# **The Output Cost of Inheritance**

Marius Brülhart $^{a,c}$  Aurélien Eyquem $^a$  Isabel Z. Martínez $^{b,c}$  Enrico Rubolino $^{a,d}$ 

#### **NBER Public Economics Program Meeting**

23 October 2025

<sup>&</sup>lt;sup>a</sup>University of Lausanne

<sup>&</sup>lt;sup>b</sup>ETH Zurich, KOF Swiss Economic Institute

 $<sup>^</sup>c$ CEPR

 $<sup>^</sup>d$ CREST, Institut Polytechnique de Paris

### Motivation: Inheritance Is Big

- Economic importance of intergenerational wealth transfers
  - More than half of private wealth in Western Europe and the US (Alvaredo et al., 2017)
  - \* Annual bequest flows  $\approx$  10-15% of GDP in advanced economies
  - Main worldwide source of new billionaires (UBS, 2024)
- Implications for equity and efficiency
  - Distributional consequences have been widely studied (Nishiyama, 2002; De Nardi, 2004; Benhabib et al., 2011; Boserup et al., 2016; Nekoei and Seim, 2023; Black et al., 2024)
  - Less developed literature on labor supply effects to inheritance

## Labor Supply Effects to Wealth Shocks

- ▶ (Prior evidence) comes from sudden, unanticipated wealth shocks (Imbens et al. 2001, Cesarini et al. 2017, Golosov et al. 2024)
  - Inheritances are (at least partly) anticipated
    - ⇒ may induce behavioral responses in advance of receipt as well as on impact
    - $\Rightarrow$  equivalence of inheritance and lottery wins is a "strong assumption" (Kopczuk, 2013)
- Macroeconomic impact
  - ⇒ lottery represents a smaller flow compared to inheritance
- ▶ Implies positive fiscal externality of inheritance tax (Kopczuk, 2013; Kindermann et al., 2020)

### **Research Questions**

- ▶ How do recipients adjust their labor supply after receiving an inheritance?
- ▶ How do these responses vary over the life cycle?
- How do responses to inheritance differ from those to lottery wins?
- What are the aggregate consequences for GDP?

## Our Paper in a Nutshell (1)

### **Empirical estimation**

- Swiss tax data matching earnings with
  - 5,000 lottery wins
  - 135,000 inheritances
- Reduced-form results (DiD, event studies)
  - Earnings responses are negative and long-lasting
  - Stronger responses for older workers, partly through early retirement
  - Women's labor supply is more elastic than men's
  - Weaker responses to inheritance than to lottery wins

## Our Paper in a Nutshell (2)

#### Model

- ► Life-cycle model with endogenous labor supply (De Nardi, 2004)
  - Labor supply response varies by age and on whether the shock is expected
  - · When unexpected, stronger impact but smaller lifetime response than when anticipated

#### **Counterfactual policy experiments**

- i. What if inheritance were taxed away (and dissipated)?
  - ⇒ Removing inheritance would increase GDP by 1.1% (output cost of inheritance)
- ii. What if the age distribution of bequests were shifted?
  - $\Rightarrow$  projected  $\uparrow$  life expectancy lowers the output cost by 0.2 p.p.

### Overview

Introduction

**Empirical Estimation** 

Data

Identification

Results

Life-Cycle Model

**Counterfactual Policy Experiments** 

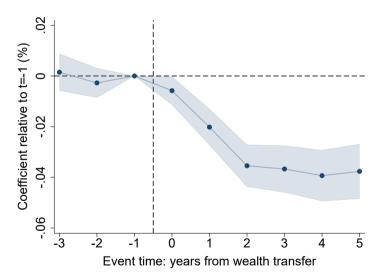
Shutting off inheritance

Shifting the timing of inheritance

Conclusion

### Data

- lacktriangle Tax data from canton of Bern (pprox 12% of Swiss population), 2002-2019
  - Inheritances (N=135,150); avg size = CHF 129,038
  - Lottery wins (N=5,430); avg size = CHF 123,261
  - Present-value adjustment
- Individual panel dataset
  - Income by source; (household) wealth; basic demographics
  - Labor earnings: employment income plus two-thirds of self-employment income
- Sample selection:
  - ${}^{\star}$  Wealth shock of at least CHF 10,000 ( $\approx$  10,000 USD)
  - \* Multiple shocks (16%)  $\Rightarrow$  pick the largest shock if  $\geq$  2 x 2nd-largest shock
  - Check: lottery player heirs ( $\approx$  13% of heirs)

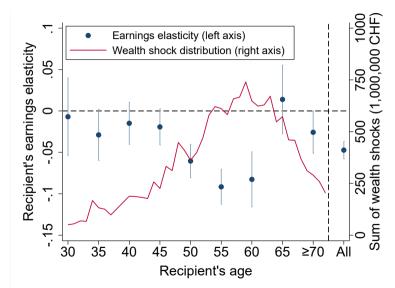

## **Identification Strategy**

lacktriangle Leverage variation in the size of the shock  $W_i^{pv}$ , conditional on receipt year and age cohort

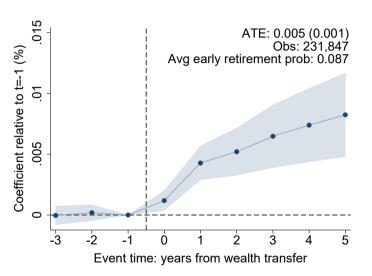
$$\log(y_{i,t}) = \sum_{k \neq -1; k = -3}^{5} \beta_k \cdot \mathbf{1}(K_{i,t} = k) \cdot \log(\mathcal{W}_i^{pv}) + \delta_i + \gamma_{a(i),t} + u_{i,t}$$
 (2)

- $lacktriangleq \delta_i$ : individual FE;  $\gamma_{a(i),t}$ : calendar year-by-age cohort FE
- $\triangleright \beta_k$ : labor supply elasticity
- ▶ Identifying assumption:  $cov(\log(W_i^{pv}), u_{i,t} | \delta_i, \gamma_{a(i),t}) = 0$ 
  - $\Rightarrow$  Parallel trend assumption:  $\beta_k = 0$  for k < 0
  - $\Rightarrow$  Anticipation may still affect levels, but pre-shock changes are unrelated to  $\log(\mathcal{W}_i^{pv})$

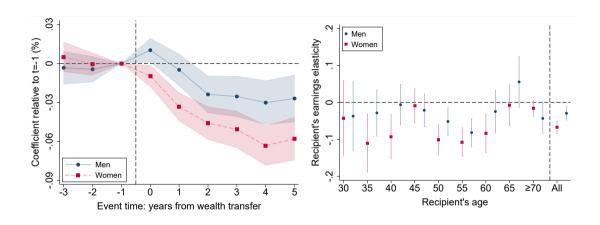
## Earnings Response to Inheritance: Event Study




## Earnings Responses to Inheritance and to Lottery Wins


international comparison

|                                    | Inheritance<br>(1) | Lottery win<br>(2) |
|------------------------------------|--------------------|--------------------|
| Earnings elasticity                | -0.046***          | -0.082***          |
|                                    | (0.005)            | (0.031)            |
| Obs.                               | 1,219,122          | 47,308             |
| N of recipients                    | 135,150            | 5,340              |
| Average earnings (CHF)             | 43,500             | 44,029             |
| Wealth (CHF, p.v. adj.)            | 349,703            | 352,662            |
| Wealth (CHF, nominal)              | 129,038            | 123,261            |
| On impact MPE (1,000 CHF)          | -6 CHF             | -10 CHF            |
| Remaining worklife MPE (1,000 CHF) | -43 CHF            | -148 CHF           |


## Age Profile of Earnings Responses



### **Early Retirement**



### Gender



(Heterogeneity by children) (Heterogeneity by pre-shock income/wealth)

### Robustness

- ► Additional controls: (figure)
- ► Balanced sample: figure
- Scale treatment by pre-shock income: figure
- ► Sensitivity to CHF 10,000 threshold: (figure)
- ► Discrete treatment: (figure)
- ► Comparing heirs with lottery winners: figure
- ► By type of asset: figure
- ► Household-level estimates: figure

### Overview

Introduction

**Empirical Estimation** 

Data

Identification

Results

### Life-Cycle Model

Counterfactual Policy Experiments

Shutting off inheritance

Shifting the timing of inheritance

Conclusion

### Life-cycle Model with Labor Supply

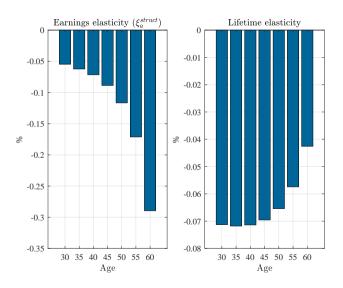
- ► Life-cycle model with endogenous labor supply in partial equilibrium
  - Age specific incomes and survival risk (De Nardi, 2004)
  - · Closed-form solution for consumption and work hours in each period
- Calibration
  - Match life-cycle income (Bern data); survival prob (WHO)
  - Set r (3%),  $\kappa$  for Frisch  $\approx 0.3$  (Chetty et al., 2011)
- Wealth shocks arrive at different ages and can be of two types:
  - 1. Unexpected (lottery-like): no anticipation; only response on impact
  - 2. Expected (inheritance-like): earnings adjust also before receipt



### Elasticities: Structural and Empirical

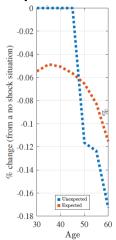
#### Structural elasticity

$$\xi_a^{struct} = \frac{\log \mathcal{Y}_{i,a} - \log \mathcal{Y}_{i,a}^{ns}}{\log \mathcal{W}_{i,a}}$$

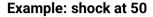

Compares earnings w/ wealth shock to a counterfactual w/o wealth shock

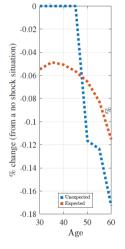
#### **Elasticity upon impact**

$$\xi_a^{impact} = \frac{(\log \mathcal{Y}_{i,a} - \log \mathcal{Y}_{i,a-1}) - (\log \mathcal{Y}_{i,a}^{ns} - \log \mathcal{Y}_{i,a-1}^{ns})}{\log \mathcal{W}_{i,a}}$$

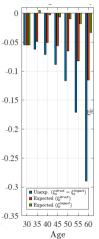

- Measures change in earnings growth due to shock
- What we measured empirically
- Anticipation of  $\mathcal{W} \Rightarrow \xi_a^{impact} \neq \xi_a^{struct}$

## **Unexpected Shock at Different Ages**

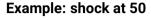


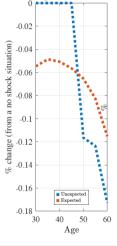


## Expected vs. Unexpected Wealth Shocks

#### Example: shock at 50

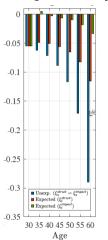



## Expected vs. Unexpected Wealth Shocks

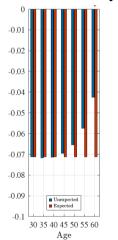



### **Earnings elasticity**




## Expected vs. Unexpected Wealth Shocks






### **Earnings elasticity**



### Lifetime elasticity



### Overview

Introduction

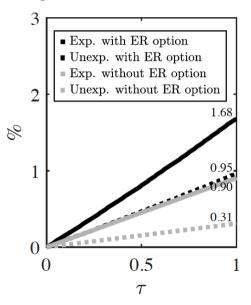
**Empirical Estimation** 

Data

Identification

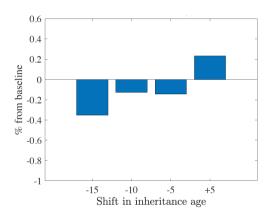
Results

Life-Cycle Mode


**Counterfactual Policy Experiments** 

Shutting off inheritance

Shifting the timing of inheritance


Conclusion

## **Shutting Off Inheritance**



- Complete confiscation
  - $\Rightarrow$   $\uparrow$  labor supply by 1–1.7%
  - $\Rightarrow \uparrow$  steady-state GDP by 1.1%
- Positive fiscal externality\$0.05 income tax for \$1 of inheritance tax

## Shifting the Timing of Inheritance



- Encouraging inter-vivos gifts
  - $\Rightarrow \text{lower aggregate work incentive}$
- Projected life expectancy ↑ (Vollset et al. 2024)
  - $\Rightarrow$  labor supply increase by 0.2%
  - $\Rightarrow$  output cost fells from 1.1% to 0.9%

### **Summary**

- Positive wealth shocks discourage labor supply
- Whether shock is expected or not matters (inheritance vs. lottery)
- When the shock hits matter (duration effect > on impact effect)
- An inheritance tax pushes heirs to work more (even before inheriting)
  - ⇒ Eliminating inheritance could raise labor earnings by 1.7%
  - ⇒ GDP effect of 1.1% (output cost of inheritance)
- Limitations:
  - Partial equilibrium analysis
  - Margin of adjustments: hours vs. wage
  - Inter-vivos gifts

### References I

- Alvaredo, F., Garbinti, B., and Piketty, T. (2017). On the share of inheritance in aggregate wealth: Europe and the USA, 1900-2010. *Economica*, 84:239–260.
- Andersen, A. L., Johannesen, N., and Sheridan, A. (2024). Dynamic spending responses to wealth shocks: evidence from quasi-lotteries on the stock market. *American Economic Review: Insights*.
- Benhabib, J., Bisin, A., and Zhu, S. (2011). The distribution of wealth and fiscal policy in economies with finitely lived agents. *Econometrica*, 79(1):123–157.
- Black, S. E., Devereux, P. J., Landaud, F., and Salvanes, K. G. (2024). The (un)importance of inheritance. Journal of the European Economic Association, page jvae056.
- Bø, E. E., Halvorsen, E., and Thoresen, T. O. (2019). Heterogeneity of the Carnegie effect. *Journal of Human Resources*, 54(3):726–759.
- Boserup, S. H., Kopczuk, W., and Kreiner, C. T. (2016). The role of bequests in shaping wealth inequality: Evidence from Danish wealth tax records. *American Economic Review*, 106(5):656–661.

### References II

- Brown, J. R., Coile, C. C., and Weisbenner, S. J. (2010). The effect of inheritance receipt on retirement. *Review of Economics and Statistics*, 92(2):425–434.
- Cesarini, D., Lindqvist, E., Notowidigdo, M. J., and Östling, R. (2017). The effect of wealth on individual household labor supply: Evidence from Swedish lotteries. *American Economic Review*, 107(12):3917–3946.
- Chetty, R., Guren, A., Manoli, D., and Weber, A. (2011). Are micro and macro labor supply elasticities consistent? A review of evidence on the intensive and extensive margins. *American Economic Review*, 101(3):471–475.
- De Nardi, M. (2004). Wealth inequality and intergenerational links. *Review of Economic Studies*, 71(5):743–768.
- Elinder, M., Erixson, O., and Ohlsson, H. (2012). The impact of inheritances on heirs' labor and capital income. *B.E. Journal of Economic Analysis & Policy*, 12(1).

### References III

- Gelber, A., Moore, T. J., and Strand, A. (2017). The effect of disability insurance payments on beneficiaries' earnings. *American Economic Journal: Economic Policy*, 9(3):229–261.
- Golosov, M., Graber, M., Mogstad, M., and Novgorodsky, D. (2024). How Americans respond to idiosyncratic and exogenous changes in household wealth and unearned income. *Quarterly Journal of Economics*, 139(2):1321–1395.
- Holtz-Eakin, D., Joulfaian, D., and Rosen, H. S. (1993). The Carnegie conjecture: Some empirical evidence. *Quarterly Journal of Economics*, 108(2):413–435.
- Imbens, G. W., Rubin, D. B., and Sacerdote, B. I. (2001). Estimating the effect of unearned income on labor earnings, savings, and consumption: Evidence from a survey of lottery players. *American Economic Review*, 91(4):778–794.
- Joulfaian, D. and Wilhelm, M. O. (1994). Inheritance and labor supply. *Journal of Human Resources*, 29(4):1205–1234.

### References IV

- Kindermann, F., Mayr, L., and Sachs, D. (2020). Inheritance taxation and wealth effects on the labor supply of heirs. *Journal of Public Economics*, 191:104–127.
- Kopczuk, W. (2013). Incentive effects of inheritances and optimal estate taxation. *American Economic Review: Papers & Proceedings*, 103(3):472–477.
- Nekoei, A. and Seim, D. (2023). How do inheritances shape wealth inequality? Theory and evidence from Sweden. *Review of Economic Studies*, 90:463–498.
- Nishiyama, S. (2002). Bequests, inte vivos transfers, and wealth distribution. *Review of Economic Dynamics*, 5(4):892–931.
- Picchio, M., Suetens, S., and van Ours, J. C. (2018). Labour supply effects of winning a lottery. *Economic Journal*, 128:1700–1729.
- Poterba, J. (2000). Stock market wealth and consumption. *Journal of Economic Perspectives*, 14(2):99–118.

### References V

UBS (2024). Billionaire ambitions report 2024. Technical report, UBS, Zurich.

Vollset, S. E. et al. (2024). Burden of disease scenarios for 204 countries and territories, 2022–2050. *The Lancet*, 403(10440):2204–2256.

### Existing Estimates of the "Carnegie Elasticity"

### Effect on subsequent annual earnings of a one-dollar lottery win:

- ► Imbens et al. (2001): -0.011 (Massachusetts)
- ► Picchio et al. (2018): -0.046 (Netherlands)
- Cesarini et al. (2017): -0.016 (Sweden)
- Golosov et al. (2024): -0.024 (United States)

### Negative average earnings effects also found with respect to:

- ► Inheritances (Holtz-Eakin et al., 1993; Joulfaian and Wilhelm, 1994; Brown et al., 2010; Elinder et al., 2012; Bø et al., 2019)
- ► Asset price appreciations (Poterba, 2000; Andersen et al., 2024)
- Social security benefit increases (Gelber et al., 2017)



### Present-Value Adjustment

- Standardize amounts to properly compare amounts received at different ages
  - · Recipients earn interest over varying durations
- lacktriangle Adjust nominal wealth shocks  $\mathcal{W}_i$  based on the time available for it to grow
  - Fixed end age = 90
  - r = 3%

$$W_i^{pv} = W_i (1 + 0.03)^{[90 - a(i)]}$$
(3)

Note: shocks are net of tax (inheritance tax anyway negligible)

Back

## Linking Structural and Empirical Elasticities

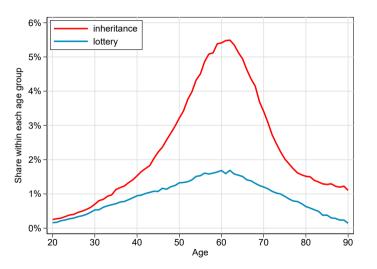
$$\xi_a^{struct} \approx \xi_a^{impact} - \frac{\kappa \lambda_i \mathcal{W}_{i,a}}{\Gamma_{a-1}(1+r)\mathcal{Y}_{i,a-1}^{ns} \log \mathcal{W}_{i,a}}$$

- Quantifies role of anticipation
- Depends on:
  - Preference for leisure:  $\kappa$
  - Marginal utility of wealth:  $\lambda_i$
  - Discounting:  $\Gamma_{a-1}$
  - Interest rate: r
  - Size of wealth shock

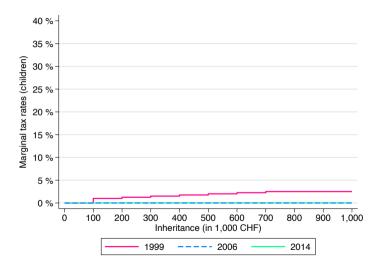


# **Summary Statistics**

|                               | Heirs   |           | Lottery winners |           |
|-------------------------------|---------|-----------|-----------------|-----------|
|                               | Mean    | SD        | Mean            | SD        |
| Wealth shock (CHF, p.v. adj.) | 349,703 | 2,335,501 | 352,662         | 3,256,443 |
| Wealth shock (CHF, nominal)   | 129,038 | 699,576   | 123,261         | 1,128,965 |
| Age                           | 57.6    | 11.5      | 50.8            | 12.1      |
| Female                        | 0.53    | 0.50      | 0.46            | 0.50      |
| Married                       | 0.70    | 0.45      | 0.57            | 0.48      |
| Single                        | 0.30    | 0.45      | 0.43            | 0.48      |
| Has kids <18                  | 0.27    | 0.42      | 0.30            | 0.44      |
| Average earnings (CHF)        | 43,500  | 43,121    | 44,029          | 35,959    |
| Taxable income (CHF)          | 38,596  | 70,201    | 33,556          | 42,179    |
| Net wealth (CHF)              | 303,852 | 2,662,145 | 93,886          | 297,036   |
| N of recipients               | 135,150 |           | 5,340           |           |

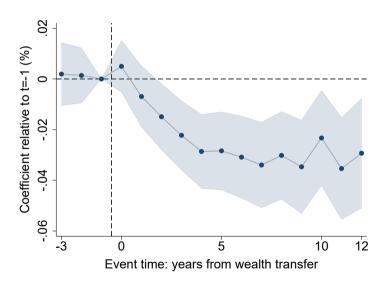

back: data

## Frequency of Wealth Transfers



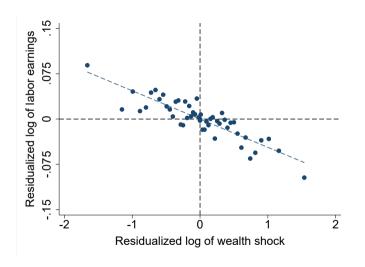



## Age Distribution Inheritances and Lottery Wins




#### Inheritance Tax Rates on Direct Descendants, Canton of Bern






### Long-run





### Average Earnings Response to a Wealth Shock: Binned Scatter Plot





#### **International Comparison**

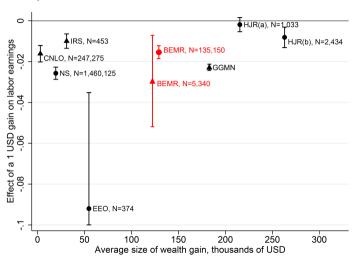
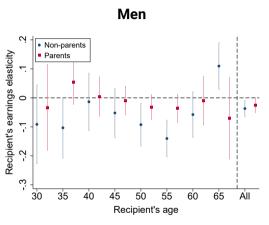
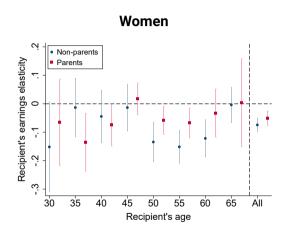



Illustration and elasticity definition taken from Nekoei and Seim (2023). (back)

## Age-specific earnings responses to wealth shocks: All shocks

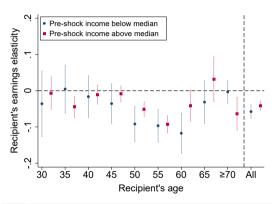
|                                 | 30-34   | 35-39   | 40-44   | 45-49   | 50-54     | 55-59     | 60-64     | 65-69   | ≥70      |
|---------------------------------|---------|---------|---------|---------|-----------|-----------|-----------|---------|----------|
|                                 |         |         |         |         |           |           |           |         |          |
| Earnings elasticity             | -0.007  | -0.029* | -0.015  | -0.019* | -0.061*** | -0.092*** | -0.083*** | 0.014   | -0.026** |
|                                 | (0.024) | (0.016) | (0.013) | (0.011) | (0.010)   | (0.011)   | (0.017)   | (0.021) | (0.013)  |
|                                 |         |         |         |         |           |           |           |         |          |
| Obs.                            | 40,306  | 58,261  | 84,552  | 126,285 | 177,522   | 223,659   | 219,347   | 159,215 | 208,536  |
| Individuals                     | 4,726   | 6,705   | 9,346   | 13,821  | 19,506    | 24,827    | 24,178    | 17,461  | 23,781   |
| Pr(recipient)                   | 0.078   | 0.102   | 0.134   | 0.191   | 0.269     | 0.359     | 0.389     | 0.323   | 0.205    |
| Avg. earnings (CHF)             | 47,230  | 51,910  | 55,020  | 57,470  | 58,751    | 57,099    | 48,735    | 25,077  | 4,058    |
| Avg. $\mathcal{W}_i^{pv}$ (CHF) | 542,693 | 527,034 | 477,772 | 461,895 | 397,109   | 364,231   | 304,498   | 262,818 | 191,458  |
| Avg. $\mathcal{W}_i$ (CHF)      | 99,248  | 110,091 | 115,925 | 130,680 | 130,174   | 137,763   | 132,871   | 131,979 | 133,936  |
| On impact MPE (1k CHF)          | -1      | -3      | -2      | -2      | -9        | -14       | -13       | 1       | -1       |
| Lifetime MPE (1k CHF)           | -20     | -79     | -39     | -43     | -115      | -114      | -41       | -       | -        |


## Age-specific earnings responses to wealth shocks: Inheritance

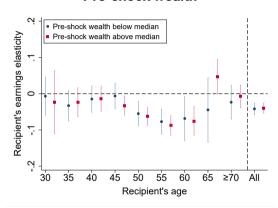

|                                 | 30-34   | 35-39   | 40-44   | 45-49   | 50-54     | 55-59     | 60-64     | 65-69   | ≥70      |
|---------------------------------|---------|---------|---------|---------|-----------|-----------|-----------|---------|----------|
|                                 |         |         |         |         |           |           |           |         |          |
| Earnings elasticity             | -0.009  | -0.026  | -0.015  | -0.020* | -0.063*** | -0.089*** | -0.077*** | 0.016   | -0.026** |
|                                 | (0.024) | (0.016) | (0.013) | (0.011) | (0.010)   | (0.011)   | (0.017)   | (0.021) | (0.013)  |
|                                 |         |         |         |         |           |           |           |         |          |
| Obs.                            | 35,765  | 52,901  | 77,955  | 119,721 | 170,892   | 217,461   | 214,094   | 155,878 | 205,665  |
| Individuals                     | 4,198   | 6,087   | 8,598   | 13,084  | 18,772    | 24,134    | 23,586    | 17,095  | 23,541   |
| Pr(recipient)                   | 0.069   | 0.092   | 0.123   | 0.181   | 0.259     | 0.349     | 0.380     | 0.316   | 0.203    |
| Avg. earnings (CHF)             | 47,398  | 51,957  | 55,366  | 57,683  | 58,932    | 57,289    | 48,866    | 25,117  | 4,064    |
| Avg. $\mathcal{W}_i^{pv}$ (CHF) | 585,634 | 560,842 | 473,805 | 464,215 | 400,107   | 361,970   | 304,728   | 254,623 | 191,983  |
| Avg. $\mathcal{W}_i$ (CHF)      | 107,165 | 117,148 | 115,196 | 131,238 | 131,217   | 136,825   | 133,025   | 127,875 | 134,365  |
| On impact MPE (1k CHF)          | -1      | -2      | -2      | -3      | -9        | -14       | -12       | 2       | -1       |
| Lifetime MPE (1k CHF)           | -23     | -66     | -40     | -45     | -119      | -112      | -38       | -       | -        |

## Age-specific earnings responses to wealth shocks: Lottery

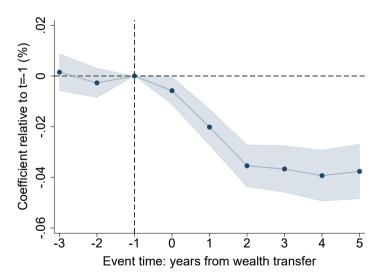
| 3                                    | 30-34   | 35-39   | 40-44   | 45-49   | 50-54   | 55-59    | 60-64     | 65-69   | ≥70     |
|--------------------------------------|---------|---------|---------|---------|---------|----------|-----------|---------|---------|
|                                      |         |         |         |         |         |          |           |         |         |
| Earnings elasticity                  | 0.020   | -0.098  | -0.011  | 0.007   | 0.022   | -0.168** | -0.346*** | -0.065  | 0.018   |
| (0                                   | (0.114) | (0.062) | (0.047) | (0.072) | (0.060) | (0.076)  | (0.129)   | (0.158) | (0.126) |
| _                                    |         |         |         |         |         |          |           |         |         |
| Obs.                                 | 4,541   | 5,360   | 6,597   | 6,564   | 6,630   | 6,198    | 5,253     | 3,337   | 2,871   |
| Individuals                          | 528     | 618     | 748     | 737     | 734     | 693      | 592       | 366     | 330     |
| Pr(recipient)                        | 0.009   | 0.012   | 0.011   | 0.010   | 0.010   | 0.010    | 0.009     | 0.007   | 0.002   |
| Avg. earnings (CHF) 4                | 15,636  | 51,371  | 50,110  | 52,851  | 53,290  | 49,225   | 42,323    | 23,041  | 3,671   |
| Avg. $\mathcal{W}_{i}^{pv}$ (CHF) 13 | 33,364  | 136,176 | 533,950 | 411,632 | 306,656 | 457,909  | 293,200   | 688,998 | 157,063 |
| Avg. $\mathcal{W}_i$ (CHF) 2         | 23,783  | 28,508  | 126,253 | 118,591 | 98,688  | 176,643  | 125,301   | 345,375 | 105,808 |
| On impact MPE (1k CHF)               | 7       | -37     | -1      | 1       | 4       | -18      | -50       | -2      | 1       |
| Lifetime MPE (1k CHF)                | 220     | -1032   | -24     | 17      | 50      | -146     | -156      | -       | -       |


#### Presence / Absence of Children



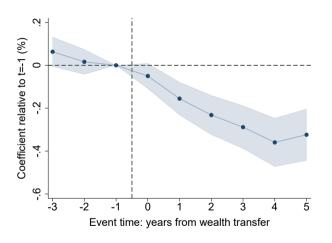



#### Pre-Shock Income / Wealth Distribution



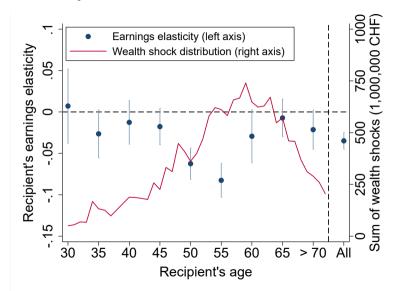



#### Pre-shock wealth

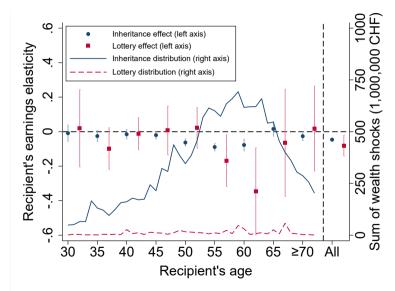



## **Balanced Sample**



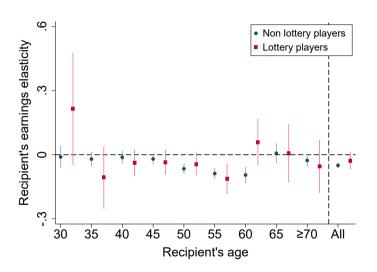



## **Event Study with Discrete Treatment**



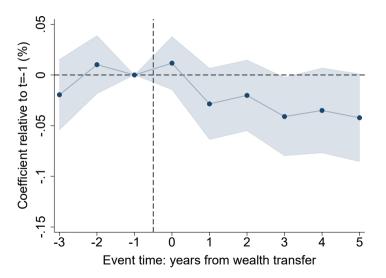

Note: Treatment = 5 \* avg wealth shock; control = below avg wealth shock.

#### Treatment Scaled by Pre-Shock Income



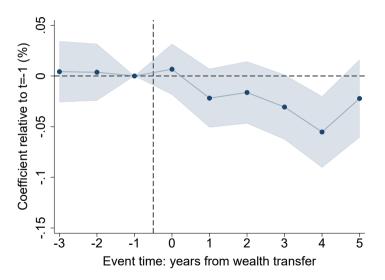

## Response to Lotteries vs. Inheritance by Age





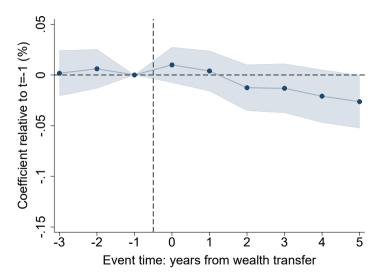

### Are Lottery Players Different?





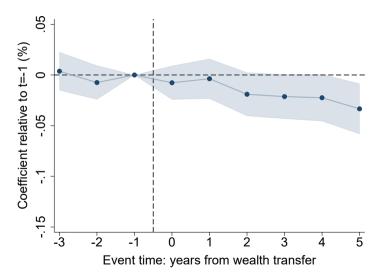

## Event-study Results by Age Group: 30-34





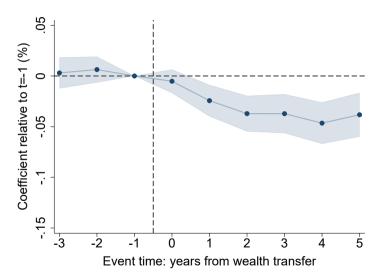

## Event-study Results by Age Group: 35-39





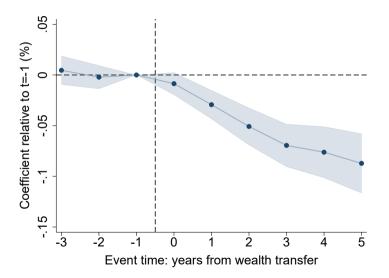

# Event-study Results by Age Group: 40-44





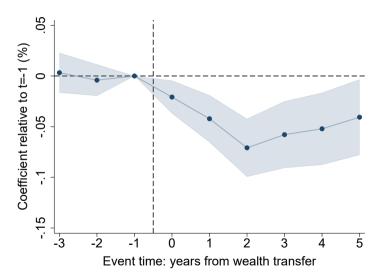

# Event-study Results by Age Group: 45-49





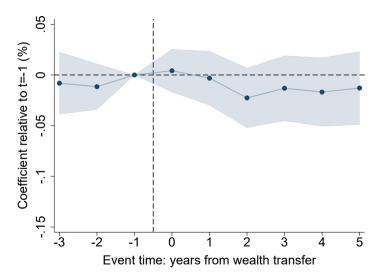

## Event-study Results by Age Group: 50-54





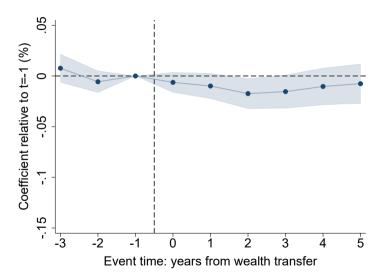

## Event-study Results by Age Group: 55-59





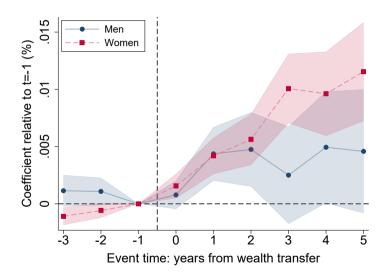

# Event-study Results by Age Group: 60-64





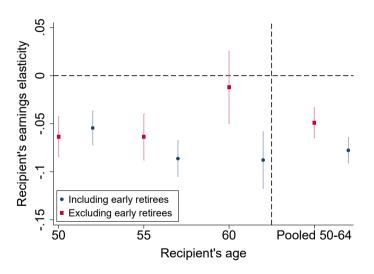

# Event-study Results by Age Group: 65-69





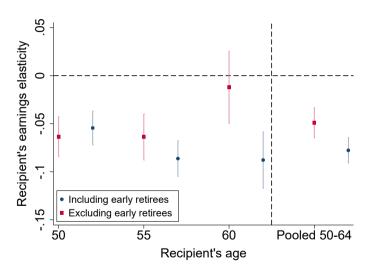

## Event-study Results by Age Group: 70+





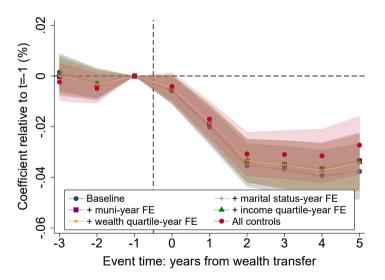

## Early Retirement by Gender





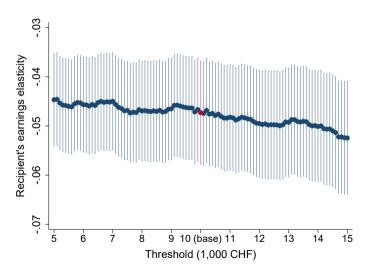

## Intensive vs. Extensive Responses





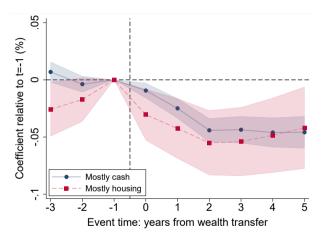

## Intensive vs. Extensive Responses






## Sensitivity to Additional Controls

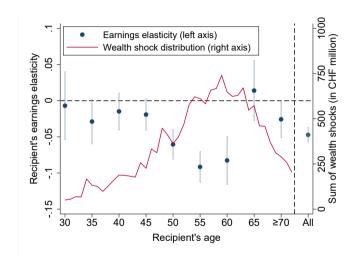





## Sensitivity to Additional Controls






## Do liquidity and attachment effects attenuate responses?

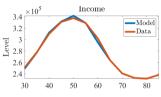


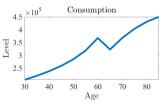
Notes: The sample is split into (i) heirs for whom at least 50% of the inheritance value consists of housing wealth ("mostly housing"), and (ii) heirs for whom at least 50% of the inheritance value consists of non-housing wealth ("mostly cash"). back

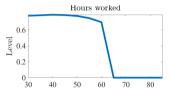
40 / 44

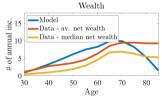
## Age profile of earnings responses: household-level estimates







#### Calibration


Annual interest rate: r=3% (data) Weight of leisure:  $\kappa=0.35$  (LS elast. of 0.3) Discount factor  $\rho$ : adj. to match life-cycle wealth


Table 1: Calibration

| Age     | Surv. prob. $(s_a)$ | Income (data) | Hourly wage (inferred) |
|---------|---------------------|---------------|------------------------|
| 30 - 34 | 1                   | 2.51          | 28.65                  |
| 35 - 39 | 1                   | 2.78          | 31.69                  |
| 40 - 44 | 1                   | 3.10          | 35.35                  |
| 45 - 49 | 1                   | 3.31          | 37.75                  |
| 50 - 54 | 1                   | 3.38          | 39.47                  |
| 55 - 59 | 1                   | 3.29          | 39.41                  |
| 60 - 64 | 0.97                | 3.02          | 37.88                  |
| 65 - 69 | 0.96                | 2.64          |                        |
| 70 - 74 | 0.93                | 2.41          |                        |
| 75 - 79 | 0.89                | 2.33          |                        |
| 80 - 84 | 0.79                | 2.31          |                        |
| 85 - 89 | 0.65                | 2.38          | -                      |

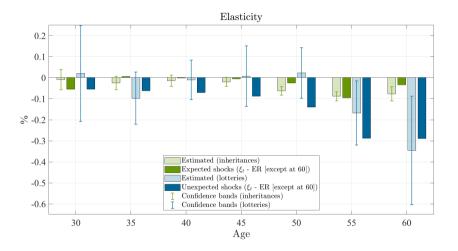








## Earnings response to expected wealth shocks


$$\frac{y_{i,a}^{w} - y_{i,a}^{w,ns}}{y_{i,a}^{w,ns}} = -\mathbb{E}_a \left[ \frac{\kappa \lambda_i}{\Gamma_a (1+r)^s} \frac{W_{i,a+s}}{y_{i,a}^{w,ns}} \right] \le 0$$

#### **Determinants**

- ▶ Shock size: Larger wealth shocks  $W_{i,a+s}$  (relative to income/permanent income) imply bigger percentage drops in current earnings.
- Preferences for leisure: A higher weight on leisure (κ) amplifies the wealth effect on labor supply.
- ▶ Marginal utility of wealth: A higher  $\lambda_i$  (shadow value of wealth) increases the response.
- Lifetime discount factor: A lower  $\Gamma_a$  (which falls with age) raises the response; older individuals react more.
- ► Timing and interest rate: Greater horizon to the expected shock (s) and a higher r attenuate today's response via  $(1+r)^s$ .

Back

### Comparison with Empirical Estimates



