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Motivation: Technological Context

LLMs are a general purpose technology:
- Chatbots, copy-editing, translation;
- Software development;
- Information search and summarization, etc.

⇒ need for abstraction and aggregation.

Economic value on a given task can be improved via:
- Input tokens: context and details, RAG (retrieval-augmented generation).
- Output tokens: detailed answers.
- Fine-tuning tokens: model adjustment (e.g., BloombergGPT).

⇒ need for multidimensionality of token characteristics and uses.
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Economic Context

Generative AI market: $71B in 2025, projected $890B by 2032 (43% CAGR).

Global private investment in generative AI: $33.9B in 2024 (up 18.7%).

OpenAI: $12B annualized revenue mid-2025; $500B valuation Oct 2025.

Anthropic: $5B ARR July 2025 (up from $1B Dec 2024); $61.5B valuation.

92% of Fortune 500 use LLM products; 78% of organizations use AI (2024).

Pricing via API access, enterprise licenses, and consumer subscriptions.
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Motivation: LLM Pricing

ChatGPT subscription pricing differs by precision, customization, and request limits.
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Motivation: LLM Pricing

OpenAI API pricing of input, output, and fine-tuning tokens.
Bottom: Pricing of a baseline model. Top: Pricing of a fine-tuned model.
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Anthropic API Pricing Structure (October 2025)

Anthropic’s tiered pricing across Claude 4.1, Sonnet 4.5, and Haiku 3.5 models.
Differentiation in input/output token pricing and prompt caching costs.

Sonnet 4.5 features context-dependent pricing for prompts above/below 200K tokens.
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LLM Revenue Mix (latest public figures, mid-2025)

Provider (model line) Consumers API / Enterprise Source & date

OpenAI (ChatGPT / GPT-4o) ≈ 75 % ≈ 25 % CFO Sarah Friar inter-
view, 28 Oct 2024

Anthropic (Claude 3) 10 – 15 % 70 – 75 % Sacra market report,
May 2025

Cohere (Command) ≈ 15 % ≈ 85 % Sacra market report,
May 2025

Google Gemini immaterial ≈ 100 % WSJ Pichai interview,
Jan 16, 2025

Microsoft Copilot stack small majority MSFT Q2 FY 2025
earnings call

⋆ Older data on Perplexity suggest a more even revenue split than other providers

7



Our Framework

Monopoly pricing of LLMs.

Multidimensional screening problem with the following features:

- Buyers solve a variety of tasks.
- A variety of inputs are combined to create economic value across tasks.
- Some inputs are task specific, while others improve value on all tasks.
- Buyers differ in the weights attached to different tasks.

A seller can design a menu of items that specify various inputs and prices.
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Related Literature

Multidimensional screening and nonlinear pricing: Rochet and Choné
(1998), Armstrong (1996), Manelli and Vincent (2007), Daskalakis et al. (2017),
Haghpanah and Siegel (2025).

Mechanism design with production complementarities: Castro and
Jiménez (2024), Fiat et al. (2016), Devanur et al. (2020) (“1.5-dimensional”).

Selling information and data: Babaioff et al. (2012), Bergemann, Bonatti,
and Smolin (2018), Yang (2022).

Emerging work on AI pricing: Mahmood et al. (2024), Fish et al. (2024),
Duetting et al. (2024), Demirer and Fradkin (2025).
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Tasks and Technology (example)

- A continuum of tasks, i ∈ [0, 1].

- To execute these tasks, the buyer uses:
J classes of per-task tokens xi = (xi1, . . . , xiJ);
K classes of fine-tuning tokens z = (z1, . . . , zK ).

- Precision on each task is given by a CES “gain function:”

g(xi , z) = Ψ(xi) Φ(z) =
(∑J

j=1 αjxρ
ij

)σ/ρ

Φ(z),

with Φ strictly concave, 0 < σ < 1, ρ ≤ 1, αj > 0, and ∑J
j=1 αj = 1.

- Tractable functional form and in line with observed “scaling laws.”
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Tasks and Technology: Example (back)

Cobb-Douglas gain function:

g(xi1, xi2, z) = xα
i1x

β
i2(b + z)γ,

where α, β, γ are sensitivity parameters, α + β + γ ≤ 1, and b > 0 is a baseline
productivity parameter (so that fine tuning is not necessary for production).
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Buyer and Seller Payoff Model

- Buyer type, a collection of weights w = (wi)1
i=0.

- Buyer w ’s payoff from tokens ((xi)1
i=0, z) and payment t:∫ 1

0
wi g(xi , z)di − t.

- Marginal costs of task-specific and fine-tuning tokens: cj , ĉk > 0.
- Seller payoff from ((xi)1

i=0, z) and t:

t −
∑J

j=1 cj

∫ 1

0
xij di −

∑K
k=1 ĉkzk .
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Mechanism Design Model

- Buyer type is distributed according to Fw .
- Seller offers a direct menu of items and transfers:

M = (I(w), t(w))w .

- Items are part of the design. In the paper, two regimes:
1. Token budgets: I = (X , Z ) ∈ RJ

+ × RK
+; buyer allocates across tasks.

2. Token distributions: I = ((xi)1
i=0, z), full contracting (e.g., task caps).

- We characterize profit-maximizing menus of each kind.
- Today, focus on token budgets (1.).
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Efficient Allocation



Efficient Allocation Analysis

- In general, the entire profile of valuations w = (wi)1
i=0 determines the

optimal level of fine-tuning and the resulting surplus.

- However, the CES gain function simplifies the analysis drastically.

- Define the aggregate type:

θ =
(∫ 1

0
w

1
1−σ

i di
)1−σ

.
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Efficient Allocation Analysis

Proposition 1 (Efficient Allocation)
In the socially efficient allocation, all types with the same aggregate type θ

consume the same total number of task-specific tokens, of fine-tuning tokens,
and generate the same surplus.

- Total number of tokens and surplus depend only on the aggregate type θ.

- The number of task-specific tokens xi is proportional to w
1

1−σ

i .
- Fine-tuning parameters (i.e., the function Φ(z)) do not affect the

equivalence classes, i.e., the aggregate type θ.
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Menus of Token Budgets



Token Budgets Analysis

- Assume that the seller can contract only on the total number of tokens:

M = (X (w), Z (w), t(w))w .

- X ∈ RJ
+ are token budgets that buyer can freely allocate across tasks.

- A mechanism design problem with an infinitely-dimensional type, a
multidimensional allocation, and moral hazard.

- Again, the CES-style gain function simplifies the analysis significantly.
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Buyer-Optimal Allocation Token Budgets

A buyer with type w = (wi)1
i=0 and budgets (X , Z ) ≥ 0 solves:

U(X , Z , w) = max
(xi )i∈[0,1]

Φ(Z )
∫ 1

0
wi
(∑J

j=1 αjxρ
ij

)σ/ρ

︸ ︷︷ ︸
=Ψ(xi )

di ,

s.t.
∫ 1

0
xijdi = Xj , ∀j = 1, ..., J .

Lemma 1 (Buyer-Optimal Payoff)
For any w and (X , Z ) ≥ 0, U(X , Z , w) = θ(w)Ψ(X )Φ(Z ) ≜ θ Q.

- Buyer’s payoff depends on θ(w) := (
∫ 1

0 w
1

1−σ

i di)1−σ and aggregate quality Q.
- Reduces to a single-dimensional problem with type θ and allocation Q.
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Cost Minimization Token Budgets

- The minimal costs of delivering aggregate quality Q is:

C(Q) ≜ min
X ,Z≥0

∑J
j=1 cjXj +

∑K
k=1 ĉkZk

s.t. Ψ(X )Φ(Z ) = Q.

- C(Q) is strictly increasing and strictly convex with C ′(0) = 0
⇒ the analysis of Mussa and Rosen (1978) applies.

- Denote the distribution of θ by Fθ. The relevant virtual (aggregate) type:

h(θ) ≜ θ − 1 − Fθ(θ)
fθ(θ) .

- Assume that h(θ) is increasing.

18



Optimal Menu Token Budgets

Proposition 2 (Optimal Menu of Token Budgets)
The optimal menu of token budgets is given by

(X (θ), Z (θ), t(θ))θ,

where (X (θ), Z (θ)) are cost-minimizing tokens that deliver quality Q(θ), which
satisfies h(θ) = C ′(Q(θ)), and t(θ) = θ Q(θ) −

∫ θ
0 Q(s)ds.

- All types w = (wi)1
i=0 corresponding to the same θ pick the same item.

- Downward distortions in aggregate quality.
- Constrained efficient token allocation and production (cf. Atkinson-Stiglitz,

Diamond-Mirlees, and incentive separability in Doligalski et al., 2023).
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Value-Scale Heterogeneity Example

- We focus on a special case, w ∼ (w , s):

wi =

w , if i ≤ s,

0, if i > s,

- Tasks are homogeneous, but buyers differ in scale and (per-task) value.
- E.g., powering a customer support chatbot: scale and value per customer.
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Value-Scale Heterogeneity: Binding ICs Token Budgets

s

w
Efficiency

θ=const

Zero Rents

- “Indifference curve” = equivalence class with the same aggregate type θ.
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Global Optimality

Assumption 1 (Distribution Separability)

There exist f1 and f2 such that for all w , the density f (w) = f1(θ(w))f2(w),
and f2 is homogeneous of degree zero.

(Knowing θ(w) provides no information about relative value of different tasks.)

Proposition 3 (Optimality of Token Budgets)
Under Assumption 1, an optimal mechanism is a menu of token budgets.

(1) The optimal menu of token budgets is implementable via a cost-based tariff
(i.e., a menu (Bk , Tk)k , such that the buyer pays Tk for access to a budget Bk

that she can use to buy tokens at their marginal costs).
(2) Extend Armstrong (1996)’s proof to multiple goods per task + fine tuning.
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Summary So Far

The talk:

- Developed an economic framework for pricing of LLMs.

- Characterized optimal monopolistic menu design.

- Analyzed the use of token budgets as a screening device.

The paper:

- Solves optimal menu of token distributions in two special cases.

- Establishes conditions for two-part-tariff implementation (both settings),
i.e., quantity discounts for tokens as in Maskin and Riley (1984).
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Multiple Models



Competing Models

LLM pricing with multiple, competing models.

Contrast three cases:

1. Efficient allocation.

2. Multimodel monopolist.

3. Leader vs. competitive fringe.

Focus on (3.) to capture proprietary vs. open source.
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Anthropic Claude Model Market Shares (Demirer and Fradkin, 2025)

Market share of Claude models over time (Nov 2024 - Aug 2025).
Transition from Claude 3.5 Sonnet dominance to Claude 4 Sonnet by mid-2025.

Claude 3.7 Sonnet serving as an intermediate release.
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Google Gemini Model Market Shares (Demirer and Fradkin, 2025)

Market share of Gemini models over time (Nov 2024 - Aug 2025).
Gemini Flash 1.5 gradually replaced by Gemini 2.0 Flash and Gemini 2.5 Flash variants.

Gemini 2.5 Pro gaining significant share in later months.
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Meta Llama Model Market Shares (Demirer and Fradkin, 2025)

Market share of Llama models over time (Nov 2024 - Aug 2025).
Llama 3.1 and 3.3 dominate early, Llama 4 Maverick gains from mid-2025.
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OpenAI GPT Model Market Shares (Demirer and Fradkin, 2025)

Market share of OpenAI models over time (Nov 2024 - Aug 2025).
GPT-4o Mini dominates throughout.

Significant disruption in April-May 2025 from GPT-4.1 releases.
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Open vs. Closed Source Market Shares (Demirer and Fradkin, 2025)

Proportion of open source vs. closed source LLM usage (Nov 2024 - Aug 2025).
Open source models maintain 20-30% market share initially.

Open source grows to nearly 50% by August 2025.
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Technology: Two-Model Setup

Consider two models ℓ = 1, 2, with model-specific gain function:

gℓ(xi1, . . . , xiJ , z1, . . . , zK ) =
(∑J

j=1 αℓjxρℓ
ij

)σ/ρℓ
(∑K

k=1 α̂ℓkz ρ̂ℓ
k

)γℓ/ρ̂ℓ
.

Common returns to per-task intensity: σ.

Model-specific returns to fine-tuning: γℓ.

Free variation in αℓj , α̂ℓk , ρℓ, ρ̂ℓ, and costs (cℓ1, . . . , cℓJ , ĉℓ1, . . . , ĉℓK ).

Buyer can use both models, but only one model per task i ∈ [0, 1].

If buyer w uses model ℓ for tasks i ∈ Iℓ, total payoff:∑L
ℓ=1

∫
i∈Iℓ

wi gℓ(xℓi , zℓ) di .
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Indirect Utility and Cost Functions

Consider token budgets (Bℓ)ℓ=1,2, where Bℓ = (Xℓ1, . . . , XℓJ , Zℓ1, . . . , ZℓK ).

Define aggregate quality as

Qℓ = gℓ(Xℓ1, . . . , XℓJ , Zℓ1, . . . , ZℓK ).

Agent’s optimization of models and tokens across tasks ⇒ indirect utility function

U(θ, Q1, Q2) = θ
(
Q1/σ

1 + Q1/σ
2

)σ
,

where the aggregate type is (as before)

θ =
( ∫ 1

0
w1/(1−σ)

i di
)1−σ

.

Cost of providing aggregate quality Q through model ℓ:

Cℓ(Q) = cℓQ
1

σ+γℓ .
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Leader vs. Fringe

A leader vs. a competitive fringe that prices tokens at marginal cost.

Leader’s model has aggregate cost parameter cL > 0, returns to intensity σ > 0,
and returns to fine-tuning γL > 0, such that σ + γL < 1.

Leader cost function:
CL(Q) = cLQ

1
σ+γL .

Fringe’s model has aggregate cost parameter cF ∈ [0, cL), returns to intensity
σ > 0, and returns to fine-tuning γF ∈ [0, γL).

Fringe cost function:
CF (Q) = cF Q

1
σ+γF .
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Buyer’s Problem

The buyer has a private aggregate type θ.

θ is distributed according to F with f > 0 everywhere on [0, 1].

Define quality variables qL ≜ Q
1

σ+γL and qF ≜ Q
1

σ+γF
F .

The buyer’s utility (when buying from the leader) can be written as

u(θ, qL) = max
qF ≥0

θ(q(σ+γL)/σ
L + q(σ+γF )/σ

F )σ − cF qF , (1)

with an outside option u0(θ) = u(θ, 0).
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Leader’s Problem

Define the limit quality as

q̂(θ) ≜
(

θσ

cF

)σ/((1−σ)(σ+γL))

. (2)

If purchased leader quantity qL < q̂(θ), buyer buys fringe tokens to achieve the
optimal total budget q̂(θ); if qL ≥ q̂(θ), buyer is exclusive to the leader.

With h(θ) the virtual value, define leader-optimal interior quantity as

qint
L (θ) =

(
(σ + γL)h(θ)

cL

)1/(1−σ−γL)

. (3)
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Main Result

Proposition 4 (Leader-Fringe Equilibrium)
Let γF = 0 and assume F satisfies the monotone hazard rate condition.

There exist θ ≤ θ, such that:

1. For θ ≤ θ, qL(θ) = 0 and qF (θ) > 0.
2. For θ ∈ (θ, θ), qL(θ) = q̂(θ) and qF (θ) = 0.
3. For θ ≥ θ, qL(θ) = qint(θ) and qF (θ) = 0.

(Depending on parameters, any region may be empty.)

Next: compare leader-fringe with socially efficient allocation and with
multi-model monopolist (uniform distribution example).
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Leader Quantity
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Fringe Quantity
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Thresholds
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Future Directions

- Competition of differentiated LLMs.

- Investment incentives.

- Regulation and antitrust.

- Bundling and integration.
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Thank You
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Menus of Token Distributions



Token Distributions Analysis

- Assume that w is distributed according to Fw .
- The seller can contract on token distribution across tasks:

M = ((xi(w))i∈[0,1], z(w), t(w))w .

- E.g., limits on # of requests, task-specific model variations or servers.
- Mechanism design with infinitely-dimensional types and allocations.

We make progress under two type structures:

- Two types.
- Value-scale heterogeneity.
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Value-Scale Heterogeneity Token Distributions

- With many arbitrary types w the binding incentive structure is unclear.
- We focus on a special case, w ∼ (w , s):

wi =

w , if i ≤ s,

0, if i > s,

in which w and s are independently distributed according to Fw and Fs .
- Tasks are homogeneous, but buyers differ in scale and (per-task) value.
- E.g., powering a customer support chatbot: scale and value per customer.
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