Interest Rates and Equity Valuations

NIELS J. GORMSEN CBS, Chicago Booth, & NBER EBEN LAZARUS UC Berkeley Haas

NBER SI Asset Pricing

JULY 2025

Well-Known Trends: Declining Interest Rates...

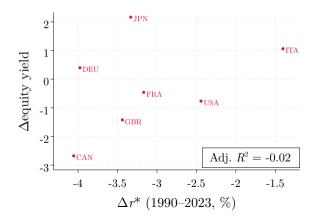
U.S. Interest Rates

Well-Known Trends: Declining Interest Rates...

Global Interest Rates: G7 Countries

...and Increasing Domestic Stock Valuations

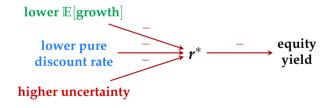
U.S. Value-Weighted Equity Earnings Yield (*E*/*P*)


Tempting line of reasoning:

interest rates $\searrow \implies$ discount rates $\searrow \implies$ equity prices \nearrow

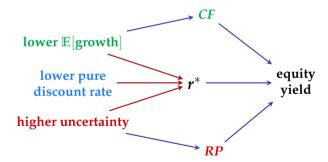
Tempting line of reasoning:

interest rates $\searrow \implies$ discount rates $\searrow \implies$ equity prices \nearrow


... but empirically, interest rates and equity valuations are often disconnected:

Tempting line of reasoning:

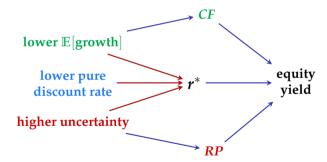
interest rates $\searrow \implies$ discount rates $\searrow \implies$ equity prices \nearrow


Stock-yield disconnect arises because interest rates are endogenous:

Tempting line of reasoning:

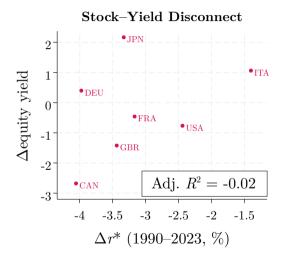
interest rates $\searrow \implies$ discount rates $\searrow \implies$ equity prices \nearrow

Stock-yield disconnect arises because interest rates are endogenous:

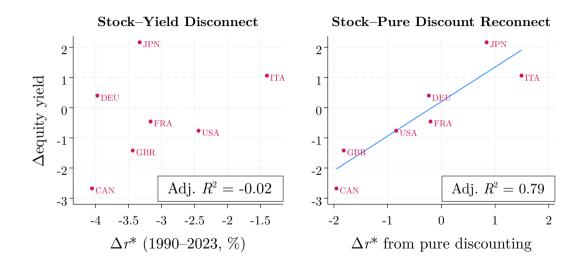


Bonds and stocks move 1-for-1 only under (ii). Weaker/neg. comovement for (i) & (iii).

Tempting line of reasoning:


interest rates $\searrow \implies$ discount rates $\searrow \implies$ equity prices \nearrow

Stock-yield disconnect arises because interest rates are endogenous:



Our goal: Decompose Δr^* to estimate pass-through & importance of each component to equity.

Main Results: Long-Term Decomposition

Main Results: Long-Term Decomposition

Implications for a Range of Literature

- 1. The impact of falling rates on wealth accumulation & ineq. [Catherine et al. 2023, Greenwald et al. 2023]
 - ▶ In U.S., only 35% of the decline in interest rates has passed through to stock prices
 - Assuming full pass-through overstates impact
- 2. Duration-matched equity premia [van Binsbergen 2024; Andrews & Gonçalves 2020]
 - Sizable equity premium relative to pure discount-rate claim (more precise meas. of ex ante RP)
- 3. Duration in the cross-section of stock returns [Gormsen & Lazarus 2023, Moskowitz & Maloney 2021
 - Pure discount-rate exposure reveals substantial cross-sectional differences in duration
- 4. In paper: Unpacking monetary policy shocks, effects of changing profit shares, and more

Roadmap

1. Introduction

- 2. Theoretical Decomposition
- 3. Empirical Implementation
- 4. Additional Implications
- 5. Final Notes

- ▶ **Goal:** Decomposition of changes in trend long-term real rate *r*^{*}
- Stochastic discount factor $M_{t+1} \Longrightarrow$ gross risk-free rate $R_{t+1}^f = 1/\mathbb{E}_t[M_{t+1}]$. Logs:

$$r_{t+1}^{f} = -\mathbb{E}_{t}[m_{t+1}] - \underbrace{L_{t}(M_{t+1})}_{\text{SDF entropy}}$$
$$\log \mathbb{E}_{t}[M_{t+1}] - \mathbb{E}_{t}[m_{t+1}]$$

- ▶ Goal: Decomposition of changes in trend long-term real rate *r**
- Stochastic discount factor $M_{t+1} \Longrightarrow$ gross risk-free rate $R_{t+1}^f = 1/\mathbb{E}_t[M_{t+1}]$. Logs:

$$r_{t+1}^{f} = -\mathbb{E}_{t}[m_{t+1}] - \underbrace{L_{t}(M_{t+1})}_{\text{SDF entropy}}$$

Consumption-based benchmark: CRRA γ , discount factor $\beta_t = e^{-\rho_t}$, log growth $g_{t+1} = c_{t+1} - c_t$

$$r_{t+1}^{f} = \underbrace{\rho_{t}}_{\text{time preference}} + \underbrace{\gamma \mathbb{E}_{t}[g_{t+1}]}_{\text{expected growth}} - \underbrace{L_{t}(M_{t+1})}_{\text{uncertainty/prec. savings}} = \frac{\gamma^{2}}{2}\sigma^{2} \text{ if lognormal}$$

- ▶ Goal: Decomposition of changes in trend long-term real rate *r**
- Stochastic discount factor $M_{t+1} \Longrightarrow$ gross risk-free rate $R_{t+1}^f = 1/\mathbb{E}_t[M_{t+1}]$. Logs:

$$r_{t+1}^{f} = -\mathbb{E}_{t}[m_{t+1}] - \underbrace{L_{t}(M_{t+1})}_{\text{SDF entropy}}$$

Consumption-based benchmark: CRRA γ , discount factor $\beta_t = e^{-\rho_t}$, log growth $g_{t+1} = c_{t+1} - c_t$

$$r_{t+1}^{f} = \rho_{t} + \gamma \mathbb{E}_{t}[g_{t+1}] - L_{t}(M_{t+1})$$
$$r^{*} = \rho^{*} + \gamma g^{*} - L_{M}^{*}$$

• Interpretation: Δr^* reflects changes in (i) time preference (pure discounting), (ii) growth, or (iii) risk

~

- ▶ Goal: Decomposition of changes in trend long-term real rate *r**
- Stochastic discount factor $M_{t+1} \Longrightarrow$ gross risk-free rate $R_{t+1}^f = 1/\mathbb{E}_t[M_{t+1}]$. Logs:

$$r_{t+1}^{f} = -\mathbb{E}_{t}[m_{t+1}] - \underbrace{L_{t}(M_{t+1})}_{\text{SDF entropy}}$$

Consumption-based benchmark: CRRA γ , discount factor $\beta_t = e^{-\rho_t}$, log growth $g_{t+1} = c_{t+1} - c_t$

$$r_{t+1}^{f} = \rho_{t} + \gamma \mathbb{E}_{t}[g_{t+1}] - L_{t}(M_{t+1})$$

 $r^{*} = \rho^{*} + \gamma g^{*} - L_{M}^{*}$

- Interpretation: Δr^* reflects changes in (i) time preference (pure discounting), (ii) growth, or (iii) risk
- ▶ Less restrictive: Additive decomposition for log SDF [Hansen 2012] ⇒ general analogue holds

$$r_{t+1}^{f} = \rho_{t} + \mathbb{E}_{t}[f(X_{t+1}) - f(X_{t})] - L_{t}(M_{t+1})$$

predetermined trend diff. for Markov X uncertainty/prec. savings

Implications for Equity Prices

- Equity: Levered claim to consumption, $d_t = \lambda c_t$ [robustness: $d_t \not < c_t$], risk prem. $rp_t \equiv \mathbb{E}_t[r_{t+1}^{\text{mkt}}] r_{t+1}^f$
- Steady state for equity dividend yield $ey^* \equiv \log(1 + (D/P)^*)$:

$$ey^* = r^* + \underbrace{rp^*}_{L^*_M - L^*_{MR}} - \lambda g^*$$

- ▶ Holds to 1st order ∀*t* if *eyt* is (i) random walk or (ii) stationary [using Campbell-Shiller sums]
- $\frac{\partial ey^*}{\partial r^*}$ has no structural interpretation; instead, want ∂ey^* for each of the three terms in r^*

Real Rates and Equity Valuations

Result 1	
Real rate:	$r^* = \rho^* + \gamma g^* - L_M^*$
Equity yield:	$ey^* = r^* + rp^* - \lambda g^*$
	$= \rho^* + (\gamma - \lambda)g^* + (rp^* - L_M^*)$

Implications:

- Only change in pure discount rate ρ^* generates 1-for-1 comovement in r^* and equity yields ey^*
- For growth and risk shocks, offsetting components give weaker or negative passthrough ("impure" discount rate shocks)

Implications for Equity Duration

- Equity duration \mathcal{D} : Defined as the value-weighted time to maturity of expected cash flows
- Often referred to as relevant for measuring interest-rate sensitivity of equity...but care is needed

Implications for Equity Duration

- **Equity duration** *D*: Defined as the value-weighted time to maturity of expected cash flows
- Often referred to as relevant for measuring interest-rate sensitivity of equity...but care is needed
- Real rate: $r^* = \rho^* + \gamma g^* L_M^*$

Result 2 (*Three Interest-Rate Sensitivities*)

Duration is equal to the interest-rate sensitivity of stock prices w.r.t. pure discount-rate shocks, but not w.r.t. growth shocks or risk shocks:

(i)
$$-\frac{\partial \log P}{\partial \rho^*} = \mathcal{D}$$
, (ii) $-\frac{\partial \log P}{\partial (\gamma g^*)} < \mathcal{D}$, (iii) $-\frac{\partial \log P}{\partial (-L_M^*)} < \mathcal{D}$

with exact expressions provided in the paper.

Only a change in r^* induced by ρ^* moves equities in line with duration.

Roadmap

1. Introduction

- 2. Theoretical Decomposition
- 3. Empirical Implementation Measurement Secular Trends Higher-Frequency Changes & Forecasting
- 4. Additional Implications
- 5. Final Notes

For each date & country, want to decompose trend real rate into components:

We'll measure r^* , g^* , and L_M^* directly from surveys & options data, then back out ρ^* .

For each date & country, want to decompose trend real rate into components:

Survey data: Consensus Economics long-term forecasts [1990–2023, 2-4x/yr, 20-30 forecasters per country]

- ▶ *r**: 5-year-ahead forecast of 10-year bond yield − forecast of inflation
- ▶ g^* : 5-year-ahead forecast of real output growth

Key features:

- (i) Long-hor. forward forecasts remove cyclical variation that affects short-hor. forecasts
- (ii) Data available in panel of countries
- (iii) Lower volatility and predictable mean-reversion than, e.g., SPF or IBES data

For each date & country, want to decompose trend real rate into components:

Survey data: Consensus Economics long-term forecasts [1990–2023, 2-4x/yr, 20-30 forecasters per country]

- ▶ *r**: 5-year-ahead forecast of 10-year bond yield − forecast of inflation
- g^* : 5-year-ahead forecast of real output growth

Key features:

- (i) Long-hor. forward forecasts remove cyclical variation that affects short-hor. forecasts
- (ii) Data available in panel of countries
- (iii) Lower volatility and predictable mean-reversion than, e.g., SPF or IBES data

Options data: Global panel of index options from OptionMetrics

- ► L_M^* : proxy using VIX² ($L_M^* \propto VIX^2$ under set of assumptions)
- Calculate 6-month VIX² using option prices

For each date & country, want to decompose trend real rate into components:

Survey data: Consensus Economics long-term forecasts [1990–2023, 2-4x/yr, 20-30 forecasters per country]

- ▶ r^* : 5-year-ahead forecast of 10-year bond yield forecast of inflation
- g^* : 5-year-ahead forecast of real output growth

Options data: Global panel of index options from OptionMetrics

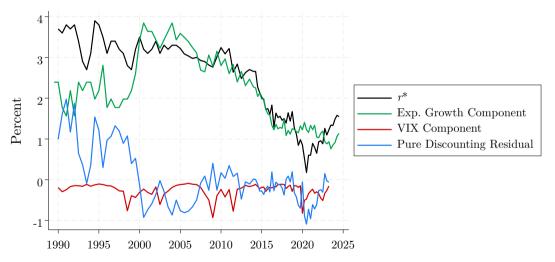
- L_M^{*}: proxy using 6-month VIX², calculated from option prices
- ρ^* : Back out as residual from panel regression (quarter *t*, country *j*):

$$r_{t,j}^* = \gamma g_{t,j}^* + \beta_j \text{VIX}_{t,j}^2 + \underbrace{\text{Constant} + \text{FE}_j + \varepsilon_{t,j}}_{\rho_{t,j}^*}$$

For each date & country, want to decompose trend real rate into components:

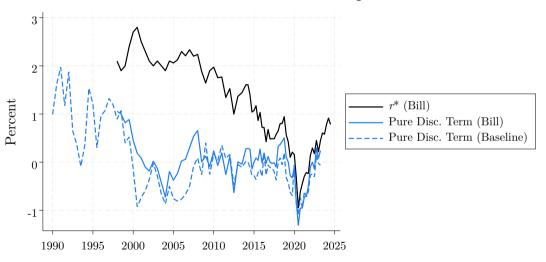
Survey data: Consensus Economics long-term forecasts [1990–2023, 2-4x/yr, 20-30 forecasters per country]

- ▶ r^* : 5-year-ahead forecast of 10-year bond yield forecast of inflation
- ▶ g^* : 5-year-ahead forecast of real output growth

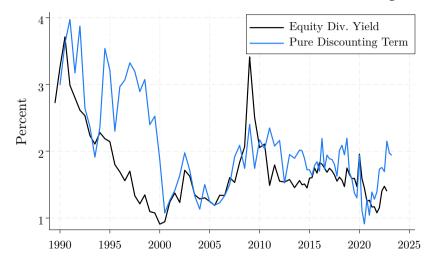

Options data: Global panel of index options from OptionMetrics

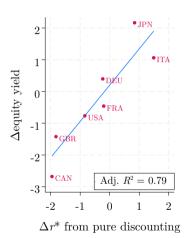
- L_M^{*}: proxy using 6-month VIX², calculated from option prices
- *ρ**: Back out as residual from panel regression (quarter t, country j):

$$r_{t,j}^* = \gamma g_{t,j}^* + \beta_j \text{VIX}_{t,j}^2 + \underbrace{\text{Constant} + \text{FE}_j + \varepsilon_{t,j}}_{\rho_{t,j}^*}$$
$$[\widehat{\gamma} = 2.1^{***}, \overline{\widehat{\beta}_i} = -4.0^{**}, \text{Within } R^2 = 0.61]$$


Time-Series Decomposition Results

U.S. Estimation Results: Decomposition of *r*^{*}


Time-Series Decomposition Results

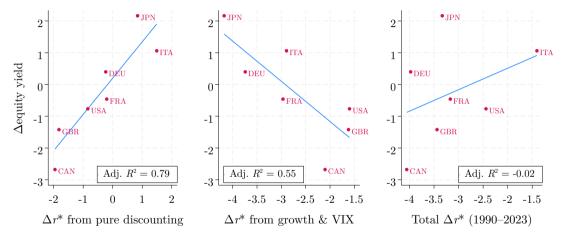

U.S. Estimation Results: Alternative Version Using Short-Rate Forecast

Time-Series Decomposition Results

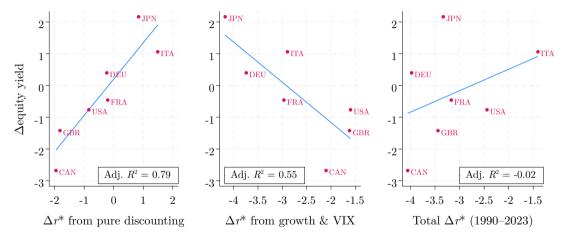
U.S. Estimation Results: Valuations and the Pure Discounting Term



Strikingly good fit!


- As theory predicts, valuations move 1:1 with $\Delta \hat{\rho}^*$
- **Further:** Intercept of 0, corr. near 1 (recall ey^* not used to get $\hat{\rho}^*$!)

 \implies to understand long-run valuations, $\Delta \widehat{\rho}^*$ is nearly sufficient



Strikingly good fit!

- As theory predicts, valuations move 1:1 with $\Delta \hat{\rho}^*$
- **Further:** Intercept of 0, corr. near 1 (recall ey^* not used to get $\hat{\rho}^*$!)
- \implies to understand long-run valuations, $\Delta \widehat{\rho}^*$ is nearly sufficient
 - Natural Q: What drives pure discount-rate changes?
 - Time pref. shocks: unlikely
 - More later, but important question going forward

Equity moves negatively with remaining predicted yield ("impure" discounting) \implies overall weak relationship. Yield changes do not in general transmit to risky assets.

Equity moves negatively with other terms \implies yield changes do not in general transmit to equity. **U.S.:** Transmission of Δr^* to equity has only been $\Delta \rho^* / \Delta r^* = \frac{-0.9}{-2.5} \approx 35\%$.

Rate Sensitivities and Equity Duration

Regressions for Three-Year Stock Returns

	(1) U.S.	(2) U.S.
$\Delta 10y$ yield	4.19 (3.51)	
Δ pure discount $(\widehat{\Delta \rho_t^*})$		-19.1** (7.64)
Δ exp. growth		-1.49 (14.0)
$\Delta \text{VIX}^2 \times 100$		-3.08** (1.33)
Country FEs	X	×
Obs.	74	74
R^2	0.04	0.20
Within <i>R</i> ²	—	_

- Weak yield exposure *except* for ρ* shocks, exactly in line with theory
- **Duration:** $-\frac{\partial \log P}{\partial \rho^*} \approx 19 \text{ for U.S.}$

[lower bound given meas. uncertainty in $\widehat{\Delta \rho_t^*}$]

Rate Sensitivities and Equity Duration

Regressions for Three-Year Stock Returns

	(1) U.S.	(2) U.S.	(3) All	(4) All
$\Delta 10y$ yield	4.19 (3.51)		-3.39 (2.20)	
Δ pure discount $(\widehat{\Delta \rho_t^*})$		-19.1** (7.64)		-9.61** (3.26)
Δ exp. growth		-1.49 (14.0)		16.9* (8.82)
$\Delta VIX^2 \times 100$		-3.08** (1.33)		-5.44*** (0.90)
Country FEs	X	×	\checkmark	\checkmark
Obs.	74	74	781	781
R^2	0.04	0.20	0.05	0.27
Within <i>R</i> ²	—	_	0.02	0.24

All changes contemporaneous. SE: (1)-(2) block bootstrap, (3)-(4) clustered by j & t.

Weak yield exposure *except* for ρ* shocks, exactly in line with theory

• **Duration:** $-\frac{\partial \log P}{\partial \rho^*} \approx 19$ y for U.S.

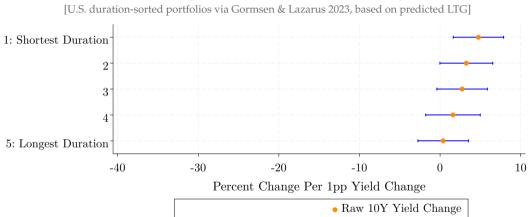
[lower bound given meas. uncertainty in $\widehat{\Delta
ho_t^*}]$

- \Rightarrow Measurement also works at higher freq.
- In paper: ρ^* strongly predicts **future** ret.

Robustness to Alternative Measurement Approaches

Results are robust under a range of approaches:

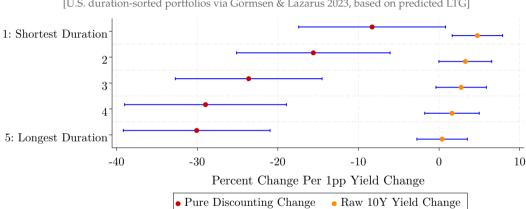
- 1. Alternatives to Consensus survey data: Using SPF to measure $g^* \& r^*$ in U.S.
 - Same secular change in pure discounting term ($\Delta \hat{\rho}^* \sim -1\%$ in the U.S.)
 - Somewhat weaker fit in time series, consistent with less precise measurement
- 2. Alternatives to VIX² for uncertainty: Estimating uncertainty via GARCH or using uncertainty index
 - Uncertainty matters mostly for higher-frequency variation
 - No impact on main results; slightly higher estimated market duration
- 3. Accounting for time-varying profit shares:
 - Easy to generalize to allow for changing profit shares & output growth $\not \propto$ dividend growth
 - ▶ We see expected profit growth in U.S. Consensus data, or can use IBES LTG; neither affects results


Roadmap

1. Introduction

- 2. Theoretical Decomposition
- 3. Empirical Implementation
- 4. Additional Implications Cross-Sectional Portfolios A Significant Duration-Matched Equity Premium
- 5. Final Notes

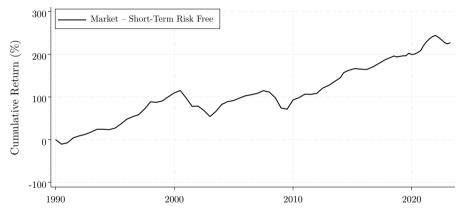
Cross-Sectional Evidence: Duration-Sorted Portfolios


Portfolio Exposures to Unadjusted Yield Changes

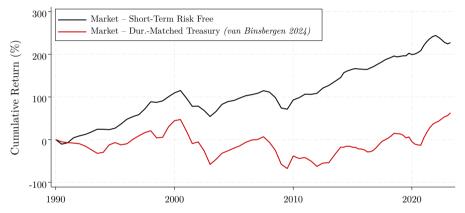
Long-duration portfolios are not substantially more exposed to raw interest-rate changes...

Cross-Sectional Evidence: Duration-Sorted Portfolios

Portfolio Exposures to Pure Discount Rates and Yields

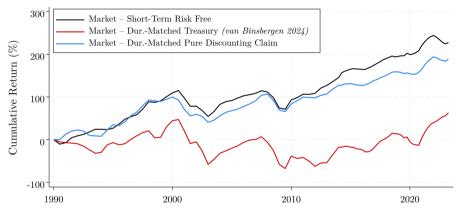


[U.S. duration-sorted portfolios via Gormsen & Lazarus 2023, based on predicted LTG]


Long-duration portfolios are not substantially more exposed to raw interest-rate changes...

...but they're substantially more exposed to ρ^* shocks, implying large duration spread

Cumulative Excess Returns for the U.S. Market


Cumulative Excess Returns for the U.S. Market

▶ Long-term nominal bonds have had high returns → low apparent duration-matched premium

- ▶ But long-term bonds differentially exposed to growth & risk, so we consider new counterfactual
- Construct maturity-matched (D = 19y) pure discounting claim that appreciates when $\rho^* \searrow$

Cumulative Excess Returns for the U.S. Market



▶ Long-term nominal bonds have had high returns → low apparent duration-matched premium

Construct maturity-matched (D = 19y) pure discounting claim that appreciates when $\rho^* \searrow$

Market has 6.1% ann. excess return relative to this claim: cleaner measure of ex ante premium

Cumulative Excess Returns for the U.S. Market

Additional empirical implications:

Rates & the declining value premium

Unpacking monetary policy shocks

Roadmap

1. Introduction

- 2. Theoretical Decomposition
- 3. Empirical Implementation
- 4. Additional Implications
- 5. Final Notes

Final Notes

New framework & measurement tools to decompose changes in rates into underlying drivers.

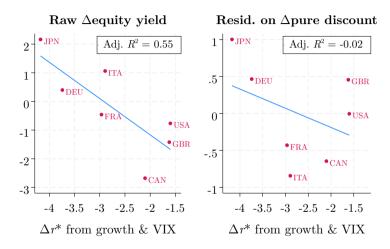
Two interpretations:

- 1. Glass half empty: Rate changes matter less for stocks than one might think.
 - ▶ Rate changes transmit only partly to stocks (*U.S.: 35%*); assuming full transmission may be misleading

Final Notes

New framework & measurement tools to decompose changes in rates into underlying drivers.

Two interpretations:

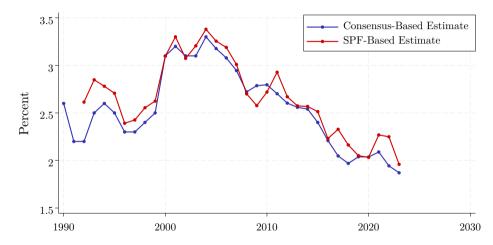

- 1. Glass half empty: Rate changes matter less for stocks than one might think.
 - ▶ Rate changes transmit only partly to stocks (*U.S.: 35%*); assuming full transmission may be misleading
- 2. Glass half full: Transmission is quite strong, once you isolate the right component.
 - Δ pure discounting component of rates $\stackrel{\sim}{\longleftrightarrow} \Delta$ valuations
 - Understanding drivers of ρ^* goes a long way to understanding secular valuation changes

Natural next question: What explains ρ^* changes?

In paper: Net capital flows, MP shocks as drivers of $\Delta \rho^*$ (in theory & data), but worth exploring more

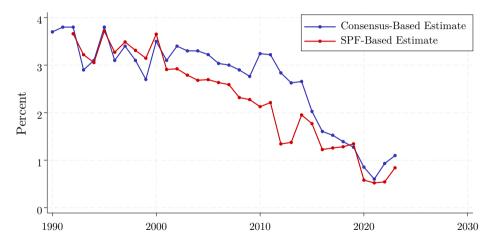
Appendix

Interpreting the Growth & VIX Contributions

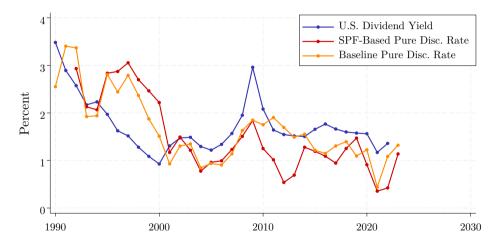

Left: Raw best-fit line does not pass through origin.

Right: $\Delta \rho_{t,i}^*$ accounts for most of the variation.

Back to main


Robustness: SPF Survey Data

Consensus vs. SPF: U.S. Long-Term Growth Expectations


Robustness: SPF Survey Data

Consensus vs. SPF: U.S. *r*^{*} Estimates

Robustness: SPF Survey Data

Consensus vs. SPF: Pure Discounting Estimates and Equity Yields

Robustness: Time-Varying Profit Shares in Theory

- ▶ Greenwald, Lettau, Ludvigson (2025): 40% of equity returns since '89 attributable to rising profit share
- How does this affect our analysis?
- ▶ **Real rate:** Same decomposition applies: $r^* = \rho^* + \gamma g^* L^*_{M'}$, where g^* is output growth
- **Equity:** Rising profit share π can increase equity **prices & earnings** without affecting equity **yields**
 - Holds if $\Delta \pi$ is unanticipated level shock with no change in expected div. growth g_d^*
 - GGL25 estimate that this describes U.S. data (π is mean-reverting)

Robustness: Time-Varying Profit Shares in Theory

- ▶ Greenwald, Lettau, Ludvigson (2025): 40% of equity returns since '89 attributable to rising profit share
- How does this affect our analysis?
- **Real rate:** Same decomposition applies: $r^* = \rho^* + \gamma g^* L_M^*$
- **Equity:** Rising profit share π can increase equity **prices** & **earnings** without affecting equity **yields**
- ▶ More generally: Decoupling expected output growth g^* & div. growth g_d^* (i.e., Corr < 1) leads to

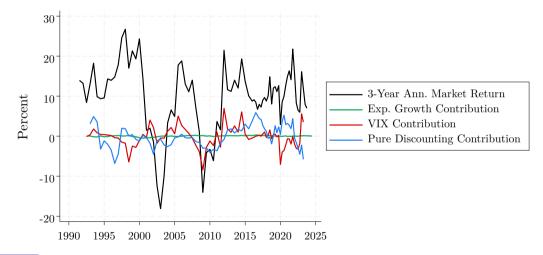
$$ey^* = \rho^* + \gamma g^* - g_d^* - L_{MR}^*$$

- ▶ Theoretical implications for change in *r*^{*} on *ey*^{*} are the same as before
 - Only pure discounting shocks pass through directly
 - ▶ As long as $Corr(g^*, g_d^*) > 0$, weaker pass-through from growth shocks
 - Pure g_d^* shocks are entirely separate from r^* dynamics. Defining $\pi^* \equiv g_d^* \lambda g^*$:

$$ey^* = \rho^* + (\gamma - \lambda)g^* - \pi^* - L_{MR}^*$$

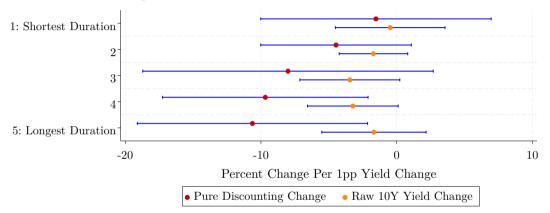
Robustness: Time-Varying Profit Shares in the Data

- ▶ Greenwald, Lettau, Ludvigson (2025): 40% of equity returns since '89 attributable to rising profit share
- How does this affect our analysis?
- **Real rate:** Same decomposition applies: $r^* = \rho^* + \gamma g^* L_M^*$
- **Equity:** Rising profit share π can increase equity **prices** & **earnings** without affecting equity **yields**
- ▶ More generally: Decoupling expected output growth g^* & div. growth g_d^* (i.e., Corr < 1) leads to


$$ey^* = \rho^* + \gamma g^* - g_d^* - L_{MR}^*$$

- **Empirically:** Two proxies for g_d^* in U.S. data
 - 1. Agg. earnings growth forecast (LTG) [Nagel–Xu 2022]: for full sample, $\Delta g_d^* = -0.60$, $\Delta g^* = -0.70$
 - 2. Expected profit growth via Consensus: for avail. sample (since '98), $\Delta g_d^* = -1.26$, $\Delta g^* = -0.50$
- So in U.S., Δprofit shares don't appear to affect results (nor for high-freq., or w/ alt. vol. meas.)

Back to main


Higher-Frequency Equity Return Accounting

Decomposition of U.S. Value-Weighted Equity Returns

Duration-Sorted Portfolios in Global Sample

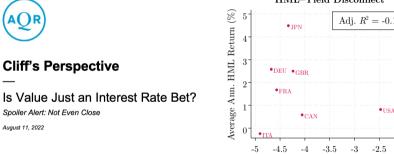
Portfolio Exposure to Pure Discount Rates and Yields: Global Stocks

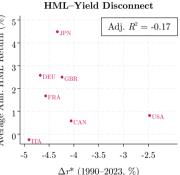
- Long-dur. portfolios are substantially more exposed to ρ^* shocks (despite their negative CAPM alphas)
- Implies a significant spread between lowest- and highest-duration stocks
- Also apparent for global stocks (and similarly for raw yield exposures)

Discount-Rate Shocks and Value Returns

- ▶ Declining value premium? Value stocks have underperformed growth stocks since ~2006
- How much is due to interest rates?

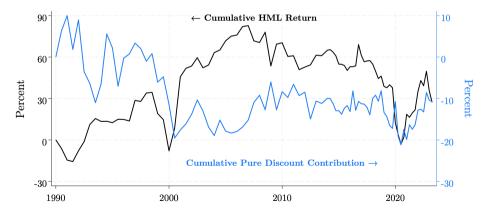
Cliff's Perspective

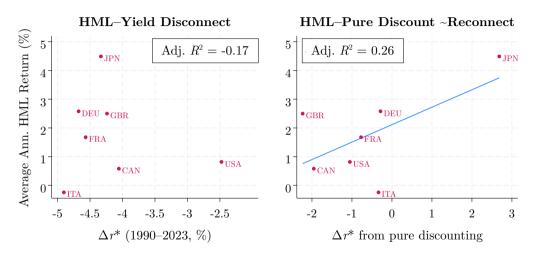

Is Value Just an Interest Rate Bet?


Spoiler Alert: Not Even Close

August 11, 2022

Discount-Rate Shocks and Value Returns


- Declining value premium? Value stocks have underperformed growth stocks since ~ 2006
- How much is due to interest rates? We'll mostly agree



Discount-Rate Shocks and Value Returns

- ▶ Declining value premium? Value stocks have underperformed growth stocks since ~2006
- How much is due to interest rates? We'll mostly agree...but not fully. HML is short-duration, exposed to recent discounting shocks.
- ▶ While pure discount contribution is often important, clearly not the full story (note scale)

Discount-Rate Shocks and Value Returns: Global Evidence

Pure discounting changes important, but not the full story (& other long-duration portfolios have done well)

Back to main

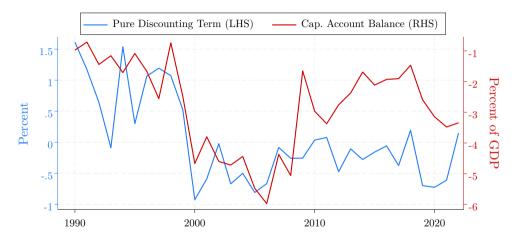
What Is a Monetary Policy Surprise?

Papers often treat MP surprise as if it were a pure discount-rate shock

- The surprise ΔFF_t may be exogenous, but yield change $\Delta y_{\text{long-term},t}$ depends on Δ pure discount rate, expected growth rate, & uncertainty *given* surprise... and stock return does **not** identify duration
- ▶ If pos. MP shocks are contractionary & increase VIX, $\Delta \rho_{t,j} > \Delta y_{t,j}$. With an info. effect, ambiguous.
- Our estimates, along with Δy_t , r_t^{mkt} , and ΔVIX_t^2 given identified MP surprises, allow us to invert two equations for two unknowns, Δg_t and $\Delta \rho_t$:

Bonds:
$$\Delta y_t = \Delta \rho_t + \widehat{\gamma} \, \Delta g_t - \widehat{\beta}_j \, \Delta \text{VIX}_t^2$$

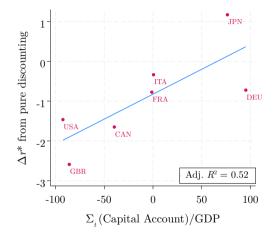
Stock returns: $r_t^{\text{mkt}} = \hat{\pi}_{\rho} \Delta \rho_t + \hat{\pi}_g \Delta g_t + \hat{\pi}_V \Delta \text{VIX}_t^2$


• We back out $\Delta \rho_t$ and Δg_t for each MP announcement and regress each on Bauer & Swanson (2023) orthogonalized MP shock: (1) $\beta_{\rho} = 0.29^{***} [R^2 = 0.30]$, (2) $\beta_g = 0.07^* [R^2 = 0.04]$

 \implies 75% of MPS is pure discounting shock, but some info. effect on average (can also do t-specific plots)

Similar conclusions to Nagel & Xu (2024), using different methods

Back to main


Pure Discounting Changes and Capital Flows in the U.S.

In paper: Net capital flows can induce $\Delta \rho_{t,i}^*$ in theory (given $\Delta r_{t,j}^*$ without large Δ fundamentals)

Pure Discounting Changes and Capital Flows Across Countries

In paper: Net capital flows can induce $\Delta \rho_{t,i}^*$ in theory (given $\Delta r_{t,j}^*$ without large Δ fundamentals)

