

Quality of Consumption

A Revealed Preference Approach to Local Amenity Valuation

Benjamin Bridgman, Abe Dunn, and Mahsa Gholizadeh

December 11, 2025

The views expressed here are those of the authors and do not represent those of the U.S. Bureau of Economic Analysis or the U.S. Department of Commerce.

- ▶ Value of a location a foundational question in urban/regional economics.
- ▶ Buying a house gives access to a bundle of attributes:
 - ▶ Productivity of production (wages).
 - ▶ Natural amenities (weather, water access).
 - ▶ Produced amenities (retail outlets, public goods).
- ▶ Amenities harder to value.
 - ▶ No direct price (wages measured in dollars).
 - ▶ Measured as a residual: House price not explained by wages.
 - ▶ Housing price influenced by future capital gains, supply restrictions.
- ▶ Amenities becoming more important in location decisions [Rappaport (2008); Albouy (2016)].

- ▶ We estimate an important amenity: quality of consumption (QOC).
- ▶ Use revealed preference on card transaction data:
 - ▶ People can travel to experience and consume in (non-home) areas.
 - ▶ Examine relative spending flows across locations.
 - ▶ Allow geographic distance and social frictions to affect flows.
- ▶ Document how geographic and social frictions shape consumption activity.
 - ▶ Findings consistent with both distance and social frictions affecting economic activity (e.g., race, education, and political affiliation).
- ▶ QOC and other measures of appeal correlated, but QOC provides independent information on amenity value:
 - ▶ Identify low natural amenity/high QOC areas.

Why Look at Quality of Consumption?

- ▶ City growth associated with consumption amenities ("Consumer City") [Glaeser et al. (2001)].
 - ▶ Growing taste for non-traded services, e.g. restaurants [Couture and Handbury (2020)].
- ▶ People consume a lot outside their home county even for "non-traded" services [Dunn and Gholizadeh (2024) and Batch et al. (2025)].
 - ▶ 32% of expenditure outside home county.
- ▶ Indicates that people do not see outlets across locations as equivalent: they expend time/money to pass competing outlets when shopping.
- ▶ Specific to produced amenities (in scope for GDP): May be useful for Regional Price Parities.

- ▶ Use county card flows for all U.S. counties scaled to national totals across 14 industries.
- ▶ Aggregate to MSAs, non-urban state areas.
- ▶ Use gravity model to parse out the quality of the consumption from other factors (e.g., distance, racial, political, and socioeconomic factors).
- ▶ High QOC areas those with demand beyond expected demand.

Social and Geographic Frictions from Consumption

- ▶ Frictions from consumption are unique. Unlike traded goods, consumers travel and experience consumption.
- ▶ Social frictions have been documented in prior work using Yelp data [Davis et al. (2019)], but this does not capture dollars transacted.
- ▶ Document how geographic and potential social frictions shape consumption activity.
 - ▶ Extracting frictions across areas is needed to measure consumption quality.
 - ▶ Findings consistent with both distance and social frictions affecting economic activity (e.g., race, education, and political affiliation).
 - ▶ First paper that we are aware of to document social frictions affecting economic activity using representative set of transactions for U.S. counties.

- ▶ Use county card flows for all U.S. counties scaled to national totals across 14 industries. [Dunn and Gholizadeh (2024)]
- ▶ Use gravity model to parse out the quality of the consumption from other factors (e.g., distance, demographic, political, and socioeconomic factors).
- ▶ Aggregate to MSAs, non-urban state areas.
- ▶ High QOC areas those with demand beyond expected demand.
- ▶ Today: Examine total 14 industries and restaurants.

Method

- ▶ Linear gravity model

$$\log(Spend_{i,j}) = Q_j + \gamma_i + t(i,j) + \beta \cdot x_{i,j} + \xi_{i,j}$$

- ▶ $\xi_{i,j}$ error term
- ▶ Q_j fixed effect interpreted as the quality of consumption
- ▶ γ_i - consumer-county specific fixed effect common across areas
- ▶ $t(i,j)$ transportation costs between i and j
- ▶ $x_{i,j}$ other factors shaping spending (e.g., industry and other geographic and social frictions)
- ▶ Multiple industry specification:

$$\log(Spend_{i,j}^k) = Q_j + \gamma_i + t^k(i,j) + \beta^k \cdot x_{i,j}^k + \xi_{i,j}^k$$

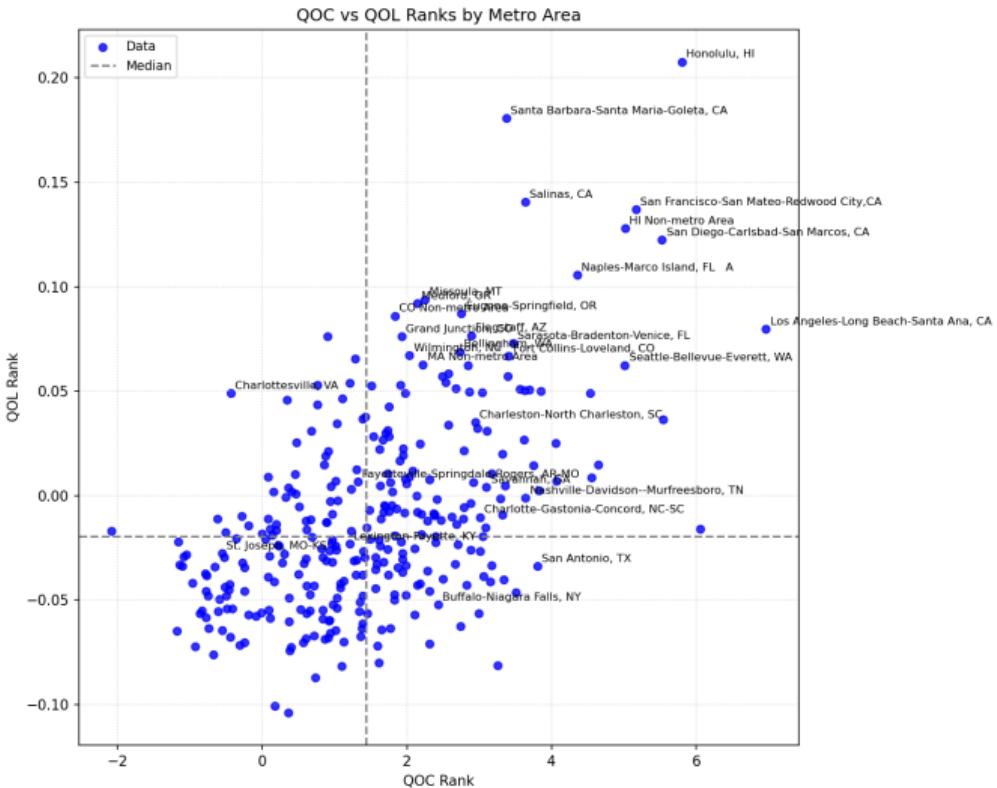
Select Variables

- ▶ $\text{Log}(\text{distance}_{i,j})$ - distance between population centroids across origin (i) and destination (j) counties.
- ▶ Social friction variables applying “Euclidian demographic distance” function [Davis et al. (2019)].
- ▶ Difference is measured as absolute difference in shares across counties:
 $|Share_{\text{origin}} - Share_{\text{destination}}|$
 - ▶ Demographic difference (i.e., share white, black, Asian, Hispanic and other from Census)
 - ▶ Political difference (i.e., share voting political party [Chenoweth et al. (2020)])
 - ▶ Educational difference (i.e., share college, share high school from Census)
- ▶ Other variables interacted with distance and industry: race, mean income, education, and political index

Gravity Model

	Log(Consumption)	Log(Consumption)
Log(Distance+1)	-3.603*** (0.0858)	
Demographic Difference	-0.518*** (0.104)	-0.726*** (0.0927)
Educational Difference	-2.830*** (0.0812)	-2.160*** (0.0869)
Political Difference	-2.404*** (0.135)	-2.025*** (0.126)
Observations	24391986	23974165
Adjusted R^2	0.727	0.739
<u>Additional Variables</u>		
Industry Cat. * Log(Dist)	Y	Y
Poly. Dist and Ind.	N	Y
Demog/Educ * Log(Dist)	N	Y
Additional interactions	N	Y

Standard errors in parentheses


All estimates include county fixed effects.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Quality of Consumption Ranking

MSA	Rank QOC	Rank QOC	Rank Restaurants	Rank QOL
Los Angeles-Long Beach-Santa Ana, CA	1	2	15	
Las Vegas-Paradise, NV	2	1	151	
Honolulu, HI	3	3	1	
Phoenix-Mesa-Scottsdale, AZ	4	7	79	
Miami-Miami Beach-Kendall, FL	5	4	51	
San Diego-Carlsbad-San Marcos, CA	6	5	8	
San Francisco-San Mateo-Redwood City, CA	7	6	4	
West Palm Beach-Boca Raton-Boynton FL	8	11	73	
Seattle-Bellevue-Everett, WA	9	8	25	
HI Non-metro Area	10	9	6	
Orlando, FL	11	10	88	
New York-Wayne-White Plains, NY-NJ	12	12	59	
Dallas-Plano-Irving, TX	13	17	233	
Cape Coral-Fort Myers, FL	14	14	42	
Chicago-Naperville-Joliet, IL	15	13	91	
Salt Lake City, UT	16	20	66	
Houston-Baytown-Sugar Land, TX	17	15	311	
Naples-Marco Island, FL A	18	16	10	
Tampa-St. Petersburg-Clearwater, FL	19	18	103	
San Antonio, TX	20	22	215	
Tucson, AZ	21	26	37	
Myrtle Beach-Conway-North Myrtle Beach,	22	19	38	
Salinas, CA	23	21	3	
Provo-Orem, UT	24	74	80	
Sarasota-Bradenton-Venice, FL	25	24	19	

Quality of Life and Quality of Consumption

- ▶ Both physical distance and social frictions shape consumption patterns.
- ▶ Correlation between QOC and other measures of appeal: Housing cost, wages, Albouy (2016) QOL.
- ▶ QOC provides independent information on amenity value:
 - ▶ Not just recovering QOL.
- ▶ Disagreement between QOC/QOL may reflect natural amenities:
 - ▶ Texas cities lack coastal Calif. natural amenities, but deliver similar QOC.

Quality of Life [Albouy (2016)] Regressed on QOC and Amenities

	Quality of Life	Quality of Life	Quality of Life
Quality of Consumption	0.566*** (0.0704)		0.476*** (0.102)
Log(Population)		-0.0844* (0.0468)	-0.392*** (0.0801)
Perc. of pop. with college degree		0.422*** (0.0918)	0.457*** (0.0553)
Standardized values of wrluri		0.0643 (0.0693)	0.0239 (0.0636)
Heating degree days		0.481*** (0.181)	0.398** (0.156)
Cooling degree days		0.501*** (0.112)	0.614*** (0.1000)
Annual sunshine		0.371*** (0.0628)	0.249*** (0.0591)
Distance to coast		0.369*** (0.0590)	0.321*** (0.0566)
Slope of land		0.370*** (0.0816)	0.183*** (0.0704)
Latitude		0.0237 (0.176)	-0.0530 (0.151)
Observations	274	273	273
Adjusted R^2	0.378	0.747	0.798

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01

References

Albouy, D. (2016). What are cities worth? land rents, local productivity, and the total value of amenities. *Review of Economics and Statistics* 98(3), 477–487.

Batch, A., B. Bridgman, A. Dunn, and M. Gholizadeh (2025). Consumption zones. *Journal of Economic Geography* 25(2), 191–213.

Chenoweth, M., M. Li, I. N. Gomez-Lopez, and K. Kollman (2020). National neighborhood data archive (nanda): Voter registration, turnout, and partisanship by County, United States, 2004–2018. *Ann Arbor, MI: Inter-university Consortium for Political and Social Research[distributor]*, 11–04.

Couture, V. and J. Handbury (2020). Urban revival in America. *Journal of Urban Economics* 119, 103267.

Davis, D. R., J. I. Dingel, J. Monras, and E. Morales (2019). How segregated is urban consumption? *Journal of Political Economy* 127(4), 1684–1738.

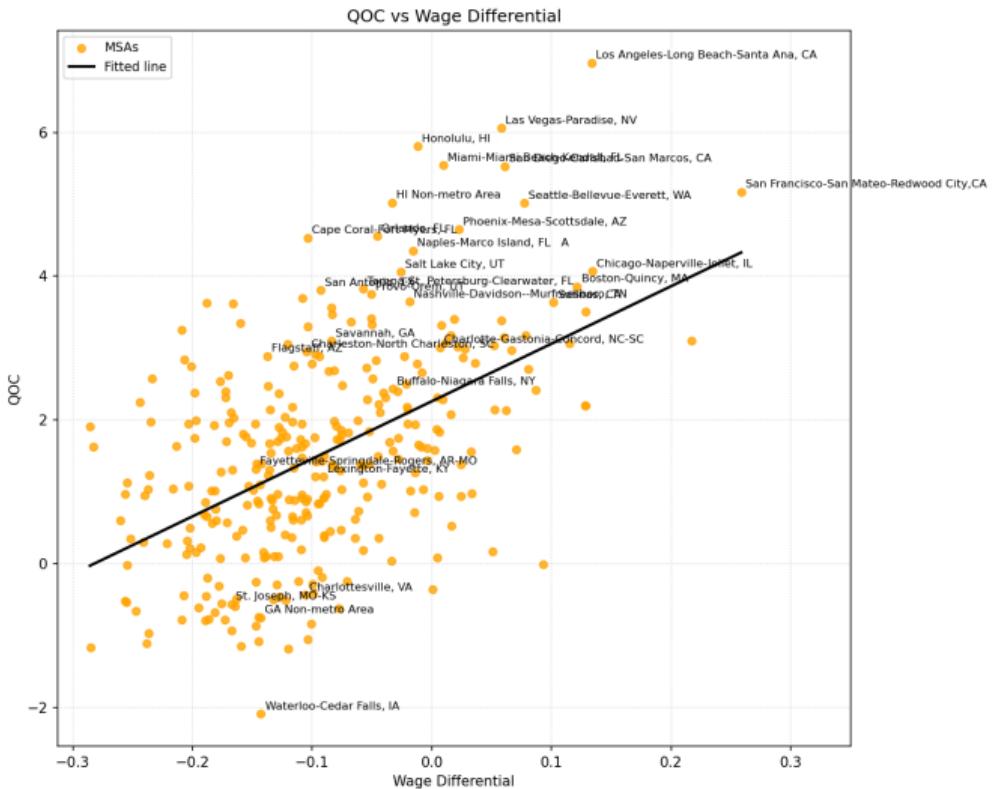
Dunn, A. and M. Gholizadeh (2024). The geography of consumption and local economic shocks. *American Economic Journal: Macroeconomics* 17(2), 206–244.

Glaeser, E. L., J. Kolko, and A. Saiz (2001). Consumer city. *Journal of Economic Geography* 1(1), 27–50.

Rappaport, J. (2008). Consumption amenities and city population density. *Regional Science and Urban Economics* 38(6), 533–552.

Alternative Method

- ▶ Use random utility model.


$$U_{ilj}(t(l, j), Q_j) = Q_j + \gamma_i + t(l, j) + \beta \cdot x_{i,j} + \epsilon_{ilj}$$

- ▶ ϵ_{ilj} : type 1 extreme value distribution.
- ▶ Value of this outside good normalized to zero.
- ▶ Price is contained in F.E.
- ▶ Probability that a location / consumer buys a product in location j is conditional-logit.

$$\Pr(U_{ilj} > U_{ilk} \forall k \in L) = \frac{\exp(t(l, j) + \beta_i \cdot x_j + \alpha \cdot p_j + Q_j + \xi_{l,j})}{1 + \sum_{\forall k \in L} \exp(t(l, k) + \beta_i \cdot x_k + \alpha \cdot p_k + Q_k + \xi_{l,k})}$$

Quality of Consumption and Wage Differential

