

How Much Should We Spend to Reduce A.I.'s Existential Risk?

Chad Jones Stanford GSB

August 2025

Amazing progress in A.I.

- OpenAI, Anthropic, Deepmind
 - Coding, math, browsing the internet to write reports
 - Protein folding, understanding DNA, medical diagnoses
- Scaling compute + algorithms = ~10x each year
 - Huge opportunities could accelerate innovation and growth
- But also potentially large risks...
 - Highlighted by many experts (Hinton, Hassabis, Altman, Amodei, etc.)

Can we use economic analysis to think about the serious risks?

Two Versions of Existential Risk

Bad actors:

- Could use Claude/GPT-7 to cause harm
- E.g. design a new virus that is extremely lethal and takes 3 weeks for symptoms
- Nuclear weapons mangeable because so rare; if every person had them...

Alien intelligence:

- o How would we react to a spaceship near Pluto on the way to Earth?
- "How do we have power over entities more powerful than us, forever?"
 (Stuart Russell)

Outline

- Quick review of "The A.I. Dilemma" (2024 AERI)
- How much should we spend to reduce existential risk?
 - Covid-19 example
 - Using VSL (value of a statistical life) numbers
 - Model and calibration
 - Monte Carlo simulations to incorporate uncertainty regarding risk and effectiveness of mitigation

Even a selfish perspective suggests we are underinvesting in A.I. safety

Related Literature

- A.I. and Growth
 - Brynjolfsson-McAfee (2014), Aghion, Jones, and Jones (2019), Korinek-Trammell (2020), Nordhaus (2021), Acemoglu (2025), Jones-Tonetti (in progress)
 - Brynjolfsson, Korinek, and Agrawal (2024). Growiec and Prettner (2025)
- Costs of A.I.?
 - Acemoglu and Lensman (2024), Restrepo (2024), Autor and Thompson (2025)
 - o Jones (2016), Aschenbrenner (2024), Aschenbrenner and Trammell (2024)
- Catastrophic risks
 - Posner (2004), Matheny (2007), Ord (2020), MacAskill (2022), Shulman and Thornley (2025), Nielsen (2024)

A Thought Experiment (Jones, 2024 AERI)

- AGI more important than electricity, but more dangerous than nuclear weapons?
- The Oppenheimer Question:
 - If nothing goes wrong, AGI accelerates growth to 10% per year
 - But a one-time small chance that A.I. kills everyone
 - Develop or not? What risk are you willing to take: 1%? 10%?

What does standard economic analysis imply?

Findings:

- Log utility: Willing to take a 33% risk!
 (Maybe entrepreneurs are not very risk averse?)
- More risk averse ($\gamma = 2$ or 3), risk cutoff plummets to 2% or less
 - Diminishing returns to consumption
 - We do not need a 4th flat screen TV or a 3rd iphone.
 Need more years of life to enjoy already high living standards.
- But 10% growth ⇒ cure cancer, heart disease
 - Even $\gamma = 3$ willing to take large risks (25%) to cut mortality rates in half
 - Each person dies from cancer or dies from A.I. Just total risk that matters...
 - True even if the social discount rate falls to zero

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - A.I. risk is at least this large survey of experts: 5% median
 - ⇒ spend at least this much?
 - Are we massively underinvesting in mitigating this risk?

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - A.I. risk is at least this large survey of experts: 5% median
 - ⇒ spend at least this much?
 - Are we massively underinvesting in mitigating this risk?
- Better intuition
 - VSL = \$10 million
 - To avoid a mortality risk of 1% \Rightarrow WTP = 1% \times \$10 million = \$100,000
 - This is more than 100% of a year's per capita GDP
 - Xrisk over two decades ⇒ annual investment of 5% of GDP
- Large investments worthwhile, even with no value on future generations

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - A.I. risk is at least this large survey of experts: 5% median
 - ⇒ spend at least this much?
 - Are we massively underinvesting in mitigating this risk?
- Better intuition
 - VSL = \$10 million
 - To avoid a mortality risk of 1% \Rightarrow WTP = 1% \times \$10 million = \$100,000
 - This is more than 100% of a year's per capita GDP
 - Xrisk over two decades ⇒ annual investment of 5% of GDP
- Large investments worthwhile, even with no value on future generations

Incomplete so far: how effective is mitigation?

Model

Model

- Setup
 - o One-time existential risk at probability $\delta(x)$
 - One-time investment x to mitigate the risk ($\delta'(x) < 0$)
 - Exogenous endowment y_t (grows rapidly via A.I.)
- Optimal mitigation:

$$\max_{x_t} u(c_t) + (1 - \delta(x_t)) \, \beta \, V_{t+1}$$

$$s.t. \ c_t + x_t = y_t$$

$$V_{t+1} = \sum_{\tau=0}^{\infty} \beta^{\tau} u(y_{t+1+\tau}) \quad \text{(consume y_t in future)}$$

Optimal Mitigation

• FOC:

$$u'(c_t) = -\delta'(x_t)\beta V_{t+1}$$

• Let $\eta_{\delta,x} \equiv -rac{\delta'(x_t)x_t}{\delta(x_t)}$ and $s_t \equiv x_t/y_t$

$$\frac{s_t}{1-s_t} = \eta_{\delta,x} \times \delta(x_t) \times \beta \frac{V_{t+1}}{u'(c_t) c_t}$$
 effectiveness of spending of spending spending

• Taking the smallest numbers:

$$\frac{s}{1-s} \ge 0.01 \times 1\% \times 180 = 1.8\%$$

Additional considerations

- Future generations
 - So far, we place no value on future generations selfish perspective
 - \circ Easily included: add welfare of future generations W_{F} to V_{t+1}
- Other existential risks
 - Framework applied to A.I. but can be used to study other risks
 - \circ Competing risks: nuclear war, asteroid impact include in β

Functional forms

- Existential risk: $\delta(x) = (1 \phi)\delta_0 + \phi \delta_0 e^{-\alpha Nx}$
 - \circ δ_0 is the risk without mitigation
 - $\circ \phi$ is the share of the risk that can be eliminated by spending
 - with infinite spending, risk falls to $(1-\phi)\delta_0$
 - $\circ \ \alpha$ is the effectiveness of spending
 - N is the number of people each spending x
- To calibrate α :

$$\alpha N = -T \log(1 - \xi) \approx \xi T$$

 ξ is the share of the risk that can be eliminated by spending 100% of GDP for one year T is "time of perils" = years until risk gets realized (period length)

Calibration

$$\delta(x) = (1 - \phi)\delta_0 + \phi\delta_0 e^{-\alpha Nx}$$

	Parameter	Value	Distribution
Extinction risk, no mitigation	δ_0	1%	Uniform (0%, 2%)
Share that can be eliminated	ϕ	0.5	Uniform (0, 1)
Effectiveness of spending	ξ	0.5	Uniform (0, 0.99)
Value of life	$V_{t+1}/u'(y_t)y_t$	180	Uniform (0.5*180, 1.5*180)
Time of perils (period length)	T	10 years	Uniform (5, 20)
CRRA	heta	2	
Discount factor	eta	0.99^{T}	
Value of future generations	$W_{\scriptscriptstyle F}$	0	purely selfish for now

Baseline case: Spending a year's GDP reduces risk from 1% to 0.75%

Analytic Results and Intuition

Using the functional forms:

$$e^{lpha N x_t} = lpha N \phi \delta_0 \qquad \cdot \qquad eta rac{V_{t+1}}{u'(c_t)}$$
 effectiveness term value of life (in dollars)

Notice that $u'(c_t) = (y_t - x_t)^{-\theta}$, so RHS is decreasing in x.

Using approximations:

$$s \equiv rac{x_t}{y_t} pprox \phi \delta_0 eta rac{V_{t+1}}{u'(y_t)y_t} - rac{1}{\xi T y_t}$$
 WTP = willingness to pay effectiveness of mitigation

Intuition

$$s \equiv rac{x_t}{y_t} pprox \phi \delta_0 eta rac{V_{t+1}}{u'(y_t)y_t} - rac{1}{\xi T y_t}$$

WTP = willingness to pay effectiveness of mitigation

- WTP term (intuition from an early slides using VSL):
 - o T = 10, so 40 year old has 30 years remaining \Rightarrow VSL term = 120x consumption
 - $\phi = 1/2$ and $\delta_0 = 1\%$
 - WTP is $0.5 \times 1\% \times 120 = 60\%$ of GDP!
- Mitigation term: $\xi = 1/2$, T = 10, and $y_t = 1$ subtracts off 20%
- So approximation is 0.60-0.20=0.40, suggesting s=40% of GDP!
 - $\circ~$ Alternative: $\delta_0=0.5\% \Rightarrow s=10\%$ of GDP, very close to correct 8.3%

Optimal Spending to Reduce Existential Risk

When should we not invest in mitigation?

- From FOC: Do not invest if $u'(y_0) > -\delta'(0)\beta V_{t+1}$
- Using functional forms and approximations:

$$1 > \alpha N \cdot \phi \delta_0 \beta \frac{V_{t+1}}{u'(y_0)} \approx \underbrace{\xi \, T}_{\text{effectiveness of spending}} \cdot \underbrace{\phi \delta_0 \beta \frac{V_{t+1}}{u'(y_0)}}_{\text{WTP}}$$

$$= \text{EV of lives lost to x-risk}$$

$$\implies \xi \, T \cdot \text{WTP} < 1$$

- $\xi = 1/2$, T = 10, and WTP = 60% of GDP, LHS = 3
 - But ϕ or ξ or $\delta_0 \Rightarrow 5x$ smaller \Rightarrow invest zero (Little risk, or not much can be done)

When is optimal spending \geq 0.5% of GDP?

Monte Carlo Results

10 million simulations

Optimal Mitigation: Monte Carlo Simulation

Mean = 8%. 65% of runs have $s \ge 1\%$

Modest Altruism toward a Same-Size Future ($N_F = 1$)

Higher Potential Risk (δ_0 is Uniform[0,10%])

Summary Statistics for Monte Carlo Simulations

	Selfish baseline $(N_{\it F}=0) \ \delta_0 \sim {\tt Uniform[0,2\%]}$	Modest altruism $(N_{\scriptscriptstyle F}=1)$	Higher risk $(N_{\it F}=0) \ \delta_0 \sim {\tt Uniform[0,10\%]}$
Optimal share, mean	8.1%	18.4%	20.7%
Fraction with $s_t = 0$	33.1%	15.0%	12.8%
Fraction with $s_t \geq 1\%$	65.1%	84.2%	86.5%

Concluding Thoughts

- Straightforward to justify spending 1/3 of 1% of GDP on mitigation = \$100 billion
- What are some effective mitigation strategies?
 - Slow down and invest in safety research?
 - Focus on narrow A.I.? E.g. medical research
- How should we think about A.I. competition and race dynamics?
- How can we get A.I. labs to internalize the x-risk externalities?
 - Should we tax GPUs and use the revenue to fund safety research?