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Abstract

This paper examines how the emergence of transformative AI systems providing “genius on

demand” would affect knowledge worker allocation and labour market outcomes. We develop a

simplified model distinguishing between routine knowledge workers, who can only apply exist-

ing knowledge with some uncertainty, and genius workers, who create new knowledge at a cost

increasing with distance from a known point. When genius capacity is scarce, we find it should

be allocated primarily to questions at domain boundaries rather than at midpoints between

known answers. The introduction of AI geniuses fundamentally transforms this allocation. In

the short run, human geniuses specialise in questions that are furthest from existing knowledge,

where their comparative advantage over AI is greatest. In the long run, routine workers may be

completely displaced if AI efficiency approaches human genius efficiency. Journal of Economic
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1 Introduction

Recent advances in artificial intelligence (AI) have raised the prospect of machines with

extraordinary cognitive capabilities—systems that could fundamentally reshape labour mar-

kets by providing what Amodei (2024) describes as a “country of geniuses in a data center.”

Such systems, capable of applying and potentially creating knowledge across various domains,

raise a fundamental economic question: How would labour markets absorb such an influx

of cognitive capacity, and what would be the consequences for different types of knowledge

workers?

In order to analyse this question, it is important to distinguish geniuses from other

knowledge workers. In this regard, we are inspired by this story concerning the approach

taken by John von Neumann.

Then there is the famous fly puzzle. Two bicyclists start twenty miles apart and head
toward each other, each going at a steady rate of 10 m.p.h. At the same time a fly that
travels at a steady 15 m.p.h. starts from the front wheel of the southbound bicycle and
flies to the front wheel of the northbound one, then turns around and flies to the front
wheel of the southbound one again, and continues in this manner till he is crushed
between the two front wheels. Question: what total distance did the fly cover? The
slow way to find the answer is to calculate what distance the fly covers on the first,
northbound, leg of the trip, then on the second, southbound, leg, then on the third,
etc., etc., and, finally, to sum the infinite series so obtained. The quick way is to observe
that the bicycles meet exactly one hour after their start, so that the fly had just an
hour for his travels; the answer must therefore be 15 miles. When the question was put
to von Neumann, he solved it in an instant, and thereby disappointed the questioner:
“Oh, you must have heard the trick before!” “What trick?” asked von Neumann; “all
I did was sum the infinite series.” Halmos (1973), 386-287.

While normal mathematicians would use tricks to simplify a problem, von Neumann could

work from first principles. In effect, he reproduced the knowledge required to answer the

question. Our notion of a genius in this paper is similar. We focus on how knowledge is both

created and utilised by knowledge workers (including AIs) to impact decision-making. Rou-

tine workers rely on existing knowledge and draw inferences from that to answer questions.

Geniuses (human or AI) generate new but ephemeral knowledge to answer questions put to

them. Thus, routine workers and geniuses differ fundamentally in how they approach prob-

lems. Moreover, to align with Amodei’s conception, we assume that AI geniuses approach

problems in a similar manner to their human counterparts.

Using this distinction, we model how organisations allocate different knowledge worker

types to questions that arise. A key role is that of a manager who routes questions to the

appropriate type of worker, taking into account both their absolute advantage and, because
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specifically human geniuses are scarce, their comparative advantage. We characterise the

optimal routing rule that maximises the total value of answers provided. Importantly, our

framework shows how routine and genius workers, approaching questions differently, have

value generated with distinct curvature implications across the space of possible questions.

This drives their allocation to question types.

Following this, using this same setup, we examine the short and long-run impacts of

an influx of AI geniuses. The short run is characterised by the manager not altering their

pre-AI allocation rule and allocating AI geniuses to genius-type questions along with human

geniuses. We show that this pushes human geniuses to tackle more novel questions. In the

long run, the AI geniuses are shown to displace routine work as the manager adjusts their

routing rule accordingly. The short and long-run framing allows us to consider the path by

which AI geniuses might impact knowledge work.

The paper builds on the model of Carnehl and Schneider (2025) that provides a micro-

foundation for how knowledge is used in decision-making. Gans (2025b) applies their model

to understand the role of AI but as a decision-assistant rather than as a Amodei type genius

and focuses on what this does for the creation of knowledge itself. While here, AI is used as

an autonomous genius knowledge worker, it differs from approaches such as Acemoglu and

Restrepo (2018), moving beyond a simple substitution of labour for capital. The closest work

is that of Ide and Talamas (2025), who similarly consider the impact of AI on knowledge

workers. They, however, endow different workers (and AI) with differing degrees of knowl-

edge and explore hierarchical knowledge processing (a la Garicano (2000)) as a foundation,

whereas the model here considers agents that process existing knowledge (available to all)

in different ways.

The remainder of the paper is organised as follows. Section 2 presents the model, building

on the Carnehl and Schneider (2025) framework of knowledge as question-answer pairs but

simplifying to a single knowledge point. Section 3 defines the two types of knowledge workers

and their capabilities. Section 4 formulates the manager’s problem and derives the optimal

routing rule. Section 5 introduces AI geniuses and analyses their impact on worker allocation

in both the short and long run. Section 6 concludes with directions for future research.

2 Model Setup

To analyse how transformative AI might reshape knowledge worker allocation, we require a

framework that precisely captures the relationship between knowledge, uncertainty, and value

creation. Our approach builds on a microfounded model of knowledge that explicitly connects

the structure of what is known to the value of what can be produced. This microfoundation
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is essential for understanding knowledge work, where value derives not from physical output

but from the quality of decisions made under uncertainty.

2.1 Knowledge Structure and Uncertainty

Following Carnehl and Schneider (2025), we model knowledge as a collection of question-

answer pairs distributed along the real line. Each question x ∈ R has a unique answer

y(x) ∈ R. The true answers to questions are determined by a realisation of a standard

Brownian motion, with y(0) = 0 as a normalisation. This structure captures the intuitive

notion that questions that are “close” to each other tend to have related answers, with the

relationship becoming more uncertain as the distance between them increases.

In our simplified model, we assume knowledge consists of a single known question-answer

pair, denoted by Ft = {(x0, y(x0))}. For questions that haven’t yet been answered, agents

can form conjectures based on existing knowledge. For a question x located at some distance

from the known point x0, the conjecture follows a normal distribution with mean:

µx(Ft) = y(x0) (1)

and variance:

σ2
x(Ft) = |x− x0| (2)

This formulation captures a fundamental characteristic of knowledge: uncertainty (variance)

is lowest at the known point and increases linearly with distance from the known point. This

pattern of uncertainty mirrors real-world scenarios, where extrapolating from established

knowledge becomes increasingly difficult as one moves further from what is already known.

2.2 The Value of Knowledge in Decision-Making

The value of knowledge stems from its instrumental use in decision-making. Following the

decision-theoretic framework of Carnehl and Schneider (2025), we model the payoff structure

for decision-makers as follows: When confronted with a question at position x, a decision-

maker must choose whether to take an action a(x) or abstain (denoted as a(x) = ∅). The

payoff from taking an action is defined by a quadratic loss function:

u(a(x), x) =

0, if a(x) = ∅,

1− (a(x)−y(x))2

q
, if a(x) ∈ R.

(3)
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Here q > 0 is a critical parameter representing the importance of precision—or alternatively,

the strength of the outside option. When the uncertainty associated with a question exceeds

the threshold q, decision-makers rationally choose to abstain rather than risk making a highly

inaccurate decision.

Given this payoff structure, the optimal decision is to select a∗(x|Ft) = µx(y(x)|Ft) (the

expected value of the answer) provided that the uncertainty (variance) is sufficiently low:

σ2
x(Y |Ft) ≤ q. When this condition is met, the expected payoff from applying knowledge is:

V (x) = 1− σ2
x(y(x)|Ft)

q
(4)

This value function has important properties: it approaches 1 (maximum value) as un-

certainty approaches 0 (perfect knowledge) and decreases linearly toward 0 as uncertainty

approaches the threshold q.

2.3 Knowledge Domain and Regional Structure

For analytical tractability, we consider a bounded knowledge domain centred around our

single knowledge point x0. While the model here can easily accommodate arbitrary domains

with x0 asymmetrically located within them, for notational simplicity, it is assumed that the

domain over which questions arrive is uniformly distributed on [0, 1] with x0 =
1
2
.

We further assume that 1
2

> q, meaning that sufficiently far from the known point

(specifically in the regions [0, 1
2
− q] and [1

2
+ q, 1]), uncertainty exceeds the threshold q and

so routine workers would choose not to take an action in these regions.

These assumptions create a natural partition of the knowledge domain into three regions,

each with distinct characteristics regarding uncertainty and decision-making:

1. Region 1: [0, 1
2
− q] - Questions where uncertainty exceeds the threshold q, making

abstention optimal for routine workers.

2. Region 2: [1
2
− q, 1

2
+ q] - Questions where uncertainty increases with distance from x0

but remains below the threshold q.

3. Region 3: [1
2
+ q, 1] - Questions where uncertainty exceeds the threshold q, making

abstention optimal for routine workers.

This regional structure (see Figure 1) creates interesting patterns of comparative advantage

between different worker types, as we will explore in the next section.
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3 Types of Knowledge Workers

Our economy features three distinct types of economic agents in the knowledge production

and application process. First, routine workers possess specialised skills to apply existing

knowledge to questions that fall within established frameworks. Second, genius workers have

the unique ability to create new knowledge, enabling them to tackle questions that lie beyond

the frontier of what is currently understood. Finally, managers serve as allocators who

determine which questions should be routed to routine versus genius workers, maximising

the overall value of knowledge work subject to capacity constraints. In this section, we

elaborate on the capabilities, value functions, and real-world interpretations of each worker

type.

3.1 Routine Workers: Application of Existing Knowledge

Routine workers represent intellectual labour that applies existing knowledge to form con-

jectures about questions. These workers can be thought of as skilled practitioners who op-

erate within established paradigms—they extrapolate from what is known but do not create

fundamentally new knowledge. Examples include residents in medicine applying standard

differential diagnoses, paralegals applying precedent to routine cases, or software developers

implementing known algorithms for familiar problem types.

Mathematically, routine workers follow the decision-making framework described in the

previous section. For a question at position x, a routine worker:

1. Forms a conjecture based on existing knowledge, with mean µx(Ft) and variance σ2
x(Ft)

2. Provides an answer if and only if σ2
x(Ft) ≤ q, otherwise abstains

3. When answering, provides the expected value µx(Ft) as the answer

4. Generates a value of 1− σ2
x(Ft)
q

when answering, and 0 when abstaining

Critically, routine workers cannot provide valuable answers to questions in Regions 1 and 3,

where uncertainty exceeds the threshold q. Their value contribution decreases linearly with

distance from the known point, reaching zero at the boundaries of Region 2.

For a question at position x, the value created by a routine worker is:

VR(x) =

1− |x−x0|
q

, if |x− x0| ≤ q,

0, otherwise.
(5)
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Figure 1: Decision-Making Value for Routine and Genius Workers

This value is depicted in Figure 1. A key characteristic of this value function is its linear

decrease with distance from the known point x0. Moreover, we assume that there is an

abundance of routine workers, i.e., LR ≥ 2q.

3.2 Genius Workers: Creative Knowledge Generation

Genius workers represent intellectual labour that creates new knowledge rather than merely

applying existing knowledge. These workers can be thought of as innovators, experts, or cre-

ative specialists who generate novel insights rather than extrapolating from what is already

known. Examples include specialist physicians diagnosing unusual presentations, senior at-

torneys developing novel legal theories, or research scientists creating new algorithms for

previously unsolved problems.

Unlike routine workers, genius workers can generate exact answers for any question,

including those in Regions 1 and 3 where uncertainty exceeds the threshold for routine

workers. However, creating new knowledge incurs a cost that increases with distance from

existing knowledge—the further from established knowledge, the more difficult and resource-

intensive the creative process becomes.

Genius workers create new knowledge to answer questions. However, their ability to do

so is anchored in existing (public) knowledge, x0. We model this by assuming that when

genius workers receive questions, x, that are increasingly distant from the type that would be

answered by existing knowledge, the cost of producing the knowledge to answer the question

posed increases. Thus, for a question at position x, the cost of creating knowledge at this

point derives from the distance from the known point:
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Cost(x) = η · (x− x0)
2 (6)

where η > 0 is a cost parameter that reflects the difficulty of creating new knowledge. This

quadratic cost function captures the intuition that creating knowledge becomes progressively

more difficult as one moves further from what is already known.1

The net value created by a genius worker answering a question at position x is therefore:

VG(x) = 1− Cost(x) = 1− η · (x− x0)
2 (7)

This is also depicted in Figure 1. This quadratic cost structure creates a value function that

decreases more rapidly with distance than that of routine workers, but maintains positive

contributions across the entire domain for appropriate parameter values. It is assumed

here that geniuses can answer questions over the entire domain [0, 1] by assuming that

1− η 1
4
≥ 0 ⇔ η ≤ 4.2

3.3 Marginal Effects from Known Knowledge Distance

The central distinction between routine and genius workers lies not just in their capabilities

(application versus creation of knowledge) but critically in the different ways their value

contributions change with distance from the known knowledge point. This difference in

value curvature fundamentally shapes the optimal allocation of workers across the knowledge

domain:

1. Routine Worker Value Curvature: The value function VR(x) exhibits linear decline

with distance from x0 through the term |x−x0|
q

. At the threshold distance q from the

known point, their value contribution drops to zero—a precipitous boundary beyond

which they cannot contribute.

2. Genius Worker Value Curvature: The value function VG(x) follows a quadratic

decline through the term η · (x− x0)
2. While their value also decreases with distance

1It is instructive to note that this ‘knowledge creation’ cost function differs from that utilised by Carnehl
and Schneider (2025). They consider new knowledge as arising out of a targeted search process and, con-
sequently, the costs of finding knowledge increase with the variance associated with the answer process
described earlier. That variance, as we already noted, is concave in the distance from existing knowledge,
which is what gives the routine worker value its linear shape. Here, however, we consider the generation of
new answers to questions posed as a result of cognitive effort or capacity, and, thus, it is appropriate that
the costs of doing so are convex. Nonetheless, the broad conclusions of the paper would be unchanged if
genius costs were linear (for human and AI alike).

2If η is sufficiently high, then routine workers may strictly dominate geniuses over domains further from
x0. This would be a more convincing outcome if such workers had access to additional knowledge points as
in Gans (2025a).
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Figure 2: Absolute advantage and implied allocation. In Region 2, AA(d) = d
q
− ηd2 peaks

at d⋆ = min
(
q, 1

2ηq

)
; for d ≥ q, AA(d) = 1− ηd2 is maximized at d = q. Initial genius bands

lie at x0±q when η ≤ 1/(2q2) and at x0±d⋆ when η > 1/(2q2); bands widen as LG increases.

from the known point, the decline is initially more gradual than for routine workers

near x0 but more severe at greater distances.

These contrasting value curvatures create a complex pattern of comparative advantage across

the knowledge domain; see Figure 2. At points very close to existing knowledge, routine

workers may deliver nearly the same value as genius workers, but at presumably lower cost.

As distance increases, the relative advantage shifts depending on the specific parameter

values, creating distinct regions where each worker type has comparative advantage.

3.4 The Manager: Knowledge Work Allocation

The third agent in our framework is the manager, who plays a central coordinating role

in the knowledge economy. The manager can be conceptualised as a manager, dispatcher,

or allocation mechanism determining which worker type should handle each incoming ques-

tion. In modern knowledge organisations, this role might be embodied in triage systems,

project management frameworks, or hierarchical structures that route work to appropriate

specialists.

Managers possess knowledge of both the question domain (understanding where questions

fall relative to existing knowledge) and of worker capabilities (understanding the relative

strengths of routine versus genius workers across the domain). This meta-knowledge enables

matching of questions to worker types. The manager does not directly answer questions but
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rather maximises the total value creation of the knowledge system through optimal routing

decisions.

In the next section, we will formally define the manager’s optimisation problem and

characterise the efficient allocation of knowledge workers across the question domain.

4 Optimal Worker Allocation

In this section, we tackle the central economic problem of our model: how should a manager

optimally allocate genius and routine workers across the knowledge domain to maximise

total value? This allocation challenge represents a fundamental task in knowledge-intensive

organisations—determining which types of intellectual labour should address which questions

when both types have constrained capacity.

A manager receives questions drawn uniformly from the knowledge domain [0, 1] and

must route each to either a routine worker or a genius worker. The manager has access

to LR routine workers and LG genius workers, creating capacity constraints on each worker

type. We assume that routine workers are in sufficient supply to handle all questions where

they can provide positive value (LR is large enough to cover all of Region 2), but genius

workers are scarce (LG < 1).

The manager’s objective is to maximise the total value of answers provided:

max
AR,AG

∫
AR

VR(x)dx+

∫
AG

VG(x)dx (8)

where AR and AG represent the sets of questions assigned to routine and genius workers,

respectively. This optimisation is subject to capacity constraints (|AR| ≤ LR and |AG| ≤
LG) and the requirement that each question can be assigned to at most one worker type

(AR ∩ AG = ∅).

4.1 Absolute Advantage Across the Knowledge Domain

The key to solving this allocation problem is understanding where genius workers create

more value than routine workers. The absolute advantage of a genius worker over a routine

worker at position x is:

AA(x) = VG(x)− VR(x) (9)

This measures the additional value generated by assigning a genius rather than a routine

worker to a question at position x. Significantly, this advantage varies systematically across
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the knowledge domain, creating a natural ranking of questions by the benefit of genius

assignment.

To understand the pattern of absolute advantage, we analyse its behaviour across the

three regions of our knowledge domain:

1. Regions 1 and 3 ([0, x0− q] and [x0+ q, 1]): In these regions, routine workers cannot

provide answers due to excessive uncertainty (VR(x) = 0). The absolute advantage

equals the genius value: AA(x) = VG(x) = 1 − η(x − x0)
2. This advantage decreases

with distance from the boundaries x0 − q and x0 + q.

2. Region 2 ([x0 − q, x0 + q]): Here, both worker types can provide answers, but their

values follow different curvatures. In Region 2, the absolute advantage is:

AA(x) = 1− η(x− x0)
2 −

(
1− |x− x0|

q

)
=

|x− x0|
q

− η(x− x0)
2 (10)

This function has local maxima at positions x0± 1
2ηq

(provided these points fall within

Region 2) and a local minimum at x0.

Figure 2 illustrates this pattern of absolute advantage across the knowledge domain. Counter

to their raw decision-making advantage, genius workers have their greatest advantage not

at the furthest points from known knowledge (where their costs are highest) but at the

boundaries where routine workers cannot function at all, but genius costs remain moderate.

4.2 Optimal Allocation Rule

Given this pattern of absolute advantage, we can now formulate a simple and intuitive

allocation rule that solves the manager’s problem:

Proposition 1 (Optimal Allocation Rule). When routine workers are in sufficient supply

(LR is large enough to cover all questions in Region 2), the optimal allocation rule is:

1. Rank all questions x ∈ [0, 1] by their absolute advantage AA(x) = VG(x)− VR(x)

2. Allocate genius workers to the questions with the highest absolute advantage until the

genius capacity LG is exhausted

3. Allocate routine workers to all remaining questions where VR(x) > 0

4. Leave unanswered any questions where no genius capacity remains and VR(x) = 0
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This allocation maximises the total value of answers provided.

Proof. The proof relies on a simple exchange argument. Suppose there exists an allocation

where a question with lower absolute advantage AA(x1) is assigned to a genius worker,

while a question with higher absolute advantage AA(x2) > AA(x1) is not. Exchanging

these assignments would increase total value by AA(x2) − AA(x1) > 0. Therefore, any

optimal allocation must assign genius workers to questions in descending order of absolute

advantage.

This allocation rule has an appealing economic interpretation: the manager should assign

each type of worker to questions where they create the most value relative to the other type,

respecting capacity constraints. When genius workers are scarce, they should be allocated

to questions where their relative advantage is highest.

4.3 Equilibrium Allocation Patterns

The shape of the absolute-advantage function implies two regimes; see Figure 2. In Region 2,

absolute advantage is AA(d) = d
q
− ηd2, which peaks at d⋆ = min

(
q, 1

2ηq

)
. Thus, when

η ≤ 1/(2q2), scarce genius capacity is directed first to the edges of the routine domain,

x0 ± q, where the incremental value over routine is greatest. When η > 1/(2q2), the peaks

are interior: initial genius allocations go to narrow bands centred at x0 ± d⋆, where the

advantage over routine is locally maximised. In both cases, the remainder of Region 2

is served by routine workers, while Regions 1 and 3 are unanswered until genius capacity

expands.

As LG rises, these initial bands widen in the manner illustrated in Figure 2. In the

edge-first regime, the expansion proceeds outward into Regions 1 and 3 and inward toward

x0, with the centre left last because geniuses’ relative advantage is smallest at d = 0. In the

interior-first regime, the bands around x0 ± d⋆ broaden symmetrically; once their marginal

advantage falls to the edge level 1 − ηq2, additional capacity is placed at x0 ± q and then

extended further outward. At intermediate LG, the allocation takes the form of two mirror-

image strips flanking x0. With further increases, these strips grow toward one another,

shrinking the central routine region; in the limit, abundant genius capacity covers the entire

domain.

5 Transformational Impact of AI Geniuses

The emergence of transformative artificial intelligence (AI) systems capable of generating

creative solutions and novel insights fundamentally alters the landscape of knowledge work
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allocation. As described by Amodei (2024), these systems can potentially provide “a coun-

try of geniuses in a data center,” dramatically expanding the supply of genius-level cognitive

capacity. In this section, we extend our model to incorporate AI geniuses alongside hu-

man geniuses and routine workers, analysing how optimal allocation patterns and income

distribution change in both the short and long run.

5.1 AI Geniuses: Capabilities and Cost Structure

We model AI geniuses as having fundamentally similar capabilities to human geniuses—they

can create new knowledge for any question in the domain, including those where uncertainty

exceeds the threshold for routine workers. However, we allow for potential differences in

efficiency by introducing a distinct cost parameter.

Definition 1 (AI Genius Workers). AI genius workers can generate exact answers for any

question, with a cost structure similar to human geniuses but potentially less efficient:

CostAI(x) = ηAI · (x− x0)
2 (11)

where ηAI ≥ η represents the efficiency parameter for AI geniuses relative to human geniuses.

The net value created by an AI genius answering a question at position x is therefore:

VAI(x) = 1− CostAI(x) = 1− ηAI · (x− x0)
2 (12)

This value is depicted in Figure 3. The assumption that ηAI ≥ η reflects the possibility

that AI systems, while capable of genius-level work, may require more resources or exhibit

lower efficiency than top human geniuses when creating novel knowledge far from established

frameworks. This formulation creates a natural hierarchy: human geniuses have a compar-

ative advantage over AI geniuses, who in turn have a comparative advantage over routine

workers in regions where uncertainty is high.

To analyse the impact of introducing AI geniuses into the knowledge economy, we dis-

tinguish between two time horizons:

• Short run: The existing allocation thresholds for routine workers remain fixed, re-

flecting organisational rigidities, contractual obligations, or adjustment costs

• Long run: The manager fully optimises worker allocation across all three worker

types, potentially leading to significant structural changes in the knowledge economy
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Crucially, we assume that human geniuses remain scarce (LG < 1) but AI geniuses are

available in effectively unlimited supply. This assumption reflects the scenario described by

Amodei (2024), where millions of instances of AI models can be deployed once developed.

5.2 Short-Run Analysis: Fixed Routine Worker Allocation

In the short run, we assume that routine workers continue to operate within the thresholds

established prior to the introduction of AI geniuses. Specifically, if routine workers were

previously allocated to a set of questions A∗
R, this allocation remains unchanged immediately

following the introduction of AI. This assumption captures institutional rigidities, existing

contractual arrangements, and adjustment costs that prevent immediate reoptimisation of

the entire knowledge workforce.

The manager’s immediate problem becomes reallocating human geniuses and allocating

the newly available AI geniuses to maximise total value, taking the routine worker allocation

as given:

max
AG,AAI

∫
AG

VG(x)dx+

∫
AAI

VAI(x)dx (13)

subject to capacity constraints |AG| ≤ LG, non-overlap conditions AG ∩ AAI = ∅, and

respecting the fixed routine worker allocation A∗
R.

Proposition 2 (Short-Run Allocation with AI Geniuses). Given fixed routine worker al-

location A∗
R from the pre-AI equilibrium, the short-run optimal allocation with AI geniuses

follows these principles:

1. Human geniuses are reallocated to questions where their absolute advantage over AI

geniuses is highest: AAH/AI(x) = VG(x)− VAI(x) = (ηAI − η) · (x− x0)
2

2. Human geniuses are allocated to questions furthest from the known knowledge point

within their previous allocation domain

3. AI geniuses replace human geniuses in positions closer to the known point where human

geniuses were previously allocated

4. AI geniuses are allocated to previously unanswered questions where VAI(x) > 0

This creates a distinctive three-tier allocation pattern where human geniuses handle the most

distant questions, AI geniuses handle intermediate questions, and routine workers maintain

their original allocation.
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Proof. The absolute advantage of human geniuses over AI geniuses at position x is:

AAH/AI(x) = VG(x)− VAI(x) (14)

= (1− η · (x− x0)
2)− (1− ηAI · (x− x0)

2) (15)

= (ηAI − η) · (x− x0)
2 (16)

Since ηAI ≥ η by assumption, this advantage is non-negative and strictly increasing in

(x − x0)
2. Therefore, human geniuses have the greatest advantage over AI geniuses at

positions furthest from the known knowledge point.

For a given pre-AI allocation A∗
G of human geniuses, the optimal reallocation involves: (i)

Ranking positions in A∗
G by distance from the known point, |x− x0|; (ii) Allocating human

geniuses to positions with the highest |x − x0| values until the capacity LG is exhausted;

(iii) Allocating AI geniuses to the remaining positions in A∗
G where routine workers are not

already allocated and (iv) Allocating AI geniuses to previously unanswered questions where

VAI(x) > 0. This allocation maximises total value because it preserves the total value from

routine workers (which remains fixed in the short run) and it maximises the value from

the combined human and AI genius allocation by assigning each type to positions where

they have a comparative advantage. The three-tier pattern emerges naturally from the

comparative advantages of each worker type.

The short-run allocation pattern has an interesting economic interpretation: the introduction

of AI geniuses leads to a specialisation of human geniuses in the most novel and challenging

questions, while AI geniuses take over questions that are moderately difficult; see Figure 3.

Routine workers initially maintain their previous role, handling questions close to the known

point.

5.3 Long-Run Analysis: Optimised Worker Allocation

In the long run, the manager can fully reoptimise worker allocation across all three types, po-

tentially leading to significant structural changes in the knowledge economy. The manager’s

long-run problem becomes:

max
AR,AG,AAI

∫
AR

VR(x)dx+

∫
AG

VG(x)dx+

∫
AAI

VAI(x)dx (17)

subject to capacity constraints |AR| ≤ LR and |AG| ≤ LG, and non-overlap conditions

(AR ∩ AG = AR ∩ AAI = AG ∩ AAI = ∅).
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Figure 3: Short-Run and Long-Run Worker Allocation with AI Geniuses

Proposition 3 (Long-Run Allocation with AI Geniuses). In the long-run equilibrium with

abundant AI genius capacity:

1. Routine workers are completely displaced from knowledge work if ηAI is sufficiently

close to η such that VAI(x) > VR(x) for all x where VR(x) > 0

2. Human geniuses are allocated exclusively to questions furthest from the known knowl-

edge point, specifically:

ALR
G = {x ∈ [0, 1] : |x− x0| ≥ d∗} (18)

where d∗ is the distance threshold such that |ALR
G | = LG

3. AI geniuses handle all remaining questions where either VAI(x) ≥ VR(x) or VR(x) = 0

If ηAI is significantly larger than η such that VAI(x) < VR(x) for some values of x, then

routine workers continue to handle those questions in the long run.
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Proof. For any question position x, the manager compares the values VR(x), VG(x), and

VAI(x) and assigns the question to the worker type providing the highest value.

The comparative advantage of human geniuses over AI geniuses is AAH/AI(x) = (ηAI −
η) · (x− x0)

2, which is strictly increasing in (x− x0)
2. Therefore, human geniuses have the

greatest advantage over AI geniuses at positions furthest from the known knowledge point.

For positions where VR(x) > 0, the advantage of AI geniuses over routine workers is:

AAAI/R(x) = VAI(x)− VR(x) (19)

= (1− ηAI · (x− x0)
2)−

(
1− |x− x0|

q

)
(20)

=
|x− x0|

q
− ηAI · (x− x0)

2 (21)

If ηAI is sufficiently close to η such that AAAI/R(x) > 0 for all x where VR(x) > 0, then AI

geniuses completely displace routine workers. This condition is more likely to be satisfied

when the efficiency gap between human and AI geniuses is small.

The allocation of human geniuses to questions furthest from the known point follows di-

rectly from maximising their comparative advantage over AI geniuses. The distance thresh-

old d∗ is determined by the capacity constraint |ALR
G | = LG.

If ηAI is significantly larger than η such that AAAI/R(x) < 0 for some x, then routine

workers retain a comparative advantage over AI geniuses for those questions and continue

to handle them in the long run.

The long-run allocation leads to a fundamental reorganisation of knowledge work, as illus-

trated in Figure 3, with several key features. First, human geniuses become ultra-specialised

in handling the most novel, challenging, and distant questions—those furthest from estab-

lished knowledge. Second, previously unanswered questions (in Regions 1 and 3) now receive

answers from either human or AI geniuses, expanding the total domain of questions that can

be addressed. Finally, once routing is re-optimised and AI genius capacity is available at

scale, routine work is fully displaced unless AI is itself inefficient relative to the routine

threshold. The displacement condition is VAI(d) ≥ VR(d) for all d ∈ [0, q], i.e. d
q
− ηAId

2 ≥ 0

on that interval, which holds iff ηAI ≤ 1/q2. When ηAI ≤ 1/q2, AI replaces routine through-

out Region 2, Regions 1 and 3 are handled by geniuses, and scarce human geniuses specialise

at the far frontier where their advantage over AI rises with distance.3

3If ηAI > 1/q2, routine workers survive only at the outer edge of their feasible set. The crossover solves
VAI(d) = VR(d), giving d = 1/(ηAIq), so routine is used on d ∈

(
1/(ηAIq), q

]
, AI handles the interior

d < 1/(ηAIq), and all d > q go to geniuses. The measure actually assigned to routine in this edge band
depends on the scarcity of human geniuses LG: with tighter LG, AI covers more of the interior, leaving
routine only this outer ring; as ηAI ↓ 1/q2 the ring shrinks to zero width.
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6 Conclusion

This paper has examined how transformative AI systems providing “genius on demand”

would affect knowledge worker allocation and labour market outcomes. Our analysis reveals

that when genius capacity is scarce, optimal allocation directs genius workers to questions

where their absolute advantage over routine workers is highest — notably at domain bound-

aries where uncertainty is too high for routine workers. The introduction of AI geniuses

transforms this allocation pattern, with human geniuses specialising in questions furthest

from existing knowledge, where their comparative advantage over AI is greatest.

These findings contribute to our understanding of knowledge work allocation, but have

modelled AI geniuses as independent agents that replace human workers. This approach,

while analytically tractable, may not capture the most promising potential of AI technologies.

Future research should examine how AI could function as tools in conjunction with knowl-

edge workers rather than as automated independent agents. Such collaborative human-AI

systems might leverage complementary strengths: human contextual understanding, ethical

judgment, and creative insights alongside AI computational power and pattern recognition

capabilities. Models of such complementary human-AI workflows would enrich our under-

standing of knowledge work evolution beyond displacement narratives.

The economic and social value generated by transformative AI may ultimately derive

not from standalone genius capabilities but from novel workflows and institutions that ef-

fectively combine human and AI capabilities. By reframing the relationship between AI and

knowledge workers from one of substitution to one of complementarity, we may discover ap-

proaches to knowledge creation that exceed what either humans or machines could achieve

independently. The genius of the future may reside not exclusively in machines or humans,

but in the symbiotic relationships between them.
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