## Tâtonnement and Price Setting in General Equilibrium





## Tâtonnement and Price Setting in General Equilibrium

**Guido Lorenzoni and Iván Werning** 

**NBER SI 2025** 









### Leon Walras...

"Our task is very simple: we need only show that the upward and downward movements of prices solve the system of equations of offer and demand by a process of **tâtonnement**" [feeling one's way toward the equilibrium?]



Samuelson  $\rightarrow$  ad hoc equation (disequilibrium)



Economic question of stability: important and interesting... ... but no real model!





### Leon Walras...

"Our task is very simple: we need only show that the upward and downward movements of prices solve the system of equations of offer and demand by a process of **tâtonnement**" [feeling one's way toward the equilibrium?]



Samuelson  $\rightarrow$  ad hoc equation (disequilibrium)



- Economic question of stability: important and interesting... ... but no real model!
- **Our paper:** ... revisit question... ... but with equilibrium model!





**GE** theory...













### **GE** theory...





uniqueness/multiplicity







stability
Fail! but not for lack of effort...

 $\dot{p}_t = F(z(p_t))$ 



### Samuelson

Hahn

### Arrow

### Fisher



### Hurwicz

### Scarf

### Smale

McKenzie



### **GE** theory...

▶ existence

# uniqueness/multiplicity



 $\dot{p}_t = F(z(p_t))$ 

### Fail! but not for lack of effort...



### **GE** theory...

- ▶ existence Iniqueness/multiplicity
- stability
- Some interesting mathematical results on stability and instability...

 $\dot{p}_t = F(z(p_t))$ 

## Fail! but not for lack of effort...



### **GE** theory...

- existence
   uniqueness/multiplicity Stability
- Some interesting mathematical results on stability and instability...
  - ... but deep conceptual problems...
  - lacktriangly who changes prices? are they reasonable? (alternatives proposed)
  - Consumers and producers optimize quantities freely given prices...

 $\dot{p}_t = F(z(p_t))$ 

... but if markets don't clear, they cannot, so why is demand curve right object?

Static (not forward looking), Rational expectations...? Assets and money?



### **GE** theory...



- ... but deep conceptual problems...
- lacktrianglesing who changes prices? are they reasonable? (alternatives proposed)
- Consumers and producers optimize quantities freely given prices...

 $\dot{p}_t = F(z(p_t))$ 

### It not for lack of effort...

atical results on stability and instability...

... but if markets don't clear, they cannot, so why is demand curve right object?

Static (not forward looking), Rational expectations...? Assets and money?



### **GE** theory...



- ... but deep conceptual problems...
- lacktrianglesing who changes prices? are they reasonable? (alternatives proposed)
- Consumers and producers optimize quantities freely given prices... ... but if markets don't clear, they cannot, so why is demand curve right object?
- Static (not forward looking), Rational expectations...? Assets and money?



### **GE** theory...



- ... but deep conceptual problems...
- lacktrianglesing who changes prices? are they reasonable? (alternatives proposed)
- Consumers and producers optimize quantities freely given prices...

... but if markets don't clear, they cannot, so why is demand curve right object?

Static (not forward looking), Rational expectations...? Assets and money?



## This Paper... Micro → Macro





## This Paper... Macro → Micro





## This Paper... Macro → Micro

### **Static GE backbone...**

- n goods (and labor types)
- h agents, general heterogeneous preferences
- f firms, general technology, input-output networks and more



## This Paper... Macro → Micro

### Static GE backbone...

- n goods (and labor types)
- h agents, general heterogeneous preferences
- f firms, general technology, input-output networks and more
- **Dynamics + Market Power**  $\rightarrow$  very general NK GE model
  - Monopolistic + Monopsonistic competition
  - Optimal price setting + Calvo frictions



## This Paper... Macro -> Micro

### Static GE backbone...

- n goods (and labor types)
- h agents, general heterogeneous preferences
- f firms, general technology, input-output networks and more
- **Dynamics + Market Power**  $\rightarrow$  very general NK GE model
  - Monopolistic + Monopsonistic competition
  - Optimal price setting + Calvo frictions

### Analysis...

- Dynamic equilibrium  $\rightarrow$  path for prices, given initial prices Ø
- Steady state of dynamic = Walrasian equilibrium of static GE
- **No disequilibrium!**



Methodological: more general NK GE model + different analysis/perspective

- Methodological: more general NK GE model + different analysis/perspective
- Samuelson ad-hoc equation...
  - recover equation as limit case!
  - always justified to study local dynamics!
  - > one key difference: Frisch not Marshallian demands!

- Methodological: more general NK GE model + different analysis/perspective
- Samuelson ad-hoc equation...
  - recover equation as limit case!
  - always justified to study local dynamics!
  - > one key difference: Frisch not Marshallian demands!

### **Stability...**

- *always* ensured!...
- Why? Not the case in literature... Frisch demand  $\rightarrow$  "as if" representative agent

- Methodological: more general NK GE model + different analysis/perspective
- Samuelson ad-hoc equation...
  - recover equation as limit case!
  - always justified to study local dynamics!
  - one key difference: Frisch not Marshallian demands!

### Stability...



Why? Not the case in literature... Frisch demand  $\rightarrow$  "as if" representative agent

### Subtle role of monetary policy

we find simple policies that always works

Taylor rules with wrong price index may fail: create instability (not indeterminacy)

## **Related Literature**

**Tâtonnment GE literature (Huge)** Fisher, Iwai, ...

Macro NK models + N sectors (Healthy, Growing)

### Samuelson, Arrow-Hurwitz, Nerlove, Uzawa, Negishi, Scarf, Smale, Hahn,

## Carlstrom-Fuerst-Ghironi, Rubbo, Lorenzoni-Werning, Afrouzi-Bhattarai, ...

### Static Walrasian GE

Static Monopolistic Monopsonistic GE Dynamic Monopolistic Monopsonistic GE Analysis of Stability

### Static Walrasian GE

Static Monopolistic Monopsonistic GE Dynamic Monopolistic Monopsonistic GE Analysis of Stability

## **Static GE Model**

- Importance of generality in GE
- Primitives...
  - n goods (goods and factors, many labor etc.)
  - h household types, general preferences
  - f firms, general technologies (networks, etc.)

 $x = (x_1, ..., x_N) \ge 0$  $y = (y_1, ..., y_N) \ge 0$ 





 $(x^f, y^f) \in Y^f$ 



 $(x^f, y^f) \in Y^f$ 

 $D^f_W(P), S^f_W(P)$ 



 $(x^f, y^f) \in Y^f$ 

 $D^f_W(P), S^f_W(P)$ 

 $U^h(x^h, y^h)$ 



 $(x^f, y^f) \in Y^f$ 

 $D^f_W(P), S^f_W(P)$ 

 $\max_{x^h, y^h} U^h(x^h, y^h)$ 

 $P \cdot (x^h - y^h) \le P \cdot a^h + \sum \omega^{h,f} \Pi^f(P)$ 



 $(x^f, y^f) \in Y^f$ 

 $D^f_W(P), S^f_W(P)$ 

 $D^h_W(P), S^h_W(P)$ 



 $\max_{x^h, y^h} U^h(x^h, y^h)$ 

 $P \cdot (x^h - y^h) \le P \cdot a^h + \sum \omega^{h,f} \Pi^f(P)$


 $(x^f, y^f) \in Y^f$ 

 $D_W^f(P), S_W^f(P)$ 

 $D_W^h(P), S_W^h(P)$ 



 $\max_{x^h, y^h} U^h(x^h, y^h)$ 

 $P \cdot (x^h - y^h) \le P \cdot a^h + \sum \omega^{h,f} \Pi^f(P)$ 







 $(x^f, y^f) \in Y^f$ 

 $D^f_W(P), S^f_W(P)$ 

 $D_W^h(P), S_W^h(P)$ 



 $\max_{x^h, y^h} U^h(x^h, y^h)$ 

 $P \cdot (x^h - y^h) \le P \cdot a^h + \sum \omega^{h,f} \Pi^f(P)$ 



## $P_n = \alpha_n(D_{Wn}(P) - S_{Wn}(P))$

Samuelson's ad hoc proposal to capture Walras' idea...



 $D_W(P_W) = S_W(P_W)$ 

## $\dot{P}_n = \alpha_n(D_{Wn}(P) - S_{Wn}(P))$

 $D_W(P_W) = S_W(P_W)$ 

## $\dot{P}_n = \alpha_n(D_{Wn}(P) - S_{Wn}(P))$

#### Homogeneity 0 of demand and supply...

### Normalize $P_1 = 1$

### keep N-1 equations



 $D_W(P_W) = S_W(P_W)$ 

## $\dot{P}_n = \alpha_n(D_{Wn}(P) - S_{Wn}(P))$

### Homogeneity 0 of demand and supply...

lacktriangleright normalize 
$$P_1 = 1$$

keep 
$$N-1$$
 equations

### Equilibrium: unique/multiple





# Homogeneity 0 of demand and supply... normalize $P_1 = 1$

- keep N-1 equations
- Equilibrium: unique/multiple
- Even Local Stability... (N 1 stable roots)



















... but harder than PE!





Takeaway? No. Not really... Conceptual problems.





Takeaway? No. Not really... Conceptual problems.



#### Static Walrasian GE

Static Monopolistic Monopsonistic GE Dynamic Monopolistic Monopsonistic GE Analysis of Stability

Each market  $n \rightarrow$  differenitated on one side

- Each market  $n \rightarrow$  differenitated on one side
- Market  $n \rightarrow \text{agent } j$  (h or f) sets price, either...
  - differential monopolistic suppliers
  - differential monopsonistic demande

Note, just one agent j for market n: without loss
 Today: each agent j changes at most one price

$$\rightarrow y_{nv}^{j} \qquad P_{n} = \left( \int (P_{nv})^{1-\epsilon_{n}} dv \right)$$
  
ers  $\rightarrow x_{nv}^{j}$ 



- Each market  $n \rightarrow$  differenitated on one side
- Market  $n \rightarrow \text{agent } j$  (h or f) sets price, either...
- differential monopolistic suppliers
- differential monopsonistic demande

Note, just one agent j for market n: without loss Today: each agent j changes at most one price <

either...  $x = (x_1, ..., x_M, 0, ..., 0)$  $y = (0, ..., 0, y_{M+1}, ..., y_N)$ 

$$\rightarrow y_{nv}^{j} \qquad P_{n} = \left( \int (P_{nv})^{1-\epsilon_{n}} dv \right)$$
  
ers  $\rightarrow x_{nv}^{j}$ 





 $\Pi^{f}(P) \equiv \max P \cdot (y^{f} - x^{f}) + \frac{P_{nv}^{f}(y_{nv}^{f} - x_{nv}^{f})}{P_{nv}^{f}(y_{nv}^{f} - x_{nv}^{f})}$ 

 $(x^f, y^f, x^f_{nv}, y^f_{nv}) \in Y^f$  $y_{nv}^f = (P_{nv}^f / P_n)^{-\epsilon_n} \bar{x}_n$  $x_{nv}^f = (P_{nv}^f / P_n)^{\epsilon_n} \bar{y}_n$ 

 $\Pi^{f}(P) \equiv \max P \cdot (y^{f} - x^{f}) + \frac{P_{nv}^{f}(y_{nv}^{f} - x_{nv}^{f})}{P_{nv}^{f}(y_{nv}^{f} - x_{nv}^{f})}$ 

$$(x^{f}, y^{f}, x^{f}_{nv}, y^{f}_{nv}, y^{f}_{nv}) \in Y$$
$$y^{f}_{nv} = (P^{f}_{nv}/P_{n})^{-\epsilon_{n}} \bar{x}_{n}$$
$$x^{f}_{nv} = (P^{f}_{nv}/P_{n})^{\epsilon_{n}} \bar{y}_{n}$$

$$\max U^{h}(x^{h}, y^{h}, x_{nv}^{h}, y_{nv}^{h})$$

$$P \cdot (x^{h} - y^{h}) + P_{nv}^{h}(x_{nv}^{h} - y_{nv}^{h}) \leq P \cdot a^{h} + \sum$$

$$y_{nv}^{h} = (P_{nv}^{h}/P_{n})^{-\epsilon_{n}} \bar{x}_{n}$$

$$x_{nv}^{h} = (P_{nv}^{h}/P_{n})^{\epsilon_{n}} \bar{y}_{n}$$



 $\sum_{f} \omega^{h,f} \Pi^{f}(P)$ 



#### Equilibrium 1.0...

Prices & Quantities: fixed point of best response



#### Equilibrium 1.0... Prices & Quantities: fixed point of best response

#### Equilibrium 2.0...





 $y_{nv}^j$ 



 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

 $y_{nv}^j$ 





 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

 $y_{nv}^j$ 





 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

 $y_{nv}^j$ 



 $MC_v(1+1/\epsilon_n) \rightarrow \hat{S}_n(P_{nv}, P_{-n})$ 

 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

 $y_{nv}^j$ 



 $MC_{\nu}(1+1/\epsilon_n) \rightarrow \hat{S}_n(P_{n\nu}, P_{-n})$ 

symmetric  $P_{nv} = P_n$ 

 $S_n(P) = D_n(P)$ 

 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

;  $y_{nv}^J$ 





#### Equilibrium 1.0... Prices & Quantities: fixed point of best response

#### Equilibrium 2.0...

### S(P) = D(P)

Monopolistic GE = Walrasian GE + Markups... 



#### Equilibrium 1.0... ng ti Prices & Quantities: fixed point of best response

Equilibrium 2.0... (just prices! ) S(P) = D(P)

Monopolistic GE = Walrasian GE + Markups... 



#### Equilibrium 1.0... 1 Prices & Quantities: fixed point of best response

Equilibrium 2.0... (just prices! ) 

Monopolistic GE = Walrasian GE + Markups...





Monopolistic GE  $\approx$ Walrasian GE...

#### Equilibrium 1.0... Prices & Quantities: fixed point of best response

Equilibrium 2.0... (just prices! ) 

Monopolistic GE = Walrasian GE + Markups...

$$\begin{split} \epsilon_n &\to \infty \\ D(P) \to D_W(P) \\ S(P) \to S_W(P) \\ P \to P_W \end{split}$$





Monopolistic GE  $\approx$ Walrasian GE...

#### Equilibrium 1.0... Prices & Quantities: fixed point of best response

Equilibrium 2.0... (just prices! ) S(P) = D(P)

Monopolistic GE = Walrasian GE + Markups...

$$\begin{split} & \epsilon_n \to \infty \\ & D(P) \to D_W(P) \\ & S(P) \to S_W(P) \\ & P \to P_W \end{split}$$



Subsidies  $\tau_n = -\frac{1}{\epsilon_n}$ 

$$P = P_W$$

Monopolistic GE  $\approx$ Walrasian GE...

Monopolistic GE Walrasian GE



 $\Pi^{f}(P) \equiv \max P \cdot (y^{f} - x^{f}) + \frac{P_{nv}^{f}(y_{nv}^{f} - x_{nv}^{f})}{P_{nv}^{f}(y_{nv}^{f} - x_{nv}^{f})}$ 

$$(x^{f}, y^{f}, x^{f}_{nv}, y^{f}_{nv}, y^{f}_{nv}) \in Y$$
$$y^{f}_{nv} = (P^{f}_{nv}/P_{n})^{-\epsilon_{n}} \bar{x}_{n}$$
$$x^{f}_{nv} = (P^{f}_{nv}/P_{n})^{\epsilon_{n}} \bar{y}_{n}$$

$$\max U^{h}(x^{h}, y^{h}, x_{nv}^{h}, y_{nv}^{h})$$

$$P \cdot (x^{h} - y^{h}) + P_{nv}^{h}(x_{nv}^{h} - y_{nv}^{h}) \leq P \cdot a^{h} + \sum$$

$$y_{nv}^{h} = (P_{nv}^{h}/P_{n})^{-\epsilon_{n}} \bar{x}_{n}$$

$$x_{nv}^{h} = (P_{nv}^{h}/P_{n})^{\epsilon_{n}} \bar{y}_{n}$$



### "As if" competitive...

 $\sum_{f} \omega^{h,f} \Pi^{f}(P)$ 



 $x_{nv}^f = (P_{nv}^f / P_n)^{\epsilon_n} \bar{y}_n$ 

 $\max U^h(x^h, y^h, x^h, y^h, y^h)$  $P \cdot (x^h - y^h) + \frac{P_{nv}^h(x_{nv}^h - y_{nv}^h)}{N} \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$  $y_{nv}^h = (P_{nv}^h / P_n)^{-\epsilon_n} \bar{x}_n$  $x_{nv}^h = (P_{nv}^h / P_n)^{\epsilon_n} \bar{y}_n$ 

### "As if" competitive...



$$\max U^{h}(x^{h}, y^{h}, x_{nv}^{h}, y_{nv}^{h})$$

$$P \cdot (x^{h} - y^{h}) + P_{nv}^{h}(x_{nv}^{h} - y_{nv}^{h}) \leq P \cdot a^{h} + \sum y_{nv}^{h} = (P_{nv}^{h}/P_{n})^{-\epsilon_{n}} \bar{x}_{n}$$

$$x_{nv}^{h} = (P_{nv}^{h}/P_{n})^{\epsilon_{n}} \bar{y}_{n}$$

### "As if" competitive...

 $\sum_{f} \omega^{h,f} \Pi^{f}(P)$


## $\max U^h(x^h, y^h, x^h_m, y^h_m)$ $P \cdot (x^h - y^h) + \frac{P_{nv}^h(x_{nv}^h - y_{nv}^h)}{P \cdot a^h} \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$

$$x_{nv}^h = (P_{nv}^h/P_n)^{\epsilon_n} \, \bar{y}_n$$



## $\max U^h(x^h, y^h, x^h_m, y^h_m)$ $P \cdot (x^h - y^h) + \frac{P_{nv}^h(x_{nv}^h - y_{nv}^h)}{P \cdot a^h} \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$



## $\max U^h(x^h, y^h, x^h_{nv}, y^h_{nv})$ $P \cdot (x^h - y^h) + \frac{P_{nv}^h(x_{nv}^h - y_{nv}^h)}{P \cdot a^h} \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$





## $\max U^h(x^h, y^h, x^h, y^h, y^h)$ $P \cdot (x^h - y^h) + P_n(x^h_{nv} - y^h_{nv}) \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$





# $D_n(P) \equiv \sum_j x_n^j + \sum_j x_{n\nu}^j$ $S_n(P) \equiv \sum_j y_n^j + \sum_j y_{nv}^j$

 $\max U^h(x^h, y^h, x^h_m, y^h_m)$  $P \cdot (x^h - y^h) + P_n(x^h_{nv} - y^h_{nv}) \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$ 





# $D_n(P) \equiv \sum_j x_n^j + \sum_j x_{n\nu}^j$ $S_n(P) \equiv \sum_j y_n^j + \sum_j y_{nv}^j$

 $\max U^h(x^h, y^h, x^h_{nv}, y^h_{nv})$  $P \cdot (x^h - y^h) + P_n(x^h_{nv} - y^h_{nv}) \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$ 





## Static Walrasian GE

Static Monopolistic Monopsonistic GE

## Dynamic Monopolistic Monopsonistic GE

Analysis of Stability

## Preview

## Add: dynamics + forward looking + price setting a la Calvo → very general New Keynesian GE Model

- Focus: adjustment of vector of spot prices  $P_t$  set by private agents (endogenous)
- Financial market...
  - insurance for "Calvo fairy"



saving and borrowing at central bank interest rate



 $(x^f, y^f, x^f_{nv}, y^f_{nv}) \in Y^f$  $y_{nvt}^f = (P_{nvt}^f / P_{nt})^{-\epsilon_n} \bar{x}_{nt}$  $x_{nvt}^f = (P_{nvt}^f / P_{nt})^{\epsilon_n} \bar{y}_{nt}$ 

## $\max U^{h}(x^{h}, y^{h}, x^{h}_{nv}, y^{h}_{nv})$

 $P \cdot (x^{h} - y^{h}) + P^{h}_{nv}(x^{h}_{nv} - y^{h}_{nv}) \le P \cdot a^{h} + \sum_{f} \omega^{h,f} \Pi^{f}(P)$ 

$$y_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{-\epsilon_{n}} \bar{x}_{nt}$$
$$x_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{\epsilon_{n}} \bar{y}_{nt}$$





 $x_{nvt}^f = (P_{nvt}^f / P_{nt})^{\epsilon_n} \bar{y}_{nt}$ 

 $\max U^h(x^h, y^h, x^h_{nv}, y^h_{nv})$ 

 $P \cdot (x^{h} - y^{h}) + P^{h}_{nv}(x^{h}_{nv} - y^{h}_{nv}) \le P \cdot a^{h} + \sum_{f} \omega^{h,f} \Pi^{f}(P)$ 

$$y_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{-\epsilon_{n}} \bar{x}_{nt}$$
$$x_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{\epsilon_{n}} \bar{y}_{nt}$$





$$(x^{f}, y^{f}, x^{f}_{nv}, y^{f}_{nv}, y^{f}_{nv}) \in Y^{f}$$
$$y^{f}_{nvt} = (P^{f}_{nvt}/P_{nt})^{-\epsilon_{n}} \bar{x}_{nt}$$
$$x^{f}_{nvt} = (P^{f}_{nvt}/P_{nt})^{\epsilon_{n}} \bar{y}_{nt}$$

 $\max \int_0^\infty e^{-\rho t} U^h(x^h, y^h, x^h_{nv}, y^h_{nv}) dt$  $P \cdot (x^h - y^h) + P^h_{n\nu}(x^h_{n\nu} - y^h_{n\nu}) \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$ 

$$y_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{-\epsilon_{n}} \bar{x}_{nt}$$
$$x_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{\epsilon_{n}} \bar{y}_{nt}$$





 $(x^f, y^f, x^f_{nv}, y^f_{nv}) \in Y^f$  $y_{nvt}^f = (P_{nvt}^f / P_{nt})^{-\epsilon_n} \bar{x}_{nt}$  $x_{nvt}^f = (P_{nvt}^f / P_{nt})^{\epsilon_n} \bar{y}_{nt}$ 

 $\max \int_{0}^{\infty} e^{-\rho t} U^{h}(x^{h}, y^{h}, x^{h}_{nv}, y^{h}_{nv}) dt$  $\int_{0}^{\infty} Q_{t}[P_{t} \cdot (x_{t}^{h} - y_{t}^{h}) + P_{nvt}^{h}(x_{nvt}^{h} - y_{nvt}^{h})] dt \leq P \cdot a^{h} + \sum_{f} \omega^{h,f} \Pi^{f}(P)$ 

$$y_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{-\epsilon_{n}} \bar{x}_{nt}$$
$$x_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{\epsilon_{n}} \bar{y}_{nt}$$



$$(x^{f}, y^{f}, x^{f}_{nv}, y^{f}_{nv}, y^{f}_{nv}) \in Y^{f}$$
$$y^{f}_{nvt} = (P^{f}_{nvt}/P_{nt})^{-\epsilon_{n}} \bar{x}_{nt}$$
$$x^{f}_{nvt} = (P^{f}_{nvt}/P_{nt})^{\epsilon_{n}} \bar{y}_{nt}$$

s.t. Calvo friction

 $\max \int_{0}^{\infty} e^{-\rho t} U^{h}(x^{h}, y^{h}, x^{h}_{nv}, y^{h}_{nv}) dt$  $\int_{0}^{\infty} Q_{t} [P_{t} \cdot (x_{t}^{h} - y_{t}^{h}) + P_{nvt}^{h} (x_{nvt}^{h} - y_{nvt}^{h})] dt \leq P \cdot a^{h} + \sum_{f} \omega^{h,f} \Pi^{f}(P)$ 

$$y_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{-\epsilon_{n}} \bar{x}_{nt}$$
$$x_{nvt}^{h} = (P_{nvt}^{h}/P_{nt})^{\epsilon_{n}} \bar{y}_{nt}$$

s.t. Calvo friction

## Static Walrasian GE

Static Monopolistic Monopsonistic GE Dynamic Monopolistic Monopsonistic GE Analysis of Stability

## 1. Calvo pricing: $\dot{P}_n / P_n = f_n (P_n^* / P_N)$

- 1. Calvo pricing:  $\dot{P}_n / P_n = f_n (P_n^* / P_N)$
- 2. Study flexible  $\bar{P}_{nt}$  best response to  $P_t$ ...  $\overline{P}_n/P_n = g_n(D_n(P)/S_n(P), P)$

- 1. Calvo pricing:  $\dot{P}_n/P_n = f_n(P_n^*/P_N)$
- 2. Study flexible  $\bar{P}_{nt}$  best response to  $P_{t}$ ...  $\overline{P}_n/P_n = g_n(D_n(P)/S_n(P), P)$
- 3. Study dynamics setting  $P_{nt}^* = \bar{P}_{nt}...$ 
  - $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$

## **Samuelson's equation!**

log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(A_n(P)) - s_n(A_n(P))) - s_n(A_n(P)) - s_n($$

# P))

- 1. Calvo pricing:  $\dot{P}_n/P_n = f_n(P_n^*/P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_{t}$ ...  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$
- 3. Study dynamics setting  $P_{nt}^* = \bar{P}_{nt}...$

 $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$ 

Why set  $P_{nt}^* = \bar{P}_{nt}?...$ 

- a. for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to P_{nt}$  (reset  $\to$  flex response)
- b. always dominates local dynamics!

## **Samuelson's equation!**

log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(A))$$

# **P**))

- 1. Calvo pricing:  $\dot{P}_n / P_n = f_n (P_n^* / P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_t$ ...  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$
- 3. Study dynamics setting  $P_{nt}^* = P_{nt}...$

 $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$ 

Why set  $P_{nt}^* = \overline{P}_{nt}?...$ 

a. for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to P_{nt}$  (reset  $\to$  flex response)

b. always dominates local dynamics!

4. Main Result: globally stable! Why?

## **Samuelson's equation!**

log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(A))$$

# *P*))

- 1. Calvo pricing:  $\dot{P}_n/P_n = f_n(P_n^*/P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_t$ ...  $\overline{P}_n/P_n = g_n(D_n(P)/S_n(P))$
- 3. Study dynamics setting  $P_{nt}^* = P_{nt}...$

 $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$ 

Why set  $P_{nt}^* = P_{nt}^* := P_{nt}^*$ 

- a. for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to P_{nt}$  (reset  $\to$  flex response)
- b. always dominates local dynamics!
- 4. Main Result: globally stable! Why?

$$f_n(z) = \frac{\lambda_n}{1 - \epsilon_n} (z^{1 - \epsilon_n})$$

## **Samuelson's equation!**

log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(P))$$







- 1. Calvo pricing:  $\dot{P}_n/P_n = f_n(P_n^*/P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_t$ ...  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$
- 3. Study dynamics setting  $P_{nt}^* = P_{nt}...$  $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$

Why set  $P_{nt}^* = P_{nt}^* := P_{nt}^*$ 

- a. for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to P_{nt}$  (reset  $\to$  flex response)
- b. always dominates local dynamics!
- 4. Main Result: globally stable! Why?



## **Samuelson's equation!**

log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(A))$$









 $\max \int_0^\infty e^{-\rho t} U^h(x_t^h, y_t^h, x_{nvt}^h, y_{nvt}^h) dt$ 

 $\int_0^\infty Q_t [P_t \cdot (x_t^h - y_t^h) + P_{nv}^h (x_{nvt}^h - y_{nvt}^h)] \, dt \le P \cdot a^h + \sum_f \omega^{h,f} \Pi^f(P)$ 



 $(Q_t = \hat{Q}_t e^{-\rho t})$ (Lagrangian)  $L^{j} = \mu^{j} \left[ \int_{0}^{\infty} e^{-\rho t} \left[ \frac{1}{\mu^{j}} U^{j}(x_{t}^{j}, y_{t}^{j}, x_{nvt}^{j}, y_{nvt}^{j}) + \hat{Q}_{t} P_{t} \cdot (x_{t}^{j} - y_{t}^{j}) + \hat{Q}_{t} P_{nvt}^{j}(x_{nvt}^{j} - y_{nvt}^{j}) \right] dt$ 

 $\max \int_0^\infty e^{-\rho t} U^h(x_t^h, y_t^h, x_{nvt}^h, y_{nvt}^h) dt$ 

 $\int_{0}^{\infty} Q_{t}[P_{t} \cdot (x_{t}^{h} - y_{t}^{h}) + P_{nv}^{h}(x_{nvt}^{h} - y_{nvt}^{h})] dt \leq P \cdot a^{h} + \sum_{f} \omega^{h,f} \Pi^{f}(P)$ 





 $\max \int_{0}^{\infty} e^{-\rho t} U^{h}(x_{t}^{h}, y_{t}^{h}, x_{nvt}^{h}, y_{nvt}^{h}) dt$ 

 $\int_{0}^{\infty} Q_{t}[P_{t} \cdot (x_{t}^{h} - y_{t}^{h}) + P_{nv}^{h}(x_{nvt}^{h} - y_{nvt}^{h})] dt \leq P \cdot a^{h} + \sum_{f} \omega^{h,f} \Pi^{f}(P)$ 

 $(Q_t = \hat{Q}_t e^{-\rho t})$ 

 $\max_{x,y} \to V^{j}(P_{t}, \hat{Q}_{t}, x_{nvt}, y_{nvt})$ (indirect utility)







$$P_{nv}^{j}(y_{nv}^{j}-x_{nv}^{j})+$$

 $V^{j}(P, x_{nv}^{j}, y_{nv}^{j})$ 



$$P^j_{nv}(y^j_{nv}-x^j_{nv})+$$

 $V^{j}(P, x_{nv}^{j}, y_{nv}^{j})$ 

= - Cost Function (in firm supply case)



$$P^j_{n\nu}(y^j_{n\nu}-x^j_{n\nu})+$$

Monopolistic Optimal Pricing: marginal cost + markup...

 $V^{j}(P, x_{nv}^{j}, y_{nv}^{j})$ 

= - Cost Function (in firm supply case)



$$P^j_{nv}(y^j_{nv}-x^j_{nv})+$$

Monopolistic Optimal Pricing: marginal cost + markup...

$$\bar{P}_{nv}^{j} = -\frac{\partial}{\partial y_{nv}^{j}} V^{j}(P, y_{nv}^{j})(1$$

 $V^{j}(P, x_{nv}^{j}, y_{nv}^{j})$ 

= - Cost Function (in firm supply case)

 $+ 1/\epsilon_n$ 



$$P^j_{nv}(y^j_{nv}-x^j_{nv})+$$

Monopolistic Optimal Pricing: marginal cost + markup...

$$\bar{P}_{nv}^{j} = -\frac{\partial}{\partial y_{nv}^{j}} V^{j}(P, y_{nv}^{j})(1$$

 $V^{j}(P, x_{nv}^{J}, y_{nv}^{J})$ 

= - Cost Function (in firm supply case)



For now set 
$$\hat{Q}_t = 1...$$
  
 $V^j(P, x_{nv}, y_{nv}) \equiv \max_{x,y} \{\frac{1}{\mu^j} U^j(x_{nv}, y_{nv})\}$ 

$$P^j_{nv}(y^j_{nv}-x^j_{nv})+$$

Monopolistic Optimal Pricing: marginal cost + markup...

$$\bar{P}_{nv}^{j} = -\frac{\partial}{\partial y_{nv}^{j}} V^{j}(P, y_{nv}^{j})(1$$

(Monopsonistic case: similar)

 $\{x, y, x_{nv}, y_{nv}\} + P \cdot (y - x)\}$ 

 $V^{j}(P, x_{nv}^{j}, y_{nv}^{j})$ = - Cost Function (in firm supply case)

+  $1/\epsilon_n$   $\rightarrow S_n^j(P_n, P)$ 



### Similar to Static...

... but do <u>not</u> impose symmetry.



### Similar to Static...

... but do <u>not</u> impose symmetry.



### Similar to Static...

... but do <u>not</u> impose symmetry.


 $S_{nv}^{j}(P_{nv}, P)$ 

 $\oint \frac{\bar{P}_{nv}}{P_n} = g_n \left(\frac{D_n(P)}{S_n(P)}, P_{-n}\right)$ 

 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

### Similar to Static...



 $S_{nv}^{j}(P_{nv},P)$ 

# $\frac{\bar{P}_{nv}}{P_n} = g_n \left( \frac{D_n(P)}{S_n(P)}, P_{-n} \right) \begin{cases} > 1 & \text{if } D_n(P) > S_n(P) \\ = 1 & \text{if } D_n(P) = S_n(P) \\ < 1 & \text{if } D_n(P) < S_n(P) \end{cases}$

 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

### Similar to Static...





## $S_{nv}^j(P_{nv},P)$

$$\frac{\bar{P}_{nv}}{P_n} = g_n \left( \frac{D_n(P)}{S_n(P)}, P_{-n} \right) \begin{cases} > 1 & \text{if } D_n(P) > S_n \\ = 1 & \text{if } D_n(P) = S_n \\ < 1 & \text{if } D_n(P) < S_n \end{cases}$$

 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

### Similar to Static...





$$\begin{split} P_{n\nu}, P) & \bar{p}_{n\nu} - p_n = \frac{1}{\epsilon_n + \epsilon_n^S} (d_n(p) - s_n(p)) \\ & \text{log-linearized} \end{split}$$

$$\begin{split} & \frac{\bar{P}_{n\nu}}{P_n} = g_n \Big( \frac{D_n(P)}{S_n(P)}, P_{-n} \Big) \begin{cases} > 1 & \text{if } D_n(P) > S_n(P) \\ = 1 & \text{if } D_n(P) = S_n(P) \\ < 1 & \text{if } D_n(P) < S_n(P) \end{cases}$$

 $(P_{nv}/P_n)^{-\epsilon_n}D_n(P)$ 

 $P_n$ 

### Similar to Static...





 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\} \quad \text{"As if" competitive}$ 



 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x_{nv}^{j}, y_{nv}^{j}) + P \cdot (x^{j} - y^{j}) + P_{n}(x_{nv}^{j} - y_{nv}^{j})\right\}$  "As if" competitive  $(x^j, y^j, x^j_{nv}, y^j_{nv})$ 



 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x_{nv}^{j}, y_{nv}^{j}) + P \cdot (x^{j} - y^{j}) + P_{n}(x_{nv}^{j} - y_{nv}^{j})\right\}$  "As if" competitive  $(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv})$  Frisch... not Marshallian (this will be crucial!)



 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x_{nv}^{j}, y_{nv}^{j}) + P \cdot (x^{j} - y^{j}) + P_{n}(x_{nv}^{j} - y_{nv}^{j})\right\}$  "As if" competitive  $(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv})$  Frisch... not Marshallian (this will be crucial!)

### Just as in static case...

$$D_n(P) \equiv \sum_j x_n^j + \sum_j x_{n\nu}^j$$
$$S_n(P) \equiv \sum_j y_n^j + \sum_j y_{n\nu}^j$$



 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x_{nv}^{j}, y_{nv}^{j}) + P \cdot (x^{j} - y^{j}) + P_{n}(x_{nv}^{j} - y_{nv}^{j})\right\}$  "As if" competitive  $(x^{j}, y^{j}, x^{j}_{my}, y^{j}_{my})$  Frisch... not Marshallian (this will be crucial!)

### Just as in static case...

 $D_n(P) \equiv \sum_j x_n^j + \sum_j x_{nv}^j$  $S_n(P) \equiv \sum_j y_n^j + \sum_j y_{nv}^j$ 





 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\}$  "As if" competitive  $(x^j, y^j, x^j_{nv}, y^j_{nv})$  Frisch... not Marshallian (this will be crucial!)

### Just as in static case...

 $D_n(P) \equiv \sum_j x_n^j + \sum_j x_{n\nu}^j$  $S_n(P) \equiv \sum_j y_n^j + \sum_j y_{n\nu}^j$ 



 $S_n(P) \qquad \frac{\bar{P}_{nv}}{P_n} = g_n\left(\frac{D_n(P)}{S_n(P)}, P_{-n}\right)$ 





## Analysis

- 1. Calvo pricing:  $\dot{P}_n / P_n = f_n (P_n^* / P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_t$ ...  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$

3. Study dynamics setting  $P_{nt}^* = P_{nt}...$  $\dot{P}_n/P_n = h_n(D_n(P)/S_n(P), P)$ 

Why set  $P_{nt}^* = P_{nt}^* := P_{nt}^*$ 

a. for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to P_{nt}$  (reset  $\to$  flex response)

b. always dominates local dynamics!

4. Main Result: globally stable! Why?

$$\int f_n(z) = \frac{\lambda_n}{1 - \epsilon_n} (z^{1 - \epsilon_n})$$

### **Samuelson's equation!**

log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(P)) - s_n(P)$$







# **Dynamics with** $\bar{P}_n = P_n^*$

## **Dynamics with** $\bar{P}_n = P_n^*$ From steps 1 and 2 we have...

 $\dot{P}_n / P_n = f_n (P_n^* / P_N)$ 

# $\bar{P}_n/P_n = g_n(D_n(P)/S_n(P), P)$

## **Dynamics with** $P_n = P_n^*$ From steps 1 and 2 we have... $\dot{P}_n / P_n = f_n (P_n^* / P_N)$

Setting  $P_n = P_n^* (h_n = f_n \circ g_n)$ 

# $\overline{P}_n/P_n = g_n(D_n(P)/S_n(P), P)$

### $\dot{P}_n/P_n = h_n(D_n(P)/S_n(P), P)$

## **Dynamics with** $P_n = P_n^*$ From steps 1 and 2 we have... $\dot{P}_n / P_n = f_n (P_n^* / P_N)$

Setting  $P_n = P_n^* (h_n = f_n \circ g_n)$ 

# $P_n/P_n = g_n(D_n(P)/S_n(P), P)$

# $\dot{P}_{n} (P_{n}) = h_{n} (D_{n}(P) / S_{n}(P), P) \begin{cases} > 0 & \text{if } D_{n}(P) > S_{n}(P) \\ = 0 & \text{if } D_{n}(P) = S_{n}(P) \\ < 0 & \text{if } D_{n}(P) < S_{n}(P) \end{cases}$

## **Dynamics with** $P_n = P_n^*$ From steps 1 and 2 we have...

$$P_n / P_n = f_n($$

 $\dot{P}_n/P_n = f_n(P_n^*/P_N)$  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$ 

Setting  $P_n = P_n^* (h_n = f_n \circ g_n)$ 

# $\dot{P}_{n} (P_{n}) = h_{n} (D_{n}(P)/S_{n}(P), P) \begin{cases} > 0 & \text{if } D_{n}(P) > S_{n}(P) \\ = 0 & \text{if } D_{n}(P) = S_{n}(P) \\ < 0 & \text{if } D_{n}(P) < S_{n}(P) \end{cases}$ $\left(\dot{p}_n = \frac{\lambda_n}{\epsilon_n + \epsilon_n^s} (d_n(p) - s_n(p))\right)$

## **Dynamics with** $P_n = P_n^*$ From steps 1 and 2 we have...

$$P_n / P_n = f_n($$

 $\dot{P}_n/P_n = f_n(P_n^*/P_N)$  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$ 

Setting  $P_n = P_n^* (h_n = f_n \circ g_n)$ 

# $\dot{P}_{n} (P_{n}) = h_{n} (D_{n}(P)/S_{n}(P), P) \begin{cases} > 0 & \text{if } D_{n}(P) > S_{n}(P) \\ = 0 & \text{if } D_{n}(P) = S_{n}(P) \\ < 0 & \text{if } D_{n}(P) < S_{n}(P) \end{cases}$ $\left(\dot{p}_n = \frac{\lambda_n}{\epsilon_n + \epsilon_n^s} (d_n(p) - s_n(p))\right)$

# **Dynamics with** $\bar{P}_n = P_n^*$

### Equation has Samuelson form...

- Image: Image: Second Straight Straig
- will greatly affect dynamics!

## Analysis

- 1. Calvo pricing:  $\dot{P}_n/P_n = f_n(P_n^*/P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_t$ ...  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$
- 3. Study dynamics setting  $P_{nt}^* = \bar{P}_{nt}...$

 $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$ 

Why set  $P_{nt}^* = P_{nt}^* := P_{nt}^*$ 

- a. for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to P_{nt}$  (reset  $\to$  flex response)
- b. always dominates local dynamics!
- 4. Main Result: globally stable! Why?

# $\int f_n(z) = \frac{\lambda_n}{1 - \epsilon_n} (z^{1 - \epsilon_n} - 1)$



### **Samuelson's equation!**

log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(P)) - s_n(P)$$









 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\}$  $(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv})$ 

 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\} \equiv V^{j}(P)$  $(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv})$ 

 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\} \equiv V^{j}(P)$  $(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) \qquad V(P) \equiv \sum_{j} V^{j}(P)$ 





### (standard micro: firm profit convex)



 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\} \equiv V^{j}(P)$  $(x^j, y^j, x^j_{nv}, y^j_{nv})$  $V(P) \equiv \sum_{i} V^{i}(P)$ 

 $\frac{\partial}{\partial P_n} V(P) = S_n(P) - D_n(P)$ 



(standard micro: firm profit convex)

(envelope, a.k.a. "Roy identity")



 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\} \equiv V^{j}(P)$  $(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv})$  $V(P) \equiv \sum_{i} V^{j}(P)$ 

 $\frac{\partial}{\partial P_n} V(P) = S_n(P) - D_n(P)$ 

 $\arg \min_P V(P) = P_W$  (equilibrium)



(standard micro: firm profit convex)

(envelope, a.k.a. "Roy identity")



 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\} \equiv V^{j}(P)$  $(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv})$  $V(P) \equiv \sum_{i} V^{j}(P)$ 

 $\frac{\partial}{\partial P_n} V(P) = S_n(P) - D_n(P)$ 

 $\arg \min_P V(P) = P_W$  (equilibrium)

 $A \equiv \nabla(S(P) - D(P)) = \nabla^2 V(P)$  Positive Definite matrix



(standard micro: firm profit convex)

(envelope, a.k.a. "Roy identity")

(a.k.a. "Slutzky")



 $\max\left\{\frac{1}{\mu^{j}}U^{j}(x^{j}, y^{j}, x^{j}_{nv}, y^{j}_{nv}) + P \cdot (x^{j} - y^{j}) + P_{n}(x^{j}_{nv} - y^{j}_{nv})\right\} \equiv V^{j}(P)$  $(x^j, y^j, x^j_{nv}, y^j_{nv})$  $V(P) \equiv \sum_{i} V^{j}(P)$ 

 $\frac{\partial}{\partial P_n} V(P) = S_n(P) - D_n(P)$ 

## $\arg \min_P V(P) = P_W$ (equilibrium)

 $A \equiv \nabla(S(P) - D(P)) = \nabla^2 V(P)$  Positive Definite matrix

# **Proposition.** [As If Rep Agent]



(standard micro: firm profit convex)

(envelope, a.k.a. "Roy identity")

(a.k.a. "Slutzky")

V = indirect utility of an AS IF Representative



- Wilson "Theory of Syndicates" (Econometrica, 1968)
- Constantinides "Asset Pricing with Heterogeneous Agents" (JofB, 1982)

Related to notion is macro and asset pricing that Complete Markets = Rep Agent...

- Related to notion is macro and asset pricing that Complete Markets = Rep Agent...
  - Wilson "Theory of Syndicates" (Econometrica, 1968)
  - Constantinides "Asset Pricing with Heterogeneous Agents" (JofB, 1982)
- Implication: V(P) as Lyapunov function  $\rightarrow$  Global Stability! [Arrow-Hurwicz]

- Related to notion is macro and asset pricing that Complete Markets = Rep Agent...
  - Wilson "Theory of Syndicates" (Econometrica, 1968)
  - Constantinides "Asset Pricing with Heterogeneous Agents" (JofB, 1982)
- Implication: V(P) as Lyapunov function  $\rightarrow$  Global Stability! [Arrow-Hurwicz]
- $v(t) \equiv V(P(t))$

- Wilson "Theory of Syndicates" (Econometrica, 1968)
- Constantinides "Asset Pricing with Heterogeneous Agents" (JofB, 1982)

 $v(t) \equiv V(P(t)) \rightarrow v'(t) = \sum_{n} \frac{\partial}{\partial P_{n}} V(P_{t}) \dot{P}_{nt}$ 

Related to notion is macro and asset pricing that Complete Markets = Rep Agent...

- Wilson "Theory of Syndicates" (Econometrica, 1968)
- Constantinides "Asset Pricing with Heterogeneous Agents" (JofB, 1982)

 $v(t) \equiv V(P(t)) \rightarrow v'(t) = \sum_{n} \frac{\partial}{\partial P_n} V(P_t) \dot{P}_{nt} = -$ 

Related to notion is macro and asset pricing that Complete Markets = Rep Agent...

$$\sum_{n} (D_{n}(P_{t}) - S_{n}(t)) h_{n}(D_{n}(P_{t})/S_{n}(P_{t}), P_{t})$$

- Wilson "Theory of Syndicates" (Econometrica, 1968)
- Constantinides "Asset Pricing with Heterogeneous Agents" (JofB, 1982)

 $v(t) \equiv V(P(t)) \rightarrow v'(t) = \sum_{n} \frac{\partial}{\partial P_n} V(P_t) \dot{P}_{nt} = -$ 

Related to notion is macro and asset pricing that Complete Markets = Rep Agent...

$$-\sum_{n} \left( \frac{D_n(P_t) - S_n(t)}{N} \right) \frac{h_n(D_n(P_t) / S_n(P_t), P_t)}{\geq 0}$$

- Wilson "Theory of Syndicates" (Econometrica, 1968)
- Constantinides "Asset Pricing with Heterogeneous Agents" (JofB, 1982)

 $v(t) \equiv V(P(t)) \rightarrow v'(t) = \sum_{n} \frac{\partial}{\partial P_n} V(P_t) \dot{P}_{nt} = -$ 

Related to notion is macro and asset pricing that Complete Markets = Rep Agent...

$$-\sum_{n} \left( \frac{D_n(P_t) - S_n(t)}{\sum b_n(P_t) - S_n(t)} \frac{h_n(D_n(P_t) - S_n(P_t), P_t)}{\sum b_n(P_t) - S_n(t)} \right)$$



- Wilson "Theory of Syndicates" (Econometrica, 1968)
- Constantinides "Asset Pricing with Heterogeneous Agents" (JofB, 1982)

 $v(t) \equiv V(P(t)) \rightarrow v'(t) = \sum_{n} \frac{\partial}{\partial P_n} V(P_t) \dot{P}_{nt} = -$ 

Related to notion is macro and asset pricing that Complete Markets = Rep Agent...

$$-\sum_{n} \left( \frac{D_n(P_t) - S_n(t)}{\sum b_n(P_t) - S_n(t)} \frac{h_n(D_n(P_t) - S_n(P_t), P_t)}{\sum b_n(P_t) - S_n(t)} \right)$$


## Analysis

- 1. Calvo pricing:  $\dot{P}_n/P_n = f_n(P_n^*/P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_t$ ...  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$
- 3. Study dynamics setting  $P_{nt}^* = \bar{P}_{nt}...$

 $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$ 

Why set  $P_{nt}^* = P_{nt}^* := P_{nt}^*$ 

a. for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to P_{nt}$  (reset  $\to$  flex response)

b. always dominates local dynamics!

4. Main Result: globally stable! Why?





### **Samuelson's equation!**

log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(P)) - s_n(P)$$







# Why $P_{nt}^* = \bar{P}_n^?$

## Why $P_{nt}^* = \bar{P}_n^?$

**Result 1.** for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to \bar{P}_{nt}$  (reset  $\to$  flex response)

Why  $P_{nt}^* = P_n^?$ **Result 1.** for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to \bar{P}_{nt}$  (reset  $\to$  flex response) Intuition using linearization...  $P_{nt}^* = (\rho + \lambda_n) \int_0^\infty e^{-(\rho + \lambda_n)s} \bar{P}_{nt+s} \, ds$ 

Why  $P_{nt}^* = P_n^?$ **Result 1.** for  $\lambda_n / \rho \to 0$  then  $P^*_{nt} \to \bar{P}_{nt}$  (reset  $\to$  flex response) Intuition using linearization...  $P_{nt}^* = (\rho + \lambda_n) \int_0^\infty e^{-(\rho + \lambda_n)s} \bar{P}_{nt+s} \, ds \to \bar{P}_{nt} \text{ as } \rho \to \infty \text{ (truly "Myopic"!)}$ 

Why  $P_{nt}^* = P_n^?$ **Result 1.** for  $\lambda_n / \rho \to 0$  then  $P^*_{nt} \to \bar{P}_{nt}$  (reset  $\to$  flex response) Intuition using linearization...  $P_{nt}^* = (\rho + \lambda_n) \int_0^\infty e^{-(\rho + \lambda_n)s} \bar{P}_{nt+s} \, ds \to \bar{P}_{nt} \text{ as } \rho \to \infty \text{ (truly "Myopic"!)}$ result also true without linearization

Why  $P_{nt}^* = P_n^?$ **Result 1.** for  $\lambda_n / \rho \to 0$  then  $P_{nt}^* \to \overline{P}_{nt}$  (reset  $\to$  flex response) Intuition using linearization...  $P_{nt}^* = (\rho + \lambda_n) \int_0^\infty e^{-(\rho + \lambda_n)s} \bar{P}_{nt+s} \, ds \to \bar{P}_{nt} \text{ as } \rho \to \infty \text{ (truly "Myopic"!)}$ result also true without linearization less obvious: holds when  $\lambda_n \rightarrow 0$  (rigid price limit)

# Why $P_{nt}^* = \bar{P}_n^?$



## **Result 2.** For local dynamics $P_{nt}^* = \bar{P}_n$ gives correct answer!

Why  $P_{nt}^* = \overline{P}_n$ ?

### **Result 2.** For local dynamics $P_{nt}^* = \bar{P}_n$ gives correct answer!



Why  $P_{nt}^* = \overline{P}_n$ ?

## **Result 2.** For local dynamics $P_{nt}^* = \bar{P}_n$ gives correct answer! $\triangleright$ replace $\dot{p}_n = \alpha_n(d_n(p) - s(p))$ with... $\rho \dot{p}_n = \alpha_n (\rho + \lambda_n) (d_n(p) - s(p)) + \ddot{p}_n$

Why  $P_{nt}^* = P_n^?$ 

## **Result 2.** For local dynamics $P_{nt}^* = \bar{P}_n$ gives correct answer!

### Preplace $\dot{p}_n = \alpha_n(d_n(p) - s(p))$ with...

 $\rho \dot{p}_n = \alpha_n (\rho + \lambda)$ 

BD

$$l_n(d_n(p) - s(p)) + \ddot{p}_n$$

... we show A is Hurwicz stable with real negative roots

Why  $P_{nt}^* = P_n^?$ 

## **Result 2.** For local dynamics $P_{nt}^* = \bar{P}_n$ gives correct answer! $\triangleright$ replace $\dot{p}_n = \alpha_n(d_n(p) - s(p))$ with...



- $\rho \dot{p}_n = \alpha_n (\rho + \lambda_n) (d_n(p) s(p)) + \ddot{p}_n$ Bp
- ... we show A is Hurwicz stable with real negative roots
- $\triangleright$  2nd order ODE  $\rightarrow$  saddle stable if N of the 2N eigenvalues are negative

Why  $P_{nt}^* = P_n^?$ 

# **Result 2.** For local dynamics $P_{nt}^* = \bar{P}_n$ gives correct answer! Preplace $\dot{p}_n = \alpha_n(d_n(p) - s(p))$ with...

### **Proposition.** Stability Myopic $\rightarrow$ Stability Dynamic

### $eig(A) \rightarrow also eig of 2nd order stacked system$

- $\rho \dot{p}_n = \alpha_n (\rho + \lambda_n) (d_n(p) s(p)) + \ddot{p}_n$ Bp ... we show A is Hurwicz stable with real negative roots
- $\triangleright$  2nd order ODE  $\rightarrow$  saddle stable if N of the 2N eigenvalues are negative



Why  $P_{nt}^* = \overline{P}_n$ ?

### $eig(A) \rightarrow eigenvalues$ of 2nd order stacked system



Why  $P_{nt}^* = P_n^?$ 

### $eig(A) \rightarrow eigenvalues of 2nd order stacked system$

Other N eigenvalues are positive i.e. come in "almost reciprocal" pairs



Why  $P_{nt}^* = P_n^?$ 

### $eig(A) \rightarrow eigenvalues of 2nd order stacked system$

Other N eigenvalues are positive i.e. come in "almost reciprocal" pairs **Result 3.** 2nd order ODE = Euler equation for planner  $\min \int_{0}^{\infty} e^{-\rho t} [V(I$ 

$$P_t - \sum_n \frac{1}{2} (\dot{P}_{nt} / P_{nt})^2 ] dt$$



Why  $P_{nt}^* = P_n^*$ ?

### $eig(A) \rightarrow eigenvalues of 2nd order stacked system$

Other N eigenvalues are positive i.e. come in "almost reciprocal" pairs

Result 3. 2nd order ODE = Euler equation for planner

$$\min \int_0^\infty e^{-\rho t} [V(P_t) - \sum_n \frac{1}{2} (\dot{P}_{nt}/P_{nt})^2] dt$$

Golden Rule Turnpike limit  $P_t \rightarrow P_w$  (minimum of V)



Why  $P_{nt}^* = P_n^?$ 

### $eig(A) \rightarrow eigenvalues of 2nd order stacked system$

Other N eigenvalues are positive i.e. come in "almost reciprocal" pairs

Result 3. 2nd order ODE = Euler equation for planner

$$\min \int_0^\infty e^{-\rho t} [V(P_t) - \sum_n \frac{1}{2} (\dot{P}_{nt}/P_{nt})^2] dt$$

- Golden Rule Turnpike limit  $P_t \rightarrow P_w$  (minimum of V)
  - Why min and not max? min-max saddle = equilibrium



## Analysis

- 1. Calvo pricing:  $\dot{P}_n/P_n = f_n(P_n^*/P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_t$ ...  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$
- 3. Study dynamics setting  $P_{nt}^* = P_{nt}...$

 $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$ 

Why set  $P_{nt}^* = \overline{P}_{nt}?...$ 

a. for  $\lambda_n/\rho \to 0$  then  $P_{nt}^* \to \bar{P}_{nt}$  (reset  $\to$  flex response)

b. always dominates local dynamics!

4. Main Result: globally stable! Why?

 $\int f_n(z) = \frac{\lambda_n}{1 - \epsilon_n} (z^{1 - \epsilon_n} - 1)$ 

# Samuelson's equation! log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(P)) - s_n(P)$$







**Macro strikes back!** N stable roots are too many  $\rightarrow$  indeterminacy



### **Macro strikes back!** N stable roots are too many $\rightarrow$ indeterminacy

large converge for any household multipliers  $\mu^h$ 

**Macro strikes back!** N stable roots are too many  $\rightarrow$  indeterminacy

- large converge for any household multipliers  $\mu^h$
- multipliers pinned down by budget constraints...
  - ... by Walras' Law  $\rightarrow$  only H 1 independent budget constraints...
  - ... one degree of indeterminacy!

**Macro strikes back!** N stable roots are too many  $\rightarrow$  indeterminacy

converge for any household multipliers

- multipliers pinned down by budget constraints... ... by Walras' Law  $\rightarrow$  only H - 1 independent budget constraints...
  - ... one degree of indeterminacy!

Up to now: 
$$\hat{Q}_t = 1 \rightarrow Q_t = e^{-\rho t}$$

$$\mu^h$$

• 
$$i_t = \rho$$
 interest rate peg ( $\Omega$ !)

**Macro strikes back!** N stable roots are too many  $\rightarrow$  indeterminacy

converge for any household multipliers

- multipliers pinned down by budget constraints... ... by Walras' Law  $\rightarrow$  only H - 1 independent budget constraints...
  - ... one degree of indeterminacy!

Vp to now: 
$$\hat{Q}_t = 1 \rightarrow Q_t = e^{-\rho t}$$
 -

Sounds familiar? Yes, after all, basic NK model is special case: H=1 F=1 N=2 (c, L)cannot be immune then to the usual issues.

$$\mu^h$$

 $\rightarrow i_{t} = \rho$  interest rate peg ( $\mathbf{Q}$ !)

**Macro strikes back!** N stable roots are too many  $\rightarrow$  indeterminacy

converge for any household multipliers

- multipliers pinned down by budget constraints... ... by Walras' Law  $\rightarrow$  only H - 1 independent budget constraints...
  - ... one degree of indeterminacy!

Vp to now: 
$$\hat{Q}_t = 1 \rightarrow Q_t = e^{-\rho t}$$
 -

Sounds familiar? Yes, after all, basic NK model is special case: H=1 F=1 N=2 (c, L)cannot be immune then to the usual issues.

We now ask, can we always find a monetary policy that gives local determinacy?

$$\mu^h$$

 $\rightarrow i_t = \rho$  interest rate peg ( $\mathbf{Q}$ !)

**Macro strikes back!** N stable roots are too many  $\rightarrow$  indeterminacy

converge for any household multipliers

- multipliers pinned down by budget constraints... ... by Walras' Law  $\rightarrow$  only H - 1 independent budget constraints...
  - ... one degree of indeterminacy!

Vp to now: 
$$\hat{Q}_t = 1 \rightarrow Q_t = e^{-\rho t}$$
 -

Sounds familiar? Yes, after all, basic NK model is special case: H=1 F=1 N=2 (c, L)

cannot be immune then to the usual issues.

We now ask, can we always find a monetary policy that gives local determinacy?

 $\triangleright$  we need N-1 roots to be stable, not N just as in the Walrasian case!

$$\mu^h$$

 $\rightarrow i_t = \rho$  interest rate peg ( $\mathbf{Q}$ !)

**Macro strikes back!** N stable roots are too many  $\rightarrow$  indeterminacy

converge for any household multipliers

- multipliers pinned down by budget constraints... ... by Walras' Law  $\rightarrow$  only H - 1 independent budget constraints...
  - ... one degree of indeterminacy!

**V** Up to now: 
$$\hat{Q}_t = 1 \rightarrow Q_t = e^{-\rho t}$$
 -

- Sounds familiar? Yes, after all, basic NK model is special case: H=1 F=1 N=2 (c, L)cannot be immune then to the usual issues.
- We now ask, can we always find a monetary policy that gives local determinacy?
  - $\triangleright$  we need N-1 roots to be stable, not N just as in the Walrasian case!
  - Taylor rule to the rescue? Yes and no...

$$\mu^h$$

 $\rightarrow i_{t} = \rho$  interest rate peg ( $\mathbf{Q}$ !)

**Macro strikes back!** N stable roots are too many  $\rightarrow$  indeterminacy

large converge for any household multipliers  $\mu^h$ 

**Proposition.** [Monetary Policy  $\rightarrow$  Determinacy] Exists  $\omega$  and  $\phi > 1$ 

$$\hat{q}_t = \phi \sum_n \omega_n P_{nt}$$

We now ask, can we always find a monetary policy that gives local determinacy?

 $\triangleright$  we need N-1 roots to be stable, not N just as in the Walrasian case!

Taylor rule to the rescue? Yes and no...

### $\rightarrow$ N – 1 roots real and stable



## **Proposition.** [Monetary Policy $\rightarrow$ Determinacy] Exists $\omega$ and $\phi > 1$ $\hat{q}_t = \phi \sum_n \omega_n P_{nt} \rightarrow N-1$ roots real and stable



# **Proposition.** [Monetary Policy $\rightarrow$ Determinacy] Exists $\omega$ and $\phi > 1$

**Just what we needed:** unique local stable path (given initial primitives and  $P_0$ ) (N-1 eigenvalues, just as in classical ad hoc Tattonement analyses)

### $\hat{q}_t = \phi \sum_n \omega_n P_{nt} \rightarrow N-1$ roots real and stable



## **Proposition.** [Monetary Policy $\rightarrow$ Determinacy] Exists $\omega$ and $\phi > 1$ $\hat{q}_t = \phi \sum_n \omega_n P_{nt} \rightarrow N-1$ roots real and stable



initial primitives and  $P_0$ )



## **Proposition.** [Monetary Policy $\rightarrow$ Determinacy] Exists $\omega$ and $\phi > 1$ $\hat{q}_t = \phi \sum_n \omega_n P_{nt} \rightarrow N-1$ roots real and stable



**Extra:** no convergence by cycles! No complex eigenvalues  $\rightarrow$  "almost" monotone

initial primitives and  $P_0$ )



## **Proposition.** [Monetary Policy $\rightarrow$ Determinacy] Exists $\omega$ and $\phi > 1$ $\hat{q}_t = \phi \sum_n \omega_n P_{nt} \rightarrow N - 1$ roots real and stable Just what we needed: unitial primitives and (N-1 eigenvalues, just as in classical ad hoc Tattonement analyses) initial primitives and $P_0$ ) **Extra:** no convergence by cycles! No complex eigenvalues $\rightarrow$ "almost" monotone

What about  $\omega$ ...?

left eigenvector of the targeted eigenvalue; no other eigenvalues are changed!



 $\triangleright$  adds up to 1, but may have some negative components (gross substitutes gives  $\omega > 0$ )



## **Proposition.** [Monetary Policy $\rightarrow$ Determinacy] Exists $\omega$ and $\phi > 1$ $\hat{q}_t = \phi \sum_n \omega_n P_{nt} \rightarrow N - 1$ roots real and stable Just what we needed: uni (N-1 eigenvalues, just as in classical ad hoc Tattonement analyses) initial primitives and $P_0$ ) **Extra:** no convergence by cycles! No complex eigenvalues $\rightarrow$ "almost" monotone What about $\omega$ ...? left eigenvector of the targeted eigenvalue; no other eigenvalues are changed!

 $\triangleright$  adds up to 1, but may have some negative components (gross substitutes gives  $\omega > 0$ )

We show Taylor principle for arbitrary or CPI  $\omega$  fails to work...

less than N-1 stable

complex roots


## **Example 1: Three good economy** plt.xlabel("of") print(vl) [0.149198 0.504783 0.346019] 6 4 2 0 -2







## **Example 1: Three good economy**

Taylor rule with weights = left eigenvector

- 6
- 4
- 2
- 0
- -2

# plt.xlabel("of")

print(vl)

### [0.149198 0.504783 0.346019]







## **Example 1: Three good economy**

- Taylor rule with weights = left eigenvector
- At  $\phi = 0$ : three real and negative eigenvalues

- 6
- 4
- 2
- 0
- -2

# plt.xlabel("of")

print(vl)

### $[0.149198 \ 0.504783 \ 0.346019]$







## **Example 1: Three good economy**

- Taylor rule with weights = left eigenvector
- At  $\phi = 0$ : three real and negative eigenvalues

## As $\phi$ rises

- 6
- 4
- 2

- 0
- -2

# plt.xlabel("of")

print(vl)

### [0.149198 0.504783 0.346019]







| Example 1: Three go                                 |              |
|-----------------------------------------------------|--------------|
| Taylor rule with weights =<br>left eigenvector      | plt.<br>prim |
| At $\phi = 0$ : three real and negative eigenvalues | [0.3         |
| As $\phi$ rises                                     | 6 -          |
| two eigenvalues remain<br>unchanged                 | 4 -          |
|                                                     | 2 ·          |
|                                                     | 0 -          |

-2

# .xlabel(" \$\$\pressure " .xlabel(" \$\$\pressure " .xlabel(" .xl

nt(vl)

### 149198 0.504783 0.346019]







| Example 1: Three go                                 | 00   |
|-----------------------------------------------------|------|
| Taylor rule with weights =                          | plt. |
| left eigenvector                                    | prir |
| At $\phi = 0$ : three real and negative eigenvalues | [0.3 |
| As $\phi$ rises                                     | 6 -  |
| two eigenvalues remain<br>unchanged                 | 4 -  |
|                                                     | 2 -  |
| logic other rises and crosses 0 at $\phi = 1!$      | 0 -  |
|                                                     | -2 - |

# .xlabel(" \$\$\pressure " .xlabel(" \$\$\pressure " .xlabel(" .xl

nt(vl)

### 149198 0.504783 0.346019]









Taylor rule with weights  $\neq$  left eigenvector



Taylor rule with weights  $\neq$  left eigenvector 0.10 At  $\phi = 0$ : again three real and negative eigenvalues 0.05 0.00 -0.05 -0.10-0.15



- Taylor rule with weights  $\neq$  left eigenvector 0.10 At  $\phi = 0$ : again three real and negative eigenvalues 0.05 As  $\phi$  rises: 0.00 -0.05 -0.10
  - -0.15



- Taylor rule with weights  $\neq$  left eigenvector
- At  $\phi = 0$ : again three real and negative eigenvalues

### As $\phi$ rises:

▶ all eigenvaues affected

0.05 0.00 -0.05-0.10-0.15

0.10



- Taylor rule with weights  $\neq$  left eigenvector
- At  $\phi = 0$ : again three real and negative eigenvalues

### As $\phi$ rises:

- all eigenvaues affected
- complex conjugate pair of eigenvalues emerge
- 0.10 0.05 0.00 -0.05 -0.10-0.15



- Taylor rule with weights  $\neq$  left eigenvector
- 0.10 At  $\phi = 0$ : again three real and negative eigenvalues 0.05

0.00

-0.05

-0.10

-0.15

### As $\phi$ rises:

- all eigenvaues affected
- complex conjugate pair of eigenvalues emerge
- common real part pair crosses 0 around  $\phi = 0.857$



0.10

0.05

0.00

-0.05

-0.10

-0.15

- Taylor rule with weights  $\neq$  left eigenvector
- At  $\phi = 0$ : again three real and negative eigenvalues

### As $\phi$ rises:

- all eigenvaues affected
- complex conjugate pair of eigenvalues emerge
- common real part pair crosses 0 around  $\phi = 0.857$
- No  $\phi$  with two negative and one positive eigenvalues!



## Analysis

- 1. Calvo pricing:  $\dot{P}_n/P_n = f_n(P_n^*/P_N)$
- 2. Study flexible  $P_{nt}$  best response to  $P_t$ ...  $P_{n}/P_{n} = g_{n}(D_{n}(P)/S_{n}(P), P)$
- 3. Study dynamics setting  $P_{nt}^* = P_{nt}...$

 $\dot{P}_{n}/P_{n} = h_{n}(D_{n}(P)/S_{n}(P), P)$ 

Why set  $P_{nt}^* = \overline{P}_{nt}?...$ 

- a. for  $\lambda_n/\rho \to 0$  then  $P_{nt}^* \to \bar{P}_{nt}$  (reset  $\to$  flex response)
- b. always dominates local dynamics!
- 4. Main Result: globally stable! Why?
- 5. Monetary Policy  $\rightarrow$  Determinacy

 $\int f_n(z) = \frac{\lambda_n}{1 - \epsilon_n} (z^{1 - \epsilon_n} - 1)$ 



# Samuelson's equation! log-linearized...

$$\dot{p}_n = \alpha_n (d_n(P) - s_n(P)) - s_n(P)$$









## Conclusions





## Conclusions

- **Our paper:** revist Walras' Tatonnement question... ... but with dynamic GE model...
  - explicit dynamics
  - equilibrium price setting
  - forward-looking, rational expectations
  - borrowing-saving





## Conclusions

- Our paper: revist Walras' Tatonnement question... ... but with dynamic GE model...
  - explicit dynamics
  - equilibrium price setting
  - forward-looking, rational expectations
  - borrowing-saving
- Main Results...
  - justify study of Samuelson's ad hoc equation...
  - Image: Second Structure
    Image: Second Structure
  - In the second second
  - >... monetary policy plays subtle role







## THANK YOU!!

