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Tying together two literatures, and extending an old debate
® Finance literature studying the impact of events on asset prices

® Econometrics literature estimating the average treatment effect on the treated using
model and design-based inference
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Historically, event studies are an important tool

What types of financial events? Examples...

Earnings Announcements
Index Inclusion

Mergers and acquisitions

IPO, SEO, Shares repurchased
CEO/CFO Changes

Patent Issuance

FOMC Announcements
Labor Issues

Political events
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Historically, event studies are an important tool

What types of financial events? Examples... Additions

® Earnings Announcements

brmal Return
15

® |ndex Inclusion

® Mergers and acquisitions

® |PO, SEO, Shares repurchased
e CEO/CFO Changes

e Patent Issuance
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Historically, event studies are an important tool

What types of financial events? Examples...

Earnings Announcements
Index Inclusion

Mergers and acquisitions

IPO, SEO, Shares repurchased
CEO/CFO Changes

Patent Issuance

FOMC Announcements
Labor Issues

Political events
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(a) Patent 4,946,778 granted to Genex on Aug, 7
1990, “Single Polypeptide Chain Binding Molecules.”
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(c) Patent 6,317,722 granted to Amazon.com on Nov
13, 2001, “Use Of Electronic Shopping Carts To Gen-

erate Personal Recommendations.”
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(b) Patent 5,585,089 granted to Protein Design on
Dec 17, 1996, “Humanized Immunoglobulins.”
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(d) Patent 6,329,919 granted to IBM on Dec 11, 2001,

“System and Method For Providing Reservations For

Restroom Use.”



Contribution of this paper (1/2)

® Reframe event studies in the view of
causal inference literature

- What is the counterfactual return?

e Characterize when standard abnormal
return estimates are biased

- Short-run - it depends
- Long-run - almost always

® Almost all existing approaches use
model-based counterfactuals

- Counterfactual return is based on
expected return

- Requires model stability of factor
structure

e Connection between historical
approaches (CAR, BHAR, Calendar Time)

- buy-and-hold (geometric) measures need
to match on both counterfactual means
and variance

- BHAR may bias treatment effects
downward due to volatility drag

® Propose alternative estimators

- Synthetic control
- PCA regression (GSynth)
- Potentially many others!



Contribution of this paper (2/2)

e Highlight results in three applications e Key things still in progress:
1. Political Connections (Acemlogu et al. - Robust results on inference
(2016)) - Framework for partial information
2. S&P 500 Index Inclusion (Greenwood incorporation

and Sammon (2025))
3. Effects of mergers on acquirer value
(Malmandier (2018))

® Key takeaways:
1. significant potential bias in short-run
events when only one event
2. no bias in short-run when many events
with random timing
3. significant potential bias in long-run
events, even with many random events



What is the effect of an event on stock returns? Potential outcomes

e Unit of analysis: a path of stock returns R, = {Rj1, ..., RiT}
- Set of n securities (firms) observed over T time periods

e D; € {0,1}: an event happens at ty to ny < n firms

® For each stock and time period, there are two potential versions of R;;:

- Ri+(1): the firm experienced the event
- Ri+(0): the firm without the event
- Researchers are interested in the causal effect of the event:

== th<1) - th(0>
® Fundamental problem of causal inference:

Rit = Rif(DDi + Rit(o)(l - Di)



Placing a model on the structure of counterfactual returns

Textbook approach approximates with (Campbell, Lo, Mackinlay (1997))

=4

= Rit_ E(th‘Xt>
——

Normal Returns given X;

* E(Rjt|X:t) can reflect many models of expected returns (MacKinley (1997))
- Market Model, CAPM, Fama-French




Placing a model on the structure of counterfactual returns

Textbook approach approximates with (Campbell, Lo, Mackinlay (1997))

=4

= Rit_ E(th‘Xt>
——

Normal Returns given X;

* E(Rjt|X:t) can reflect many models of expected returns (MacKinley (1997))
- Market Model, CAPM, Fama-French

Rit=wai+pi1 F1t +  PBio For+ +é€it
~ ~—

Risk Factor  Factor Loading

e Use pre-event data to estimate factor loadings (hence 7. = 0 for s < tg)
* |f model is exactly correctly specified, no issues



Misspecification in the abnormal return estimator

* What happens when a factor is omitted?

ARjt = Rir —&; — Bi1F1,¢
OVB

_ B o~ - Cov(Fa, F -
ARt:nsl ZARI't%Tt_FﬁQ Fz't_WFl't —I—I’]ll Esj’t

ieny ieny

noise

where B, = ni ' Y7 s Bi



The short-and-long consequences of misspecification

—_— 7 COV(FQI, Fl,t) 1
ARt — Tt = B, (Fz,t — WFl,t + ,-;,,1 €t

—_————
noise

Average noise is mean zero, and disappears with large n;

Misspecification error does not disappear with large n;
- Single event: AR; is stochastic

Trade-off between magnitudes of F, ; and t;

If 7; is large relative to F, +, then bias will be second order

- However, F ¢ is stochastic, and may coincide with event
- Size of factor loading matters as well (8,)



More general framework: setup and notation

i=1,...,Nsecurities;t=1,..., T time.

Binary treatment path D; ; is :Dj1 =0, Djt=1=Djty1 =1

t ifeventhits/att
oo if never

Event timing T; = {

Let C = {i: T; = oo} and S the set of possible event dates.

Potential returns R; ;(s) if event happens at s, and R; (o) if never.



Counterfactual Returns: Linear Factor Model

Assumption: Factor structure
:[E[Rl,t(oo) | 7—1 - 51 Ft] == “S +ﬁSFt1

with K common factors F; and group means (as, Bs)

e Explicitly delivers E[R; +(0) | T; = s] used by most event-study models.
® Motivated by finance theory papers but strong

- e.g. Chamberlain and Rothschild (1983)
- Key question: is a5 non-zero? Should it be incorporated into the counterfactual estimate?



Limited Anticipation + Limited Effects

Assumption: Limited Anticipation
Ri+(T;) = Ri(c0) forallt < T;—6;

e Rules out pre-event price effects within the estimation window
e Justifies using pre-event data to learn counterfactuals

Assumption: Limited Effects

® |f concerned that treatment changes risk loadings, can also consider a
“post-treatment” stability assumption:

E[Ri+(s) | Ti=s, F| = ai +BiF:, forallt >s+6

® Could use this to decompose treatment effects



Event-Assignment Mechanics

Timing propensity score
pe(Xi, F) =Pr(T, =t | X, F), Xi = («;, B))

* Random assignment: p; (X, F) = pe(F)
¢ Random timing: p:(X;, F) = p+(X;)

Random assignment controls who is treated; random timing controls when



Average Treatment Effect on the Treated as a building block

Ti(s,t) = Ri+(s) — Ri.t(0), Tarr(s, t) = E[t(s, t) | T, = 5]

TATT(S, f) = ]E[T,‘(S, f) ’ T,‘ = S] = ]E[R,-yt(s) — R,-Yt(oo) | T,‘ = S]
= ]E[R,"t ’ T,‘ = S] —]E[R,-’t(oo) | T,‘ = S]

Observed

e Just a question of how we generate the average counterfactual return

Oc = ) WsTarT(S, S +K), Ws (under random timing)

S
seS Lo Ny

H
* Common special case: cumulative effect ©F " = }_ 6,.
k=0



Connection between different estimators/estimands

Y R(s) — R(o0) Y. log(1+ R(s)) — log(1+ R(c0))

e Control group for BHAR needs to match both levels and variance

TSOATT (5, ) m TATT (5,1) — E(Ri(o0) (s, 1) + 5 (w5, 1)) | Ty = s).



Estimator 1: Abnormal Returns

Rie=ai+BiFY  (t<Ti=68), ARt=Ri+— R
TAR(s,t) = E[AR; ;| Ti = 5]
e Standard CAPM / Fama-French approach
® Subject to issues in simple exmple above unless F? spans the true factors

. generated by Rj; model



Estimator 2: Difference-in-Means

:t\cont(S, t) — ]E[Ri,t | T = 5] —]E[R,-’t ‘ I € C].

e |f C is the full market, ~ equal-weighted market-adjusted return model

° generated by average of other stocks
- Consistent under random assignment



Estimator 3: Synthetic Control

:L'\SC(S, t) = Rst— Z CZ)jRj't,
Jec

with weights @ chosen to exactly fit pre-event paths.

® Requires that a weighted portfolio of controls can replicate treated pre-trend
- Ben-Michael and Feller (2021) show that even with imperfect fit this can be used

* No need for the factor model to be specified by researcher
- With linear factor model, will exactly recover model

° generated constructing replicating pre-period portfolio



Estimator 4: PCA regression / Gsynth Xu (2017)

%\SC(Sx t) - Rs,t - &s - }\s?‘ty t> (51

factors f; are constructed using control firms

loadings A are constructed in the pre-period

This approach is effectively PCA regression in pre-period
- Factors constructed using PCA, and then dimensionality chosen via cross-validation

No need for the factor model to be specified by researcher
- With linear factor model, will exactly recover model

° generated using control stocks’ factor structure, and pre-event
treated firms’ loadings



Finite-sample bias approximation, ignoring idiosyncratic error

Under the assumptions of a limited anticipation and linear factor model:

TAR<Sv t) — Tarr(s, t) = (as — &s) + (BsFe — ﬁsFto)
£ (s, 1) — TaTT(S, t) = (s — o) + (Bs — Poo) Fit
(s, t) — TarT(s, t) = (s — &) + (Bs — P Fe
(s, 1) — Turr(s, ) = (as — 88™) + (BaFe — B

¢ Estimator’s error is proportional to difference with as, Bs in the pre-event window.

* Misspecifying factors shows up through BsF; terms



Large-sample limits with both nand T to oo

™R(s,t) — tarr(s, t) 2 (as — &s) + (BsFt — BsFP)
2O (s, t) — TaTT (S, t) B (A5 — tteo) + (Bs — Poo) Ft
28 (5 #) — Tarr(s, t) B0
fsc(s, t) — TarT(S, t) 20

® Even with ns, n., T — oo, AR and DiD are biased if the factor model is wrong
® Synthetic control is unbiased under exact pre-event fit

® PCA regression able to recover underlying factor structure as well



When do simple estimators work?

* Random assignment =- Difference-in-mean is unbiased even with a fixed T:
£t (s, t) — Tarr(s, t) 20

e Correct factors (F? = F;) = Abnormal-returns estimator is consistent:
R (s, t) — tat7(s, t) 20

e Synthetic control + Gsynth unbiased under linear factor model
- Synthetic control constructs replicating portfolio - tradable



Large-sample limits with staggered events

Assume ng, ne, T — oo and each date in S has non-trivial treatment probability. Then
OAR —02TT 2y E[(as — &s) + (BsFsix — BsFCiy) | Ti € S]

geont —0ATT 2y E[(as — teo) + (Bs — Beo) Fsix | Ti € S]

Ql%synth - 9;{4TT ﬁ> 0 é\EC o 0;{47’T ﬁ> 0

® AR and diff-in-mean inherit factor-model/timing bias
® Synthetic control and gsynth remain unbiased



What additional assumptions help?

9;{4TT

1. Random assignment 6"t 2, even with fixed T.

2. Random timing gives closed-form bias expressions:
07F — 0077 = E[(as — 5)| Ty € 5] + BsE[Ft]BsE[FS]

3. If the reported factors are correct (FP = F;), AR is consistent



Practical implications of bias

e Bias that is “ negligible” day-by-day compounds over long horizons
- If daily avg. factor premium is 0.02 percent — 250 day period, avg of 5 percent

® Random timing averages out factor realizations, not factor premia; misspecification still
matters for horizons where E[F;| # 0.

® Synthetic control or gsynth is the safest route for long-run event studies

- Stable factor model is a strong assumption over long horizon (Kelly, Pruitt, Su (2019))
- Clear evidence of shifting loadings in empirical examples



Empirical example 1: Acemoglu, Johnson, Kermani, Kwak, Mitton

e Acemoglu et al. (2016) study how the
leak of Timothy Geithner's nomination
as U.S. Treasury Secretary on Nov 21,
2008 affected firms connected to him

- Focus on pooled average treatment
effect (ATT) for five methods: abnormal
returns, synthetic control, gsynth and
synth did

® Paper compares within banks connected
vs. not, we expand control group

e Key features:
- Single event
- Unusual timing
- Short horizon

Contents lists available at ScienceDirect

Journal of Financial Economics

journal homepage: wwiw.elsevier.com/locatelifec
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Results are much closer to zero using synthetic methods

e Effect sizes are large in the paper, shrink

significantly with synthetic approach, =P |
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Results are much closer to zero using synthetic methods

e Effect sizes are large in the paper, shrink

significantly with synthetic approach,
even when focused on just banks as
controls

®* When expanded to the full universe of
control firms, all estimated effects are
effectively zero

- Why?

Model

SDID
SC
Market
Gsynth
FF3F
CAPM

Average

—
_ﬁ

1
1
|
0.00 0.02 0.04
Estimated Effect

# New York connections
Connection Type # Personal connections

+ Schedule connections



Reason 1: differences in factors loadings

FF3F Value

FF3F Size

FF3F Market

CAPM Beta

o
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[
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Factor Loading

[y
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Estimator

B Treated Banks

B Control Banks

I Al Stocks

B synthetic Banks

[ synthetic DID Banks
[ synthetic Stocks

[l synthetic DID Stocks
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Reason 2: non-random timing

S&P 500 Returns in Event Periods

Daily Return for S&P 500 in 2008 60+ Dec 1 ZOGB} } H } H } }Novz\ 24,2008
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¢ Timing of event is correlated with
significant risk factors
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Empirical example 2: S&P Index Inclusion Effect

e S&P 500 index inclusion effect: firms o Addiions
added to the index experience a large :
positive return on the day of inclusion f: |

® Replicate analysis from Greenwood and
Sammon (2025)
- S&P inclusions from 1976-2020
- Use announcement dates from Siblis
Research, if missing, use day prior to
effective day

T T T T T T T
-100 -80 -60 -40 -20 0 20
Days Relative to Announcement

Y Key features: ‘ 80-89 90-99 00-09 ——=— 1020
- Many events
- As-if random timing
- Short- and long- horizon




Empirical example 2: S&P Index Inclusion Effect

® Method for short-run estimation does not matter

]
[ ] Model
2010-2020 ] M CAPM
I M Diff-in-Means
] B FF3F
M Gsynth
I B Market

2000-2009

1990-1999

1980-1989

o
i

2 3
One day announcement effect

N



One-day event effect is roughly consistent because of random timing
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However, not randomly assigned to firms

* Treated firms are significantly different than untreated firms

FF3F SMB Beta

FF3F Mkt Beta

FF3F HML Beta

CAPM Beta

FF3F SMB Beta

FF3F Mkt Beta

FF3F HML Beta

CAPM Beta
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] |
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I 0000 O]
] ]

2000-2009 2010-2020
| .

I I
I I
] ]

\ |
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I I
| |

0 0.4 0.8 12 0.0 0.4 0.8 12

Factor Loadings

Group M Untreated M Treated



Pre-inclusion drift as a long-run effect

® We study the pre-inclusion “drift” as a . Addiions
form of long-run bias .
e Often, drift is pointed to as a puzzle,
evidence of potential front-running, or e
other market activity ;
lbO é(} (;O 4"0 2‘0

Days Relative to Announcement

80-89 90-99 00-09




Per-Period ATTs for Index Inclusion
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Factor methods remove trends prior to index inclusion

Cumulative ATT (p.p.)
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Empirical example 3: M&A (Malmandier (2017))

® What is impact of acquisitions on

acquirer returns? Stock merger .-
Control
® Replicate analysis from Malmandier Public targets B Gsynth
(2017)? ]
- All acquisitions in SDC from o
1980'20204 rivate targets
e Key features: Other targets

- Many events
- Quasi-random timing

= Full sample
- Short- and long- horizon

Cash merger

e Short-run effects quite similar, but...

-0.01 0.00 0.01
Treatment effects
on acquirers in short-run



Short-term effects are similar because of random timing
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Per-Period ATTs for M&A
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Per-Period ATTs for M&A (Gsynth Pre vs Post Period)
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Synthetic methods match on overpricing in pre-period, leading to
negative post M&A returns
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Take-home messages

® Positive results in short-run are consistent with folk knowledge of event studies
The results were not materially different when returns were not corrected for market
movements. [Shleifer (1986)]

® Short-run estimates work well under random timing

® Long-run estimates needs a careful counterfactual model
- Best to use synth or gsynth with many firms



Causal inference in finance as an agenda

® These are issues that show up for panel
data studies using
difference-in-differences!

- Asset prices incorporate information
much faster than other economic
outcomes

® Finance has lagged behind many other
econ fields in causal inference tools, but
we have a powerful set of outcomes and
experiments that other fields do not
- Financial event studies can be
important tool for this!
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