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Tying together two literatures, and extending an old debate
• Finance literature studying the impact of events on asset prices

• Econometrics literature estimating the average treatment effect on the treated using
model and design-based inference
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Historically, event studies are an important tool

What types of financial events? Examples...
• Earnings Announcements
• Index Inclusion
• Mergers and acquisitions
• IPO, SEO, Shares repurchased
• CEO/CFO Changes
• Patent Issuance
• FOMC Announcements
• Labor Issues
• Political events
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Contribution of this paper (1/2)

• Reframe event studies in the view of
causal inference literature

- What is the counterfactual return?

• Characterize when standard abnormal
return estimates are biased

- Short-run – it depends
- Long-run – almost always

• Almost all existing approaches use
model-based counterfactuals

- Counterfactual return is based on
expected return

- Requires model stability of factor
structure

• Connection between historical
approaches (CAR, BHAR, Calendar Time)

- buy-and-hold (geometric) measures need
to match on both counterfactual means
and variance

- BHAR may bias treatment effects
downward due to volatility drag

• Propose alternative estimators
- Synthetic control
- PCA regression (GSynth)
- Potentially many others!
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Contribution of this paper (2/2)

• Highlight results in three applications
1. Political Connections (Acemlogu et al.

(2016))
2. S&P 500 Index Inclusion (Greenwood

and Sammon (2025))
3. Effects of mergers on acquirer value

(Malmandier (2018))

• Key takeaways:
1. significant potential bias in short-run

events when only one event
2. no bias in short-run when many events

with random timing
3. significant potential bias in long-run

events, even with many random events

• Key things still in progress:
- Robust results on inference
- Framework for partial information

incorporation
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What is the effect of an event on stock returns? Potential outcomes

• Unit of analysis: a path of stock returns Ri = {Ri1, . . . ,RiT}
- Set of n securities (firms) observed over T time periods

• Di ∈ {0, 1}: an event happens at t0 to n0 < n firms

• For each stock and time period, there are two potential versions of Rit :
- Rit(1): the firm experienced the event
- Rit(0): the firm without the event
- Researchers are interested in the causal effect of the event:

τit = Rit(1)− Rit(0)

• Fundamental problem of causal inference:

Rit = Rit(1)Di + Rit(0)(1−Di )
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Placing a model on the structure of counterfactual returns

Textbook approach approximates with abnormal returns (Campbell, Lo, Mackinlay (1997))

ARit = Rit − E(Rit |Xt)︸ ︷︷ ︸
Normal Returns given Xt

• E(Rit |Xt) can reflect many models of expected returns (MacKinley (1997))
- Market Model, CAPM, Fama-French

Ri ,t = αi + βi ,1 F1,t︸︷︷︸
Risk Factor

+ βi ,2︸︷︷︸
Factor Loading

F2,t + τtDi + ε i ,t

• Use pre-event data to estimate factor loadings (hence τs = 0 for s ≤ t0)
• If model is exactly correctly specified, no issues
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Misspecification in the abnormal return estimator

• What happens when a factor is omitted?

ÂR it = Rit − α̂i − β̂i ,1F1,t

ARt = n
−1
s ∑
i∈n1
ÂR it ≈ τt + β2

F2,t −
OVB︷ ︸︸ ︷

Cov (F2,t ,F1,t)

Var (F1,t)
F1,t


︸ ︷︷ ︸

misspecification error

+ n−11 ∑
i∈n1

ε i ,t︸ ︷︷ ︸
noise

where β2 = n
−1
1 ∑i :Ti=s βi ,2
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The short-and-long consequences of misspecification

ARt − τt ≈ β2

(
F2,t −

Cov (F2,t ,F1,t)

Var (F1,t)
F1,t

)
︸ ︷︷ ︸

misspecification error

+ n−11 ∑
i∈n1

ε i ,t︸ ︷︷ ︸
noise

• Average noise is mean zero, and disappears with large n1

• Misspecification error does not disappear with large n1
- Single event: ARt is stochastic

• Trade-off between magnitudes of F2,t and τt

• If τt is large relative to F2,t , then bias will be second order
- However, F2,t is stochastic, and may coincide with event
- Size of factor loading matters as well (β2)
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More general framework: setup and notation

• i = 1, . . . ,N securities ; t = 1, . . . ,T time.

• Binary treatment path Di ,t is irreversible : Di ,1 = 0, Di ,t = 1⇒Di ,t+1 = 1

• Event timing Ti =
{
t if event hits i at t
∞ if never

• Let C = {i : Ti = ∞} and S the set of possible event dates.

• Potential returns Ri ,t(s) if event happens at s , and Ri ,t(∞) if never.
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Counterfactual Returns: Linear Factor Model

Assumption: Factor structure

E
[
Ri ,t(∞) | Ti = s,Ft

]
= αs + βsFt ,

with K common factors Ft and group means (αs , βs)

• Explicitly delivers E [Ri ,t(0) | Ti = s ] used by most event-study models.
• Motivated by finance theory papers but strong

- e.g. Chamberlain and Rothschild (1983)
- Key question: is αs non-zero? Should it be incorporated into the counterfactual estimate?
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Limited Anticipation + Limited Effects

Assumption: Limited Anticipation

Ri ,t(Ti ) = Ri ,t(∞) for all t < Ti − δ1

• Rules out pre-event price effects within the estimation window
• Justifies using pre-event data to learn counterfactuals

Assumption: Limited Effects
• If concerned that treatment changes risk loadings, can also consider a

“post-treatment” stability assumption:

E
[
Ri ,t(s) | Ti = s,Ft

]
= α∗

s + β∗
sFt , for all t > s + δ2

• Could use this to decompose treatment effects
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Event-Assignment Mechanics

Timing propensity score
pt(Xi ,F ) = Pr(Ti = t | Xi ,F ), Xi = (αi , βi )

• Random assignment: pt(Xi ,F ) = pt(F )
• Random timing: pt(Xi ,F ) = pt(Xi )

Random assignment controls who is treated; random timing controls when
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Average Treatment Effect on the Treated as a building block

τi (s, t) = Ri ,t(s)− Ri ,t(∞), τATT(s, t) = E[τi (s, t) | Ti = s ]

τATT(s, t) = E[τi (s, t) | Ti = s ] = E[Ri ,t(s)− Ri ,t(∞) | Ti = s ]
= E[Ri ,t | Ti = s ]︸ ︷︷ ︸

Observed

−E[Ri ,t(∞) | Ti = s ]︸ ︷︷ ︸
Counterfactual Return

• Just a question of how we generate the average counterfactual return

θκ = ∑
s∈S
ws τATT(s, s + κ), ws =

Ns

∑s ′ Ns ′
(under random timing)

• Common special case: cumulative effect ΘCATT
H =

H

∑
κ=0

θκ .
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Connection between different estimators/estimands

τATT

CAR
∑R(s)− R(∞)

BHAR
∑ log(1+ R(s))− log(1+ R(∞))

Calendar Time Portfolio α

• Control group for BHAR needs to match both levels and variance

τgeo,ATT (s, t) ≈ τATT (s, t)− E (Rit(∞)τi (s, t) +
1

2
(τi (s, t))

2 | Ti = s).
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Estimator 1: Abnormal Returns

R̂i ,t = α̂i + β̂iF
o
t (t < Ti − δ), ARi ,t = Ri ,t − R̂i ,t

τ̂AR(s, t) = E[ARi ,t | Ti = s ]

• Standard CAPM / Fama-French approach

• Subject to issues in simple exmple above unless F ot spans the true factors

• Counterfactual return generated by R̂it model
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Estimator 2: Difference-in-Means

τ̂cont(s, t) = E[Ri ,t | Ti = s ]− E[Ri ,t | i ∈ C ].

• If C is the full market, ≈ equal-weighted market-adjusted return model

• Counterfactual return generated by average of other stocks
- Consistent under random assignment
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Estimator 3: Synthetic Control

τ̂SC(s, t) = Rs,t − ∑
j∈C

ω̂jRj ,t ,

with weights ω̂ chosen to exactly fit pre-event paths.
• Requires that a weighted portfolio of controls can replicate treated pre-trend

- Ben-Michael and Feller (2021) show that even with imperfect fit this can be used

• No need for the factor model to be specified by researcher
- With linear factor model, will exactly recover model

• Counterfactual return generated constructing replicating pre-period portfolio

18 / 42



Estimator 4: PCA regression / Gsynth Xu (2017)

τ̂SC(s, t) = Rs,t − α̂s − λ̂s f̂t , t ≥ δ1

• factors f̂t are constructed using control firms
• loadings λ̂s are constructed in the pre-period
• This approach is effectively PCA regression in pre-period

- Factors constructed using PCA, and then dimensionality chosen via cross-validation

• No need for the factor model to be specified by researcher
- With linear factor model, will exactly recover model

• Counterfactual return generated using control stocks’ factor structure, and pre-event
treated firms’ loadings
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Finite-sample bias approximation, ignoring idiosyncratic error

Under the assumptions of a limited anticipation and linear factor model:

τAR(s, t)− τATT(s, t) = (αs − α̂s) + (βsFt − β̂sF
o
t )

τ̂cont(s, t)− τATT(s, t) = (αs − α∞) + (βs − β∞)Ft

τ̂sc(s, t)− τATT(s, t) = (αs − α̂sc
s ) + (βs − β̂sc

s )Ft

τ̂gsynth(s, t)− τATT(s, t) = (αs − α̂gsynth
s ) + (βsFt − β̂gsynth

s f̂t)

• Estimator’s error is proportional to difference with αs , βs in the pre-event window.

• Misspecifying factors shows up through βsFt terms
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Large-sample limits with both n and T to ∞

τAR(s, t)− τATT(s, t)
p−→ (αs − α̃s) + (βsFt − β̃sF

o
t )

τ̂cont(s, t)− τATT(s, t)
p−→ (αs − α∞) + (βs − β∞)Ft

τ̂gsynth(s, t)− τATT(s, t)
p−→ 0

τ̂SC(s, t)− τATT(s, t)
p−→ 0

• Even with ns , nc ,T → ∞, AR and DiD are biased if the factor model is wrong

• Synthetic control is unbiased under exact pre-event fit

• PCA regression able to recover underlying factor structure as well
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When do simple estimators work?

• Random assignment ⇒ Difference-in-mean is unbiased even with a fixed T :

τ̂cont(s, t)− τATT(s, t)
p−→ 0

• Correct factors (F ot = Ft ) ⇒ Abnormal-returns estimator is consistent:

τAR(s, t)− τATT(s, t)
p−→ 0

• Synthetic control + Gsynth unbiased under linear factor model
- Synthetic control constructs replicating portfolio - tradable
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Large-sample limits with staggered events

Assume ns , nc ,T → ∞ and each date in S has non-trivial treatment probability. Then

θ̂ARκ − θATTκ
p−→ E

[
(αs − α̃s) + (βsFs+κ − β̃sF

o
s+κ) | Ti ∈ S

]
θ̂cont

κ − θATTκ
p−→ E

[
(αs − α∞) + (βs − β∞)Fs+κ | Ti ∈ S

]
θ̂gsynth

κ − θATTκ
p−→ 0 θ̂SC

κ − θATTκ
p−→ 0

• AR and diff-in-mean inherit factor-model/timing bias
• Synthetic control and gsynth remain unbiased
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What additional assumptions help?

1. Random assignment θ̂cont
κ

p−→ θATTκ even with fixed T .
2. Random timing gives closed-form bias expressions:

θ̂ARκ − θATTκ = E [(αs − α̃s )|Ti ∈ S ] + βsE [Ft ]β̃sE [F
o
s+κ ]

3. If the reported factors are correct (F ot = Ft), AR is consistent
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Practical implications of bias

• Bias that is “ negligible” day-by-day compounds over long horizons
- If daily avg. factor premium is 0.02 percent → 250 day period, avg of 5 percent

• Random timing averages out factor realizations, not factor premia; misspecification still
matters for horizons where E [Ft ] ̸= 0.

• Synthetic control or gsynth is the safest route for long-run event studies
- Stable factor model is a strong assumption over long horizon (Kelly, Pruitt, Su (2019))
- Clear evidence of shifting loadings in empirical examples
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Empirical example 1: Acemoglu, Johnson, Kermani, Kwak, Mitton

• Acemoglu et al. (2016) study how the
leak of Timothy Geithner’s nomination
as U.S. Treasury Secretary on Nov 21,
2008 affected firms connected to him

- Focus on pooled average treatment
effect (ATT) for five methods: abnormal
returns, synthetic control, gsynth and
synth did

• Paper compares within banks connected
vs. not, we expand control group

• Key features:
- Single event
- Unusual timing
- Short horizon
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Results are much closer to zero using synthetic methods

• Effect sizes are large in the paper, shrink
significantly with synthetic approach,
even when focused on just banks as
controls

• When expanded to the full universe of
control firms, all estimated effects are
effectively zero

- Why?
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Reason 1: differences in factors loadings
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Reason 2: non-random timing
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• Timing of event is correlated with
significant risk factors
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Empirical example 2: S&P Index Inclusion Effect

• S&P 500 index inclusion effect: firms
added to the index experience a large
positive return on the day of inclusion

• Replicate analysis from Greenwood and
Sammon (2025)

- S&P inclusions from 1976-2020
- Use announcement dates from Siblis

Research, if missing, use day prior to
effective day

• Key features:
- Many events
- As-if random timing
- Short- and long- horizon
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Empirical example 2: S&P Index Inclusion Effect

• Method for short-run estimation does not matter

1980−1989

1990−1999

2000−2009
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0 1 2 3 4 5
One day announcement effect
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One-day event effect is roughly consistent because of random timing
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However, not randomly assigned to firms

• Treated firms are significantly different than untreated firms
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Pre-inclusion drift as a long-run effect

• We study the pre-inclusion “drift” as a
form of long-run bias

• Often, drift is pointed to as a puzzle,
evidence of potential front-running, or
other market activity
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Per-Period ATTs for Index Inclusion
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Out-of-sample
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Factor methods remove trends prior to index inclusion
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Empirical example 3: M&A (Malmandier (2017))

• What is impact of acquisitions on
acquirer returns?

• Replicate analysis from Malmandier
(2017)?

- All acquisitions in SDC from
1980-20204

• Key features:
- Many events
- Quasi-random timing
- Short- and long- horizon

• Short-run effects quite similar, but... Cash merger
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Short-term effects are similar because of random timing
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Per-Period ATTs for M&A

Training

Out-of-sample
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Per-Period ATTs for M&A (Gsynth Pre vs Post Period)
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Synthetic methods match on overpricing in pre-period, leading to
negative post M&A returns
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Take-home messages

• Positive results in short-run are consistent with folk knowledge of event studies
The results were not materially different when returns were not corrected for market
movements. [Shleifer (1986)]

• Short-run estimates work well under random timing

• Long-run estimates needs a careful counterfactual model
- Best to use synth or gsynth with many firms
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Causal inference in finance as an agenda

• These are issues that show up for panel
data studies using
difference-in-differences!

- Asset prices incorporate information
much faster than other economic
outcomes

• Finance has lagged behind many other
econ fields in causal inference tools, but
we have a powerful set of outcomes and
experiments that other fields do not

- Financial event studies can be
important tool for this!

Goldsmith-Pinkham (2024)
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