

REDISTRICTING WITH ENDOGENOUS CANDIDATES

Paola Moscariello

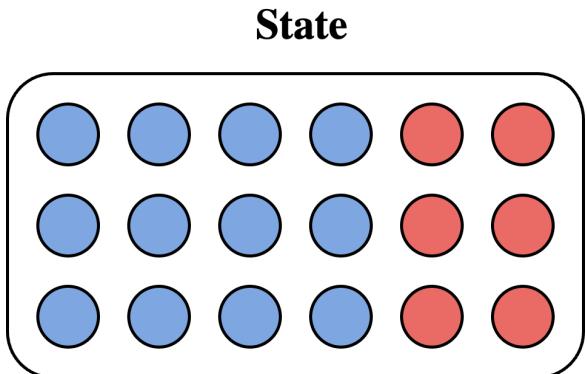
Yale University

INTRODUCTION

- In the US, congressional district boundaries drawn by political partisans
- **Partisan gerrymandering:** “the practice of dividing a geographic area into electoral districts, often of highly irregular shape, to give one political party an unfair advantage by diluting the opposition’s voting strength”
- **This paper:** gerrymandering when district composition affects candidates’ policy positions, and thus voting behavior, at the district level

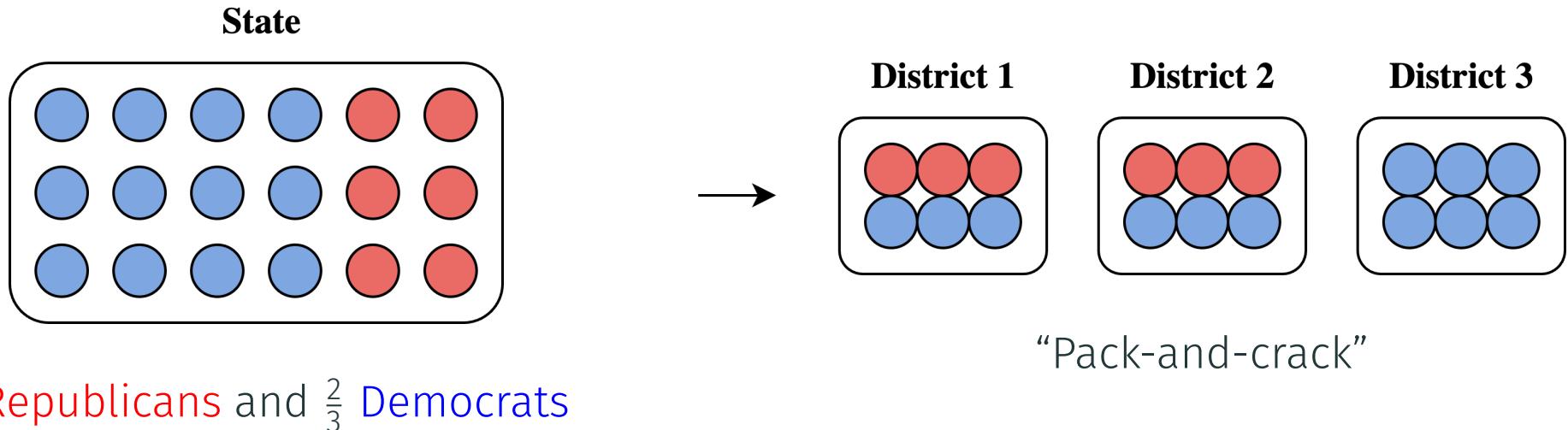
RECAP: STANDARD REDISTRICTING

RECAP: STANDARD REDISTRICTING

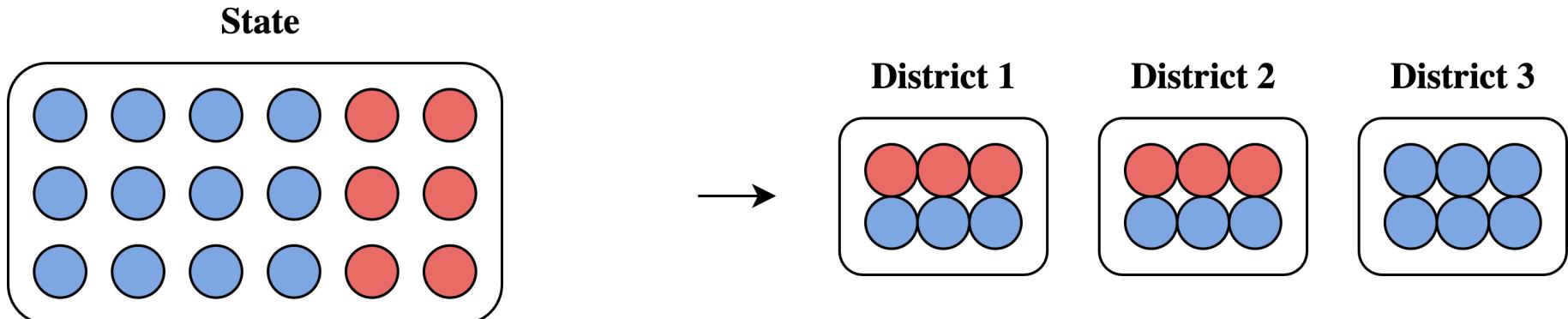


$\frac{1}{3}$ Republicans and $\frac{2}{3}$ Democrats

RECAP: STANDARD REDISTRICTING



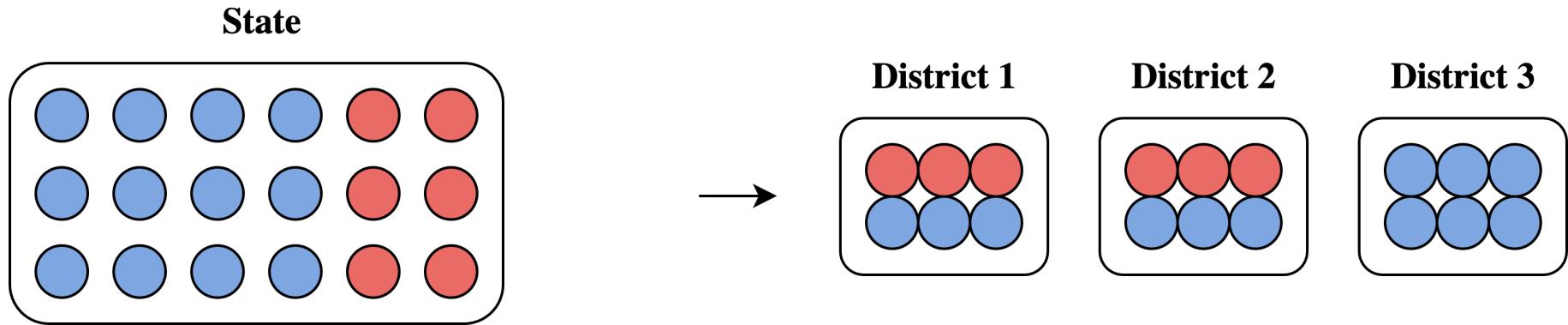
RECAP: STANDARD REDISTRICTING



$\frac{1}{3}$ Republicans and $\frac{2}{3}$ Democrats

- Considers party affiliation but not preference intensities
- Underlying assumption: voting behavior is fixed

RECAP: STANDARD REDISTRICTING

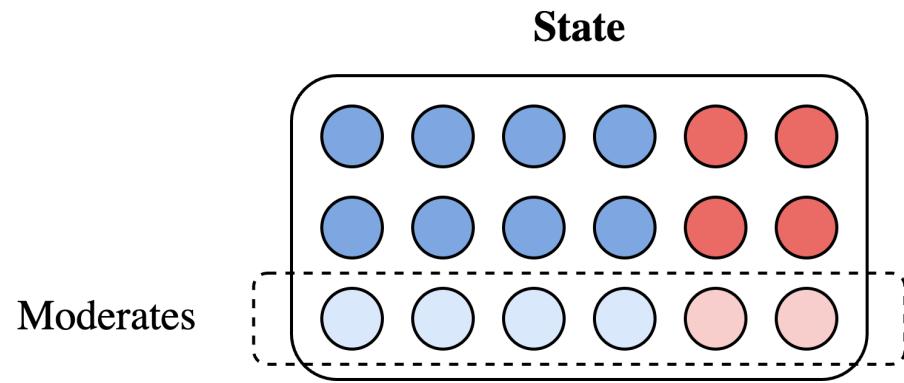


$\frac{1}{3}$ Republicans and $\frac{2}{3}$ Democrats

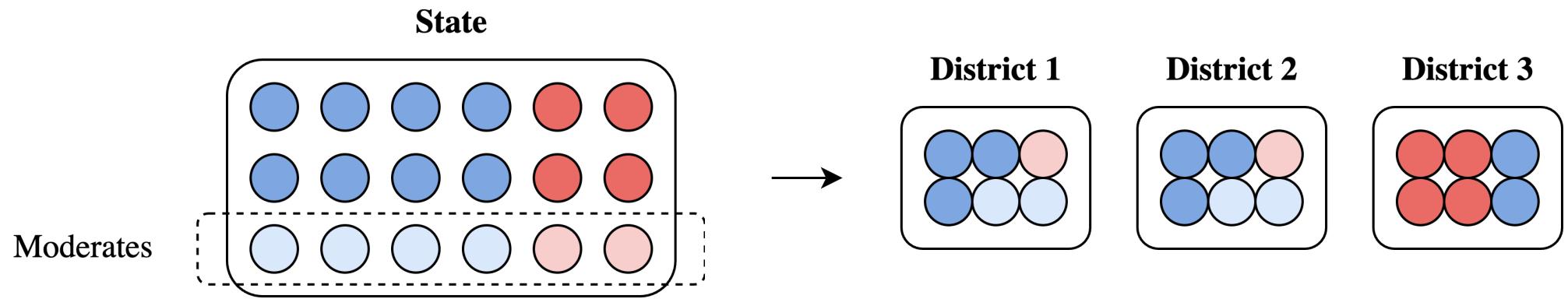
“Pack-and-crack”

- Considers party affiliation but not preference intensities
- Underlying assumption: voting behavior is fixed
- Behavior might be endogenous to districts through primary elections...

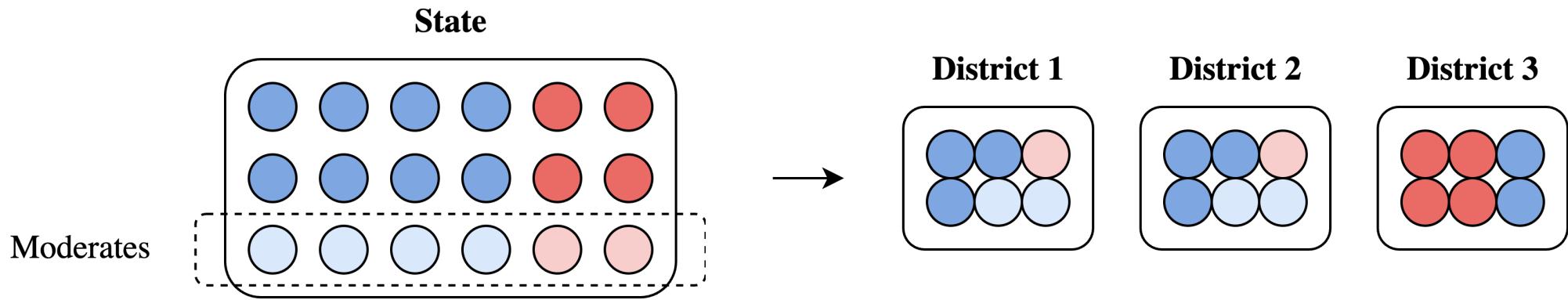
TAKING ELECTORAL INCENTIVES INTO ACCOUNT



TAKING ELECTORAL INCENTIVES INTO ACCOUNT

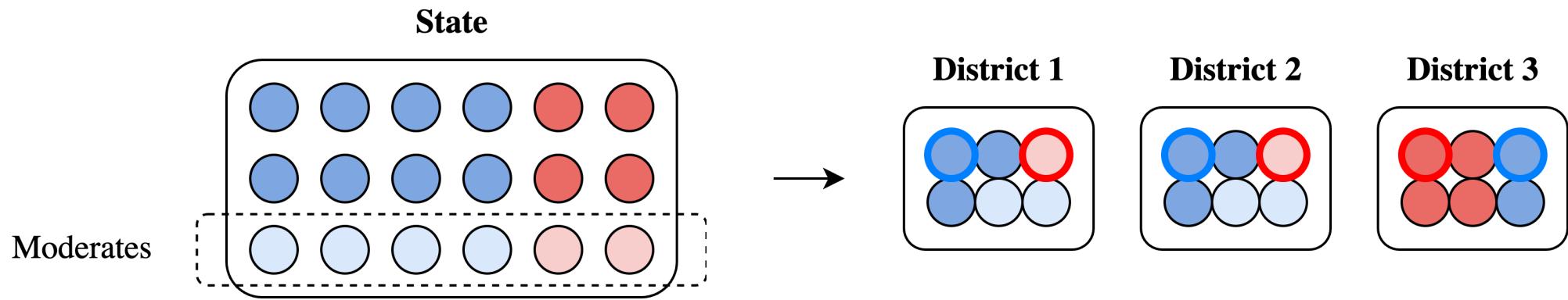


TAKING ELECTORAL INCENTIVES INTO ACCOUNT



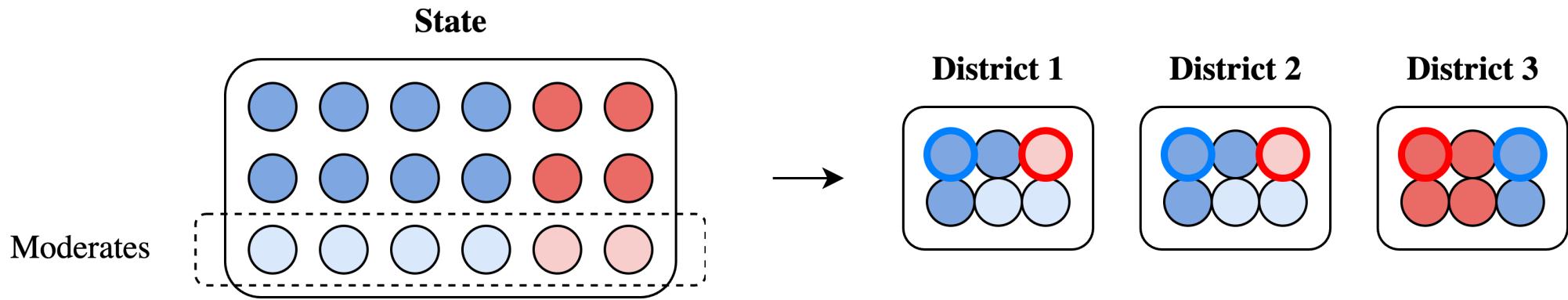
- Rep/Dem candidate is moderate or extremist, depending on party majority

TAKING ELECTORAL INCENTIVES INTO ACCOUNT



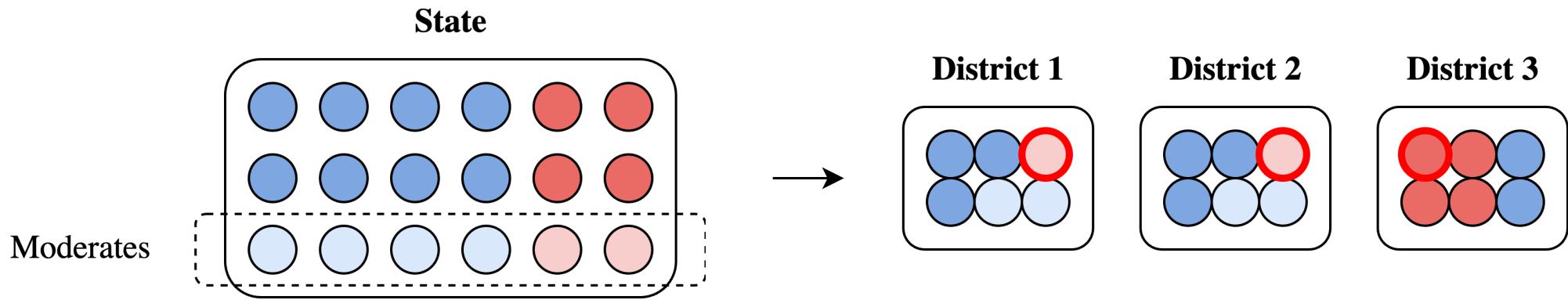
- Rep/Dem candidate is moderate or extremist, depending on party majority

TAKING ELECTORAL INCENTIVES INTO ACCOUNT



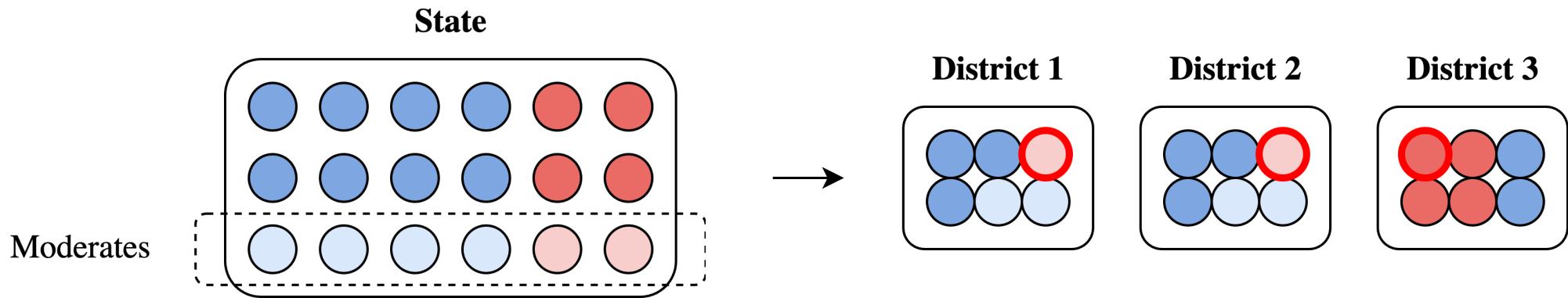
- Rep/Dem candidate is moderate or extremist, depending on party majority
- Moderate voters prefer a moderate of *either* party to an extremist of their own party

TAKING ELECTORAL INCENTIVES INTO ACCOUNT



- Rep/Dem candidate is moderate or extremist, depending on party majority
- Moderate voters prefer a moderate of *either* party to an extremist of their own party

TAKING ELECTORAL INCENTIVES INTO ACCOUNT



- Rep/Dem candidate is moderate or extremist, depending on party majority
- Moderate voters prefer a moderate of *either* party to an extremist of their own party
- **Gerrymandering is even more powerful: win ALL districts**

THE MODEL: REDISTRICTING WITH PRIMARY ELECTIONS

THE AGENTS

- Single-peaked voters' preferences, ideal points distribution $\phi \in \Delta([\underline{v}, \bar{v}])$
 - Strictly increasing and continuous CDF
 - Median $v^m = 0$
- Two parties: Republican and Democratic
- Voter affiliation:

THE AGENTS

- Single-peaked voters' preferences, ideal points distribution $\phi \in \Delta([\underline{v}, \bar{v}])$
 - Strictly increasing and continuous CDF
 - Median $v^m = 0$
- Two parties: **Republican** and **Democratic**
- Voter affiliation:

$$v < k \rightarrow D$$

$$v \geq k \rightarrow R$$

THE AGENTS

- Single-peaked voters' preferences, ideal points distribution $\phi \in \Delta([\underline{v}, \bar{v}])$
 - Strictly increasing and continuous CDF
 - Median $v^m = 0$
- Two parties: **Republican** and **Democratic**
- Voter affiliation:

- Designer allocates voters into districts to **maximize districts won by Republicans**

DISTRICTS AND REDISTRICTING PLANS

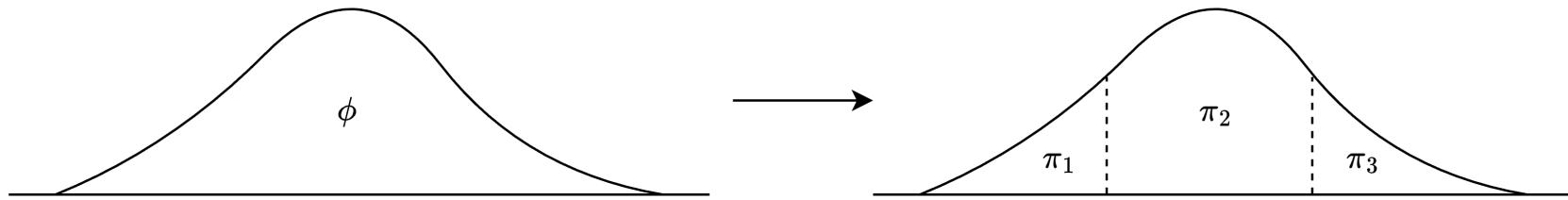
- A **district** is a distribution of preferences $\pi \in \Delta(\mathbb{R})$
- A **redistricting plan** is a distribution of districts $\mathcal{H} \in \Delta(\Delta(\mathbb{R}))$ s.t.

$$\int \pi d\mathcal{H}(\pi) = \phi \rightarrow \text{Feasibility}$$

DISTRICTS AND REDISTRICTING PLANS

- A **district** is a distribution of preferences $\pi \in \Delta(\mathbb{R})$
- A **redistricting plan** is a distribution of districts $\mathcal{H} \in \Delta(\Delta(\mathbb{R}))$ s.t.

$$\int \pi d\mathcal{H}(\pi) = \phi \rightarrow \text{Feasibility}$$



$$\pi_1 \mathcal{H}(\pi_1) + \pi_2 \mathcal{H}(\pi_2) + \pi_3 \mathcal{H}(\pi_3) = \phi$$

ELECTIONS IN DISTRICT π

What determines whether a district is won?

- Two-stage elections: **Party Primaries** and **General Elections**
- In the first stage:
 - voters $v < k$ select **D** with position $c_{\pi,D}$
 - voters $v \geq k$ select **R** with position $c_{\pi,R}$
- In the second stage all voters select $c_{\pi} \in \{c_{\pi,D}, c_{\pi,R}\}$

For this talk: Assume primary candidates position at
party medians

► Microfoundation

ELECTIONS IN DISTRICT π

What determines whether a district is won?

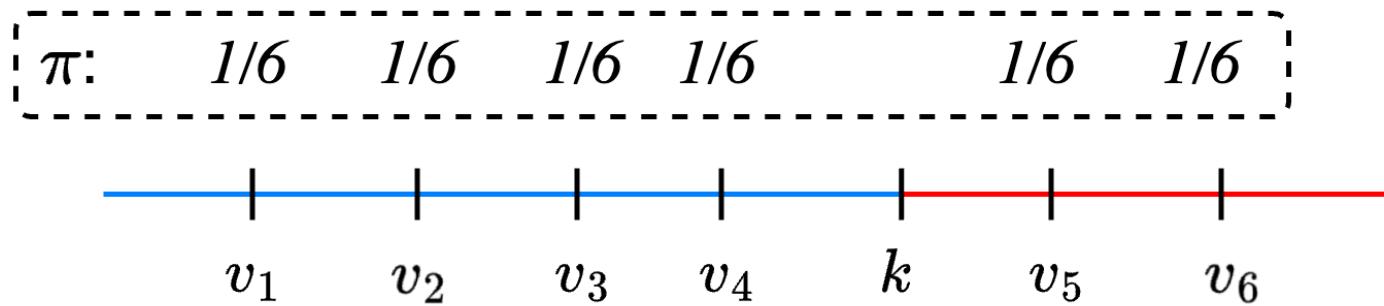
- Two-stage elections: **Party Primaries** and **General Elections**
- In the first stage:
 - voters $v < k$ select **D** with position $c_{\pi,D}$
 - voters $v \geq k$ select **R** with position $c_{\pi,R}$
- In the second stage all voters select $c_{\pi} \in \{c_{\pi,D}, c_{\pi,R}\}$

Need candidates
to respond
to party base

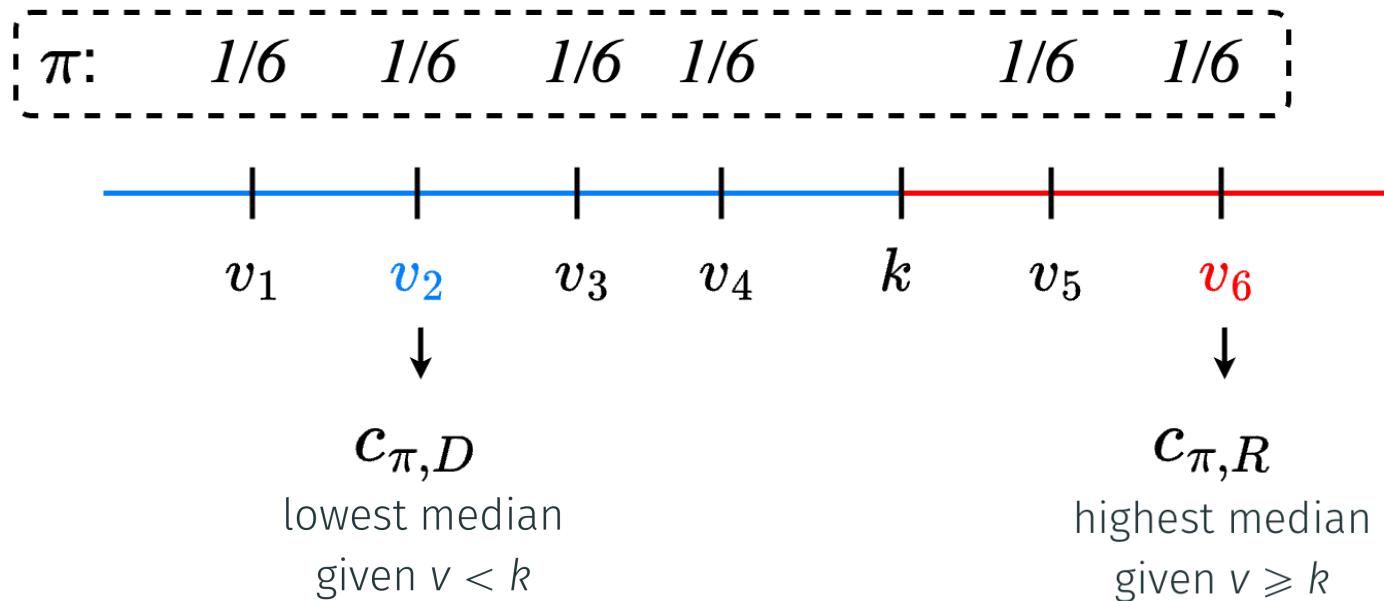
For this talk: Assume primary candidates position at
party medians

► Microfoundation

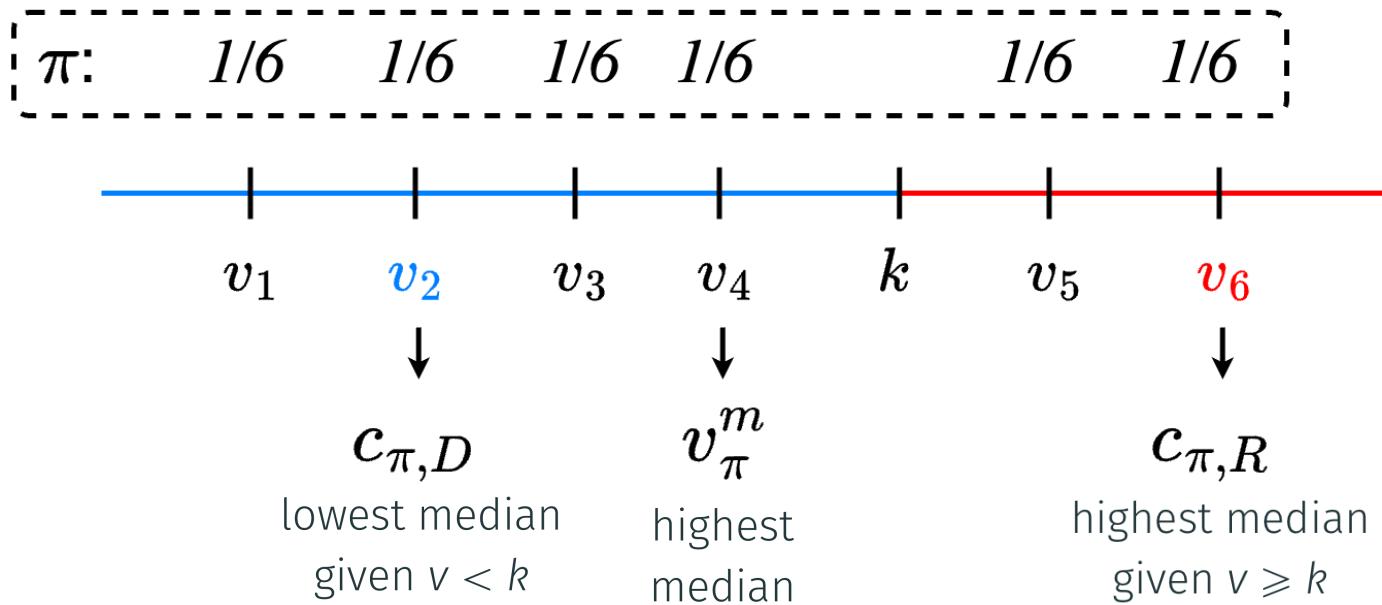
ELECTIONS IN DISTRICT π



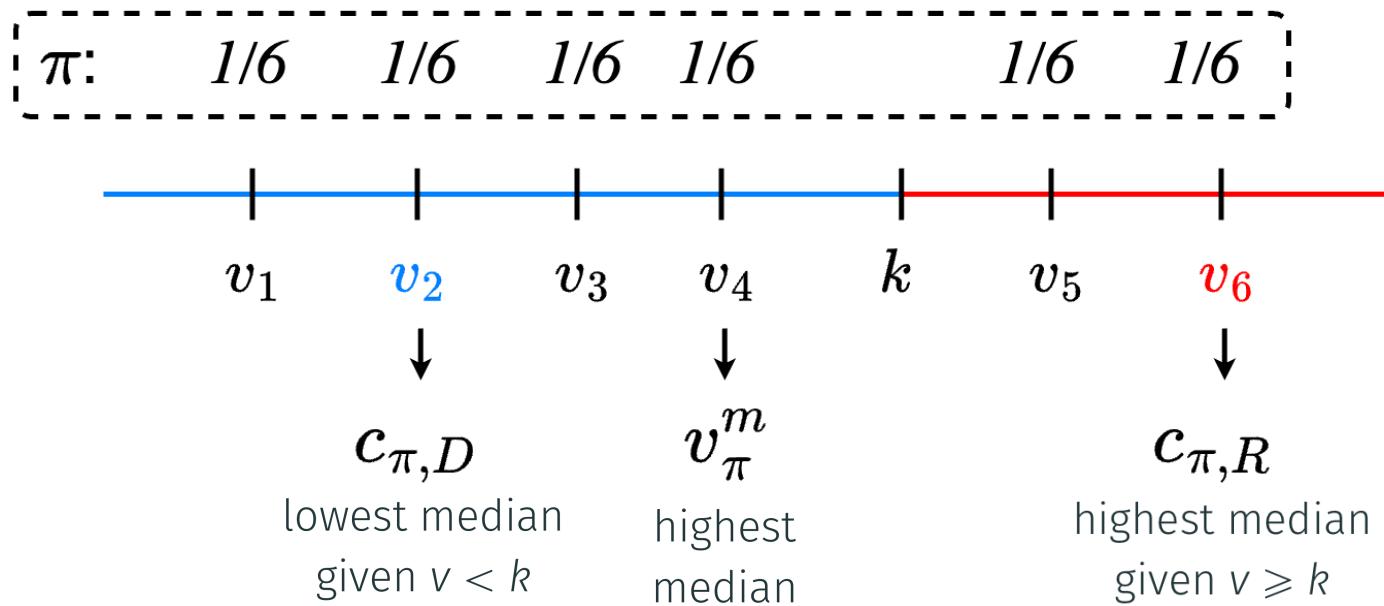
ELECTIONS IN DISTRICT π



ELECTIONS IN DISTRICT π



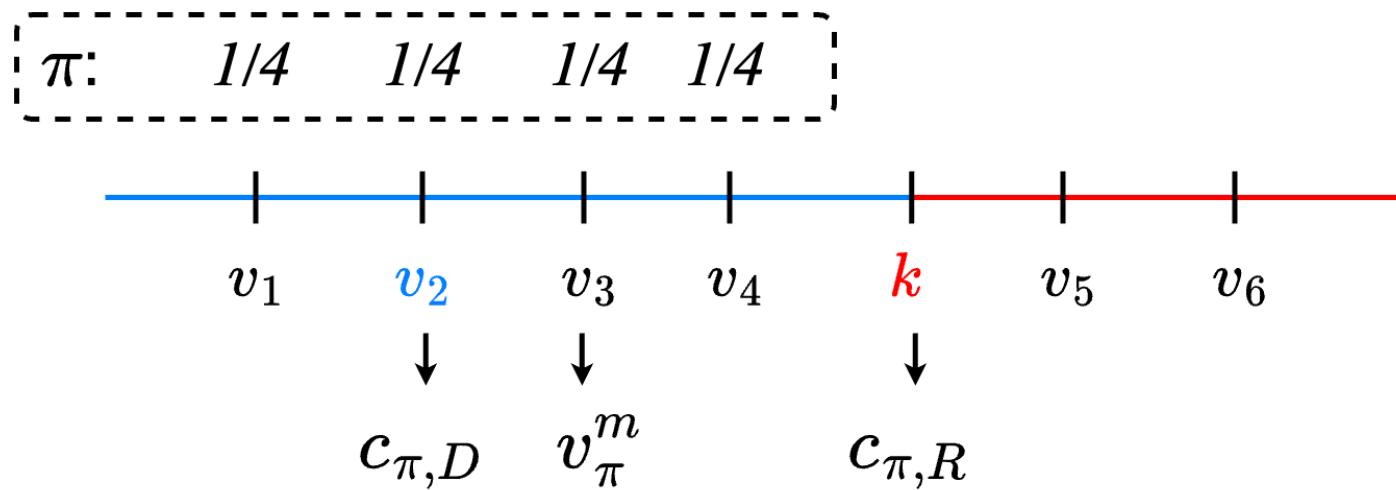
ELECTIONS IN DISTRICT π



Disclaimer: Tie-breaking “in favor” of Republicans. Does not matter given continuum of voters

ELECTIONS IN DISTRICT π

- If there are no Republicans in π ...



- Same for Democrats

ALLOWING FOR UNCERTAINTY

- Redistricting happens every 10 years
- Designer faces uncertainty about voters' preferences
- **Aggregate shock**: All voters experience common shock $\omega \rightarrow v - \omega$
- $\omega \sim \gamma \in \Delta(\mathbb{R})$, with CDF G increasing and continuous on $[2(\underline{v} - \bar{v}), 2(\bar{v} - \underline{v})]$
- $\pi \rightarrow \pi^\omega$

TIMING

THE REDISTRICTER'S PROBLEM

- Designer's problem is:

$$\max_{\mathcal{H} \in \Delta(\Delta([\underline{v}, \bar{v}]))} \iint \mathbb{1} \left(v_{\pi^\omega}^m - \frac{c_{\pi^\omega, D} + c_{\pi^\omega, R}}{2} \geq 0 \right) d\mathcal{H}(\pi) d\gamma(\omega) \quad (\text{RP})$$

$$\text{s.t. } \int \pi d\mathcal{H}(\pi) = \phi$$

THE REDISTRICTER'S PROBLEM

- Designer's problem is:

$$\max_{\mathcal{H} \in \Delta(\Delta([\underline{v}, \bar{v}]))} \iint \mathbb{1} \left(v_{\pi^\omega}^m - \frac{c_{\pi^\omega, D} + c_{\pi^\omega, R}}{2} \geq 0 \right) d\mathcal{H}(\pi) d\gamma(\omega) \quad (\text{RP})$$

$$\text{s.t. } \int \pi d\mathcal{H}(\pi) = \phi$$

How do we solve it?

SOLUTION

SOLUTION

MAPPING TO OPTIMAL TRANSPORT PROBLEM

FOCUS ON SUBSET OF FEASIBLE PLANS

Proposition 1

Any district π in an optimal plan is such that $\text{supp}(\pi) = \{v', v''\}$, with:

$$v' \geq 0 \geq v''$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

→ Matching voters above the median with voters below the median

▶ Proof

FOCUS ON SUBSET OF FEASIBLE PLANS

Proposition 1

Any district π in an optimal plan is such that $\text{supp}(\pi) = \{v', v''\}$, with:

$$v' \geq 0 \geq v''$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

→ Matching voters above the median with voters below the median

▶ Proof

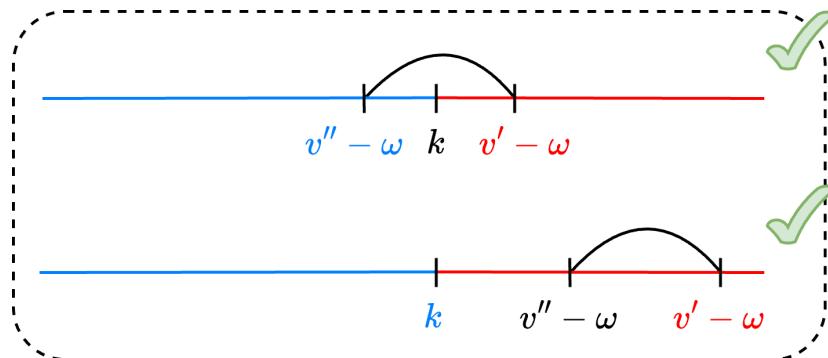
- Define $\phi' = \phi(\cdot | v \geq 0)$ and $\phi'' = \phi(\cdot | v \leq 0)$
- $\mathcal{M}(\phi', \phi'')$ set of joint distributions over v', v'' with marginals ϕ', ϕ''
- Designer's problem becomes...

REDUCTION TO OPTIMAL TRANSPORT PROBLEM

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \iint d\tau(v', v'') d\gamma(\omega)$$

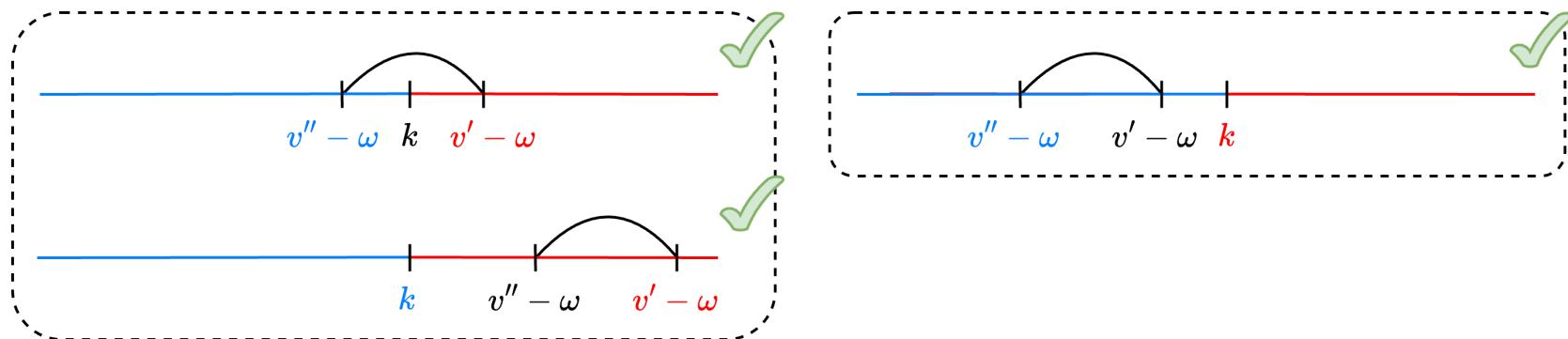
REDUCTION TO OPTIMAL TRANSPORT PROBLEM

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \iint \underbrace{\mathbb{1}(v' - \omega \geq k)}_{50\% \text{ Rep voters}} + d\tau(v', v'') d\gamma(\omega)$$



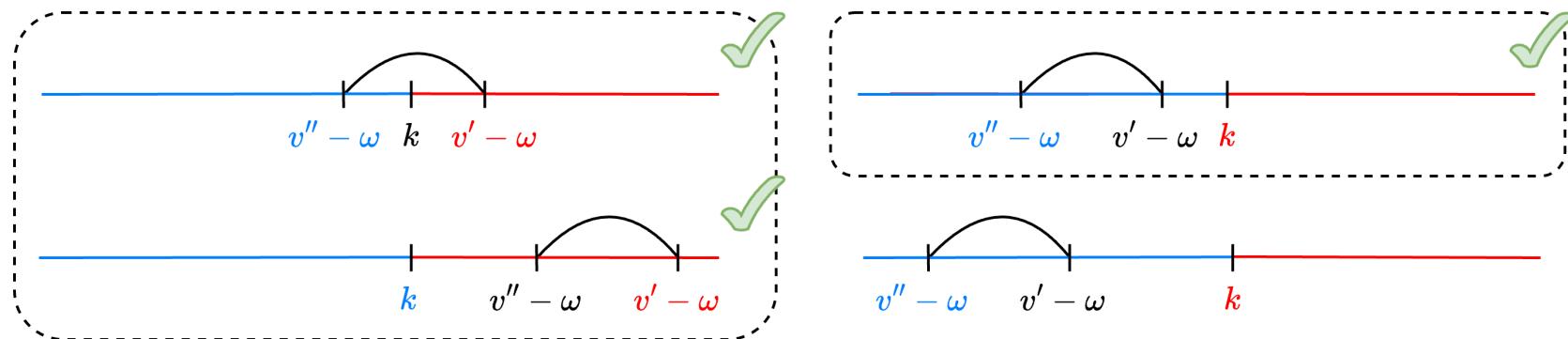
REDUCTION TO OPTIMAL TRANSPORT PROBLEM

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \iint \underbrace{\mathbb{1}(v' - \omega \geq k)}_{50\% \text{ Rep voters}} + \underbrace{\mathbb{1}(v' - \omega < k) \mathbb{1} \left(v' - \omega - \frac{v'' - \omega}{2} \geq \frac{k}{2} \right)}_{100\% \text{ Dem voters but 50\% vote for R}} d\tau(v', v'') d\gamma(\omega)$$



REDUCTION TO OPTIMAL TRANSPORT PROBLEM

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \iint \underbrace{\mathbb{1}(v' - \omega \geq k)}_{50\% \text{ Rep voters}} + \underbrace{\mathbb{1}(v' - \omega < k) \mathbb{1} \left(v' - \omega - \frac{v'' - \omega}{2} \geq \frac{k}{2} \right)}_{100\% \text{ Dem voters but 50\% vote for R}} d\tau(v', v'') d\gamma(\omega)$$



REDUCTION TO OPTIMAL TRANSPORT PROBLEM

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \iint \mathbb{1}(v' - \omega \geq k) + \mathbb{1}(v' - \omega < k) \mathbb{1} \left(v' - \omega - \frac{v'' - \omega}{2} \geq k \right) d\tau(v', v'') d\gamma(\omega)$$

REDUCTION TO OPTIMAL TRANSPORT PROBLEM

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int \int \mathbb{1}(v' - \omega \geq k) + \mathbb{1}(v' - \omega < k) \mathbb{1} \left(v' - \omega - \frac{v'' - \omega}{2} \geq k \right) d\gamma(\omega) d\tau(v', v'')$$

REDUCTION TO OPTIMAL TRANSPORT PROBLEM

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int \int \mathbb{1}(v' - \omega \geq k) + \mathbb{1}(v' - \omega < k) \mathbb{1} \left(v' - \omega - \frac{v'' - \omega}{2} \geq k \right) d\gamma(\omega) d\tau(v', v'')$$

- After some algebra...

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(2v' - v'' - k) d\tau(v', v'') \quad (\text{OTP})$$

REDUCTION TO OPTIMAL TRANSPORT PROBLEM

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int \int \mathbb{1}(v' - \omega \geq k) + \mathbb{1}(v' - \omega < k) \mathbb{1} \left(v' - \omega - \frac{v'' - \omega}{2} \geq k \right) d\gamma(\omega) d\tau(v', v'')$$

- After some algebra...

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(2v' - v'' - k) d\tau(v', v'') \tag{OTP}$$

- This is an optimal transport problem

THEOREM 1: RECAP

$$\max_{\mathcal{H} \in \Delta(\Delta([\underline{v}, \bar{v}]))} \iint \mathbb{1} \left(v_{\pi^\omega}^m - \frac{c_{\pi^\omega, D} + c_{\pi^\omega, R}}{2} \geq 0 \right) d\mathcal{H}(\pi) d\gamma(\omega) \quad (\text{RP})$$

$$\text{s.t. } \int \pi d\mathcal{H}(\pi) = \phi$$

THEOREM 1: RECAP

$$\max_{\mathcal{H} \in \Delta(\Delta([\underline{v}, \bar{v}]))} \iint \mathbb{1} \left(v_{\pi^\omega}^m - \frac{c_{\pi^\omega, D} + c_{\pi^\omega, R}}{2} \geq 0 \right) d\mathcal{H}(\pi) d\gamma(\omega) \quad (\text{RP})$$

$$\text{s.t. } \int \pi d\mathcal{H}(\pi) = \phi$$

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(2v' - v'' - k) d\tau(v', v'') \quad (\text{OTP})$$

THEOREM 1: RECAP

$$\max_{\mathcal{H} \in \Delta(\Delta([\underline{v}, \bar{v}]))} \iint \mathbb{1} \left(v_{\pi^\omega}^m - \frac{c_{\pi^\omega, D} + c_{\pi^\omega, R}}{2} \geq 0 \right) d\mathcal{H}(\pi) d\gamma(\omega) \quad (\text{RP})$$

$$\text{s.t. } \int \pi d\mathcal{H}(\pi) = \phi$$

Theorem 1

RP is equivalent to OTP

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G \left(2v' - v'' - k \right) d\tau(v', v'') \quad (\text{OTP})$$

SOLUTION

SOLUTION TO OPTIMAL TRANSPORT PROBLEM

A CLOSER LOOK AT OTP

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(2v' - v'' - k) d\tau(v', v'') \quad (\text{OTP})$$

A CLOSER LOOK AT OTP

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(2v' - v'' - k) d\tau(v', v'') \quad (\text{OTP})$$

- $G(2v' - v'' - k)$ = probability of winning district with v', v''

A CLOSER LOOK AT OTP

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int \underbrace{G(2v' - v'' - k)}_{\text{"surplus" from } v', v''} d\tau(v', v'') \quad (\text{OTP})$$

- $G(2v' - v'' - k)$ = probability of winning district with v', v''

A CLOSER LOOK AT OTP

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int \underbrace{G(2v' - v'' - k)}_{\text{"surplus" from } v', v''} d\tau(v', v'') \quad (\text{OTP})$$

- $G(2v' - v'' - k)$ = probability of winning district with v', v''
- **Surplus** increasing in $v' - v'' \rightarrow$ try to max distance bw v' and v''

A CLOSER LOOK AT OTP

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int \underbrace{G(2v' - v'' - k)}_{\text{"surplus" from } v', v''} d\tau(v', v'') \quad (\text{OTP})$$

- $G(2v' - v'' - k)$ = probability of winning district with v', v''
- Surplus increasing in $v' - v'' \rightarrow$ try to max distance bw v' and v''

Trade off:

Option 1 Some district with high $v' - v''$
and some districts with low $v' - v''$

Option 2 All districts with moderate
 $v' - v''$

A CLOSER LOOK AT OTP

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int \underbrace{G(2v' - v'' - k)}_{\text{"surplus" from } v', v''} d\tau(v', v'') \quad (\text{OTP})$$

- $G(2v' - v'' - k)$ = probability of winning district with v', v''
- Surplus increasing in $v' - v'' \rightarrow$ try to max distance bw v' and v''

Trade off:

Option 1 Some district with high $v' - v''$
and some districts with low $v' - v''$

Option 2 All districts with moderate
 $v' - v''$

→ Depends on concavity of G

BENCHMARK CASES

Option 1 Some districts with high $v' - v''$ and some districts with low $v' - v''$

Option 2 All districts with moderate $v' - v''$

G strictly concave \rightarrow

BENCHMARK CASES

Option 1 Some districts with high $v' - v''$ and some districts with low $v' - v''$

Option 2 All districts with moderate $v' - v''$

G strictly concave \rightarrow

Marginal benefit of increasing $v' - v''$ in a district where it's low

>

Marginal cost of decreasing $v' - v''$ in a district where it's high

BENCHMARK CASES

Option 1 Some districts with high $v' - v''$ and some districts with low $v' - v''$

Option 2 All districts with moderate $v' - v''$

G strictly concave \rightarrow

Option 2 \rightarrow

Marginal benefit of increasing $v' - v''$ in a district where it's low

>

Marginal cost of decreasing $v' - v''$ in a district where it's high

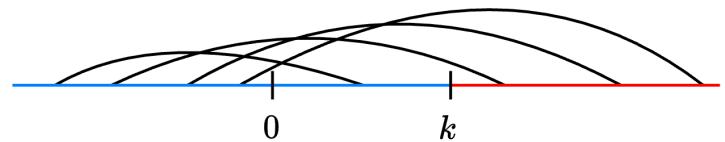
BENCHMARK CASES

Option 1 Some districts with high $v' - v''$ and some districts with low $v' - v''$

G strictly concave \rightarrow

Option 2 All districts with moderate $v' - v''$

Option 2 \rightarrow



positive assortative matching

Marginal benefit of increasing $v' - v''$ in a district where it's low

>

Marginal cost of decreasing $v' - v''$ in a district where it's high

BENCHMARK CASES

Option 1 Some districts with high $v' - v''$ and some districts with low $v' - v''$

Option 2 All districts with moderate $v' - v''$

G strictly convex \rightarrow

BENCHMARK CASES

Option 1 Some districts with high $v' - v''$ and some districts with low $v' - v''$

Option 2 All districts with moderate $v' - v''$

G strictly convex \rightarrow

Marginal benefit of increasing $v' - v''$ in a district where it's high

>

Marginal cost of decreasing $v' - v''$ in a district where it's low

BENCHMARK CASES

Option 1 Some districts with high $v' - v''$ and some districts with low $v' - v''$

Option 2 All districts with moderate $v' - v''$

G strictly convex \rightarrow

Option 1 \rightarrow

Marginal benefit of increasing $v' - v''$ in a district where it's high

$>$

Marginal cost of decreasing $v' - v''$ in a district where it's low

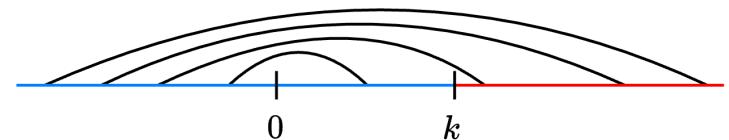
BENCHMARK CASES

Option 1 Some districts with high $v' - v''$ and some districts with low $v' - v''$

G strictly convex \rightarrow

Option 1 \rightarrow

Option 2 All districts with moderate $v' - v''$



negative assortative matching

Marginal benefit of increasing $v' - v''$ in a district where it's high

>

Marginal cost of decreasing $v' - v''$ in a district where it's low

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

G S-shaped →

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

District **won** when $\omega=0$
concave if $\overbrace{2v' - v'' - k > 0} \rightarrow$

G S-shaped \rightarrow

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

District **won** when $\omega=0$
concave if $\overbrace{2v' - v'' - k > 0} \rightarrow$

G S-shaped \rightarrow

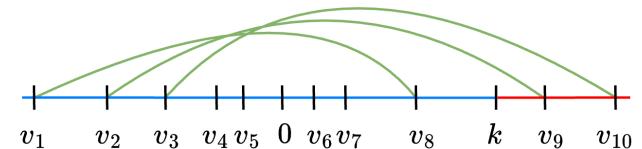
convex if $\overbrace{2v' - v'' - k < 0} \rightarrow$
District **lost** when $\omega=0$

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

concave if $\underbrace{2v' - v'' - k > 0}_{\text{District won when } \omega=0} \rightarrow$

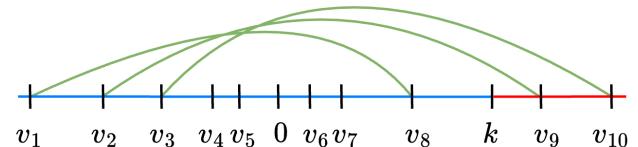
G S-shaped \rightarrow

convex if $\underbrace{2v' - v'' - k < 0}_{\text{District lost when } \omega=0} \rightarrow$



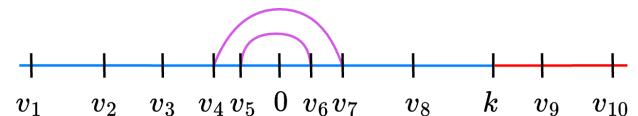
THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

concave if $\underbrace{2v' - v'' - k > 0}_{\text{District won when } \omega=0} \rightarrow$



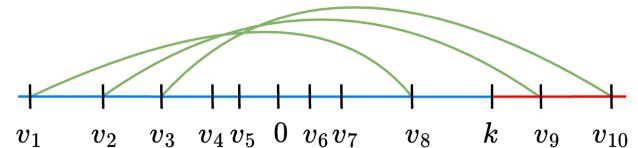
G S-shaped \rightarrow

convex if $\underbrace{2v' - v'' - k < 0}_{\text{District lost when } \omega=0} \rightarrow$



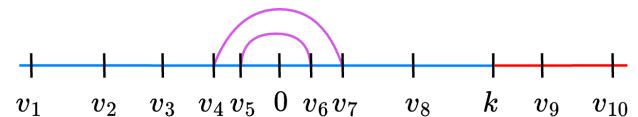
THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

concave if $\underbrace{2v' - v'' - k > 0}_{\text{District won when } \omega=0} \rightarrow$

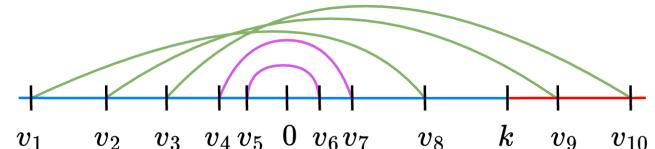


G S-shaped \rightarrow

convex if $\underbrace{2v' - v'' - k < 0}_{\text{District lost when } \omega=0} \rightarrow$

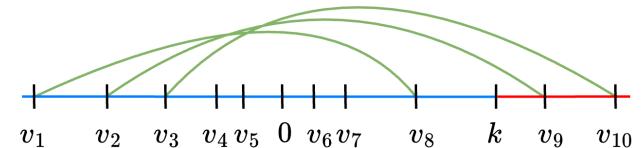


- Solution is a combination of **positive** and **negative** assortative matching



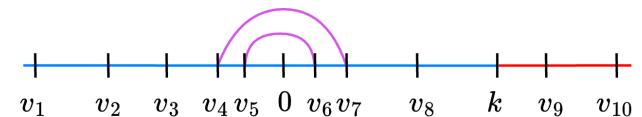
THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

concave if $\underbrace{2v' - v'' - k > 0}_{\text{District won when } \omega=0} \rightarrow$

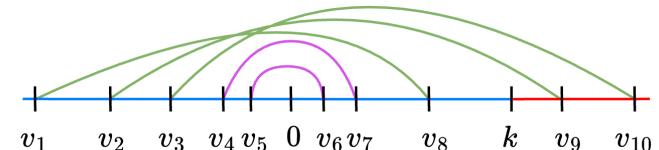


G S-shaped \rightarrow

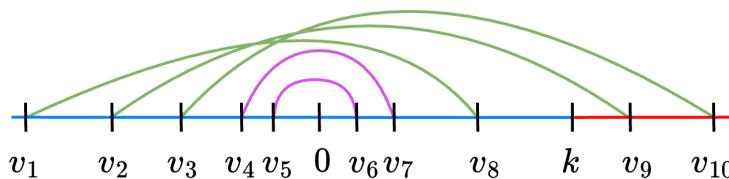
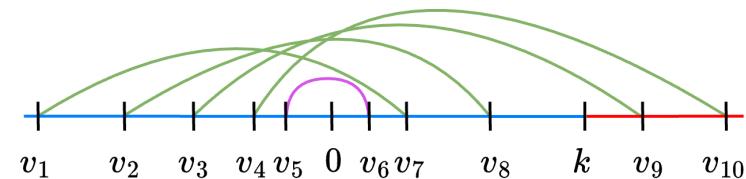
convex if $\underbrace{2v' - v'' - k < 0}_{\text{District lost when } \omega=0} \rightarrow$



- Solution is a combination of **positive** and **negative** assortative matching
- ...But which one?



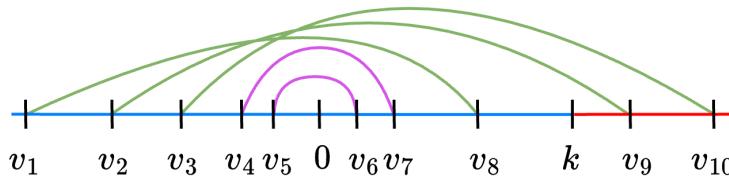
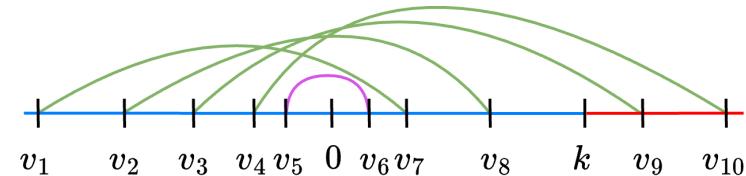
THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK



Option 1 Fewer **positive** matches, but
with higher distance each

Option 2 More **positive** matches, but
with lower distance each

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK



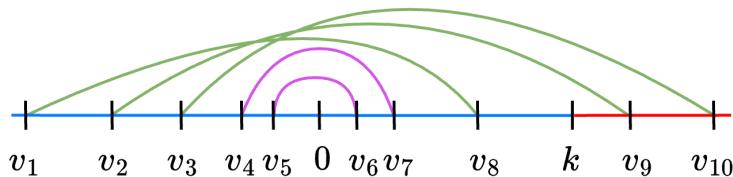
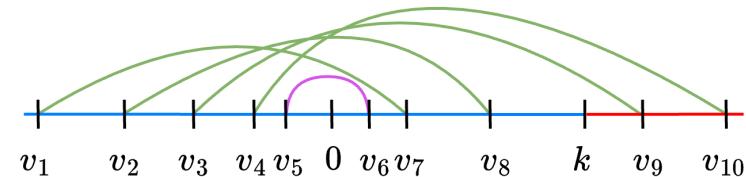
Option 1 Fewer positive matches, but
with higher distance each
safer when bad ω

Fewer won when $\omega=0$

More won when $\omega=0$

Option 2 More positive matches, but
with lower distance each
riskier when bad ω

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

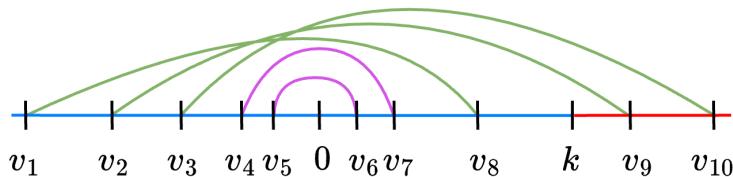
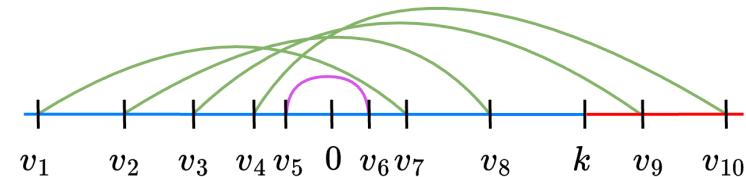


Option 1 $\overbrace{\text{Fewer positive matches, but with higher distance each}}^{\text{Fewer won when } \omega=0}$ $\overbrace{\text{safer when bad } \omega}$

More won when $\omega=0$ $\overbrace{\text{More positive matches, but with lower distance each}}^{\text{riskier when bad } \omega}$

G symmetric \rightarrow Option 2

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK



Option 1 $\overbrace{\text{Fewer positive matches, but with higher distance each}}^{\text{Fewer won when } \omega=0}$
 $\overbrace{\text{safer when bad } \omega}$

Option 2 $\overbrace{\text{More positive matches, but with lower distance each}}^{\text{More won when } \omega=0}$
 $\overbrace{\text{riskier when bad } \omega}$

G symmetric \rightarrow Option 2

Intuition: OTP linear in number of districts won + symmetry \rightarrow As if shock doesn't matter

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

Theorem 2

There is a unique solution τ to OTP. Moreover, τ is such that:

- $\tau = \alpha\tau^+ + (1 - \alpha)\tau^-$ for appropriate:
 - $\alpha \in [0, 1]$
 - τ^+ positive assortative
 - τ^- negative assortative
- There is $v', v'' \in \text{supp}(\tau^+)$ such that $(1 - \alpha)(2v' - v'' - k) = 0$

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

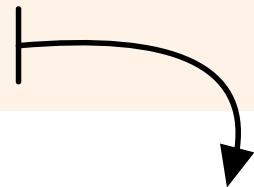
Theorem 2

There is a unique solution τ to OTP. Moreover, τ is such that:

- $\tau = \alpha\tau^+ + (1 - \alpha)\tau^-$ for appropriate:

- $\alpha \in [0, 1]$
- τ^+ *positive assortative*
- τ^- *negative assortative*

- There is $v', v'' \in \text{supp}(\tau^+)$ such that $(1 - \alpha)(2v' - v'' - k) = 0$



FOC: Either $\tau = \tau^+$ or $2v' - v'' - k \geq 0$ binding for at least one v', v''

THEOREM 2: S-SHAPED AND SYMMETRIC SHOCK

Theorem 2

There is a unique solution τ to OTP. Moreover, τ is such that:

- $\tau = \alpha\tau^+ + (1 - \alpha)\tau^-$ for appropriate:

- $\alpha \in [0, 1]$
- τ^+ positive assortative
- τ^- negative assortative

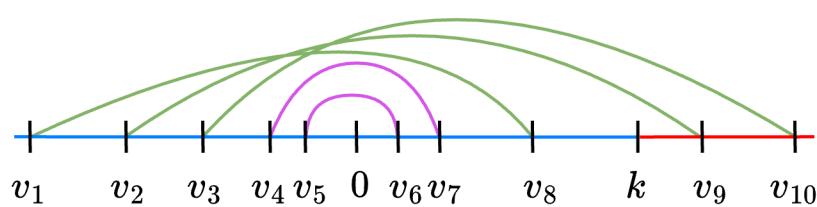
- There is $v', v'' \in \text{supp}(\tau^+)$ such that $(1 - \alpha)(2v' - v'' - k) = 0$

FOC: Either $\tau = \tau^+$ or $2v' - v'' - k \geq 0$ binding for at least one v', v''

Intuitively: Solution must “maximize” positive assortative matches

COMPARATIVE STATICs AND IMPLICATIONS FOR THE U.S. HOUSE

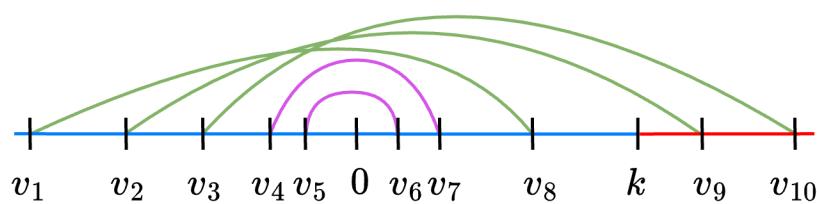
SOME COMPARATIVE STATICS



There is a unique solution τ to OTP:

- $\tau = \alpha\tau^+ + (1 - \alpha)\tau^-$
- There is $v', v'' \in \text{supp}(\tau^+)$ such that $(1 - \alpha)(2v' - v'' - k) = 0$

SOME COMPARATIVE STATICS

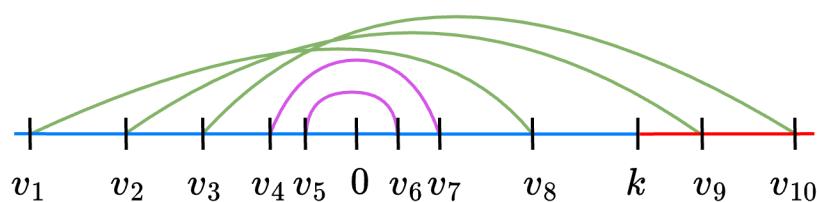


There is a unique solution τ to OTP:

- $\tau = \alpha\tau^+ + (1 - \alpha)\tau^-$
- There is $v', v'' \in \text{supp}(\tau^+)$ such that $(1 - \alpha)(2v' - v'' - k) = 0$

- More Republican voters in $\phi \rightarrow$ More positive matches \rightarrow Better for designer

SOME COMPARATIVE STATICS

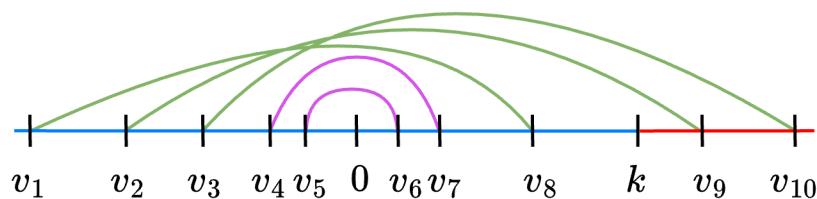


There is a unique solution τ to OTP:

- $\tau = \alpha\tau^+ + (1 - \alpha)\tau^-$
- There is $v', v'' \in \text{supp}(\tau^+)$ such that $(1 - \alpha)(2v' - v'' - k) = 0$

- More Republican voters in $\phi \rightarrow$ More positive matches \rightarrow Better for designer
- Median preserving spread of $\phi \rightarrow$ More positive matches \rightarrow Better for designer

SOME COMPARATIVE STATICS



There is a unique solution τ to OTP:

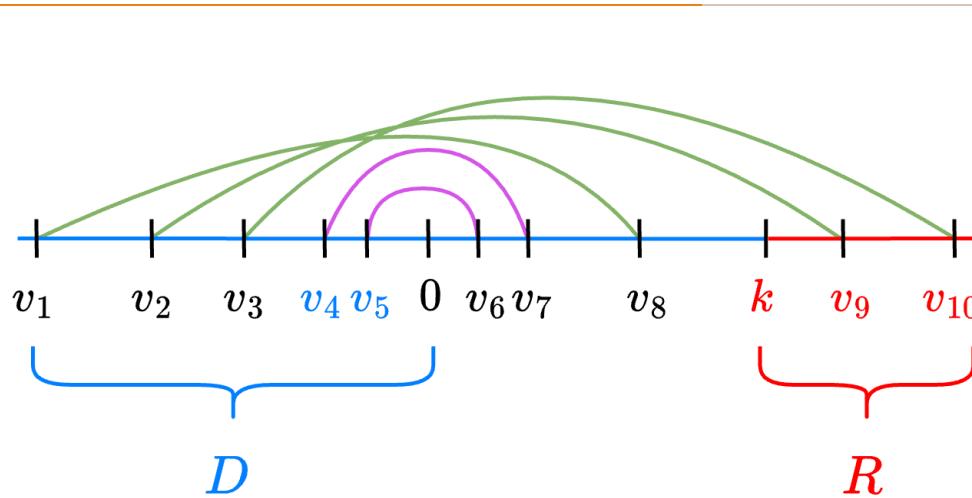
- $\tau = \alpha\tau^+ + (1 - \alpha)\tau^-$
- There is $v', v'' \in \text{supp}(\tau^+)$ such that $(1 - \alpha)(2v' - v'' - k) = 0$

- More Republican voters in $\phi \rightarrow$ More positive matches \rightarrow Better for designer
- Median preserving spread of $\phi \rightarrow$ More positive matches \rightarrow Better for designer

Corollary 1

If ϕ is “spread out” enough, the designer wins ALL districts

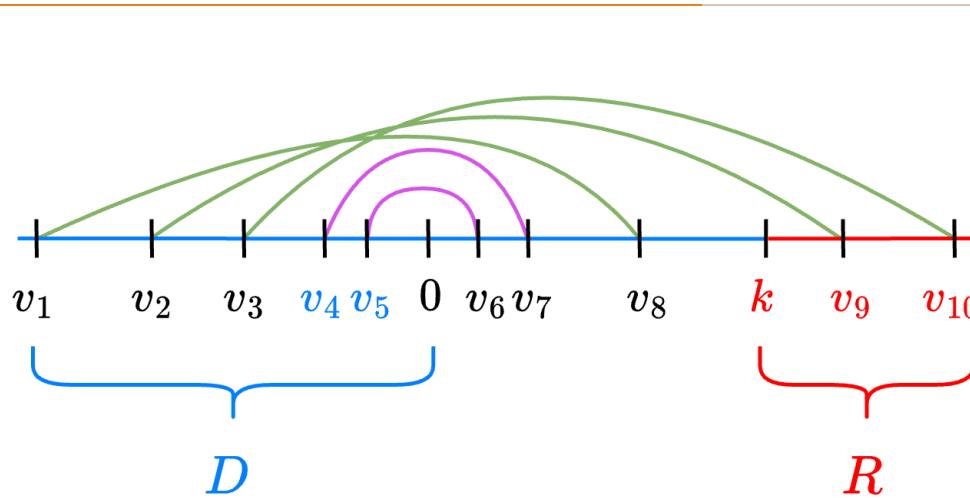
POLARIZATION IN THE U.S. HOUSE



Proposition 2

*Distribution of representatives has a **gap** in $[-\omega, k]$*

POLARIZATION IN THE U.S. HOUSE



Proposition 2

*Distribution of representatives has a **gap** in $[-\omega, k]$*

Dilution of moderate voters' power

EXTENSIONS

EXTENSIONS

Primary Elections

- Convex combination of party medians and median → same characterization
- Different **party quantile** q → “three-wise matching” (in the paper)

Objective Function

- Designer has **policy preferences** → pack supporters
- **Majoritarian objective** → non-linear OT → More **negative** assortment

Other

- Idiosyncratic uncertainty → means instead of medians
- Exogenous/Endogenous turnout

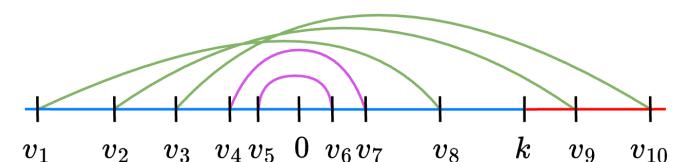
CONCLUSIONS

RECAP

Optimal redistricting with endogenous candidates' positions

- Designer's objective depends on districts' medians **AND** conditional medians

→ **optimal transport** characterization:



- Standard gerrymandering can **backfire**
- Designer exploits extreme opponents to turn moderate opponents into supporters

**Some
Implications:**

More spread out electorate
→ stronger gerrymandering

Polarized U.S. House

FOR FUTURE RESEARCH

- **Empirical follow-up:** “Supply Responses to Redistricting” (with Herman and Longuet-Marx)
 - Preliminary findings: candidates respond to district composition

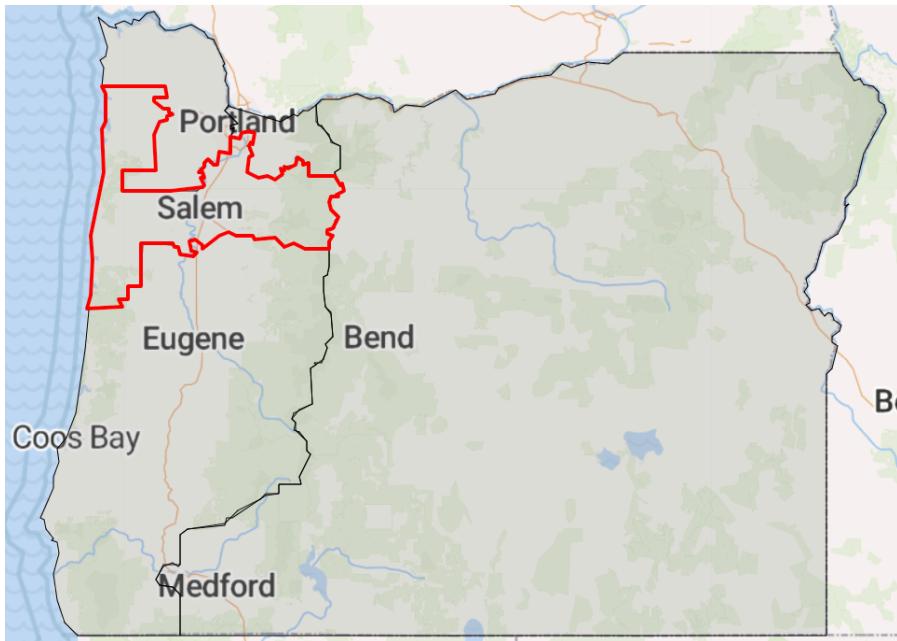
Application to other contexts

- Agenda setting in groups
- Information design with dependence on more than one statistic
 - Multiple signals
 - Behavioral preferences

EXTRA

CASE STUDY: OREGON 5th CONGRESSIONAL DISTRICT

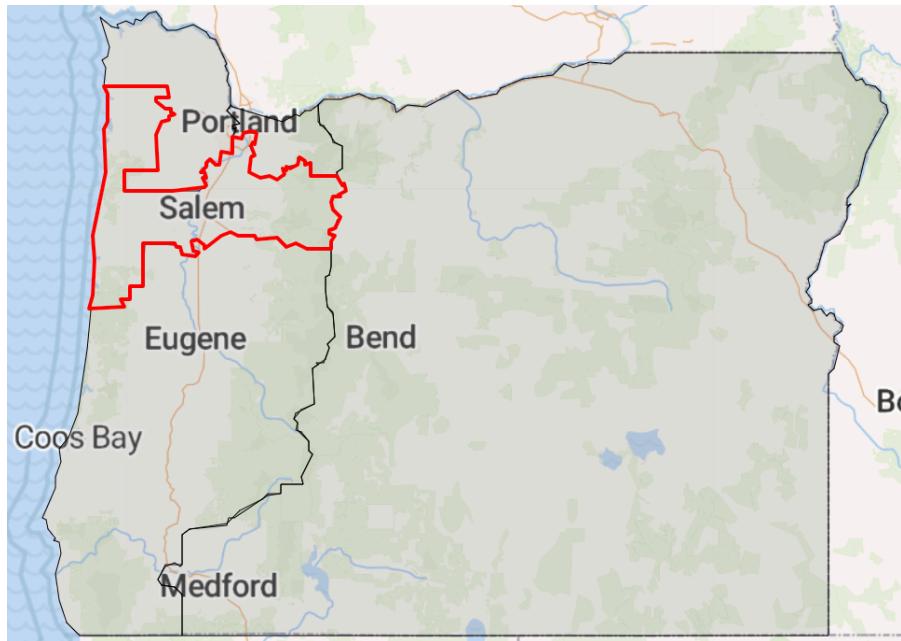
Until January 2, 2023



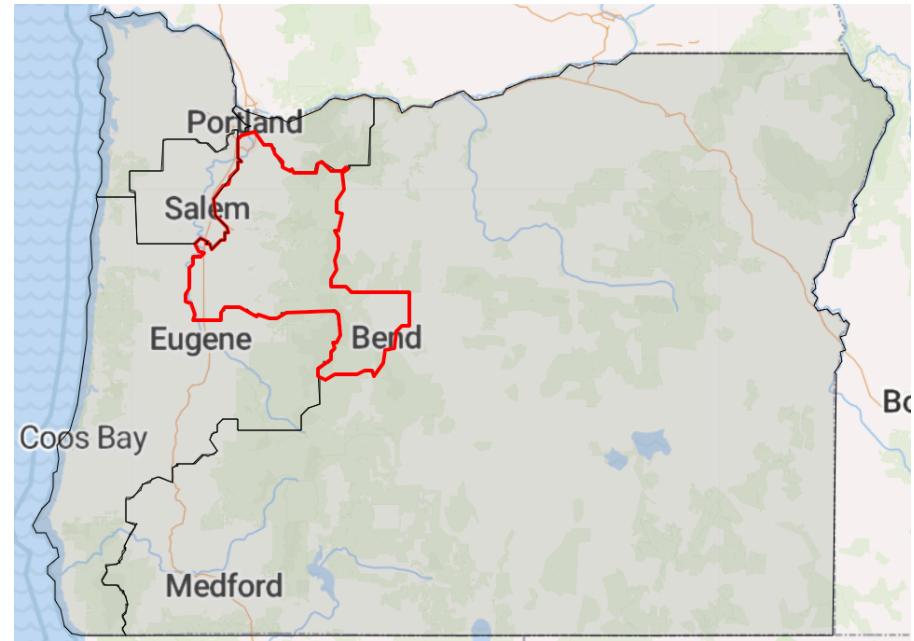
- Democratic gerrymandering
- 53.6% vs 43.9%
- 7th term incumbent *Kurt Shrader*
- Moderate Democrat, endorsed by Biden

CASE STUDY: OREGON 5th CONGRESSIONAL DISTRICT

Until January 2, 2023



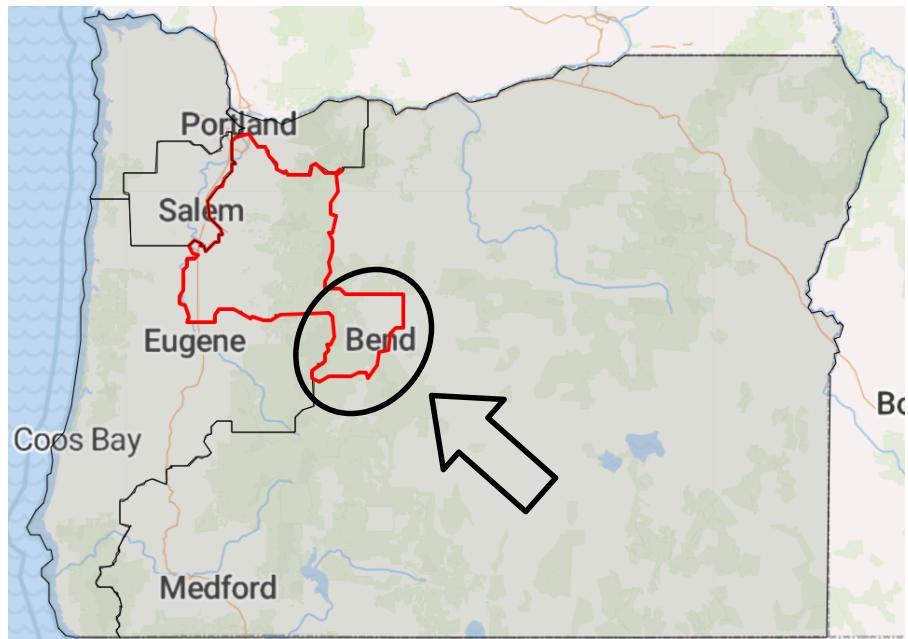
From January 3, 2023



CASE STUDY: OREGON 5th CONGRESSIONAL DISTRICT

From January 3, 2023

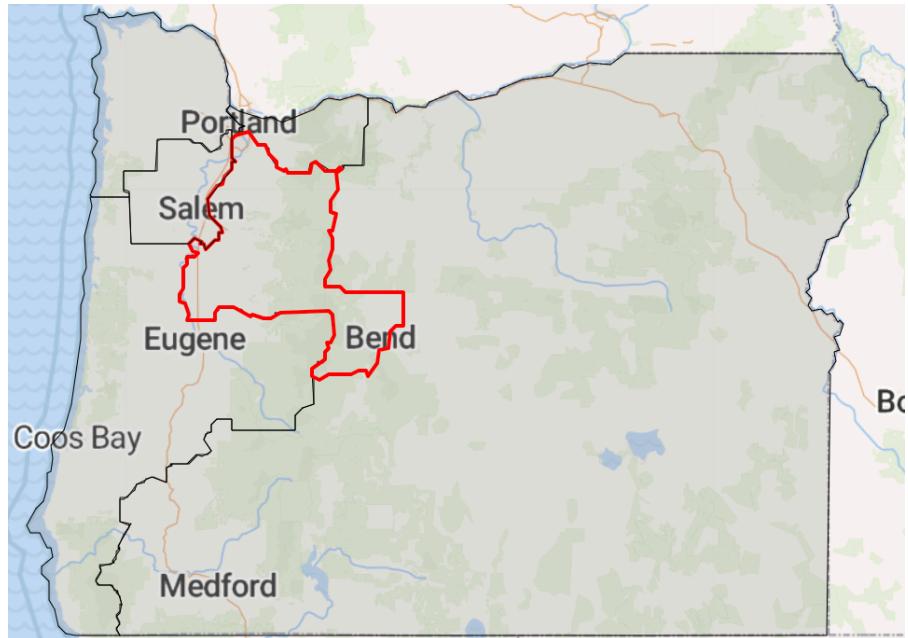
- Democratic gerrymandering
- 53.2% vs 44.4%
- **Progressive** Democrat *Jamie McLeod-Skinner* has 40 points advantage in Deschute county over incumbent



CASE STUDY: OREGON 5th CONGRESSIONAL DISTRICT

From January 3, 2023

- Shrader loses the Democratic primary to McLeod-Skinner
- McLeod-Skinner loses general elections to **moderate** Republican *Lori Chavez-DeRemer*

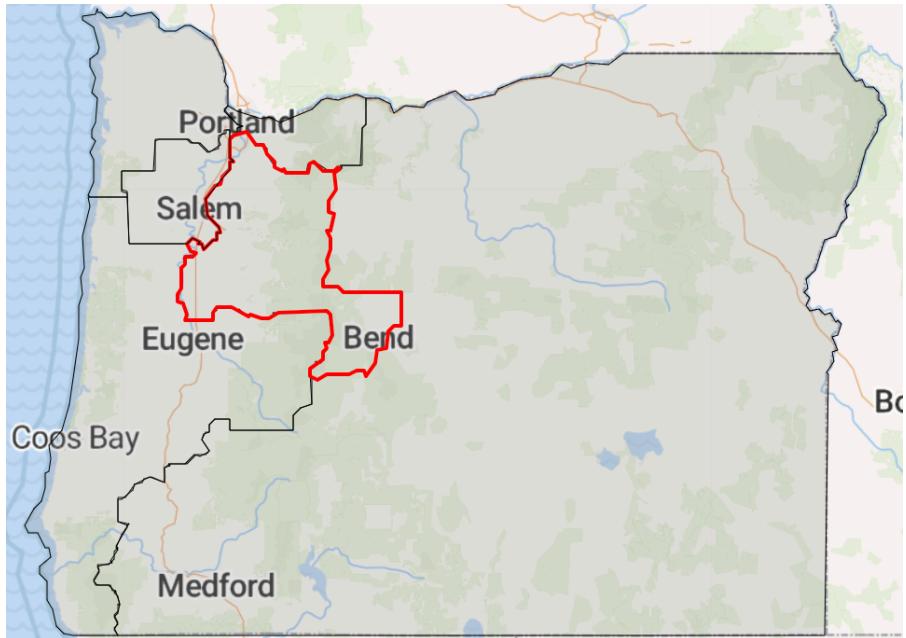


CASE STUDY: OREGON 5th CONGRESSIONAL DISTRICT

Democrats ate their own [...] and now a standout Republican candidate will face-off against a far-too-liberal activist in Jamie McLeod-Skinner.

- Dan Conston for The Washington Post

From January 3, 2023

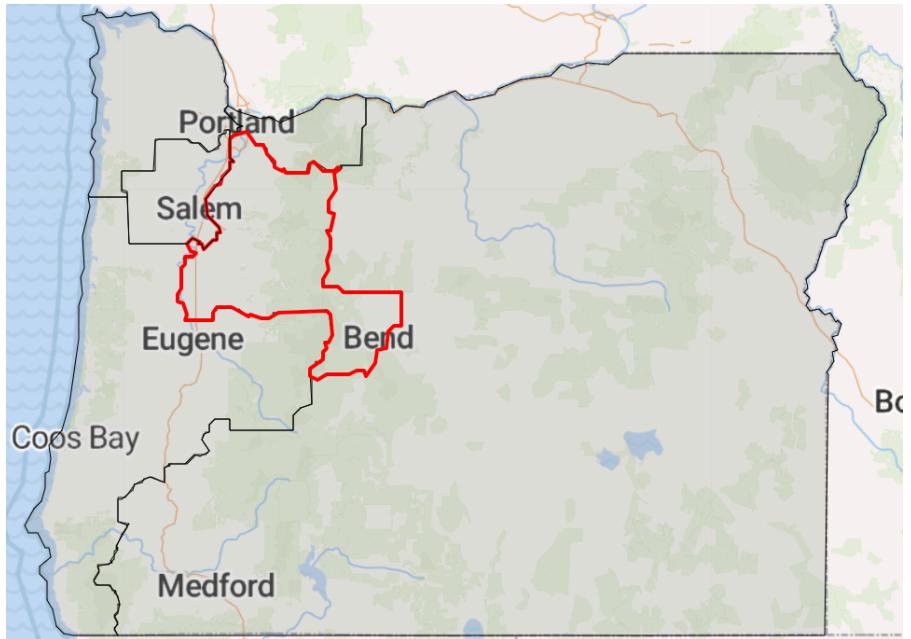


CASE STUDY: OREGON 5th CONGRESSIONAL DISTRICT

Democrats ate their own [...] and now a standout Republican candidate will face-off against a far-too-liberal activist in Jamie McLeod-Skinner.

- Dan Conston for The Washington Post

From January 3, 2023



Is gerrymandering less powerful than we thought?

ELECTIONS IN DISTRICT π : PRIMARIES

- Primary positions:

$$(c_{\pi,D}, c_{\pi,R}) = \begin{cases} (v_{\pi,D}^m, k) & \text{if } \text{supp } \pi \subseteq (-\infty, 0] \\ (k, v_{\pi,R}^m) & \text{if } \text{supp } \pi \subseteq [0, \infty) \\ (v_{\pi,D}^m, v_{\pi,R}^m) & \text{otherwise} \end{cases}$$

- $v_{\pi,D}^m$ the lowest median of π conditional on $v < 0$
- $v_{\pi,R}^m$ the highest median of π conditional on $v \geq 0$

ELECTIONS IN DISTRICT π : GENERAL ELECTIONS

- **General elections:** Voters vote for the candidate closer to them
- v_π^m highest median of π . Then:

$$c_P = \begin{cases} c_{\pi,D} & \text{if } v_\pi^m < \frac{c_{\pi,R} + c_{\pi,D}}{2} \\ c_{\pi,R} & \text{if } v_\pi^m \geq \frac{c_{\pi,R} + c_{\pi,D}}{2} \end{cases}$$

ELECTIONS IN DISTRICT π : MICROFOUNDATIONS

- Single-peaked voters' utilities $u(\cdot, v_i)$, $v_i \in [\underline{v}, \bar{v}]$
 - v_π^m median
 - $v_{\pi,R}^m$ median given $v_i \geq k$
 - $v_{\pi,D}^m$ median given $v_i < k$
- Two candidates per party, purely office motivated, commit to policy before elections
- Voters and candidates believe v_π^m to have distribution $H \in \Delta([\underline{v}, \bar{v}])$
 - In addition, candidates know $v_{\pi,R}^m, v_{\pi,D}^m$

ELECTIONS IN DISTRICT π : MICROFOUNDATIONS

Primary Elections

- Given position y of opposing nominee, voter t votes for candidate maximizing

$$U(x; y, t) = u(x, t)p(x, y) + u(y, t)(1 - p(x, y))$$

where $p(x, y)$ probability of x winning against y

General Election

- Voters vote for candidate closer to them

ELECTIONS IN DISTRICT π : MICROFOUNDATIONS

Linear setting

Suppose $u(x, v_i) = -|x - v_i|$ and H is uniform on $[\underline{v}, \bar{v}]$

Proposition 3

There exists a unique Nash equilibrium where the Republican and Democratic candidates set positions $c_{\pi,R} = v_{\pi,R}^m$ and $c_{\pi,D} = v_{\pi,D}^m$, respectively.

ELECTIONS IN DISTRICT π : MICROFOUNDATIONS

Convex setting

$$u(x, v_i) = e^{-\alpha|x - v_i|}, \alpha > 0, H \sim \mathcal{N}(v_\pi^m, \sigma)$$

Proposition 4 (Owen and Grofman (2006))

If $\sigma \geq \frac{\max\{1 - e^{1-\alpha(v_\pi^m - v_{\pi,D}^m)}, 1 - e^{\alpha(v_{\pi,R}^m - v_\pi^m)}\}}{\alpha\sqrt{2\pi}}$, there exists a unique Nash equilibrium where the Republican and Democratic candidates set positions $c_{\pi,R} = v_{\pi,R}^m$ and $c_{\pi,D} = v_{\pi,D}^m$, respectively.

◀ Return

PROOF SKETCH: STEP 1

Intuition:

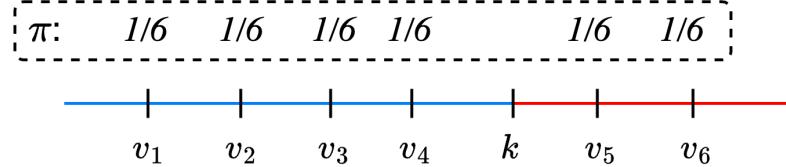
Step 1 For any district π , $\exists v', v''$:

$$\text{supp}(\pi) = \{v', v''\}$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

PROOF SKETCH: STEP 1

Intuition:



Step 1 For any district π , $\exists v', v''$:

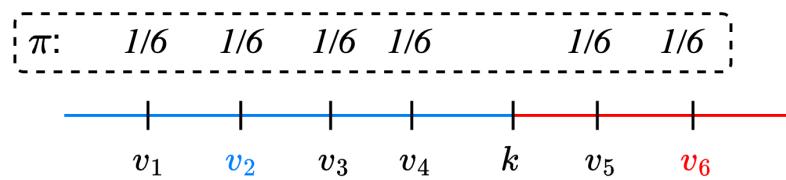
$$\text{supp}(\pi) = \{v', v''\}$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

suppose $|\text{supp}(\pi)| > 2$

PROOF SKETCH: STEP 1

Intuition:



Step 1 For any district π , $\exists v', v''$:

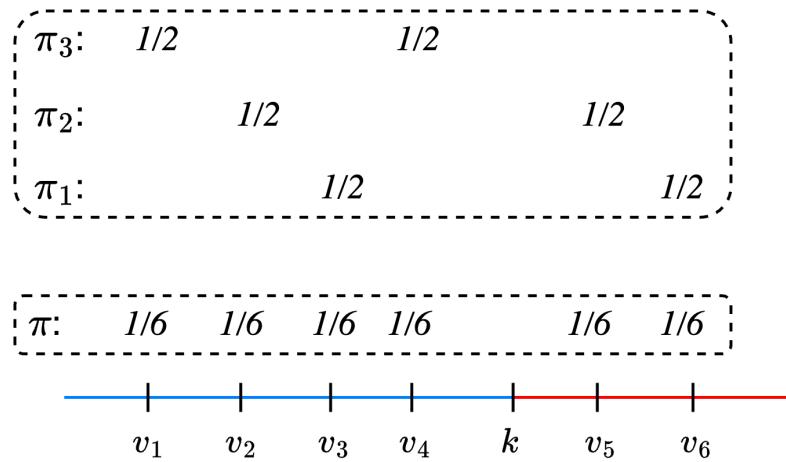
$$\text{supp}(\pi) = \{v', v''\}$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

$$c_{\pi,R} - v_{\pi}^m > v_{\pi}^m - c_{\pi,D} \rightarrow \pi \text{ is lost}$$

PROOF SKETCH: STEP 1

Intuition:



Step 1 For any district π , $\exists v', v''$:

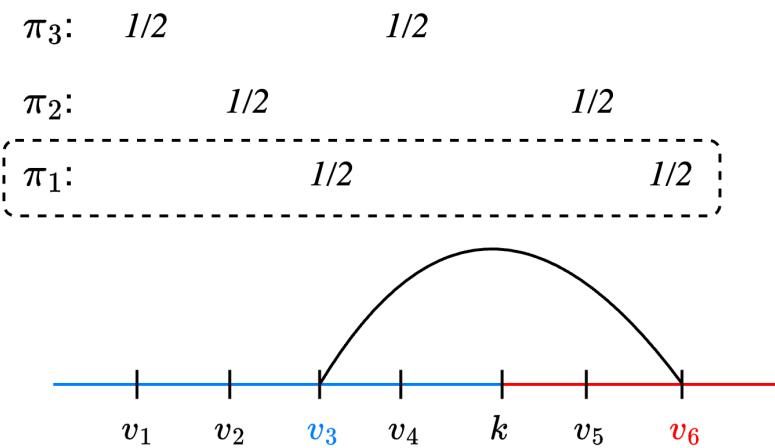
$$\text{supp}(\pi) = \{v', v''\}$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

can substitute π with π_1, π_2, π_3

PROOF SKETCH: STEP 1

Intuition:



$c_{\pi_1, R} = v_{\pi_1}^m \rightarrow \pi_1 \text{ is won}$

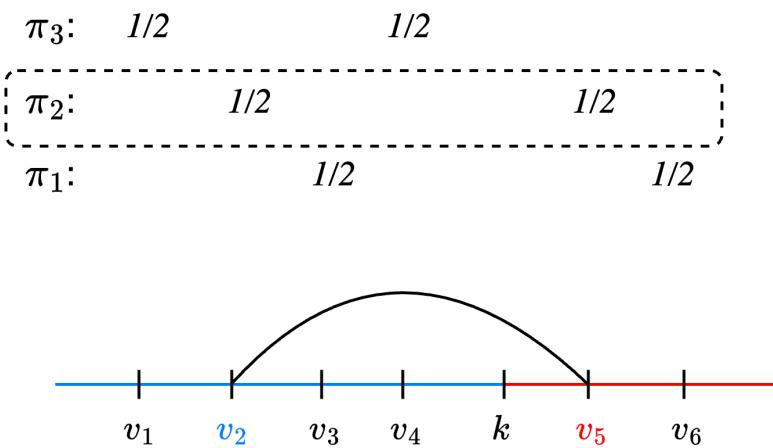
Step 1 For any district π , $\exists v', v'':$

$$\text{supp}(\pi) = \{v', v''\}$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

PROOF SKETCH: STEP 1

Intuition:



Step 1 For any district π , $\exists v', v'':$

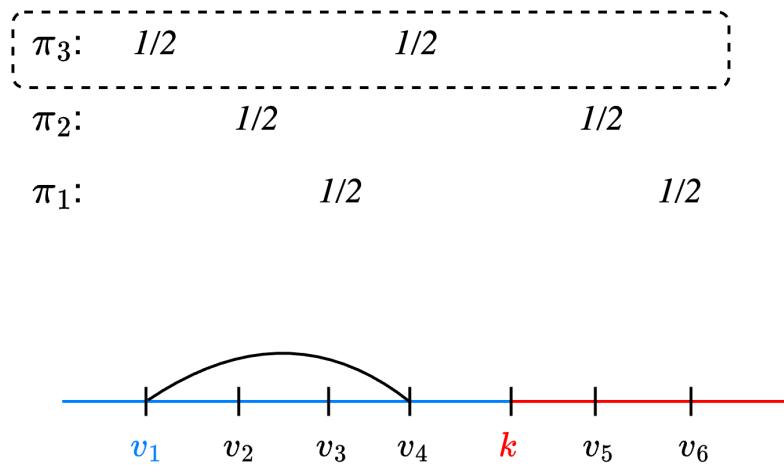
$$\text{supp}(\pi) = \{v', v''\}$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

$$c_{\pi_2, R} = v_{\pi_2}^m \rightarrow \pi_2 \text{ is won}$$

PROOF SKETCH: STEP 1

Intuition:



Step 1 For any district π , $\exists v', v'':$

$$\text{supp}(\pi) = \{v', v''\}$$

$$\pi(\{v'\}) = \pi(\{v''\})$$

$$C_{\pi_3, R} - V_{\pi_3}^m < V_{\pi_3}^m - C_{\pi_3, D} \rightarrow \pi_3 \text{ is won}$$

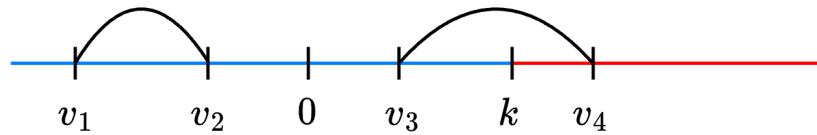
PROOF SKETCH: STEP 2

Intuition:

Step 2 $v' \geq 0 \geq v''$

PROOF SKETCH: STEP 2

Intuition:

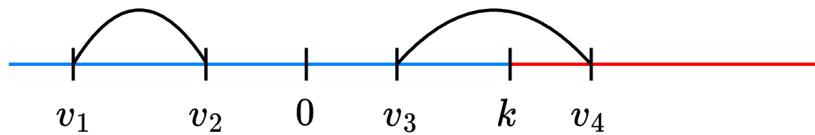


Only district with v_3, v_4 is won

Step 2 $v' \geq 0 \geq v''$

PROOF SKETCH: STEP 2

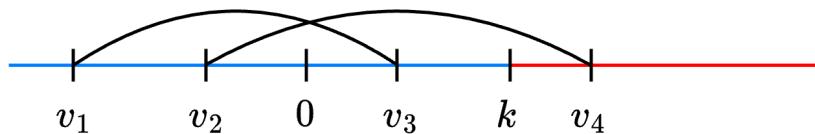
Intuition:



Only district with v_3, v_4 is won

Step 2 $v' \geq 0 \geq v''$

◀ Return



Both districts are won

REDUCTION TO OPTIMAL TRANSPORT PROBLEM

- Define $\phi' = \phi(\cdot | v \geq v^m)$ and $\phi'' = \phi(\cdot | v \leq v^m)$
- $\mathcal{M}(\phi', \phi'')$ set of joint distributions over v', v'' with marginals ϕ', ϕ''
- Designer's problem becomes:

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int \int \mathbb{1}(v' - \omega \geq k) + \mathbb{1}(v' - \omega < k) \mathbb{1} \left(v' - \omega - \frac{v'' - \omega}{2} \geq k \right) d\gamma(\omega) d\tau(v', v'')$$

REDUCTION TO OPTIMAL TRANSPORT PROBLEM

- Define $\phi' = \phi(\cdot | v \geq v^m)$ and $\phi'' = \phi(\cdot | v \leq v^m)$
- $\mathcal{M}(\phi', \phi'')$ set of joint distributions over v', v'' with marginals ϕ', ϕ''
- Designer's problem becomes:

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(v' - k) + \int \mathbb{1}(v' - \omega < k) \mathbb{1} \left(v' - \omega - \frac{v'' - \omega}{2} \geq k \right) d\gamma(\omega) d\tau(v', v'')$$

REDUCTION TO OPTIMAL TRANSPORT PROBLEM

- Define $\phi' = \phi(\cdot | v \geq v^m)$ and $\phi'' = \phi(\cdot | v \leq v^m)$
- $\mathcal{M}(\phi', \phi'')$ set of joint distributions over v', v'' with marginals ϕ', ϕ''
- Designer's problem becomes:

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(v' - k) + G(2v' - v'' - k) - G(v' - k) d\tau(v', v'')$$

REDUCTION TO OPTIMAL TRANSPORT PROBLEM

- Define $\phi' = \phi(\cdot | v \geq v^m)$ and $\phi'' = \phi(\cdot | v \leq v^m)$
- $\mathcal{M}(\phi', \phi'')$ set of joint distributions over v', v'' with marginals ϕ', ϕ''
- Designer's problem becomes:

$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(2v' - v'' - k) d\tau(v', v'') \quad (\text{OTP})$$

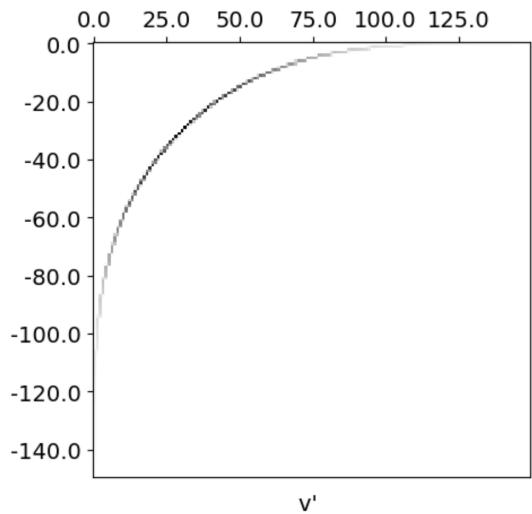
REDUCTION TO OPTIMAL TRANSPORT PROBLEM

- Define $\phi' = \phi(\cdot | v \geq v^m)$ and $\phi'' = \phi(\cdot | v \leq v^m)$
- $\mathcal{M}(\phi', \phi'')$ set of joint distributions over v', v'' with marginals ϕ', ϕ''
- Designer's problem becomes:

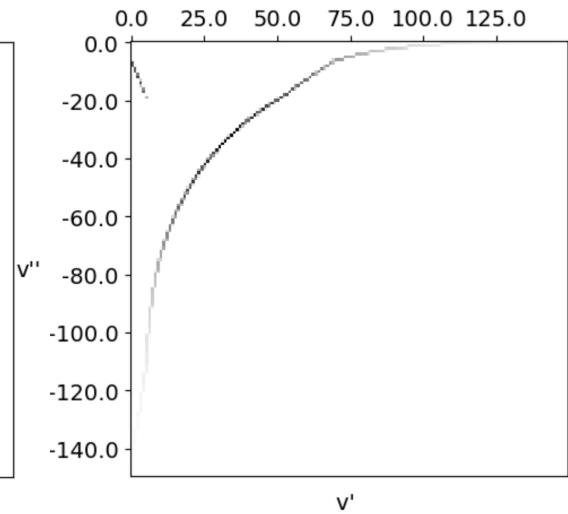
$$\max_{\tau \in \mathcal{M}(\phi', \phi'')} \int G(2v' - v'' - k) d\tau(v', v'') \quad (\text{OTP})$$

◀ Return

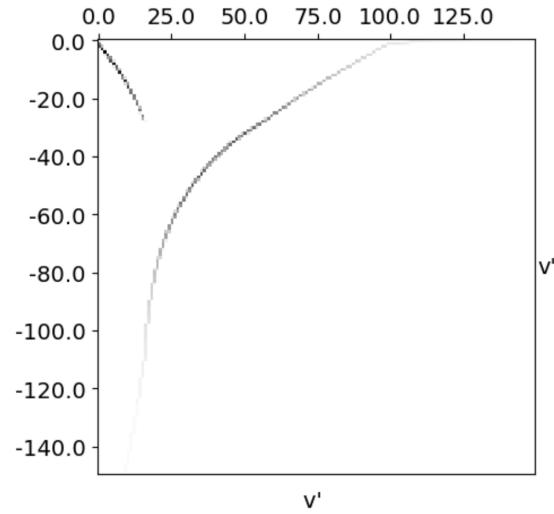
EXAMPLE WITH NORMAL SHOCK



(a) $k=60$



(b) $k=75$



(c) $k=100$

Solution for simulated F normal, G normal

REFERENCES

CHIAPPORI, P.-A., R. J. McCANN, AND L. P. NESHEIM (2010): “Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness,” *Economic Theory*, 42, 317–354.

FRIEDMAN, J. N. AND R. T. HOLDEN (2008): “Optimal gerrymandering: sometimes pack, but never crack,” *American Economic Review*, 98, 113–44.

GUL, F. AND W. PESENDORFER (2010): “Strategic redistricting,” *American Economic Review*, 100, 1616–41.

KAMENICA, E. AND M. GENTZKOW (2011): “Bayesian persuasion,” *American Economic Review*, 101, 2590–2615.

REFERENCES II

KANTOROVICH, L. V. (1942): “On the translocation of masses,” in *Dokl. Akad. Nauk. USSR (NS)*, vol. 37, 199–201.

KOLOTILIN, A. AND A. WOLITZKY (2024): “The economics of partisan gerrymandering” .

MONGE, G. (1781): “Mémoire sur la théorie des déblais et des remblais,” *Mem. Math. Phys. Acad. Royale Sci.*, 666–704.

OWEN, G. AND B. GROFMAN (1988): “Optimal partisan gerrymandering,” *Political Geography Quarterly*, 7, 5–22.

— (2006): “Two-stage electoral competition in two-party contests: persistent divergence of party positions,” *Social Choice and Welfare*, 26, 547–569.

REFERENCES III

SANTAMBROGIO, F. (2015): “Optimal transport for applied mathematicians,”
Birkhäuser, NY, 55, 94.

YANG, K. H. AND A. K. ZENTEFIS (2024): “Monotone Function Intervals: Theory and Applications,” *American Economic Review*, 114, 2239–2270.