What would it cost to end extreme poverty?

Roshni Sahoo¹ Joshua Blumenstock² Leo Selker² Paul Niehaus³ Stefan Wager¹

¹Stanford University ²University of California, Berkeley ³University of California, San Diego

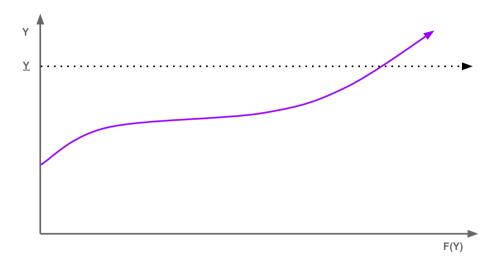
December 2025

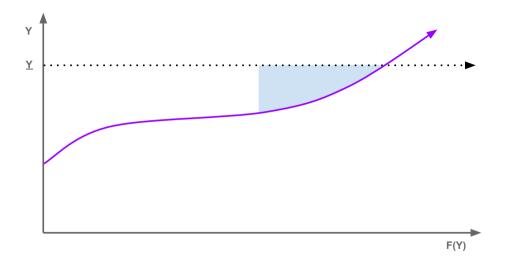
With thanks to Aditi Acharya, Erick Lopez, and Shruthi Ramesh for excellent RA work.

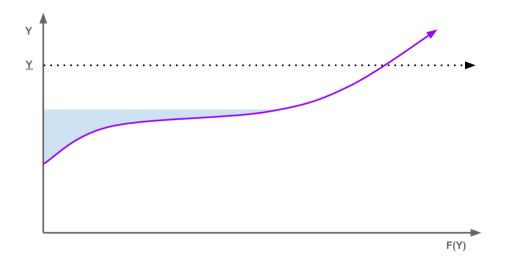
- Retain the information environment governments actually face (as in PMTs)
 - Observe living standards Y_i in a small representative sample (typically 0.001% to 0.01% of national population)
 - Observe predictors X_i in the population
- Formulate poverty targeting as an optimization & statistical learning problem

$$\min_{t:\mathcal{X}\to\mathbb{R}_+} \left\{ \mathbb{E}_F \left[L(Y_i + t(X_i)) \right] : \mathbb{E}_F \left[t(X_i) \right] \le B, \quad t(x) \ge 0 \quad \forall x \in \mathcal{X} \right\}. \tag{1}$$

where ${\cal F}$ is the population distribution, ${\cal L}$ a loss function, t a transfer function, and ${\cal B}$ a budget





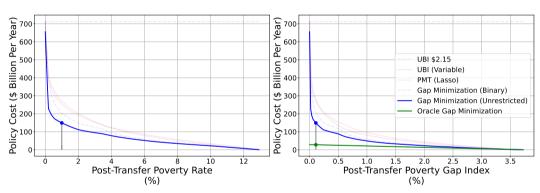


$$\min_{t:\mathcal{X}\to\mathbb{R}_+} \left\{ \mathbb{E}_F \left[L(Y_i + t(X_i)) \right] : \mathbb{E}_F \left[t(X_i) \right] \le B, \quad t(x) \ge 0 \quad \forall x \in \mathcal{X} \right\}.$$

- Implementation requires analytical characterizations of solutions sufficient to
 - (a) Reduce dimensionality of space of t's to search
 - (b) (Hopefully) simplify functionals of F we need to learn
- This too turns out to depend on the poverty metric L used
 - The poverty gap (which is weakly convex) yields FOCs and requires learning conditional *quantiles* of $F \to \text{can}$ use neural networks and large predictor sets
 - The poverty rate (which is not) does not, and requires learning conditional densities of $F \to$ requires semiparametric methods and smaller predictor sets

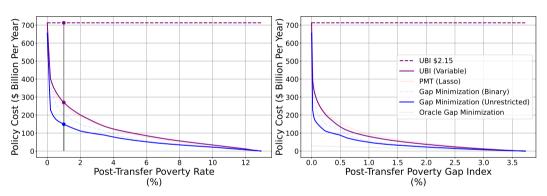
- Data: Nationally representative surveys (mostly LSMS) from 19 countries that collectively account for 43% of the world's extreme poor
 - Extrapolate globally using now-cast poverty rate and gap estimates from World Poverty Clock
- Living standards: consumption aggregate as provided in data release (except in India). Match WB PIP rates exactly in most cases, approximately in a few.
- Predictor selection: characteristics that have been used, or are analogous to others that have been used, by existing real-world PMT exercises
- **Data use plan:** pre-specifies approach including e.g. hyperparameter tuning, to avoid human-in-the-loop overfitting

Feasible versus oracle



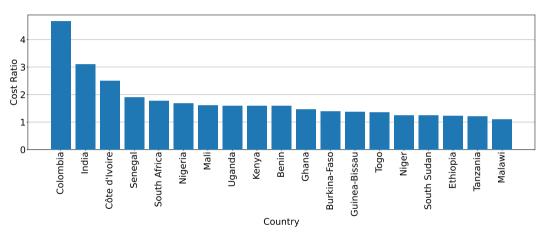
A feasible gap-minimizing policy achieving a 1% poverty rate in every country costs 5.4 times reduction in the poverty gap it achieves (i.e., oracle cost)

Feasible versus universal transfers



A feasible gap-minimizing policy achieving a 1% poverty rate in every country costs 55% of the cost of Universal Supplemental Income

Universal-to-feasible cost ratios, by country



Gap minimization (achieving a 1% poverty rate) is much more cost efficient than USI in most countries, less so in some of the poorest

The cost of achieving 1% national poverty rates increases...

...by 35% if we restrict to "binary" policies, like many current programs

...by 50% if we use the new \$3.00 2021 PPP poverty line

...by 43% (in Togo) if we use only satellite imagery as predictors

...slightly, if we directly minimize the rate, v.s. minimizing the gap $% \left(1\right) =\left(1\right) \left(1\right) \left($

Estimating (via extrapolation) the cost of achieving a global poverty rate of 1%,

0.30% cost / GDP

Estimating (via extrapolation) the cost of achieving a *global* poverty rate of 1%,

0.30% cost / GDP

0.21% ODA / GDP

Estimating (via extrapolation) the cost of achieving a global poverty rate of 1%,

0.30% cost / GDP

0.21% ODA / GDP

2.19% alcoholic beverages / GDP