the number of strategic runs that are taking place on the NASDAQ system.  

A potential limitation of this instrument is that if low-latency traders are pursuing 

cross-market strategies in the same security, then our measure of liquidity on other 

markets (EffSprdNotNAS) could be affected by the strategic runs on NASDAQ. A cross-

market strategy, however, cannot operate at the lowest latencies because an algorithmic 

program cannot be co-located at more than one market. This necessarily puts cross-

market strategies at a disadvantage relative to co-located single-market algorithms. At 

least at the lowest latencies, therefore, we believe that the single-market algorithms are 

dominant. Jovanovic and Menkveld (2010), for example, investigate cross-trading 

activity in Dutch index stocks between Chi-X and Euronext. The time series plot of the 

cross-trader’s imputed net position on a typical day is dominated by components that 

persist over many minutes, implying operation over periods substantially longer than the 

low-latency horizons considered here.22

To examine the robustness of our results, we repeat the analysis using another 

instrument with a similar flavor: the time-weighted average quoted spread from TAQ 

excluding NASDAQ quotes (denoted SpreadNotNasi,t). 

 We elaborate on this issue in Section VI.  

With these instruments, we use Two-Stage-Least-Squares (2SLS) to estimate the 

following two-equation simultaneous equation model for each market quality measure: 

                                                 
22 Considerations of liquidity in multiple markets are also common in agency algorithms that create a 
montage of the fragmented marketplace to guide their order routing logic. These, however, most likely do 
not give rise to the long strategic runs that we use to measure the activity of low-latency traders.   
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where 1,...,i N= indexes firms, 1,...,t T= indexes 10-minute time intervals, and 

MktQuality represents one of the market quality measures: HighLow, EffSpread, Spread, 

and NearDepth. All variables are standardized to have a zero mean and unit variance, 

obviating the need for intercepts in the specification. 

The 2SLS methodology effectively replaces RunsInProcessi,t in the first equation 

with the fitted values from the regression of RunsInProcessi,t on the instruments. 

Similarly MktQualityi,t in the second equation is replaced with the fitted values of the 

regression of MktQualityi,t on the instruments. This gives us a consistent estimate of the 

a1 coefficient that tells us how low-latency activity affects market quality. We estimate 

the system by pooling observations across all stocks and all time intervals. The 

standardization of the variables essentially implements a fixed-effects specification. A 

potential disadvantage of pooling is that the errors of different stocks may not be 

identically distributed. For robustness, we also report summary measures of the 

coefficients from stock-by-stock estimations of the system. While stock-by-stock analysis 

does not assume identically distributed errors across stocks, it leaves us with a much 

smaller number of observations for each estimation (897 in the 2007 sample period and 

819 in the 2008 sample period) and hence has reduced power relative to the pooled time-

series/cross-sectional specification. 

IV.B. Results 

Panel A of Table 4 presents the estimated coefficients of the pooled system side-by-side 

for the 2007 and 2008 sample periods. The most interesting coefficient is a1, which 

measures the impact of low-latency activity on the market quality measures. We observe 

that higher low-latency activity implies lower posted and effective spreads, greater depth, 

and lower short-term volatility.23

                                                 
23 For robustness, we also carried out all the tests with certain variations on these market quality measures. 
First, we computed the EffSprd measure only using trades that were not initiated by strategic runs. In other 

 Moreover, the impact of low-latency activity on market 
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quality is similar in the 2007 and 2008 sample periods. The fact that low-latency trading 

decreases short-term volatility and contributes to depth in the 2008 sample period where 

the market is relentlessly going down and there is heightened uncertainty in the economic 

environment is particularly noteworthy. It seems to suggest that PA activity creates a 

positive externality in the market at the time that the market needs it the most.  

The coefficients on the two instruments have the expected signs and are highly 

significant. Specifically, the coefficient a2 indicates that when liquidity off NASDAQ is 

higher, our NASDAQ market quality measures show higher liquidity and lower volatility. 

Similarly, the coefficient b2 is positive in all specifications, indicating that higher low-

latency activity in a specific stock in an interval is associated with higher low-latency 

activity in other stocks on the NASDAQ system. Finally, the estimated b1 coefficients tell 

us that low-latency activity is attracted to more liquid and less volatile stocks. Panel B of 

Table 4 presents roughly similar results from the estimation of the system with 

SpreadNotNasi,t as the instrument for market liquidity.24

While Table 4 presents strong results concerning the impact of low-latency 

trading on market quality for the entire sample, it could be that this relationship differs 

for stocks that are somehow fundamentally dissimilar, like small versus large market 

capitalization stocks. Table 5 presents system estimates in subsamples consisting of four 

quartiles ranked by the average market capitalization over the sample period.

 

25

                                                                                                                                                 
words, we attempted to create a measure of the total price impact that applies to “regular” investors who are 
not low-latency traders. The results were very similar (in terms of signs and magnitudes of the coefficients 
as well as their statistical significance) to the measure that includes all NASDAQ trades. Second, we 
computed a depth measure defined as the time-weighted average number of shares in the book up to 50 
cents (rather than 10 cents) from the best prices, and the results were also similar. 

 There is 

not much pattern across the quartiles in the manner low-latency activity affects short-term 

volatility in the 2007 sample period. The picture in the 2008 sample is different: It 

24 The only difference in the results with SpreadNotNasi,t as the instrument is that the coefficient a1 is not 
statistically significant for the EffSprd measure in the 2008 sample period. 
25 The results in the table are presented with EffSprdNotNASi,t as the instrument for the market quality 
measures. We obtain similar results (with similar patterns across the quartiles) using SpreadNotNasi,t as the 
instrument. 
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appears that during more stressful times, low-latency activity helps reduce volatility in 

smaller stocks more than it does in larger stocks.  

Another interesting pattern can be observed in the coefficient b1, which tells us 

how market quality affects low-latency trading. While low-latency activity increases in 

market quality for larger stocks in the 2007 sample period, no such relationship is found 

for smaller stocks, where the coefficient has the opposite sign but is not statistically 

significant. During the stressful period of June 2008, however, the b1 coefficients suggest 

a different behavior: Higher liquidity encourages low-latency trading in smaller stocks 

but not in the top quartile of stocks by market capitalization where we observe the 

opposite pattern (though the absolute magnitude of the coefficient in large cap stocks is 

rather small and hence the effect is probably not very strong). 

We also estimate the simultaneous equation model separately for subsamples 

formed as quartiles of NASDAQ’s market share of traded volume. Trading in the U.S. 

occurs on multiple venues, including competing exchanges, crossing networks and 

Electronic Communications Networks. This fragmentation might jointly affect market 

quality and low-latency activity.  Our results (not reported here), however, show no 

significant pattern across market-share quartiles. In other words, the beneficial impact of 

low-latency trading on market quality measures is similar for stocks that have varying 

degrees of trading concentration on the NASDAQ system. 

Lastly, Table 6 shows summary statistics for the stock-by-stock estimations. The 

results suggest similar conclusions concerning the influence of low-latency trading on 

market quality. In particular, an increase in low-latency activity decreases short-term 

volatility, decreases quoted spreads, and increases displayed depth in the limit order 

book. This is true both in the 2007 and 2008 sample periods. The median coefficient is 

insignificant when the liquidity measure is EffSprd in both sample periods. The only 

consistent difference between the pooled estimation and the stock-by-stock analysis is 

that many of the median coefficients of b1 are not statistically significant. In other words, 

while the impact of low-latency trading on market quality seems robust, our finding that 
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low-latency activity is attracted to more liquid and less volatile stocks should be 

somewhat qualified due to the insignificant results in the stock-by-stock analysis.         

V. Related Literature 

Our paper can be viewed from two related angles: speed of interaction and information 

dissemination in financial markets, and the characteristics of algorithmic trading and its 

impact on the market environment. The academic literature in both areas is in its infancy, 

but there are nonetheless several papers that are related to our study.   

Regarding speed, Hendershott and Moulton (2009) look at the introduction of the 

NYSE’s Hybrid Market in 2006, which expanded automatic execution and reduced the 

execution time for NYSE market orders from ten seconds to under a second. They find 

that this reduction in latency resulted in worsened liquidity (e.g., spreads increased) but 

improved informational efficiency. However, Riordan and Storkenmaier (2008) find that 

a reduction in latency (from 50 to 10 ms) on the Deutsche Boerse’ Xetra system is 

associated with improved liquidity. It could be that the impact of a change in latency on 

market quality depends on how exactly it affects competition among liquidity suppliers 

(e.g., the entrance of electronic market makers who can add liquidity but also crowed out 

traditional liquidity providers) and the level of sophistication of liquidity demanders (e.g., 

their adoption of algorithms to implement dynamic limit order strategies that can both 

supply and demand liquidity). Easley, Hendershott, and Ramadorai (2009) examine a 

change in trading technology on the NYSE in 1980 that increased both the speed and the 

transparency of the market and find improved liquidity that they attribute to increased 

competition from off-exchange traders who were better able to compete with the 

specialists and floor brokers.26

                                                 
26Cespa and Foucault (2008) and Easley, O’Hara, and Yang (2010) provide theoretical models in which 
some traders observe market information with a delay. The two papers employ rather different modeling 
approaches resulting in somewhat conflicting implications on the impact of differential information latency 
on the cost of capital, liquidity, and the efficiency of prices. Boulatov and Dierker (2007) investigate 
information latency from the exchange’s perspective: how can the exchange maximize data revenue? Their 
theoretical model suggests that selling real-time data can be detrimental to liquidity but at the same time 
enhances the informational efficiency of prices. Moallemi and Sağlam (2010) discuss optimal order 
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Algorithmic traders on the Xetra system can attach an order flag that indicates an 

algorithmic source.27 Gsell (2008) shows that the majority of orders generated by 

algorithms demand rather than supply liquidity and are smaller than those sent by human 

traders, while Groth (2009) finds that algorithmic orders have a higher execution rate 

than non-algorithmic orders. Gsell and Gomber (2008) show evidence consistent with 

pegging strategies, and Prix, Loistl, and Huetl (2007), like us, attempt to impute 

algorithmic strategies. They note that there are certain regularities in the activity of these 

algorithms, some of which tend to cycle every 60 seconds. Hendershott and Riordan 

(2009) look at the 30 DAX stocks and find that algorithmic trades have a larger price 

impact than non-algorithmic trades and seem to contribute more to price discovery.28

Three papers focusing on U.S. markets are closely related to our study. 

Hendershott, Jones, and Menkveld (2009) use the arrival rate of electronic messages on 

the NYSE as a measure of combined AA and PA activity. Using an event study approach 

around the introduction of autoquoting by the NYSE in 2003, the authors find that 

increase in normalized message count (their proxy for algorithmic trading) impacts 

liquidity only for large stocks. For these stocks, quoted and effective spreads decline, 

while quoted depth decreases. The largest stocks also experience improved price 

discovery. We, on the other hand, find an improvement in market quality using all 

measures, including depth and short-term volatility, and for all stocks rather than just the 

largest stocks.

  

29

                                                                                                                                                 
placement strategy for a seller facing random exogenous buyer arrivals. In their model, the seller pursues a 
pegging strategy, and the delayed monitoring caused by latency leads to costly tracking errors. 

 Two considerations could account for the difference in findings. Firstly, 

27 The flag is based on self-reporting, but firms have a fee incentive to identify themselves as algorithmic 
traders and hence these papers assume that most algorithmic trading is captured by this flag. 
28 There are studies of algorithmic trading outside of U.S. and German equity markets. Chaboud, 
Chiquoine, Hjalmarsson, and Vega (2009) examine algorithmic trading in the interdealer foreign exchange 
market. Using an instrument for algorithmic trading measured on a monthly frequency, they find no 
evidence of a causal relationship between algorithmic trading and increased exchange rate volatility. 
Jovanovic and Menkveld (2010) provide theoretical and empirical analyses of intermediation in limit order 
markets. They identify one dealer in Dutch stocks that appears to be implementing automated liquidity 
provision strategies across two trading platforms, Chi-X and Euronext. They find mixed evidence on the 
question of whether the activity of the dealer helps or hurts investors. 
29 The average market capitalization (in billion dollars) of sample quintiles reported in Table 1 of 
Hendershott, Jones, and Menkveld (2009) is 28.99, 4.09, 1.71, 0.90, and 0.41. This corresponds rather well 
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our measure of low-latency trading is designed to capture more PA than AA activity. 

Secondly, prior to the NYSE’s introduction of Hybrid Market in 2006, specialists may 

have faced less competition from PA firms pursuing electronic market making. The 2003 

autoquoting change, therefore, may have mostly affected AA activity.  

 In a contemporaneous paper, Brogaard (2010) investigates the impact of high-

frequency trading on market quality using a dataset containing the activities of 26 high-

frequency traders in 120 stocks. He reports that high-frequency traders contribute to 

liquidity provision in the market, that their trades help price discovery more than trades 

of other market participants, and that their activity appears to lower volatility. His results, 

therefore, complement our findings on market quality measures in Section IV, which is 

especially important given the differences in the design of the experiments in the two 

papers.  

There is no doubt that Brogaard’s data on the 26 traders is of high quality: he 

observes their actual trading activity. On the other hand, his data covers only a subset of 

PA that is more likely to be dominated by electronic market makers (that provide 

liquidity) relative to their real weight in the PA space.30 Since our measure of low-latency 

trading relies on imputed strategic runs, we are more likely to capture a broader picture of 

PA and perhaps even some AA that adopt the same tools to respond to market 

conditions.31

                                                                                                                                                 
to our sample where the average market capitalization of quintiles is 21.4, 3.8, 2.1, 1.4, and 1.0, though we 
may have fewer very large and very small stocks compared to their sample.    

 Another important difference between the two papers is that Brogaard’s 

sample spans one week in February 2010 (over which the NASDAQ Composite Index 

was basically flat), while our 2008 sample provides insights on what happens at times of 

declining prices and heightened uncertainty. The ability to study low-latency activity 

during a stressful period for the market is especially important when the conclusion from 

30 Brogaard’s data do not include several important types of PA traders. First, they lack the proprietary 
trading desks of larger, integrated firms like Goldman Sachs or JP Morgan. Second, they ignore many of 
the statistical arbitrage firms that use the services of direct access brokers (such as Lime Brokerage or Swift 
Trade) that specialize in providing services to high-frequency traders. 
31 This is the reason behind our labeling of these traders “low-latency traders” rather than “high-frequency 
traders.” Unlike one or the other terms that are prevalent in the media, our definition is based on an 
economic idea: Traders who respond to market events. 



31 
 

the analysis of “normal times” is that these traders improve, rather than harm, market 

quality. 

We note, though, that traders engaged in low-latency activity could impact the 

market in a negative fashion at times of extreme market stress. The joint CFTC/SEC 

report regarding the “flash crash” of May 6, 2010, presents a detailed picture of such an 

event. The report notes that many high-frequency traders scaled down, stopped, or 

significantly curtailed their trading at some point during this episode. Furthermore, some 

of the high-frequency traders escalated their aggressive selling during the rapid price 

decline, removing significant liquidity from the market and hence contributing to the 

decline. Our study suggests that such behavior is not representative of the manner in 

which low-latency activity impacts market conditions outside of such extreme episodes. 

Lastly, our paper relates to the analysis of Hasbrouck and Saar (2009) who 

present evidence consistent with the implementation of dynamic trading strategies by 

market participants using order-level data from the INET ECN. Hasbrouck and Saar 

emphasize how technology changed the nature of the market environment. The present 

paper provides further evidence on attributes of the millisecond environment and the 

growing importance of algorithmic trading. 

VI. Conclusions 

Our paper makes two contributions. First, it describes the millisecond environment in 

which equity trading currently occurs. The clock-time periodicities, the episodic nature of 

high-frequency activity, and the manner in which trading responds to market events over 

millisecond horizons constitute a fundamental change from the manner in which stock 

markets operated even a few years ago. Second, we study the impact that low-latency 

activity has on market quality both during normal market conditions and during a period 

of declining prices and heightened economic uncertainty. Our conclusion is that increased 

low-latency activity improves traditional yardsticks for market quality such as liquidity 

and short-term volatility. 
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The economic issues associated with latency in financial markets are not new, and 

the private advantage of relative speed was noted well before the advent of our current 

millisecond environment: 
 
For some years prior to [the introduction of the telegraph in 1846], William C. 
Bridges, a stock broker, together with several others, had maintained a unique 
private ‘telegraph’ system between Philadelphia and New York. By the ingenious 
device of establishing stations on high points across New Jersey, on which signals 
were given by semaphore in the daytime and by light flashes at night, discerned 
with the aid of telescopes, information on lottery numbers, stock prices, etc., was 
conveyed in as short a time as ten minutes between the two cities.   
(Barnes, 1911, p. 9) 

Nor are low-latency’s effects on price dynamics new concerns: 
 
Some of the mysterious movements in the stock markets of Philadelphia and New 
York were popularly ascribed to this pioneer financial news bureau. 
(Barnes, ibid) 

What is the real economic cost of a delay? It depends on both the risk borne over 

the delay duration and the effects on participants’ strategies. At current latency levels it is 

difficult to attach much importance to the former. Consider a hypothetical security with a 

daily log volatility of 0.03 (roughly corresponding, over 250 trading days, to a 47% 

annual volatility). If the daily volatility is unconditionally distributed evenly over the 6.5 

hour trading day, then the volatility over 10 ms is a negligible 0.2 basis points.  

The importance of delay for strategic interactions, however, might be much 

greater. Suppose that the daily volatility is generated by a single randomly-timed 

announcement that causes the value to change (equiprobably) by ±3%. This 3% can be 

captured by a first-mover who observes the announcement and takes a long or short 

position against others yet unaware, irrespective of whether his absolute time advantage 

is one minute or one microsecond. 

 Furthermore, the market itself creates events in the form of imbalances of supply 

and demand that could be of value to traders who are fast enough to respond to them. 

There is no doubt that being faster than others entails private advantage, but is it socially 
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beneficial? The first mover in the case of fundamental news imposes costs on other 

traders, and high adverse selection costs could cause market failure. The fast traders that 

take advantage of market events could provide valuable liquidity to those seeking 

immediacy and hence enhance market quality, but could also step ahead of large orders in 

the book, thereby imposing costs on other liquidity providers (as described in the 

specialist context by Seppi (1997)). 

The early advocates of electronic markets generally envisioned arrangements 

wherein all traders would enjoy equal access (see Mendelson and Peake (1979), for 

example). It is therefore particularly striking how much the essential structure of today’s 

electronic markets resembles that of the floor markets they were supposed to have 

superseded. The old floor-based exchanges (like the NYSE) had a limited number of 

memberships (“seats”), and only by purchasing or renting a seat could a trader gain 

access to the floor. Floor-traders had a significant timing advantage over off-floor traders. 

The modern exchange is essentially a rack-mounted server. The enclosure has a limited 

number of slots, and only by renting a slot can a trader gain co-located access to the 

market. Co-located traders have a significant timing advantage over those based 

elsewhere. 

Is this fair? In Regulation Fair Disclosure, the SEC took the stand that firms 

cannot release fundamental information to a subset of investors before others. On the 

other hand, Rule 603(a) established a different approach to market data, whereby market 

centers could sell data directly to subscribers, in effect creating a tiered system of 

investors with respect to access to information about market events.32

It was also hoped that electronic markets would promote direct interaction of 

buyers and sellers. There is some evidence, however, that the reverse has occurred. 

 

                                                 
32 Rule 603(a) prohibits an SRO or a broker-dealer from supplying the data via direct feeds faster than it 
supplies it to the Securities Industry Automation Corporation (SIAC) that processes the data and distributes 
the “tape.” However, the operation of processing and retransmitting data via SIAC appears to add 5 to 10 
millisecond and hence subscribers to direct exchange data feeds “see” the information before others who 
observe the tape.  
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NYSE specialists (the designated market makers on the exchange floor) had a 

participation rate of 25.3% of the volume just a decade before our sample period.33

While there is some theoretical work on the issue of differential access to market 

data (see Boulatov and Dierker (2007), Cespa and Foucault (2008), and Easley, O’Hara, 

and Yang (2010)), there is less guidance on how co-location, with its preferential access 

to both data and execution services, affects the welfare of investors. It is possible that the 

resulting increase in intermediation is actually desirable in today’s fast paced financial 

markets. If investors do not tolerate delay when trading, it is difficult to assure 

instantaneous execution without intermediation. And if competition in electronic market 

making forces the pricing of dealer services to their marginal cost, one argument goes, 

what is the harm in increased intermediation? One problem with this argument is that the 

new electronic market making firms are not subject to the affirmative and negative 

obligations that bound formally designated market makers. 

 

Brogaard (2010) reports that high-frequency traders, some of which operate as electronic 

market makers, participate in 73.7% of NASDAQ volume.  

In the face of transient supply and demand, NYSE specialists were obligated to 

stabilize prices and maintain continuous presence in the market. They were subject to 

restrictions on reaching across the market to take liquidity (i.e., making destabilizing 

trades). The electronic market making firms and other low-latency traders have no such 

obligations. Their efficiency and lack of obligations could therefore drive traditional 

suppliers of liquidity out of business by gaining at their expense in normal times. As a 

result, at times of severe market stress, low-latency traders can simply step away from the 

market, causing fragility that did not previously exist.  

One of the contributions of our study is the finding that at times of declining 

prices and heightened economic uncertainty, the nature of the millisecond environment 

and the positive influence of low-latency activity on market quality remains. However, 

we cannot rule out the possibility of a sudden and severe market condition in which the 

                                                 
33 See New York Stock Exchange Fact Book 1998 Data.  
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lack of obligations would result in a market failure. The experience of the “flash crash” in 

May of 2010 demonstrates that such fragility is certainly possible when a few big players 

step aside and nobody remains to post limit orders.  

Lastly, we believe that it is important to recognize that guaranteeing equal access 

to market data when the market is both continuous and fragmented (as presently in the 

U.S.) may be physically impossible. First, Gode and Sunder (2000) claim that when 

traders are dispersed geographically, transmission delays are sufficiently large to prevent 

equitable access to a continuous market.  Our evidence on the speed of execution against 

improved quotes suggests that some players are responding within 2-3 ms, while the New 

York and Chicago roundtrip (1159 km) is about 8 ms even at the speed of light. 

Second, even if one views co-location as the ultimate equalizer of dispersed 

traders, it leads to the impossibility of achieving equal access in fragmented markets. 

Since the same stock is traded on multiple trading venues, a co-located computer near the 

servers of exchange A would be at a disadvantage in responding to market events in the 

same securities on exchange B compared to computers co-located with exchange B. 

Hence, unless markets change from continuous to periodic, some traders will always have 

lower latency than others. Our findings in this paper suggest that increased low-latency 

activity need not invariably work to the detriment of long-term investors. 
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Table 1 
Summary Statistics 

This table presents summary statistics for the stocks in our sample. The universe of stocks used in the study is 
comprised of the 500 largest stocks by market capitalization on September 28, 2007. We investigate trading in these 
stocks in two sample periods: (i) October 2007 (23 trading days), and (ii) June 2008 (21 trading days). Since the 
main econometric analysis in the paper requires sufficient level of activity in the stocks, we apply the following 
screen to the stocks in each sample period: A firm is rejected if the proportion of 10-minute intervals with fewer 
than 250 messages is above 10%. A “message” for the purpose of this screen could be a submission, a cancellation, 
or an execution of a limit order. After applying the screen (and dropping Google and Apple due to computational 
limitations), our sample consists of 345 stocks in the October 2007 sample period and 394 stocks in the June 2008 
sample period. In Panel A we report summary statistics from the CRSP database. MktCap is the market 
capitalization of the firms computed using closing prices on the last trading day prior to the start of the sample 
period. ClsPrice is the average closing price, AvgVol is the average daily share volume, and AvgRet is the average 
daily return. These variables are averaged across time for each firm, and the table entries refer to the sample 
distribution of these firm-averages. Panel B presents summary statistics from the NASDAQ market computed using 
TotalView-ITCH data. We report the average daily number of orders submitted, cancelled, and executed in each 
sample period, along with the average daily number of shares executed. The summary measures for the limit order 
book include the time-weighted average depth in the book, the time-weighted average depth near current market 
prices (i.e., within 10 cents of the best bid or ask prices), and the time-weighted average dollar quoted spread (the 
distance between the bid and ask prices). We also report the effective (half) spread, defined as the absolute value of 
the difference between the transaction price and the quote midpoint, averaged across all transactions. 
 
Panel A: CRSP Summary Statistics 

 
2007 2008 

MktCap 
($Million) 

ClsPrice 
($) 

AvgVol 
(1,000s) 

AvgRet 
(%)  

MktCap 
($Million) 

ClsPrice 
($) 

AvgVol 
(1,000s) 

AvgRet 
(%)  

Mean 5,936 34.98 3,092 0.110 4,908 30.09 2,871 -0.565 
Median 2,069 29.07 1,074 0.123 1,648 24.67 1,116 -0.512 
Std 18,402 25.55 7,950 0.557 16,337 27.84 6,263 0.618 
Min 789 2.22 202 -2.675 286 2.32 112 -3.449 
Max 275,598 272.07 77,151 1.933 263,752 278.66 74,514 0.817 
 
Panel B. NASDAQ (TotalView-ITCH) Summary Statistics 

 Number of 
Submissions 

Number of 
Cancellations 

Number of 
Executions 

Shares 
Executed 
(1,000s) 

Depth  
(1,000s) 

Near 
Depth 

(1,000s) 

Quoted 
Spread 

($) 

Eff. Half 
Spread   

($) 

2007 

Mean 41,477 37,126 3,593 1,363 243 29 0.033 0.013 

Median 27,130 24,374 2,489 548 74 6 0.025 0.010 

Std 44,334 40,039 3,290 3,154 813 129 0.031 0.011 

Min 9,658 8,013 695 130 13 1 0.010 0.005 

Max 305,688 308,178 22,644 32,305 7,979 1,555 0.313 0.111 

2008 

Mean 52,756 48,671 3,546 1,177 254 22 0.034 0.012 

Median 34,875 31,712 2,329 486 78 5 0.023 0.008 

Std 54,978 50,882 3,666 2,556 886 77 0.039 0.012 

Min 8,889 7,983 291 42 10 0 0.010 0.004 

Max 401,140 409,803 28,105 32,406 12,502 1,241 0.462 0.132 
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Table 2 
Examples of Strategic Runs for Ticker Symbol ADCT on October 2, 2007 

This table presents examples of “strategic runs,” which are linked submissions, cancellations, and executions that are likely to be parts of a dynamic strategy of a 
trading algorithm. The examples are taken from activity in one stock (ATC Telecommunications, ticker symbol ADCT) on October 2, 2007. We identify the 
existence of these strategic runs by imputing links between different submissions, cancellations, and executions based on direction, size, and timing. In the two 
cases presented below, the activity in the table constitutes all messages in this stock (i.e., there are no intervening messages that are unrelated to these strategic 
runs). In Panel A, we present order activity starting around 9:51:57am where two algorithms “play” with each other (i.e., they submit and cancel messages in 
response to one another). The messages sent by the second algorithm are highlighted in the table. The algorithms are active for one minute and 12 seconds, 
sending 137 messages (submissions and cancellations) to the market. In Panel B we present order activity starting around 9:57:18am where one algorithm 
submits and cancels orders. The algorithm is active for one minute and eighteen seconds, sending 142 messages (submissions and cancellations) to the market. 
 
Panel A: ADCT Order Activity Starting 09:51:57.849 
Time Message B/S Shares Price Bid Offer 
09:51:57.849 Submission Buy 100 20.00 20.03 20.05 
09:52:13.860 Submission Buy 300 20.03 20.03 20.04 
09:52:16.580 Cancellation Buy 300 20.03 20.03 20.04 
09:52:16.581 Submission Buy 300 20.03 20.03 20.04 
09:52:23.245 Cancellation Buy 100 20.00 20.04 20.05 
09:52:23.245 Submission Buy 100 20.04 20.04 20.05 
09:52:23.356 Cancellation Buy 300 20.03 20.04 20.05 
09:52:23.357 Submission Buy 300 20.04 20.04 20.05 
09:52:26.307 Cancellation Buy 300 20.04 20.05 20.07 
09:52:26.308 Submission Buy 300 20.05 20.05 20.07 
09:52:29.401 Cancellation Buy 300 20.05 20.04 20.07 
09:52:29.402 Submission Buy 300 20.04 20.04 20.07 
09:52:29.402 Cancellation Buy 100 20.04 20.04 20.07 
09:52:29.403 Submission Buy 100 20.00 20.04 20.07 
09:52:32.665 Cancellation Buy 100 20.00 20.04 20.07 
09:52:32.665 Submission Buy 100 20.05 20.05 20.07 
09:52:32.672 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.678 Submission Buy 100 20.05 20.05 20.07 
09:52:32.707 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.708 Submission Buy 100 20.05 20.05 20.07 

Time Message B/S Shares Price Bid Offer 
09:52:32.717 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.745 Cancellation Buy 300 20.04 20.04 20.07 
09:52:32.745 Submission Buy 100 20.05 20.05 20.07 
09:52:32.746 Submission Buy 300 20.05 20.05 20.07 
09:52:32.747 Cancellation Buy 100 20.05 20.05 20.07 
09:52:32.772 Submission Buy 100 20.02 20.05 20.07 
09:52:32.776 Cancellation Buy 300 20.05 20.04 20.07 
09:52:32.777 Cancellation Buy 100 20.02 20.04 20.07 
09:52:32.777 Submission Buy 300 20.04 20.04 20.07 
09:52:32.778 Submission Buy 100 20.05 20.05 20.07 
09:52:32.778 Cancellation Buy 300 20.04 20.05 20.07 
09:52:32.779 Submission Buy 300 20.05 20.05 20.07 
09:52:32.779 Cancellation Buy 100 20.05 20.05 20.07 
09:52:32.807 Cancellation Buy 300 20.05 20.04 20.07 
09:52:32.808 Submission Buy 100 20.02 20.04 20.07 
09:52:32.808 Submission Buy 300 20.04 20.04 20.07 
09:52:32.809 Cancellation Buy 100 20.02 20.04 20.07 
… the interaction between the two strategic runs continues  
for 95 additional messages until a limit order of  the 
300-share run is executed by an incoming marketable order 
at 09:53:09.365.  
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Panel B: ADCT Order Activity Starting 09:57:18.839 
Time Message B/S Shares Price Bid Ask 

09:57:18.839 Submission Sell 100 20.18 20.11 20.14 
09:57:18.869 Cancellation Sell 100 20.18 20.11 20.14 
09:57:18.871 Submission Sell 100 20.13 20.11 20.13 
09:57:18.881 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.892 Submission Sell 100 20.16 20.11 20.14 
09:57:18.899 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.902 Submission Sell 100 20.13 20.11 20.13 
09:57:18.911 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.922 Submission Sell 100 20.16 20.11 20.14 
09:57:18.925 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.942 Submission Sell 100 20.13 20.11 20.13 
09:57:18.954 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.958 Submission Sell 100 20.13 20.11 20.13 
09:57:18.961 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.973 Submission Sell 100 20.13 20.11 20.13 
09:57:18.984 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.985 Submission Sell 100 20.16 20.11 20.14 
09:57:18.995 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.996 Submission Sell 100 20.13 20.11 20.13 
09:57:19.002 Cancellation Sell 100 20.13 20.11 20.14 
09:57:19.004 Submission Sell 100 20.16 20.11 20.14 
09:57:19.807 Cancellation Sell 100 20.16 20.11 20.13 
09:57:19.807 Submission Sell 100 20.13 20.11 20.13 
09:57:20.451 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.461 Submission Sell 100 20.13 20.11 20.13 
09:57:20.471 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.480 Submission Sell 100 20.13 20.11 20.13 
09:57:20.481 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.484 Submission Sell 100 20.13 20.11 20.13 
09:57:20.499 Cancellation Sell 100 20.13 20.11 20.14 

Time Message B/S Shares Price Bid Ask 

09:57:20.513 Submission Sell 100 20.13 20.11 20.13 
09:57:20.521 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.532 Submission Sell 100 20.13 20.11 20.13 
09:57:20.533 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.542 Submission Sell 100 20.13 20.11 20.13 
09:57:20.554 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.562 Submission Sell 100 20.13 20.11 20.13 
09:57:20.571 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.581 Submission Sell 100 20.13 20.11 20.13 
09:57:20.592 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.601 Submission Sell 100 20.13 20.11 20.13 
09:57:20.611 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.622 Submission Sell 100 20.13 20.11 20.13 
09:57:20.667 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.671 Submission Sell 100 20.13 20.11 20.13 
09:57:20.681 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.742 Submission Sell 100 20.13 20.11 20.13 
09:57:20.756 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.761 Submission Sell 100 20.13 20.11 20.13 
… the strategic run continues for 89 additional messages  
until it stops at 09:58:36.268.  
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Table 3 
Strategic Runs 

This table presents summary statistics for “strategic runs,” which are linked submissions, cancellations, and executions that are likely to be parts of a dynamic 
strategy. The imputed links between different submissions, cancellations, and executions are based on direction, size, and timing. Specifically, when a 
cancellation is followed within one second by a submission of a limit order in the same direction and for the same quantity, or by an execution in the same 
direction and for the same quantity, we impute a link between the messages. The methodology that tracks the strategic runs also takes note of partial executions 
and partial cancellations of orders. In Panel A we sort runs into categories by length (i.e., the number of linked messages), and report information about the 
number of runs, messages, and executions (separately active and passive) within each category. An active execution is when the run ends with a marketable limit 
order that executes immediately. A passive execution is when a standing limit order that is part of a run is executed by an incoming marketable order. One run 
could potentially result in both a passive execution and an active execution if the passive execution did not exhaust the order, and the reminder was cancelled and 
resubmitted to generate an immediate active execution. Panel B shows the elapsed time from the beginning to the end of runs of 10 or more messages, which are 
the runs that we use to construct our measure of low-latency activity. 
 
Panel A: Summary Statistics of Strategic Runs  

 Length 
Of Runs 

Runs 
(#) 

Runs 
(%) 

Messages 
(#) 

Messages 
(%) 

Active 
Exec. (#) 

Active 
Exec. Rate 

Passive 
Exec. (#) 

Passive 
Exec. Rate 

Total 
Exec. (#) 

Total 
Exec. Rate 

2007 

3-4 27,344,930 47.99% 105,690,858 22.53% 3,720,292 13.61% 5,476,480 20.03% 9,172,711 33.54% 
5-9 17,998,854 31.59% 118,037,347 25.17% 1,882,712 10.46% 4,941,592 27.46% 6,798,313 37.77% 
10-14 6,560,499 11.51% 75,353,085 16.07% 284,960 4.34% 1,468,072 22.38% 1,744,893 26.60% 
15-19 1,842,320 3.23% 30,948,629 6.60% 173,262 9.40% 418,977 22.74% 589,789 32.01% 
20-99 3,073,546 5.39% 100,494,251 21.43% 172,094 5.60% 619,304 20.15% 787,245 25.61% 
100+ 160,903 0.28% 38,503,154 8.21% 6,529 4.06% 31,316 19.46% 37,508 23.31% 
All 56,981,052 100.00% 469,027,324 100.00% 6,239,849 10.95% 12,955,71 22.74% 19,130,459 33.57% 

2008 

3-4 40,284,620 51.35% 156,714,747 26.25% 4,459,563 11.07% 5,916,127 14.69% 10,355,650 25.71% 
5-9 23,744,638 30.27% 155,608,785 26.06% 2,297,553 9.68% 5,324,835 22.43% 7,599,729 32.01% 
10-14 8,262,256 10.53% 94,723,010 15.87% 354,704 4.29% 1,600,453 19.37% 1,948,080 23.58% 
15-19 2,295,030 2.93% 38,561,692 6.46% 221,307 9.64% 451,793 19.69% 671,084 29.24% 
20-99 3,696,434 4.71% 118,816,877 19.90% 219,686 5.94% 627,419 16.97% 844,207 22.84% 
100+ 160,661 0.20% 32,615,369 5.46% 7,152 4.45% 22,687 14.12% 29,695 18.48% 
All 78,443,639 100.00% 597,040,480 100.00% 7,559,965 9.64% 13,943,314 17.77% 21,448,445 27.34% 
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Panel B: Distribution of Elapsed Time for Runs of 10 or more Messages 
   Elapsed Time 
 Length of Run Number of Runs < 0.1 sec. [0.1,1) sec. [1,60) sec. [1,10) min. [10,60) min. > 60 min. 

2007 

10-14 6,560,499 276,703 353,093 3,015,701 2,386,218 462,458 66,326 
15-19 1,842,320 73,978 93,759 763,002 716,794 172,526 22,261 
20-99 3,073,546 124,008 218,861 1,075,282 1,109,339 458,586 87,470 
100-999 158,032 218 16,827 43,277 32,977 24,090 40,643 
1,000-4,999 2,523 0 0 1,392 609 263 259 
5,000+ 348 0 0 126 134 30 58 
All 11,637,268 474,907 682,540 4,898,780 4,246,071 1,117,953 217,017 

2008 

10-14 8,262,256 109,077 164,355 3,785,673 3,572,232 560,216 70,703 
15-19 2,295,030 25,984 34,601 842,787 1,148,372 218,637 24,649 
20-99 3,696,434 38,955 74,953 987,683 1,791,617 694,245 108,981 
100-999 159,401 45 5,613 32,396 35,553 32,696 53,098 
1,000-4,999 1,211 0 0 600 442 83 86 
5,000+ 49 0 0 16 21 5 7 
All 14,414,381 174,061 279,522 5,649,155 6,548,237 1,505,882 257,524 
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Table 4 
Simultaneous Equation Model: Low-Latency Trading and Market Quality 

This table presents analysis of the manner in which low-latency trading affects market quality. To measure the 
intensity of low-latency activity in a stock in each ten-minute interval, we use the time-weighted average of the 
number of strategic runs of 10 messages or more the stock experiences in the interval (RunsInProcess). We use 
NASDAQ order-level data to compute several measures that represent different aspects of market quality on the 
NASDAQ system in each time interval: (i) HighLow is the highest midquote minus the lowest midquote in the same 
interval, (ii) EffSprd is the average effective spread (or total price impact) of a trade, computed as the absolute value 
of the difference between the transaction price and the prevailing midquote, (iii) Spread is the time-weighted 
average quoted spread (ask price minus the bid price), and (iv) NearDepth is the time-weighted average number of  
(visible) shares in the book up to 10 cents from the best posted prices. Due to the potential simultaneity between 
market quality and low-latency trading, we estimate the following two-equation simultaneous equation model for 
RunsInProcess and each of the market quality measures (HighLow, EffSprd, Spread, and NearDepth): 

, 1 , 2 , 1,

, 1 , 2 , 2,

= + +
= + +

i t i t i t t

i t i t i t t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotI e

 

As an instrument for RunsInProcess we use RunsNotI, which is the average number of runs of 10 messages or more 
in the same interval for the other stocks in our sample (excluding stock i). In Panel A, we present the results with our 
main instrument for the market quality measures: EffSprdNotNas, which is the average dollar effective spread 
computed from trades executed in the same stock and during the same time interval on other trading venues (from 
the TAQ database). For robustness, we present in Panel B the analysis with an alternative instrument, 
SpreadNotNas, which is the time-weighted average quoted spread (from TAQ) that excludes NASDAQ quotes. We 
estimate the simultaneous equation model by pooling observations across all stocks and all time intervals. To enable 
a meaningful pooling of data, we standardize each variable by subtracting from each observation the stock-specific 
time-series average and dividing by the stock-specific time-series standard deviation. Hence, this formulation 
essentially implements a fixed-effects specification. We report the coefficients and the p-values (against a two-sided 
alternative) side-by-side for the 2007 and 2008 sample periods. 
 
Panel A: Estimates of the Simultaneous Equation Model with Instruments EffSprdNotNAS and RunsNotI  
  2007 2008 
  a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
Coef. -0.339 0.474 -0.054 0.534 -0.451 0.463 -0.121 0.485 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

Spread 
Coef. -0.501 0.572 -0.044 0.532 -0.531 0.551 -0.101 0.485 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

EffSprd 
Coef. -0.179 0.396 -0.065 0.537 -0.121 0.233 -0.245 0.497 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.444 -0.217 0.114 0.516 0.644 -0.138 0.334 0.402 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

 
Panel B: Estimates of the Simultaneous Equation Model with Instruments SpreadNotNAS and RunsNotI  
  2007 2008 
  a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
Coef. -0.362 0.366 -0.157 0.494 -0.416 0.404 -0.169 0.463 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

Spread 
Coef. -0.254 0.744 -0.080 0.513 -0.177 0.797 -0.090 0.490 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

EffSprd 
Coef. -0.177 0.330 -0.179 0.507 -0.082 0.225 -0.316 0.486 
p-value (<.001) (<.001) (<.001) (<.001) (0.671) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.344 -0.289 0.197 0.488 0.565 -0.190 0.317 0.409 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
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Table 5 
Low-Latency Trading and Market Quality by Size Quartiles 

This table presents the results of a simultaneous equation model of low-latency trading and market quality separately 
for stocks in each firm-size quartile. To measure the intensity of low-latency activity in a stock in each ten-minute 
interval, we use the time-weighted average of the number of strategic runs of 10 messages or more the stock 
experiences in the interval (RunsInProcess). We use NASDAQ order-level data to compute several measures that 
represent different aspects of market quality on the NASDAQ system in each time interval: (i) HighLow is the 
highest midquote minus the lowest midquote in the same interval, (ii) EffSprd is the average effective spread (or 
total price impact) of a trade, computed as the absolute value of the difference between the transaction price and the 
prevailing midquote, (iii) Spread is the time-weighted average quoted spread (ask price minus the bid price), and 
(iv) NearDepth is the time-weighted average number of (visible) shares in the book up to 10 cents from the best 
posted prices. Due to the potential simultaneity between market quality and low-latency trading, we estimate the 
following two-equation simultaneous equation model for RunsInProcess and each of the market quality measures 
(HighLow, EffSprd, Spread, and NearDepth): 

, 1 , 2 , 1,

, 1 , 2 , 2,

= + +
= + +

i t i t i t t

i t i t i t t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotI e

 

As an instrument for RunsInProcess we use RunsNotI, which is the average number of runs of 10 messages or more 
in the same interval for the other stocks in our sample (excluding stock i). As an instrument for the market quality 
measures we use EffSprdNotNas, which is the average dollar effective spread computed from trades executed in the 
same stock and during the same time interval on other trading venues (from the TAQ database). We estimate the 
simultaneous equation model by pooling observations across all stocks and all time intervals. To enable a 
meaningful pooling of data, we standardize each variable by subtracting from each observation the stock-specific 
time-series average and dividing by the stock-specific time-series standard deviation. Hence, this formulation 
essentially implements a fixed-effects specification. We report the coefficients and the p-values (against a two-sided 
alternative) side-by-side for the 2007 and 2008 sample periods. 
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   2007 2008 
Dep. Var.   a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
 

Q1 (small) Coef. -0.348 0.451 0.016 0.531 -0.654 0.415 -0.197 0.338 
 p-value (<.001) (<.001) (0.090) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q2 Coef. -0.377 0.455 0.003 0.534 -0.646 0.407 -0.191 0.336 
 p-value (<.001) (<.001) (0.712) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q3 Coef. -0.334 0.475 -0.033 0.533 -0.455 0.464 -0.127 0.484 
 p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q4 (large) Coef. -0.312 0.500 -0.133 0.539 -0.279 0.521 0.017 0.713 
 p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

Spread 

Q1 (small) Coef. -0.562 0.569 0.013 0.532 -0.742 0.486 -0.169 0.339 
 p-value (<.001) (<.001) (0.090) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q2 Coef. -0.530 0.577 0.002 0.534 -0.758 0.494 -0.158 0.337 
 p-value (<.001) (<.001) (0.712) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q3 Coef. -0.523 0.586 -0.027 0.532 -0.542 0.547 -0.108 0.484 
 p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q4 (large) Coef. -0.437 0.562 -0.117 0.534 -0.334 0.625 0.014 0.713 
 p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

EffSprd 

Q1 (small) Coef. -0.185 0.357 0.020 0.530 -0.140 0.166 -0.524 0.360 
 p-value (<.001) (<.001) (0.091) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q2 Coef. -0.158 0.407 0.003 0.533 -0.150 0.181 -0.456 0.357 
 p-value (<.001) (<.001) (0.743) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q3 Coef. -0.176 0.428 -0.037 0.536 -0.121 0.248 -0.244 0.499 
 p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q4 (large) Coef. -0.193 0.379 -0.177 0.543 -0.092 0.306 0.029 0.712 
 p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

NearDepth 

Q1 (small) Coef. 0.423 -0.188 -0.039 0.537 0.769 -0.088 0.584 0.214 
 p-value (<.001) (<.001) (0.093) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q2 Coef. 0.527 -0.192 -0.007 0.535 0.764 -0.094 0.549 0.222 
 p-value (<.001) (<.001) (0.712) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q3 Coef. 0.432 -0.209 0.073 0.522 0.646 -0.122 0.385 0.386 
 p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q4 (large) Coef. 0.406 -0.259 0.242 0.507 0.534 -0.215 -0.042 0.726 
 p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
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Table 6 
Stock-by-Stock Estimation of Simultaneous Equation Model 

This table presents the median coefficient estimate (and its p-value) from a stock-by-stock estimation of a 
simultaneous equation model that we use to examine the manner in which low-latency trading affects market 
quality. To measure the intensity of low-latency activity in a stock in each ten-minute interval, we use the time-
weighted average of the number of strategic runs of 10 messages or more the stock experiences in the interval 
(RunsInProcess). We use NASDAQ order-level data to compute several measures that represent different aspects of 
market quality on the NASDAQ system in each time interval: (i) HighLow is the highest midquote minus the lowest 
midquote in the same interval, (ii) EffSprd is the average effective spread (or total price impact) of a trade, computed 
as the absolute value of the difference between the transaction price and the prevailing midquote, (iii) Spread is the 
time-weighted average quoted spread (ask price minus the bid price), and (iv) NearDepth is the time-weighted 
average number of (visible) shares in the book up to 10 cents from the best posted prices. Due to the potential 
simultaneity between market quality and low-latency trading, we estimate the following two-equation simultaneous 
equation model for RunsInProcess and each of the market quality measures (HighLow, EffSprd, Spread, and 
NearDepth): 

, 1 , 2 , 1,

, 1 , 2 , 2,

= + +
= + +

i t i t i t t

i t i t i t t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotI e

 

As an instrument for RunsInProcess we use RunsNotI, which is the average number of runs of 10 messages or more 
in the same interval for the other stocks in our sample (excluding stock i). In Panel A, we present the results with our 
main instrument for the market quality measures: EffSprdNotNas, which is the average dollar effective spread 
computed from trades executed in the same stock and during the same time interval on other trading venues (from 
the TAQ database). For robustness, we present in Panel B the analysis with an alternative instrument, 
SpreadNotNas, which is the time-weighted average quoted spread (from TAQ) that excludes NASDAQ quotes. We 
standardize each variable by subtracting from each observation the stock-specific time-series average and dividing 
by the stock-specific time-series standard deviation. Hence, this formulation essentially implements a fixed-effects 
specification. We estimate the simultaneous equation model for each stock separately, and report the median 
coefficient (across the stocks) and its p-value. 

 
Panel A: Cross-Sectional Median Coefficient Estimate when Instruments are EffSprdNotNAS and RunsNotI 
  2007 2008 
  a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
Coef. -0.317 0.480 -0.036 0.549 -0.459 0.457 -0.124 0.479 
p-value (<.001) (<.001) (0.519) (<.001) (<.001) (<.001) (0.046) (<.001) 

Spread 
Coef. -0.471 0.619 -0.026 0.551 -0.519 0.554 -0.112 0.475 
p-value (<.001) (<.001) (0.647) (<.001) (<.001) (<.001) (0.116) (<.001) 

EffSprd 
Coef. -0.181 0.401 -0.025 0.554 -0.112 0.240 -0.150 0.502 
p-value (0.003) (<.001) (0.808) (<.001) (0.016) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.443 -0.215 0.081 0.543 0.652 -0.142 0.350 0.376 
p-value (<.001) (<.001) (0.407) (<.001) (<.001) (<.001) (0.014) (<.001) 

 
Panel B: Cross-Sectional Median Coefficient Estimate when Instruments are SpreadNotNAS and RunsNotI 
  2007 2008 
  a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
Coef. -0.331 0.390 -0.119 0.511 -0.398 0.414 -0.157 0.461 
p-value (<.001) (<.001) (0.112) (<.001) (<.001) (<.001) (0.030) (<.001) 

Spread 
Coef. -0.214 0.790 -0.065 0.534 -0.132 0.842 -0.077 0.485 
p-value (<.001) (<.001) (0.114) (<.001) (<.001) (<.001) (0.091) (<.001) 

EffSprd 
Coef. -0.149 0.341 -0.129 0.524 -0.064 0.227 -0.131 0.516 
p-value (0.087) (<.001) (0.172) (<.001) (0.625) (<.001) (0.085) (<.001) 

NearDepth 
Coef. 0.325 -0.299 0.175 0.503 0.568 -0.204 0.309 0.392 
p-value (<.001) (<.001) (0.532) (<.001) (<.001) (<.001) (<.001) (0.016) 
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Figure 1 
Hazard Rates of Orders and Trades 

This figure presents estimated hazard rates for (i) order submissions and cancellations (i.e., all messages that do not involve trade execution), and (ii) trade 
executions. In the estimation of the submission/cancellation hazard rate, execution is assumed to be an exogenous censoring process, while in the estimation of 
the execution hazard rate, submissions and cancellations are assumed to be the exogenous censoring process. The estimated hazard rate plotted at time t is the 
estimated average over the interval [t–1 ms, t). The hazard rate for submissions/cancellations can be interpreted as the intensity of submissions and cancellations 
of limit orders conditional on the elapsed time since any market event (which can be a submission, a cancellation, or an execution). Similarly, the hazard rate for 
execution of trades can be interpreted as the intensity of executions conditional on the elapsed time subsequent to any market event. The hazard rates are 
estimated using the life-table method. In Panel A, we plot the hazard rates up to 100 milliseconds side-by-side for the 2007 and 2008 sample periods. This plot 
enables us to observe in greater detail very short-term patterns. In Panel B we plot the hazard rates up to one second.  

Panel A: Hazard Rates of Submissions/Cancellations and Executions up to 100ms  
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Panel B: Hazard Rates of Submissions/Cancellations and Executions up to 1000ms  
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Figure 2 
Clock-time Periodicities of Market Activity 

This figure presents clock-time periodicities in message arrival to the market. The original time stamps are milliseconds past midnight. The one-second 
remainder is the time stamp mod 1,000, i.e., the number of milliseconds past the one-second mark. In Panel A, we plot the sample distribution of one-second 
remainders side-by-side for the 2007 and 2008 sample periods. The ten-second remainder is the time stamp mod 10,000, the number of milliseconds past the ten-
second mark. Panel B plots the sample distribution of ten-second remainders. The horizontal lines in the graphs indicate the position of the uniform distribution 
(the null hypothesis).  
 
Panel A: Sample Distributions of One-Second Millisecond Remainders 
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Panel B: Sample Distributions of Ten-Second Millisecond Remainders 
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Figure 3 
Speed of Response to Market Events 

This figure looks at the speed of responses to certain market events that have well-defined economic meaning. In Panel A, the market event is an improved quote 
via the submission of a new limit order—either an increase in the best bid price or a decrease in the best ask price. Subsequent to this market event, we estimate 
(separately) the hazard rates for three types of responses: (i) a limit order submission on the same side as the improvement (e.g., buy order submitted following 
an improvement in the bid price), (ii) a cancellation of a standing limit order on the same side, and (iii) an execution against the improved quote (e.g., the best bid 
price is executed by an incoming sell order). In Panel B, the market event is deterioration in the quote as a result of a cancellation of a standing limit order (e.g., a 
limit buy order alone at the best bid price is cancelled and the best bid price therefore decreases). Subsequent to this market event, we estimate (separately) the 
hazard rates for three types of responses: (i) a limit order submission on the same side as the quote deterioration, (ii) a cancellation of a standing limit order on 
the same side, and (iii) an execution against the worsened quote. In all estimations, any event other than the one whose hazard rate is being estimated is taken as 
an exogenous censoring event. The estimated hazard rate plotted at time t is the estimated average over the interval [t–1 ms, t). The hazard rate for a response can 
be interpreted as the intensity of the response conditional on the elapsed time since the conditioning market event (e.g., the improved quote in Panel A).  
 
Panel A: Responses to Quote Improvement 
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Panel B: Responses to Quote Deterioration Due to a Limit Order Cancellation  
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Figure 4 
Episodic Nature of High-Frequency Activity 

This figure presents examples of episodes with intense high-frequency activity. These specific episodes were 
identified using wavelet analysis, but many such episodes are clearly visible when looking at the time-series of 
submissions and cancellations. In each of the panels, the bars represent the intensity of submissions and 
cancellations (measured on the left y-axis) and the dashed line provides cumulative executions (measured on the 
right y-axis). In Panel A, we show an episode on June 2, 2008, in the ticker symbol INWK (InnerWorkings Inc.) 
where 11,505 messages were sent to the market in approximately one minute and forty seconds. In Panel B, we 
show an episode on June 17, 2008, in ticker symbol SANM (Sanmina-SCI Corp.) where 3,013 messages were sent 
to the market in approximately three minutes and fifteen seconds. In Panel C, we show an episode on June 12, 2008, 
in ticker symbol GNTX (Gentex Corp.) where 14,925 messages were sent to the market in approximately one 
minute and twenty seconds. In all these episodes, activity by means of submission and cancellations is several orders 
of magnitude larger than the normal level for the stock. Still, the number and pattern of executions do not change 
during these high-frequency episodes.  
 
Panel A: INWK on June 2, 2008, 2:00pm to 2:10pm (11,505 Messages) 
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Panel B: SANM on June 17, 2008, 12:00pm to 12:10pm (3,013 Messages) 
 

 
 
 
Panel C: GNTX on June 12, 2008, 12:10pm to 12:20pm (14,925 Messages) 
 

 

S
ub

m
is

si
on

s 
an

d 
ca

nc
el

la
tio

ns

0

10

20

30

40

12:00:00 12:02:00 12:04:00 12:06:00 12:08:00 12:10:00

C
um

ul
at

iv
e 

ex
ec

ut
io

ns

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

S
ub

m
is

si
on

s 
an

d 
ca

nc
el

la
tio

ns

0

100

200

300

12:10:00 12:12:00 12:14:00 12:16:00 12:18:00 12:20:00

C
um

ul
at

iv
e 

ex
ec

ut
io

ns

0

10

20

30

40


	I. Introduction 
	II. Data and Sample 
	II.A. NASDAQ Order-Level Data

	II.B. Sample
	III.   Characterizing the New Trading Environment
	III.A. Intensity, periodicity, and High-Frequency Episodes
	III.A.a Intensity
	III.A.b Periodicity
	III.A.c Response Time
	III.A.d High-Frequency Episodes 

	III.B. The Players: Proprietary Algorithms and Agency Algorithms
	III.C. Strategic Runs

	IV. Low-Latency Trading and Market Quality
	IV.A. Measures and Methodology
	IV.B. Results

	V. Related Literature
	VI. Conclusions

