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Abstract

The literature often seeks to determine the effect of interest rates on equity valuations,
but both are endogenous and their comovement depends on the structural drivers
underlying interest-rate changes. We show that changes in real rates can come from
changes in expected growth, risk, or “pure discounting.” We characterize the effect
on equity valuations for each of the three shocks, and show that only pure discount
rate shocks are transmitted one for one to equity valuations, with little or negative
transmission of growth and risk shocks. Implementing our decomposition with a global
panel of growth expectations and asset prices, we find: (i) a weak unconditional relation
between stock valuations and real rates, but (ii) a strong relation between valuations
and the pure discounting component of rates, with pure discount rate changes explaining
over 80% of the cross-country changes in stock valuations since 1990. In the U.S. data,
we find that 35% of the decline in interest rates is attributable to the pure discounting
term, implying that only a fraction of the change in rates has passed through directly to
equities. We also use our decomposition to speak to higher-frequency returns; explain
interest-rate exposures in the cross-section of stocks; estimate a sizable duration-matched
equity premium; and unpack the effects of policy-induced interest-rate shocks.
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1. Introduction

Advanced economies’ long-term interest rates have declined significantly in recent decades.
How do such changes in rates transmit to equity valuations? A potentially tempting line
of reasoning is to assume that equity discount rates move one for one with interest rates;
given that equity is a long-duration claim, this assumption then implies that stock valuations
should have increased significantly as a result of the secular decline in interest rates. Casual
evidence might appear consistent with this view: in the U.S., for example, the market’s equity
yield has declined substantially in recent decades, corresponding to a large increase in equity
valuations over this period.

Empirically, however, there is no clear relationship between long-term changes in equity
valuations and interest rates. The left panel of Figure 1 presents one view of this stock–
yield disconnect: across G7 economies, the change in a country’s equity yield since 1990 is
effectively completely unrelated to that country’s change in the trend long-term real rate r∗,
described further below. In addition to the example in Figure 1, it is well known that the
correlation between stock and bond returns is weak and often negative — another example
of the stock-yield disconnect.

The apparent stock-yield disconnect arises because the interest-rate sensitivity of stock
prices is more complicated than alluded to in our opening paragraph. Interest rates are
determined endogenously and may decline for multiple possible structural reasons, each of
which may affect equity differently. Interest rates may, for instance, decline because of a
decrease in expected growth rates in the economy, which — keeping all else constant — will
decrease equity prices and thus mute the effects of the decline in interest rates on equity
prices.

In this paper, we provide a framework and measurement approach to control for the
underlying drivers of interest-rate movements and estimate the interest-rate sensitivity of
equity prices. We start with a simple but general theoretical decomposition under which any
change in trend real rates can be split into three mutually exclusive underlying shocks: a
change in expected growth, a change in uncertainty, and a pure discounting shock akin to a
change in the rate of time preference. We then characterize how these shocks transmit to
equity valuations. Only the pure discounting shock transmits one for one from rates to equity
yields, thereby inducing perfect comovement between stocks and duration-matched bonds.
The remaining terms, by contrast, induce a weak and theoretically ambiguous relationship
between stocks and bonds: a growth-rate shock affects both equity discount rates and cash-
flow growth, while an uncertainty shock causes interest rates and equity risk premia to move
in opposing directions. Isolating the pure discounting component of real rates is therefore key
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Figure 1: Preview of Main Results: Long-Term Decomposition
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Notes: This figure plots the country-level changes in equity yields against changes in trend interest rates (left
panel) and in the estimated change in the pure discounting component of interest rates (right panel), for
G7 economies. The sample is 1990–2023, or the longest available span for the given country. Details on the
measurement of the equity yield, trend long-term interest rate r∗, and the pure discounting component of the
change in r∗ are provided in Section 3.2.

for understanding how much any given change in interest rates passed through to equities.
We next implement the decomposition empirically using a combination of survey data and

option prices to estimate the underlying structural drivers. The punchline of our empirical
implementation is that most of the secular changes in stock prices over the past 35 years
can be explained by movements in the pure discounting part of interest rates. This result is
illustrated in the right panel of Figure 1, which shows that 80% of the changes in valuation
ratios of equities in G7 countries can be explained by changes in the pure discounting part of
interest rates. This pure discounting component is estimated purely from our decomposition
for interest rates, so there is nothing mechanical about the tight fit in explaining almost the
entirety of the country-by-country change in equity valuations over recent decades.

The pure discounting part of interest rates also explains a substantial share of fluctuations
in stock prices at higher frequencies — consistent with the long cash-flow duration of the
stock market — and the pure discount term can be used to understand the pricing of the
cross-section of equities. Our framework allows us to revisit outstanding puzzles in the
literature and estimate the channel through which monetary policy influences stock prices,
all of which we elaborate on below.

The key input for our measurement is an international panel of long-term professional
forecasts for interest rates, inflation, and growth rates, which we obtain from Consensus
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Economics. We back out forecast-implied series for trend real rates r∗ and trend growth rates
by country, and we augment these with option-based measures of uncertainty to estimate our
interest-rate decomposition. After stripping out growth-rate and uncertainty changes, the
remaining interest-rate change is our estimate of the pure discounting shock.

In the U.S., we attribute around 35% of the decline in r∗ since 1990 to pure discount-rate
changes, and the remaining 65% to the other components. So while equities have benefitted
somewhat from the decline in U.S. interest rates, assuming full pass-through of r∗ to equity
yields would overstate the effect by close to three times. And the passthrough of the decline in
rates to equities has been even lower in most other G7 economies. This partial pass-through
of interest rates to equity valuations speaks to a wide range of questions studied in recent
literature; as discussed in the literature review just below, we apply our results to better
understand, for example, the long-term performance of stocks versus bonds, and the degree
to which changes in household portfolio values reflect purely “paper” gains.

After considering the long-term trends, we then apply our decomposition to consider
the drivers of interest-rate changes at higher frequencies and their effects on equity returns.
Without adjusting for the endogeneity of interest rates, the raw relation between market
returns and yield changes is small and imprecisely estimated. But when we implement our
decomposition, pure discount-rate shocks generate strong negative comovement between
∆r∗t and annual equity returns. The loading of stock returns on pure discounting shocks
provides a theoretically well-founded measure of equity duration, and we estimate a market
duration of about 20 years in the U.S. data.1 By contrast, equity returns have a small and
insignificant relation to the interest-rate change attributable to changing expected growth
rates, and a positive relation with the interest-rate change attributable to uncertainty shocks.
These offsetting components illustrate why equity duration is not equivalent to the price
sensitivity to arbitrary changes in interest rates, and why one must isolate the pure discounting
component to estimate duration.

Similarly, we find using forecasting regressions that long-term yields by themselves do
not predict future equity returns, providing further evidence that risk premia often comove
negatively with yields. The pure discounting term, by contrast, strongly and significantly
predicts returns, providing further evidence that it strips out confounding shocks to yields.
Finally, we conduct a return accounting exercise to estimate the contribution of each of the
three interest-rate shocks to market-level equity returns on a rolling basis. Pure discounting
decreases are important for explaining the strong performance of U.S. stocks and bonds in

1We consider this preliminary estimate to be a likely lower bound for the true duration, given the
measurement uncertainty in our pure discounting shock. This is nonetheless a large and significant estimate
for equity duration, and it has the benefit of being an ex ante measure that does not require estimating equity
cash-flow growth rates or discount rates in realized historical data.
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the 1990s. But the realized shocks to the pure discounting term (including a positive shock
post–2020) have roughly offset over the period since 2000, generating a roughly zero net effect
of such discounting changes on interest rates or equities over the most recent decades.

We next use our decomposition to better understand the cross-section of stocks and their
exposure to interest rates. Following Gormsen and Lazarus (2023), we sort firms by their
predicted cash-flow duration and measure these duration-sorted portfolios’ returns. We show
that these portfolios do not differ in their exposure to raw interest-rate changes, but that the
long-duration firms have significantly greater exposure to the pure discounting shock. This
holds in spite of the unconditional negative alpha to long-duration relative to short-duration
stocks, and it implies a sizable spread (greater than 20 years) in the duration of long- versus
short-duration firms’ cash flows. These results provide a further out-of-sample validation of
both the duration sort and of the construction of the pure discounting term.

All of our baseline results operate under the assumption that expected output growth (as
is relevant for risk-free rates) is proportional to expected dividend growth (as is additionally
relevant for equity valuations). We therefore provide a set of theoretical and empirical
robustness results on the effects of changes in the profit share of income, or the ratio of
earnings to aggregate output. Greenwald, Lettau, and Ludvigson (2025) estimate that
about 40% of U.S. equity returns since 1989 are attributable to unanticipated increases in the
profit share. As they note, such shocks increase both prices and cash flows; in our context,
the effect of profit-share shocks on equity yields depends on the resulting changes in the path
of expected future cash-flow growth. Using separate forecast data on earnings and dividends,
we find that our main empirical results in the U.S. data are close to unchanged even when
allowing for separate output growth and cash-flow growth processes. Changing profit shares
thus seem to affect equity prices mainly through contemporaneous (i.e., already materialized)
cash flows, rather than expected future growth rates.

Taken together, our results show that isolating the pure discounting term is essential for
understanding how shocks to interest rates are reflected in stock prices. While changes to this
term are equivalent to changes in the pure rate of time preference for the marginal investor,
we do not view this as the only (or main) source of likely variation. To better interpret this
term, we provide further results showing how our decomposition should be understood when
households can freely invest in other countries’ bonds or stocks. Net capital inflows can induce
a decline in the pure discounting component of interest rates — that is, a decrease in interest
rates that is not accounted for by a decline in expected growth or increased uncertainty —
and such flows accordingly represent a candidate source of variation for the pure discounting
term. We then show how the changes in the estimated pure discounting terms align well with
cross-country capital flows empirically.
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Implications and Connections to Recent Literature

Our characterization of the pass-through of interest rates to equities speaks to a range of
findings and questions raised in recent literature:

(i) van Binsbergen (2024) shows that long-term bond portfolios have performed nearly as
well as equities in recent decades.2 Our results provide an explanation for this finding:
much of the decline in interest rates has arisen from growth-rate and uncertainty shocks
that should not increase equity valuations. In our setting, the natural duration-matched
benchmark for equity returns is a pure discounting claim. We conduct an additional
analysis measuring the returns on such a claim in the data, and we estimate a large
and stable duration-matched equity premium.

(ii) Numerous papers have studied the degree to which declining interest rates have affected
the value of different households’ overall portfolios, including equities and other risky
assets (see, for example, Catherine, Miller, Paron, and Sarin, 2023, and Greenwald,
Leombroni, Lustig, and Van Nieuwerburgh, 2023). If r∗ declines have passed through
fully to these risky assets (which are held disproportionately by wealthy households),
then much of the increase in wealth inequality in recent decades may reflect purely
“paper” gains.3 Our findings help speak to this debate. We estimate that a sizable
share of the decline in r∗ did not transmit directly to equity valuations, indicating
that much of the resulting increase in portfolio valuations (and thereby inequality) was
non-mechanical.

(iii) Recent work has also considered how factor returns and cross-sectional anomalies
may have been affected by the change in interest rates. van Binsbergen, Ma, and
Schwert (2024) argue that anomaly portfolios investing in firms with short-duration
cash flows (such as value, or high-book-to-market, portfolios) would have exhibited
better performance in recent decades in a counterfactual without the large decline
in interest rates. Maloney and Moskowitz (2021) emphasize a weak relation between
interest rates and value stocks’ underperformance in recent years, which challenges
theories of the value premium relating to cash-flow duration.4 Our framework and

2Similarly, Andrews and Gonçalves (2020) estimate a near-zero risk premium on long-maturity dividends
relative to long-maturity bonds.

3While Fagereng, Gomez, Gouin-Bonenfant, Holm, Moll, and Natvik (2024) do not advance this argument,
they provide a succinct review of literature making this claim.

4Maloney and Moskowitz (2021) state on page 4, “Dechow, Sloan, and Soliman (2004), Lettau and
Wachter (2007), and Gormsen and Lazarus ([2023]) characterize value stocks as low-duration assets with
near-term cash flows and growth stocks as high-duration assets, such that a long-short value strategy is a
negative-duration asset that is sensitive to falling interest rates. This story implies that falling bond yields
from 2010 to 2020 acted as a strong tailwind for growth stocks and a headwind for value stocks, driving
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results show that the exposure of a given portfolio to unadjusted interest-rate changes
depend on the underlying driver of the change in interest rates. When focusing on the
pure discounting component, we find that value stocks indeed have less exposure to
this pure discounting shock than growth stocks. We then use this to clarify the role of
interest-rate declines on the poor performance of value stocks, finding that the pure
discounting component explains some, but not nearly all, of the underperformance of
value in recent years.

(iv) As a further application relevant for both asset pricing and macroeconomics, we use our
decomposition and estimation results to help unpack the effects of surprise changes in
short-term interest rates by monetary policymakers. While some papers have treated
the resulting changes in long-term rates as if they represent pure discounting shocks,
this is not necessarily a valid assumption: while the change in the short-term rate is
indeed exogenous, the long-term yield change depends on changes to the pure discount
rate as well as changes to the market’s perceived long-term growth and uncertainty.
We use our main estimation results for stock returns and yield changes, along with
high-frequency asset-price changes observed around monetary policy announcements,
to back out announcement-specific changes in both the pure discounting term and
expected growth rates. On average, we find that most of the change in long-term yields
around policy shocks indeed stems from the pure discounting component. But we find
evidence as well that growth-rate expectations change in a manner consistent with
an information effect (Nakamura and Steinsson, 2018) on average, with meaningful
announcement-specific heterogeneity in this response.

Overall, our results provide a new toolkit with which to understand how changes in interest
rates have — and have not — affected a range of risky assets and aggregate outcomes both
over the short and long run.

Additional Related Literature

In addition to the tie-ins to recent papers described above, our paper relates to a long
literature analyzing the time-varying relationship between stocks and bonds. Much of this
work has focused on the comovement between stocks and nominal bonds, and much of it has
focused on characterizing higher-frequency (e.g., daily to quarterly) comovements. David
and Veronesi (2013) and Campbell, Pflueger, and Viceira (2020) estimate model-implied
sources of the shift in the stock–bond correlation from positive to negative in the early 2000s,

value-tilted portfolio returns lower.”
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attributing much of the shift to changes in inflation risk dynamics.5 Our focus on real interest
rates, and our use of a general decomposition as opposed to a fully parameterized model,
distinguish us from these and related papers. Baele, Bekaert, and Inghelbrecht (2010) use a
dynamic factor model to characterize the drivers of this changing correlation, arguing that
non-fundamental factors are important. Chernov, Lochstoer, and Song (2023) argue for
a real channel in which the relative importance of permanent vs. transitory consumption
shocks drives the comovement, while Laarits (2022) argues for changing uncertainty and
a precautionary savings channel. Our focus on longer-term secular drivers of stock–bond
comovements distinguish us from this work.

Our paper is somewhat closer to work studying such long-term comovement more directly.
Campbell and Ammer (1993) use a vector autoregression to characterize both short-term
stock–bond comovements and how these relate to longer-term expected returns. We differ
in both methodological approach (we use surveys and asset prices, rather than a VAR, to
estimate forward-looking expectations) and in the framework taken to the data: we aim
to measure the relation of bond and equity valuations and returns to three fundamental
variables underlying interest rates, rather than relating these values to future expected
returns and cash flows for each of the two assets. Our framework is somewhat more related
conceptually to a simpler two-period framework considered by Barsky (1989), but with fewer
parametric restrictions and with pure discounting shocks playing a key role in our case.
Barsky’s contribution is, in addition, theoretical rather than empirical. Farhi and Gourio
(2018) estimate a simple neoclassical growth model with markups and intangibles to account
for secular changes in interest rates and risky asset valuations. The long-run questions they
pose, and the simple framework taken to the data, overlap in spirit with ours. We also
find evidence consistent with their view that risk-free rates have comoved negatively with
equity risk premia in recent decades. Our decomposition and estimation exercise, however, is
different — and somewhat less tightly parameterized — than theirs.6

In addition to these two main literatures related to the comovement of stocks and bonds,
our framework relates to recent work using different assets’ comovements to distinguish
which channels are most important for long-term price variation. Much of this work uses
comovements between exchange rates, relative interest rates, and fundamentals to understand
exchange-rate determination; recent examples include Lustig and Verdelhan (2019), Itskhoki

5See also Song (2017), and see David and Veronesi (2016) for a review.
6Further related literature along these lines includes work on the long-term drivers of stock prices. As a

prominent recent example, Greenwald, Lettau, and Ludvigson (2025) argue that increased profit shares are a
key driver of equity-price increases in the U.S. data. While their model-based estimation differs from ours,
our results appear consistent with theirs, as discussed above and further in Section 4.1. And like us, they
estimate that less than half of the increase in U.S. equity prices is attributable to interest-rate changes.
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and Mukhin (2021), Jiang, Krishnamurthy, and Lustig (2024), and Kekre and Lenel (2024).7

Kekre and Lenel’s setting and framework provide a particularly useful contrast with ours.
They measure the importance of demand shocks for long-term exchange-rate determination.
But as they note, such demand shocks encompass both time-preference shocks and growth-rate
shocks, and exchange rates and interest rates by themselves do not allow one to distinguish
these two sources of variation. Considering equity prices in addition to interest rates, as we
do, allows one to discriminate between these two different shocks. We find an important role
for both in explaining long-term variation in real rates and equity valuations.

Organization

We begin with our theoretical decompositions in Section 2. We then turn to our data,
measurement approach, and main findings in Section 3, and Section 4 provides a set of
robustness results. In Section 5, we analyze additional implications of our findings for asset
prices in recent decades and related literature. Section 6 discusses and concludes. Derivations
and additional results can be found in the Appendix.

2. Theoretical Decompositions

This section provides our theoretical decomposition for the trend real rate. There are of
course arbitrarily many valid decompositions for real rates. Our goal is a decomposition of
this endogenous object into interpretable fundamental components, in a manner that both
(i) is empirically estimable and (ii) contains one component that induces perfect comovement
of bonds and stocks. Isolating this last component will then allow us to measure the degree
to which interest-rate changes transmit to equity valuations.

We begin in Section 2.1 with a general decomposition with minimal assumptions on the
fundamentals or the stochastic discount factor. We then specialize to a more interpretable
consumption-based version of the decomposition in Section 2.2. We consider what each term
in the real-rate decomposition means for equity prices in Section 2.3, and for equity duration
in Section 2.4.

7Others, including Pavlova and Rigobon (2007), Camanho, Hau, and Rey (2022), Atkeson, Heathcote,
and Perri (2024), and Auclert et al. (2024), additionally consider asset valuations and capital flows. We briefly
analyze exchange rates and capital flows in Section 4.2. Kremens, Martin, and Varela (2024), meanwhile,
show that fundamentals are closely tied to survey forecasts of long-horizon currency appreciation, which are
themselves strong predictors of actual currency changes; this finding of a link between fundamentals, surveys,
and future returns mirrors ours in a different market.
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2.1 A General SDF-Based Version

We start with a general stochastic discount factor (SDF) Mt+1 such that Et[Mt+1Rt+1] = 1

for an arbitrary asset’s gross return Rt+1. This implies Rf
t+1 = 1/Et[Mt+1], where Rf

t+1 is the
real risk-free rate. Taking logs (and denoting logged variables in lowercase),

rft+1 = −Et[mt+1]− Lt(Mt+1), (1)

where Lt(Mt+1) ≡ logEt[Mt+1]− Et[mt+1] is the conditional entropy of the SDF.8

For now, we put very little structure on the SDF. We assume that the log SDF can be
additively decomposed as follows:

mt+1 = −ρt︸︷︷︸
predetermined

trend

− (f(Xt+1)− f(Xt))︸ ︷︷ ︸
difference for
Markov X

+ εt+1︸︷︷︸
mean 0

martingale diff.

. (2)

This representation is based on an additive decomposition constructed following Hansen
(2012, Theorems 3.1–3.2), and it holds under a general set of primitive assumptions. See
Appendix A.1 for formal details and a discussion. As discussed in the appendix, the term
f(Xt+1)− f(Xt) is either stationary or difference-stationary.

In interpreting (2), the trend −ρt shifts the intertemporal marginal rate of substitution
mt+1 in all states, so ρt can be thought of as a time discount rate. We interpret the Markov
state Xt+1 as determining aggregate cash flows, so f(Xt+1)− f(Xt) can be thought of as the
realized marginal utility from cash flow growth. Finally, εt+1 is the remaining martingale
component of the log SDF. These terms’ interpretation will map to their interpretation in
the consumption-based framework in the next subsection.

Plugging (2) into (1), the log risk-free rate satisfies

rft+1 = ρt︸︷︷︸
trend (discounting)

+ Et[f(Xt+1)− f(Xt)]︸ ︷︷ ︸
expected growth

− Lt(Mt+1)︸ ︷︷ ︸
uncertainty/prec. savings

. (3)

The first two terms’ labels align with the interpretations discussed above. For the labeling of
Lt(Mt+1) as an uncertainty or precautionary savings term, note that by definition of entropy,

Lt(Mt+1) =
∞∑
n=2

κn,t(mt+1)

n!
, (4)

8This is also the starting point for studying exchange-rate puzzles in Backus, Foresi, and Telmer (2001),
Hassan, Mertens, and Wang (2024), and Jiang, Krishnamurthy, and Lustig (2024), and for studying disasters
and risk premia in Backus, Chernov, and Martin (2011).
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where κn,t(mt+1) is the nth conditional cumulant of the log SDF distribution (assumed to
be finite for all n). Conditional entropy therefore encodes the higher (n ⩾ 2) moments of
marginal utility, as is standard.

Our main interest will be in understanding changes in the trend risk-free rate r∗t . Analogous
to Bauer and Rudebusch (2020), we define this as the Beveridge–Nelson trend in the one-
period real rate, r∗t ≡ limτ→∞ Et[rft+τ+1]. But unlike Bauer and Rudebusch, we are interested
in somewhat longer-horizon real rates: we think of one period as being equal to the cash-flow
duration of the overall equity market. As a result, we will not directly consider the term
premium embedded in these longer-term rates. Considering a long period length is equivalent
to considering a multi-period zero-coupon yield directly in (1): Rf

t,t+τ = 1/Et[Mt,t+τ ] for any
τ ⩾ 1, where Mt,t+τ = Mt+1 · · ·Mt+τ , so (1) applies when replacing “t + 1” with “t, t + τ .”
Term premia affect interest rates through the entropy term in (3), as studied by Backus,
Boyarchenko, and Chernov (2018).

For the trend real rate r∗t , equation (3) directly implies that it satisfies

r∗t = ρ∗t + g̃∗t − L∗
t,M , (5)

where ρ∗t = ρt, g̃∗t = limτ→∞ Et[f(Xt+τ+1)− f(Xt+τ )] and L∗
t,M = limτ→∞ Et[Lt+τ (Mt+τ+1)].

This is the first version of our real-rate decomposition into three terms corresponding to
discounting, expected growth, and uncertainty. The analysis in this section showed that such
a decomposition can be derived quite generally — up to the issue of interpretation of each of
the three terms — starting from an additive decomposition of the log SDF.

2.2 A Consumption-Based Version

To put more structure on the decomposition in (5), we now consider a more standard
consumption-based framework. We assume an endowment economy in which a representative
agent has power utility over consumption,

Ut = Et
∞∑
τ=0

βτt
C1−γ
t+τ

1− γ
. (6)

The time discount factor βt and corresponding rate of time preference ρt = − log βt are
potentially time-varying. We assume that relative risk aversion γ, or the inverse elasticity of
intertemporal substitution, is constant.9

9See Appendices A.1–A.2 as well for extensions with Epstein–Zin preferences, time-varying risk aversion,
or other departures from the basic model. As discussed there, decompositions of the form (5) or (8) still hold
in these alternative specifications; see equation (A.18) for an exact solution in a tractable Epstein–Zin case.
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Given (6), the log SDF is mt+1 = −ρt − γgt+1, where gt+1 ≡ ct+1 − ct is log consumption
growth. Plugging this into (1),

rft+1 = ρt + γEt[gt+1]− Lt(Mt+1)

= ρt + γEt[gt+1]−
∞∑
n=2

(−γ)nκn,t(gt+1)

n!
, (7)

where the final expression for Lt(Mt+1) in terms of the growth-rate cumulants κn,t(gt+1) is as
in Backus, Chernov, and Martin (2011) or Martin (2013); see Appendix A.2. In a lognormal
setting, this simplifies to the familiar solution rft+1 = ρt + γEt[gt+1]− γ2

2
Vart(gt+1).

Given (7), the trend real rate can be expressed as

r∗t = ρ∗t + γg∗t − L∗
t,M , (8)

where ρ∗t = limτ→∞ Et[ρt+τ ], g∗t = limτ→∞ Et[gt+τ+1], and L∗
t,M = limτ→∞ Et[Lt+τ (Mt+τ+1)].

10

Thus exactly as in (5), the real rate can move due to changes in (i) time preference (a stand-in
for pure discounting shocks), (ii) expected growth rates (via an intertemporal substitution
channel), or (iii) risk or uncertainty (via a precautionary savings channel).

2.3 Implications for Equity Prices

We now move to equity and ask how each of the three channels — pure discounting, expected
growth, and uncertainty — transmit from risk-free rates to equity valuations. Doing so
requires further structure on equity cash flows. Our framework here will be quite standard.
We derive a version of a Gordon growth formula for equity dividend yields; while we do so in
three slightly different environments, the basic pricing formulas will be quite similar (and, for
the most part, familiar). The main point will be to show that the pass-through of each of the
three components of our interest-rate decomposition to equity valuations applies in a simple,
intuitive way, in a range of standard settings.

We start from the same consumption-based framework as in Section 2.2, though the main
equity-valuation decompositions below in fact apply as well under Epstein–Zin utility (see
Appendix A.3). For equity cash flows, we follow Campbell (1986) and Abel (1999) and
model equity as a levered claim to consumption, paying dividends Dt = Cλ

t , with λ > 0.
This imposes a tight link between dividend growth and output and consumption growth. We
will see that this works well to explain the long-term trends observed in the expectations

10As discussed in Appendix A.1.3, in a stationary setting in which the limiting expectations here are
constant, we redefine these terms as discounted sums of expected outcomes from date t+ 1 to ∞.
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data, but this need not always be the case (particularly at high frequencies). We accordingly
extend our analysis in Section 4.1 to allow for time variation in the profit share of output,
which we then discipline in the data with survey expectations on profit growth. For now,
however, we assume that λ is constant.

We denote the gross equity return by Rmkt
t+1 and the log return by rmkt

t+1 , and define
µt ≡ Et[rmkt

t+1 ] and rpt ≡ µt − rft+1. The equity yield is defined as

eyt ≡ log(1 +Dt/Pt), (9)

where Pt is the price of the equity claim. This is slightly different from the usual log dividend–
price ratio (dpt ≡ log(Dt/Pt)). We define eyt as in (9) because it puts the equity yield
in equivalent units as the log real rate. It also yields straightforward characterizations of
steady-state ey∗t building on results from Martin (2013) and Gao and Martin (2021).

We consider three cases for the dynamics of underlying fundamentals, each of which
delivers approximately identical intuition for equity valuations.

Case I (Gordon Growth): Assume that log output growth gt+1 = ct+1 − ct is i.i.d. over
time, with arbitrary distribution. We view this as a reasonable approximation given our focus
on relatively long horizons (over which outcomes may be roughly conditionally i.i.d.), though
this i.i.d. assumption will mean that any changes in moments or preference parameters are
assumed to be unexpected permanent shocks. We write g∗t = Et[gt+1] = Et[gt+τ ] for all τ ⩾ 1.
Given i.i.d. gt+1, the growth-rate cumulants κn,t+τ (gt+τ+1) are also constant for all τ ; we
again include time indexes to allow for unanticipated shocks to these values. We similarly
allow for unanticipated shocks to the preference parameter ρ∗t = ρt.

This setting mirrors that of Martin (2013), and we apply and build on his results; see
Appendix A.3 for details and derivations. Given the constant growth rates and discount rates,
a Gordon growth formula applies as follows (where we use the i.i.d. assumption to set all
relevant variables equal to their conditional steady-state values):

ey∗t = r∗t + rp∗t − λg∗t . (10)

The log equity premium satisfies

rp∗t =
∞∑
n=2

κn,t(gt+1)

n!
((−γ)n − (λ− γ)n)

= Lt(Mt+1)− Lt(Mt+1R
mkt
t+1 ) = L∗

t,M − L∗
t,MR. (11)
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As discussed in the appendix, the fact that rpt = Lt(Mt+1)−Lt(Mt+1R
mkt
t+1 ) is fully general: it

holds under no arbitrage and does not require i.i.d. fundamentals or any assumptions on utility.
If λ = γ, then Mt+1R

mkt
t+1 = 1, and rp∗t = L∗

t,M .
11 Alternatively, for arbitrary λ and γ, if growth

is lognormal so that κn,t(gt+1) = 0 for n > 2, then rp∗t =
1
2
λ(2γ − λ)Vart(gt+1) =

λ(2γ−λ)
γ2

L∗
t,M .

Using (8), (10), and (11), we obtain a solution for equity yields summarized along with
the real risk-free rate in the following result.

Result 1. The steady-state real risk-free rate and equity dividend yield satisfy

r∗t = ρ∗t + γg∗t − L∗
t,M ,

ey∗t = ρ∗t + (γ − λ)g∗t + (rp∗t − L∗
t,M)

= ρ∗t + (γ − λ)g∗t − L∗
t,MR.

Changes in the risk-free rate can arise due to (i) pure discounting shocks (changes in ρ∗t ), (ii)
growth-rate shocks (g∗t ), or (iii) risk (entropy) shocks (L∗

t,M). Each of the three has different
implications for equity valuations:

(i) Pure discounting shocks: Bonds and equity co-move perfectly, with ey∗t increasing
by 1 basis point for each 1 basis point increase in r∗t .

(ii) Growth-rate shocks: Equity yields change by γ−λ
γ

per unit increase in r∗t . If γ = λ

(e.g., with log utility and an unlevered consumption claim), ey∗t is unaffected by changes
in r∗t induced by growth shocks. If λ > γ, growth shocks induce negative comovement.

(iii) Risk shocks: Equity yields change by − ∂rp∗t
∂L∗

t,M
+ 1 per unit increase in r∗t if ∂rp∗t

∂L∗
t,M

is
well-defined. Otherwise, equity yields change on average by −βL+1 per unit increase in
r∗t , where βL ≡ Cov(rp∗t ,L

∗
t,M )

Var(L∗
t,M )

. If γ = λ, then ey∗t is unaffected by changes in r∗t induced
by risk shocks. If βL > 1, risk shocks induce negative comovement.

The key implication of this result is that only the pure discounting channel generates
perfect pass-through from interest rates to equity yields, and from bond prices to duration-
matched stock prices (as discussed below). The range of past work assuming that the decline
in interest rates has passed through to equity valuations — as discussed in Section 1 — has
therefore implicitly assumed that the decline in r∗t has arisen due to such pure discounting
shocks. Changes in ρ∗t can be thought of as capturing, for example, demographic changes,
or something akin to a savings glut. We discuss such interpretations further in subsequent
sections.

11This is a restatement of the fact that the Alvarez and Jermann (2005) SDF entropy lower bound holds
with equality in the growth-optimal case (which corresponds to the current case in that Mt+1R

mkt
t+1 = 1):

Lt(Mt+1) = Et[r
mkt
t+1 ]− rft+1.
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For growth-rate changes, note that the equity yield depends on r∗t − λg∗t (our version
of r− g), so a decline in g∗t will have roughly offsetting effects since it decreases both discount
rates and growth rates.12 It is common to assume that γ ⩽ λ — or, in the Epstein–Zin case,
that 1

ψ
⩽ λ, where ψ is the elasticity of intertemporal substitution — so that a decline in

growth rates also decreases equity valuations (corresponding to a higher ey∗t ). This implies
that growth-rate changes induce weakly negative comovement between bonds and stocks.

For changes in risk, there are offsetting effects on the risk-free rate and the risk premium.
These changes may approximately offset or may cause stocks to move in the opposite direction
of bonds. As L∗

t,M loads on all the higher cumulants of the growth distribution as in (7),
the stock-price response will depend on the specific parameter change underlying the risk
shock. In Appendix A.3, we characterize the bond–stock comovement in three benchmark
cases: (i) in a lognormal setting with power utility and γ ̸= λ, r∗t and ey∗t comove positively
given changes in risk, though the pass-through is less than one-for-one if 2γ > λ; (ii) in a
rare-disasters model as in Barro (2006), if γ < λ, then r∗t and ey∗t comove negatively given
changes in the average disaster size (or, more generally, given changes in skewness or other
odd moments); (iii) with Epstein–Zin utility, if γ > 1, ψ > 1, and λ = 1, then r∗t and
ey∗t comove negatively given changes in even moments of the growth distribution (variance,
kurtosis, and so on), as in Martin (2013). So while positive risk shocks robustly decrease the
risk-free rate and generally induce a muted or negative stock–bond comovement, we treat
their precise pass-through to stocks as an open question to be disciplined empirically.

Result 1 is our main decomposition for trend real rates and equity valuations. We now
discuss how this decomposition carries through under more realistic assumptions on the
evolution of fundamentals.

Case II (Drifting Steady State): Assume now that the distributions of growth rates
and preference parameters are such that eyt follows a martingale, eyt = Et[eyt+1], similar
to Campbell (2008). Campbell (2018) refers to this as a “drifting steady state” model for
ey∗t = eyt, and Campbell and Thompson (2008) show that such a model has success at
forecasting medium-to-long-horizon returns. To a first order for eyt+1 around its expectation
eyt, we have in this case that eyt = Et[rmkt

t+1 − λgt+1]. (This follows Gao and Martin, 2021,
and again see the appendix.) This implies that

ey∗t = eyt = Et[rmkt
t+1 − λgt+1] = Et[rmkt

t+2 − λgt+2] = . . . = r∗t + rp∗t − λg∗t , (12)

12The ey∗t decomposition in Result 1 does not separate between discount rates and growth rates in the
same manner as a Campbell–Shiller decomposition. Instead, it collects terms such that g∗t term, for example,
contains both the direct cash-flow effect (λg∗t ) and the discount-rate effect (γg∗t ). We do so given our desire
to decompose risk-free discount rates into underlying structural components rather than composite terms.
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assuming the individual limiting values exist as t+ τ → ∞. In addition, r∗t satisfies the same
decomposition as in (8). Result 1 therefore holds exactly, and the same takeaways apply.

These steady-state facts can be equivalently stated as applying to one-period-ahead
conditional expectations:

eyt = ρt + (γ − λ)Et[gt+1] + (rpt − Lt(Mt+1)),

and similarly for the risk-free rate as in equation (7). These versions are useful for interpreting
higher-frequency changes in rates and prices.

Case III (Stationarity): Finally, we assume that eyt and all fundamental variables are
stationary, with no unanticipated permanent shocks. This case does not admit permanent
changes to real rates or valuations. So to non-trivially characterize the pass-through from
interest-rate changes to equity valuations, we must reinterpret all the previous starred terms
so as to measure persistent rather than permanent variation. Concretely, we redefine the
starred terms zt ∈ {rft+1, rpt, ρt, gt, Lt(·)} as Campbell–Shiller-type discounted sums:

z∗t ≡ (1− δ)
∞∑
τ=0

δτEt[zt+τ+1], (13)

where δ ∈ (0, 1) is a loglinearization term defined in Appendix A.3. Since (1− δ)
∑∞

τ=0 δ
τ = 1,

(13) defines the starred long-run terms as weighted averages of all future expected outcomes.
Given (13), we again follow Gao and Martin (2021) to obtain the loglinear approximation

ey∗t ≡ eyt = r∗t + rp∗t − λg∗t ,

exactly as in (10), where r∗t = ρ∗t + γg∗t − L∗
t,M and rp∗t = L∗

t,M − L∗
t,MR. So given the

redefinitions in (13), Result 1 again applies exactly as stated.

In all three cases, therefore, our decomposition generates effectively equivalent results,
summarized in Result 1. Only shocks to the pure discounting component of real rates passes
through perfectly to equity valuations (in the form of equity yields). Shocks to the other two
components in our decomposition — growth rates and uncertainty — generate ambiguous
and possibly negative comovement between rates and equity valuations.

2.4 Implications for Equity Duration

Having analyzed the relation between interest rates and equity yields using our decomposition
for rates, we now consider what the composition implies for equity duration. Equity duration
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does not, as we will see, correspond to the price sensitivity of equity to an arbitrary change
in interest rates. Instead, the only interest-rate change that leads to an equity price change
equal to its cash-flow duration is a pure discounting shock.

To make this point, we first express equity prices in levels. We consider the constant-growth
steady state from Case I and drop time subscripts to simplify:(

P

D

)∗

=
1

exp(r∗ + rp∗ − λg∗)− 1
=

1

exp(µ∗ − λg∗)− 1
≈ 1

µ∗ − λg∗
. (14)

Market-level equity duration D is defined as the value-weighted time to maturity of the
market’s expected future cash flows:

D ≡
∞∑
n=1

n
e−n(µ

∗)Et[Dt+n]

P
=

1

1− e−(µ∗−λg∗) ≈
1

µ∗ − λg∗
. (15)

This measure is equivalent to the equity price sensitivity to the log equity discount rate,

−∂ logP
∂µ∗ =

1

1− e−(µ∗−λg∗) = D, (16)

which parallels the usual result for the exposure of bond prices to a shift in the yield curve.
More important here, though, is price sensitivity to interest-rate changes arising from each
of the terms in our decomposition. Given (14), we have the following result describing how
price sensitivity depends on the underlying structural driver of interest-rate changes.

Result 2 (Three Interest-Rate Sensitivities). The sensitivity of stock prices with respect to
each of the three terms in the interest-rate decomposition r∗ = ρ∗ + γg∗ − L∗

M is as follows.

(i) The interest-rate sensitivity of stock prices with respect to pure discount-rate shocks is

Sr(ρ) ≡ −∂ logP
∂ρ∗

=
1

1− e−(µ∗−λg∗) = D.

(ii) The interest-rate sensitivity of stock prices with respect to growth shocks is

Sr(g) ≡ −∂ logP
∂(γg∗)

=

(
1− λ

γ

)
D < D.

(iii) Assuming that ∂rp,L ≡ ∂rp∗

∂L∗
M

is well-defined and positive, the interest-rate sensitivity of
stock prices with respect to risk shocks is

Sr(L) ≡ − ∂ logP

∂(−L∗
M)

= (1− ∂rp,L)D < D.
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Part (i) tells us that price sensitivity to the pure discount rate pins down equity duration
in a manner equivalent to price sensitivity to the equity discount rate in (16). The other
interest-rate terms do not share this feature: price sensitivity to growth shocks is strictly less
than duration, as is price sensitivity to risk shocks under general assumptions. To take a
benchmark example, with log utility (γ = 1) and equity modeled as an unlevered consumption
claim (λ = 1), the price sensitivity of equity to a change in rates due to g∗ or L∗

m are both
exactly zero. More generally, as long as equities move positively with expected growth and
negatively with respect to risk (as is commonly assumed), the interest-rate sensitivities in
parts (ii)–(iii) will both be negative. So only a change in rates induced by a shock to ρ∗

moves equities in line with their duration, and equity duration is not equivalent to price
sensitivity to an arbitrary change in r∗.

The fact that equity duration is equal to price sensitivity to pure discount-rate changes
also provides a novel avenue for measuring duration on an ex-ante basis. Measuring duration
using realized growth rates, as in the definition (15), requires a very long sample for statistical
precision and is inherently backward-looking. Measurement using price sensitivity to µ∗, as
in (16), is challenging given the difficulty measuring expected equity returns well. So if our
interest-rate decomposition generates reliable estimates of the pure discount rate term ρ∗

over time, then estimating the loading of equity returns onto changes in this discounting
parameter would allow for clean estimation of duration, both for the market as a whole and
for individual portfolios. We pursue this approach in our empirical estimation, which we turn
to now.

3. Empirical Implementation

We now implement our real-rate decomposition empirically and study how interest rates
and their three components transmit to equities. We do so in a panel of countries, with our
data and measurement approach laid out in Section 3.1. We then estimate the terms in our
decomposition, first in levels to study secular trends (Section 3.2), and then in changes to
study transmission to equity returns (Section 3.3) and portfolio returns in the cross-section
of stocks (Section 3.4).

3.1 Data and Measurement Approach

Recall that our goal is to measure each of the terms in the trend real-rate decomposition from
Result 1 (or equation (5)): r∗t = ρ∗t +γg

∗
t −L∗

t,M , where ρ∗t is the pure discounting term (or rate
of time preference), g∗t is long-term expected output growth, and L∗

t,M is uncertainty (entropy).
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Our approach will be to measure r∗t and g∗t as directly as possible; measure L∗
t,M using a

proxy from option prices; and then back out the pure discounting term as a residual.
For trend real rates and expected growth rates, our main input is a panel of long-term

forecast data obtained from Consensus Economics. Consensus Economics is a private firm that
collects and publishes survey expectations of country-level economic and financial variables by
professional forecasters. These forecasters include professional economists at large investment
banks and firms, with 10–30 forecasters per survey for each country.13 We use the long-
term forecasts, which are available for the G7 countries (Canada, France, Germany, Italy,
Japan, the U.K., and the U.S.) from 1990 through 2023, and for a subset of other developed
economies (Netherlands, Norway, Spain, Sweden, and Switzerland) starting in 1995 or 1998.
These long-term forecasts were conducted twice annually, in April and October, for the years
1990–2013. Since 2014, the forecasts are available quarterly. For all relevant series, we use
consensus (mean) forecasts at the five-year horizon.

To estimate the long-term real rate r∗t,j for date t and country j, we take the consensus
forecast of the 10-year nominal interest rate at the end of year t+5 and subtract the consensus
inflation forecast at the same horizon.14 For the expected growth rate g∗t,j , we use the forecast
of real output growth for year t + 5. One possible concern with this approach is in the
potential for a mechanical relation between expected growth and real rates, which might arise
if forecasters use a model tying these two variables together when producing their forecasts.
While such a mechanical relation (in the absence of a true relation) is of course possible,
two points are worth noting. First, a sizable share of the forecasters work at large financial
institutions with a key role in trading and pricing assets, so their expectations are likely to be
relevant for asset prices irrespective of how they are formed. Second, our main exercise will be
to use our decomposition to measure transmission to traded equity prices. These prices will
thus allow for an out-of-sample validation of our real-rate decomposition, by testing whether
the measured r∗t,j components transmit to equity in the manner predicted by our theory.

To proxy for the uncertainty term L∗
t,M,j, we build on results from Section 2.3 and Martin

(2017). As shown in Appendix A.3, if the market is growth-optimal and the distribution of
log growth is symmetric, then the entropy of the SDF is equivalent to that of the market
return, L∗

t,M,j = L∗
t,R,j. And as shown in Result 3 of Martin (2017), the squared VIX

index is proportional to the risk-neutral entropy of the market return. These imply that
setting L∗

t,M,j ∝ VIX2
t,j is likely to provide a reasonable approximation, and the constant of

proportionality will be implicitly estimated in our regressions for real rates below. We will also

13For a list of forecasters for a recent U.S. survey, for instance, see https://web.archive.org/web/
20250314034328/https://www.consensuseconomics.com/what-are-consensus-forecasts/.

14Our estimates roughly match those of Bauer and Rudebusch (2020), as can be seen by comparing
Figure 2 with their Figure 2. The main distinction is a difference in levels, as we consider longer-term rates.
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use this squared VIX term as our proxy for the risk term in the equity yield decomposition,
as would hold, for example, in the growth-optimal case or with lognormality.

To measure VIX2
t,j, we use a global panel of index option prices from OptionMetrics.

The sample, data filters, and implementation approach are taken from Gandhi, Gormsen,
and Lazarus (2023); see that paper for details. We calculate the squared VIX directly by
implementing the VIX formula for the observed option prices. Our version of the VIX is at
the six-month horizon. This is longer than the 30-day horizon calculated by the CBOE for
the U.S. market, given our desire to estimate longer-horizon uncertainty. Given the lack of
liquid longer-term options, though, we cannot calculate something closer to a five-year VIX.
Gandhi, Gormsen, and Lazarus (2023) show that implied volatility decays slowly at longer
maturities, so we view our six-month proxy as a reasonable starting point for longer-term
uncertainty, and our regression will again scale this value as needed to explain its contribution
to real rates. We provide measurement details in Appendix B.1.

For equity prices and valuation ratios, we use a value-weighted index for each country using
data from CRSP and Compustat (via the XpressFeed global database). For equity yields eyt,j ,
we start with the five-year earnings-to-price ratio Et−4,t,j/Pt,j = [(Et−4,j + . . .+ Et,j)/5]/Pt,j,
where earnings and prices are calculated on a value-weighted basis for all available traded
stocks in the country; see Appendix B.1 for details. We map the earnings yield to the equity
yield considered in our theory by multiplying this by 0.5, which is the unconditional average
payout ratio in our sample; only around 50% of earnings (more precisely, 49.4%) are paid out
to shareholders in an average year–country observation, with the remainder reinvested. An
alternative to this approach is to use dividend yields directly as our measure of equity yields,
which gives almost identical results (Corr(∆dpt,j,∆eyt,j) > 0.8 for the full sample).

For our cross-sectional analyses, we use returns on duration-sorted portfolios via Gormsen
and Lazarus (2023). This paper measures duration based on analyst forecasts of long-term
expected earnings growth (via IBES), or LTG (with higher cash-flow growth indicating a
longer duration). We also obtain data on value-sorted portfolios via Ken French’s website.

3.2 Secular Trends

To study long-term trends, we start by estimating our decomposition for trend real rates in
levels. For all available dates t and countries j, we estimate a regression

r∗t,j = ρ0 + γ g∗t,j + β VIX2
t,j + Γj + εt,j, (17)

with country fixed effects Γj. In our main specification, we also allow the VIX2 loading β to
differ by country (βj). While this is not important for our main results, it helps account for
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Table 1: Regressions for Trend Real Rates r∗t,j

(1) (2) (3)
U.S. All All

Expected growth g∗t,j 1.8*** 2.1*** 2.1***
(0.2) (0.2) (0.2)

Uncertainty VIX2
t,j -10.1** -3.8 βj

(4.5) (3.0)

Constant -1.9*** -1.9*** -2.0***
(0.5) (0.4) (0.4)

Country FEs ✗ ✓ ✓

Country-Specific VIX2
t,j Loading ✓ ✗ ✓

Obs. 86 932 932
R2 0.57 0.65 0.66
Within R2 — 0.60 0.61

Notes: This table shows estimated OLS coefficients in the regression (17), along with standard errors in
parentheses. In column (1), standard errors are obtained using a block bootstrap. In columns (2)–(3),
standard errors are clustered by country and date. Statistical significance at the 10% level, 5% level, and 1%
level are denoted by *, **, and ***, respectively. In column (3), the country-specific loadings on the squared
VIX, βj , are statistically significant at the 1% level for 9 of the 12 countries in our sample. The sample is
1990–2023, or the longest available span for the given country.

cases in which sovereign credit risk affects a country’s r∗t .15 It also allows for the possibility
of country-specific measurement error in the VIX, which may be an issue particularly for
countries with less-liquid option markets.

Given a set of estimated coefficients and OLS residuals, we then back out the implied
pure discounting term as

ρ̂∗t,j = ρ̂0 + Γ̂j + ε̂t,j. (18)

We thus have, by construction, that r∗t,j = ρ̂∗t,j + γ̂g∗t,j + β̂VIX2
t,j, which corresponds exactly

to our theoretical decomposition (with the uncertainty term −L∗
t,j proxied by β̂VIX2

t,j).
Estimates for the regression (17) are shown in Table 1, first for the U.S. only and then

for the full 12-country panel. The estimates correspond well to our theory. The loading
on expected growth is strongly positive and consistently estimated to be close to a value
of 2, corresponding to implied relative risk aversion of γ ≈ 2 and intertemporal elasticity of
substitution of about 1/2. The loading on the VIX is negative and significant in the U.S. case
and for most countries in the country-specific case shown in column (3). This limited set of

15Our theory for risk-free real rates suggests that the loading on uncertainty should be negative, but credit
risk can induce an offsetting positive relation between risk and long-term rates. We find that this effect is
small on average.
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Figure 2: U.S. Estimation Results for Decomposition of r∗ in Levels
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Notes: This figure shows the U.S. trend real rate r∗t,j and its components over time, estimated using (17)–(18)
following the main specification in column (3) of Table 1. For readability, the expected growth component is
shifted down by 3 percentage points (γ̂g∗t,j − 3), and the pure discounting residual is plotted as ε̂t,j .

variables explains a large share of the variation in trend real rates, with R2 values of around
0.6 within-country and slightly higher overall. The remaining variation is then attributed to
the pure discounting residual.

To visualize the data, Figure 2 presents the estimation results for the decomposition
of r∗t,j over time in the U.S. data. The trend real rate has fallen by close to 2.5 percentage
points (pp), or 250 basis points (bps), from the beginning to the end of the sample, starting
near 4% and ending near 1.5%. As can be seen in the green line, a large share of this decline
is attributed to a decline in long-term expected growth. Expected growth fell by around
0.75 pp over the sample, which when multiplied by γ ≈ 2 translates to a predicted decline
in yields of about 150 bps. While uncertainty affects real rates during deep recessions, it
has little long-term effect over the full sample. The change in growth rates and uncertainty
accordingly predicted a decline in real rates of around 150 bps overall, so the additional 100
bps of unexplained decline is attributed to the pure discounting residual. This residual was
particularly important in explaining the decline in interest rates early in the sample. From
2000 onward, the decline in interest rates has been driven almost exclusively by declines in
expected growth rates, implying little impact on equity valuations.

The remainder of this subsection studies how secular changes in equity valuations across
countries relate to changes in the different components of interest rates. Our goal is to
understand country-level changes in equity valuations over our sample period.
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Figure 3: Main Results: Long-Term Decomposition
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Notes: This figure plots the country-level changes in equity yields against changes in different components
of interest rates, estimated using (17)–(18) following the main specification in column (3) of Table 1. The
leftmost figure plots changes in equity yields against changes in the pure discounting term; the middle figure
plots changes in equity yields against changes in the growth and VIX components; the rightmost figure plots
changes in equity yields against changes real rates themselves. The sample is 1990–2023, or the longest
available span for the given country. For countries for which we can only measure equity yields starting after
1990 (see Appendix B.1), we calculate both ∆equity yield and ∆r∗ over the same window.

In the leftmost panel in Figure 3, we plot the change in equity yields against changes in
the pure discounting term in G7 countries. This is the same figure plotted in the right panel
of Figure 1 in the introduction. The figure illustrates that the large majority of the changes
in equity yields over this sample can be explained by changes in the pure discounting term in
interest rates. We emphasize that the pure discounting term is estimated purely from the
interest-rate decomposition in (17)–(18), without the use of equity valuations. As a result,
there is nothing mechanical about the tight fit in explaining the country-specific change in
equity valuations in the last 35 years. This result, along with other complementary evidence
presented below for both long and short horizons, thus serves as a strong out-of-sample
validation of the estimates from the interest-rate decomposition.

The magnitude of the relation between equity yields and the pure discounting term is
almost exactly equal to that predicted by theory. The figure shows that equity yields decrease
by one percentage point for every one-percentage-point decrease in the pure discounting
term, as in Result 1. And the pure discounting term explains not only relative changes in
equity valuations across countries, but also changes in valuations in absolute terms. The
intercept for the fit is very close to zero, which means the average earnings yield has moved
by as much as the pure discounting term. This finding need not necessarily imply that other
factors influencing valuation ratios — such as growth rates and risk premia — have remained
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constant, but it does imply that potential movements in growth rates and risk premia have,
on net, not played a significant role in changing equity valuations on average over this period.
In the later analysis, we in fact find that growth rates have generally gone down and risk
premia have gone up.

The middle plot in Figure 3 illustrates the relation between earnings yields and the
change in interest rates induced by changes in expected growth rates and uncertainty, taken
together. As expected, we find that valuation ratios have dropped in countries where interest
rates have dropped because of declines in growth rates and increases in risk: while these
changes have decreased interest rates, they have also depressed growth rates on equities
and increased equity premia, with the predicted effect on equity valuations being negative.
This relationship is noisier than the one plotted in the left panel, consistent with the more
ambiguous theoretical predictions for equity valuations given changes in growth rates and
uncertainty. But the negative relationship is nonetheless at least moderately strong in the
cross-section of G7 countries.

How can the negative relation in the middle panel be squared with the fact that the pure
discounting change can nearly perfectly explain the change in equity valuations over time (as
documented in the left panel)? Two aspects of the results help in interpreting this. First,
note that the best-fit line in the middle panel does not pass through the origin: unlike the
∆equity yield—∆pure discounting relationship in the left panel (which features an intercept
indistinguishable from zero), the line in the middle panel is shifted by 2.9 percentage points
to the left.16 Enforcing an intercept of zero in this ∆equity yield–∆r̂ ∗ relationship, we instead
estimate a very small slope (close to -0.1) and an adjusted R2 of -0.15. Explaining changes in
valuations in absolute terms evidently requires using the pure discounting change.

Second, once we account for the pure discounting change in the left panel, the remaining
terms in ∆r∗ do not provide much additional explanatory power for the long-term equity
valuation changes. In a regression for ∆equity yield on both the pure discounting change and
the remaining ∆r̂ ∗ terms, only the coefficient on the pure discounting change is significant,17

and the adjusted R2 increases only from 0.79 (in the left panel of Figure 3) to 0.81. To visualize
this marginal contribution from growth and uncertainty, Figure B.1 in Appendix B.2 shows a
version of the middle panel of Figure 3 where the change in the equity yield has now been
residualized against the change in the pure discounting term, ∆ρ̂∗t,j. The part of the equity
yield change unexplained by the pure discounting change is generally small quantitatively, and
it is now at most very weakly related to the change in rates from the growth and uncertainty

16In other words, the average advanced economy had close to no equity valuation change, while nonetheless
experiencing growth-rate and uncertainty shocks large enough to decrease real rates by nearly 300 bps.

17The estimated loading is 1.7 (p = 0.048), while the estimated loading on ∆r̂ ∗ is -1.0 (p = 0.271).
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terms, consistent with the more ambiguous effects predicted theoretically.
Returning to the rightmost panel of Figure 3: while we observe rich comovement between

equity yields and the different components of interest rates, we observe almost no relation
between equity yields and interest rates themselves. This is because the individual components
of interest-rate changes have happened to be somewhat negatively related (albeit weakly
so) across countries. As a result, adding the horizontal-axis values in the two left panels
of the figure generates a muddled and weak relationship between interest rates and equity
yields. This emphasizes how comparing equity valuations to real rates directly can paint a
misleading picture.

Discussion and Interpretation

Taken together, Figure 3 provides a clear view of both (i) the secular declines in real rates
across countries in recent decades, and (ii) their relation to equity valuations. Taking the
U.S. to begin, expected real output growth fell by around 3/4 of a percentage point over
the 1990–2023 sample period, and the VIX increased slightly. Given the loadings on these
terms in Table 1, those two changes together predict a decline in r∗ of about 1.6 percentage
points. Instead, r∗ fell by 2.5 percentage points. We call the difference of 0.9 percentage
points a pure discounting shock, akin to a decrease in the pure rate of time preference. Such
a decrease predicts an increase in equity valuations (i.e., a decrease in equity yields), and
this is exactly what we see in the left panel of the figure. Taking Japan as a contrasting
case, its decline in r∗ of 3.3 percentage points is a much smaller decline than would have
been expected on the basis of the large decrease in long-term expected growth, indicating a
positive pure discounting shock. This positive shock similarly perfectly matches the decrease
in Japanese equity valuations. The same applies for all the other countries considered.

While the pure discounting shocks provide a very good description of equity valuation
changes in an accounting sense, the question of how to interpret them remains somewhat
open thus far. We do not view these changes as likely representing a true aggregate preference
(or patience) shock among domestic investors. Instead, a “global imbalances” view of cross-
country capital flows, as described by Caballero, Farhi, and Gourinchas (2008), appears to
be a reasonable candidate explanation. The main decline in the U.S.’s estimated ρ∗ occurred
in the mid-to-late 1990s and early 2000s (see Figure 2). This period coincides with a large
decrease in the U.S.’s net foreign asset position. Japan’s estimated ρ∗, meanwhile, increased
during this decade. Strong demand for U.S. assets, particularly from investors in countries
experiencing large shocks to the perceived soundness of their financial system (e.g., in the
wake of the Japanese stock-market crash), match both the timing and the cross-country
patterns observed in Figure 3, as we discuss in greater detail in Section 4.2 below.
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3.3 Higher-Frequency Changes and Forecasting Regressions

Interest-rate movements influence not only secular changes in valuation ratios but also higher-
frequency fluctuations. In this subsection, we study how stocks move with the different
components of interest rates at a higher frequency. The higher-frequency nature of this
exercise allows us to conduct our estimation on a within-country basis, in contrast to the
cross-country long-difference plots in Figure 3. It also helps avoid potential concerns regarding
spurious comovements between slowly moving variables that might arise for the preceding
estimation in levels.

When conducting our higher-frequency analysis, we must balance two considerations.
First, we wish to explain price and interest-rate variation for reasonably short holding periods.
Second, our estimation needs to allow for inertia in forecasters’ long-run growth and interest-
rate forecasts, which precludes us from considering, for example, monthly returns (since
forecasts are collected at most once per quarter). In our baseline analysis in this section, we
consider three-year returns and estimate how these move with each of the components of
interest rates.18

The starting point for this analysis is a regression for changes in trend real rates, analogous
to equation (17) but in differences rather than levels:

∆r∗t,j = α0 + γ∆g∗t,j + βj ∆VIX2
t,j + Γj + εt,j, (19)

where ∆ denotes a three-year change and where the loading on the VIX term is again
country-specific.19 The residual term εt,j is now our measure of ∆ρ∗t,j. Next, given this
estimated pure discounting change ∆̂ρ∗t,j = ε̂t,j, we regress three-year value-weighted net
market returns on that pure discounting term, the change in expected growth, and the change
in the VIX, along with a country fixed effect:

rmkt
t,j = α1 + πρ ∆̂ρ∗t,j + πg∆g

∗
t,j + πV ∆VIX2

t,j + Λj + νt,j. (20)

Table 2 shows the resulting estimates. Before considering our main estimates resulting
from (20), we start with a simpler exercise as a benchmark for comparison: we regress three-

18In additional analysis, we find that our takeaways are robust to the use of longer or somewhat shorter
horizons, though the relationships weaken at horizons shorter than two years (indicating some inertia or
measurement error).

19Coefficient estimates for regression (19) are presented in Table B.1 of Appendix B.2. The estimates
are similar to the level estimates in Table 2 at a high level, albeit with smaller estimated coefficients. This
suggests the potential for attenuation bias from measurement error that is amplified when estimating in
differences, as highlighted by Griliches and Hausman (1986) and Cochrane (2018). We thank Emi Nakamura
for helpful discussions related to this point.
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Table 2: Regressions for Three-Year Stock Returns

(1) (2) (3) (4)
U.S. U.S. All All

∆10y yield 4.19 -3.39
(3.51) (2.20)

∆pure discount (∆̂ρ∗t ) -19.1** -9.61**
(7.64) (3.26)

∆exp. growth -1.49 16.9*
(14.0) (8.82)

∆VIX2 × 100 -3.08** -5.44***
(1.33) (0.90)

Country FEs ✗ ✗ ✓ ✓

Obs. 74 74 781 781

R2 0.04 0.20 0.05 0.27

Within R2 — — 0.02 0.24

Notes: This table shows estimates from regressing three-year value-weighted market returns on changes in
10-year nominal yields (in columns (1) and (3)), and on changes in the three interest-rate components (in
columns (2) and (4)). The interest-rate components are estimated from (19), and the table presents estimates
from (20). Columns (1)–(2) consider the U.S. only, while (3)–(4) consider the full panel of developed countries
(and include country fixed effects). In columns (1)–(2), standard errors are obtained using a block bootstrap,
with block length of one year and 10,000 bootstrap samples. In columns (3)–(4), standard errors are clustered
by country and date. Statistical significance at the 10% level, 5% level, and 1% level are denoted by *, **,
and ***, respectively. The sample is 1990–2023, or the longest available span for the given country.

year stock returns on the unadjusted change in the traded 10-year nominal yield. Column (1)
shows the resulting estimate for the U.S. sample. The slope coefficient is close to zero and
statistically insignificant, reflecting the well-known fact that returns on stocks and bonds are
close to uncorrelated.

In column (2), we present coefficient estimates from (19) in the U.S. data, showing how
stock returns load on each of the three drivers of interest-rate changes: changes in the pure
discount term, changes in expected growth, and changes in risk. The loading on the pure
discount term is -19 and statistically significant. This loading suggests that stock returns go
down by 19 percentage points when trend real rates increase by 1 percentage point due to
pure discounting. As in Result 2(i), this coefficient has a clear structural interpretation: it
is equal to the negative of the cash-flow duration of the overall market. This market-level
duration is often approximated by the dividend yield, generating an estimate on the order of
40 years (see, e.g., Gormsen and Lazarus, 2023). While somewhat lower than that figure, the
estimate of 19 years from column (2) is of the same rough order of magnitude and reinforces
that the market is a long-duration claim. We view the estimate as a lower bound given
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Figure 4: Decomposition of U.S. Value-Weighted Equity Returns
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Notes: This figure shows three-year annualized average returns for the value-weighted U.S. stock market,
along with estimated underlying contributors. Each contribution term is equal to the estimated coefficient
in (20) times the corresponding predictor: for example, the expected growth contribution is equal to the
three-year change ∆g∗t,j times the estimated coefficient π̂g. The coefficient estimates are taken from column (2)
of Table 2, but divided by 3 (e.g., the growth loading is -0.5 rather than -1.49). This is to account for the use
of annualized returns in this plot, whereas the outcome variable for Table 2 is cumulative non-annualized
returns. The pure discounting predictor for (20) is obtained from the first-stage estimation in (19).

the potential for attenuation bias when using the higher-frequency variation in the pure
discounting term (see footnote 19 for related discussion).

The remaining estimates in column (2) show that stock returns load very weakly on
expected-growth changes, and significantly negatively on changes to risk, again consistent
with our theory. Moving to columns (3) and (4) of Table 2, the results are largely similar in
the global sample. The main distinction is that the slope on the pure discounting shock is
smaller in the global data than in the U.S. data. This lower slope could conceivably reflect
measurement issues in the higher frequency data outside the U.S., which attenuates the slope
coefficient further.

These higher-frequency estimates allow for a time-series accounting of the period-by-period
contribution of different interest-rate components to stock returns. Figure 4 illustrates this
higher-frequency return decomposition for the U.S. stock market: it plots the three-year
annualized value-weighted market return, along with each of the three fitted components
π̂ρ ∆̂ρ∗t,j , π̂g∆g∗t,j , and π̂V ∆VIX2

t,j (i.e., each predictor variable multiplied by the corresponding
loading implied by column (2) of Table 2). Shocks to risk, as shown in the red line, appear
more relevant for higher-frequency market returns than was the case in Figure 2 for lower-
frequency changes in r∗. This is consistent with the fact that shocks to future equity discount
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Table 3: Forecasting Regressions for Future Three-Year Market Returns

(1) (2) (3)

10y yield 0.08
(0.38)

Survey-based r∗t 0.50
(0.68)

Pure discounting term ρ̂∗t 2.08***
(0.61)

Country FEs ✓ ✓ ✓

Obs. 1,050 842 842

R2 0.06 0.03 0.06

Within R2 0.00 0.00 0.03

Notes: This table shows coefficient estimates from forecasting regressions rmkt
t,t+3 = α+ βXt + εt,t+3, where

rmkt
t,t+3 is the country-level annualized three-year market return, and Xt is an ex ante predictor variable. The

first column uses the 10-year nominal yield as the predictor variable, using data obtained from each country’s
central bank. The second column uses our survey-based measure of the trend real rate r∗t as predictor. The
third column uses our estimated pure discounting term ρ̂∗t , estimated using (17)–(18) following the main
specification in column (3) of Table 1. Each regression includes country fixed effects, and all standard errors
are clustered by country and date. The sample is 1990–2023, or the longest available span for the given
country.

rates and risk premia explain a large share of stock returns (Campbell, 1991), and our use of
the VIX as an entropy proxy likely understates the share of the return variation attributable
to risk-premium shocks. Expected growth rates, shown in green, do not explain a significant
share of the variation in returns in this exercise. The pure discounting contribution, in
blue, varies less dramatically than overall returns, but our estimates suggest that it has
affected returns significantly in certain subsamples. The increase in the pure discounting
term corresponding to the rise in rates since 2021, for example, is estimated to have provided
significant headwinds to equities. Returns were nonetheless reasonably high as a result of
contemporaneous decreases in equity premia. Such an exercise allows for an assessment of
the contributors to stock returns, and their relation to interest rates, on an ongoing basis.

As a final out-of-sample validation test for our interest-rate decomposition in explaining
aggregate market returns, we ask whether our estimated pure discounting term ρ̂∗t predicts
future equity returns (in addition to helping account for contemporaneous realized returns).
Long-horizon expected equity returns are equal to µ∗

t = r∗t + rp∗t . Given that the uncertainty
component of r∗t is likely to be negatively correlated with the equity risk premium rp∗t , interest
rates by themselves are unlikely to be useful for predicting future realized returns. The pure
discounting component of r∗t , by contrast, strips out the uncertainty component of risk-free
rates, and therefore should align well with future equity returns.
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We conduct such predictability tests in Table 3, which shows coefficients from regressions of
annualized market returns over the subsequent three years on ex ante yield-related predictors.
Columns (1) and (2) show that neither nominal yields nor our measure of r∗t help predict
equity returns. This provides further evidence that risk premia comove negatively with
risk-free yields, as discussed as well by Farhi and Gourio (2018). Meanwhile, as can be seen in
column (3), the pure discounting term strongly predicts future returns. While the estimated
coefficient of 2.08 is somewhat larger than the theoretical prediction of 1, the estimate is
sufficiently noisy that we cannot reject a value of 1 at the 5% level. The upshot of this
analysis is similar to our findings above: our interest-rate decomposition succeeds at stripping
out shocks to risk-free yields with offsetting effects on equity risk premia (or growth rates),
leaving us with a useful measure of the pure discounting component of long-term interest
rates.20 This pure discounting term is accordingly a useful counterfactual long-term risk-free
rate to use in calculating a duration-matched equity premium; we will return to this insight
in Section 5.1.

3.4 Cross-Sectional Portfolios

We now turn to the cross-section of stock returns, and study whether firms with different
cash flow duration have different exposure to the pure discounting term. A large literature
studies the risk and return properties of firms with different cash flow exposure (see Gormsen
and Lazarus 2023 and citations therein), finding that firms with shorter cash flow duration
have higher risk-adjusted returns. In this section, we use our methodology to quantify
cross-sectional differences in cash flow duration, which is a key (and debated) object for this
literature.

We focus here on the measure of duration used in Gormsen and Lazarus (2023), which
is based on the estimated cash flow growth for different firms. In that paper, we start with
analysts’ long-term earnings growth (LTG) forecasts obtained from IBES. To extend these
forecasts to firms not covered by analysts, we project LTG on a set of contemporaneous firm
characteristics; see Gormsen and Lazarus (2023) for details. We then use the fitted values as
our measure of predicted duration. According to this exercise, firms with higher cash-flow
growth have, all else equal, longer cash-flow duration.21

20One can also consider a complementary exercise to forecast future excess returns. Unlike the version
presented in Table 3, such an exercise requires instead stripping out the pure-discounting and expected-growth
components of risk-free rates, leaving only a component related to risk (and therefore risk premia). We find
in additional tests that this remaining component strongly predicts future excess returns.

21Another standard approach is to proxy for duration by valuation ratios (like book to market), since a
higher valuation ratio is associated with a longer cash flow duration (i.e., growth firms are long-duration
firms). Using book-to-market ratios as the measure of duration does not influence the results presented in
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Figure 5: Portfolio Exposures to Pure Discount Rates and Yields: U.S. Stocks
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Notes: This figure shows slope estimates from univariate regressions for three-year returns of each of five
equity portfolios on the three-year change in (1) the pure discounting term (∆̂ρ∗t ), marked in red, and (2) the
nominal 10-year yield, marked in orange. Each regression contains a constant. For example, the first point in
the top left of the figure shows β̂1 (and 95% confidence intervals) from rt,1 = α1 + β1 (∆̂ρ∗t ) + εt,1, where
rt,1 is the three-year return on a value-weighted portfolio of the stocks in the bottom quintile of cash-flow
duration. The pure discounting term is estimated from (19) using U.S. data. Duration-sorted portfolios and
returns are calculated following Gormsen and Lazarus (2023). The sample is 1990–2023.

In Figure 5, we report slope coefficients of regressions of three-year realized returns onto
three-year changes in the pure discounting term for portfolios of U.S. stocks with different
cash flow duration.22 We consider five value-weighted portfolios sorted by duration. The
figure shows that the portfolio of firms with the shortest cash flow duration has a slope
coefficient of around -10, while the portfolio of firms with the highest cash flow duration has
a slope of -30. At face value, these estimates suggest that the cash flow duration of these
portfolios varies significantly from -10 to -30 years, which is significant both economically
and statistically.

As with the previous analysis, it is possible that the slope coefficients suffer from attenua-
tion bias. If such attenuation bias is driven by classical measurement error, it is similar (in
percentage terms) for the different portfolios. In this case, it is useful to focus on the ratio of
the cash flow duration of the different portfolios, as this ratio will be unaffected by classical
measurement error. We find that the portfolio of firms with longest cash flow duration have
three times as long cash flow duration as the firms with the shortest cash flow duration. A
lower bound on this difference appears to be 20 years, but we cannot rule out that it is longer.

By contrast, as can be seen in the coefficients plotted in orange, long-duration stocks
are not substantially more exposed to raw interest-rate changes than short-duration stocks:

this section.
22We present corresponding results for the full global sample in Figure B.2.
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all of them have very small estimated loadings when regressing their returns on the change
in 10-year nominal yields. And the estimated coefficients go in the “wrong” direction, at
least with respect to an interpretation of all interest-rate changes as being exogenous pure-
discounting shocks: rather than returns decreasing when interest rates increase, they instead
weakly increase. This further reinforces the point made in Section 2.4: equity duration does
not correspond to the price sensitivity of equity to an arbitrary change in interest rates.
Instead, only pure discounting shocks induce interest-rate variation that passes through to
equity in proportion to its duration. Duration-sorted portfolios should not, and do not, vary
significantly in their exposure to nominal interest rates by themselves; instead, they vary
only in their exposure to pure discount-rate changes.

4. Robustness: Changing Profit Shares and Capital Flows

We now consider the robustness and interpretation of our results given two additional
channels that are relevant for yields and prices. First, in Section 4.1, we characterize how
our decompositions can be generalized when dividend growth is not proportional to output
growth as a result of time-varying profit shares of output. Second, in Section 4.2, we consider
how our results should be interpreted in the context of globally integrated financial markets.

4.1 Time-Varying Profit Shares

Our main analysis proceeds from the assumption that dividend growth is proportional to
output growth; see Section 2.3. While log dividends and consumption should be cointegrated
at a sufficiently long horizon, they of course do not comove perfectly at all dates (or for all
medium-term forecast horizons). In the realized U.S. data in recent decades, for example,
equity cash flows have outpaced GDP and consumption given increases in the corporate profit
share of income. Greenwald, Lettau, and Ludvigson (2025) estimate that such unanticipated
increases in the profit share accounted for close to 40% of realized U.S. equity returns since
1989. Given that such a channel may be important in our setting, we consider here how
time-varying profit shares affect our analysis.

We first note that our interest-rate decomposition in Result 1, r∗t = ρ∗t + γg∗t − L∗
t,M , is

unchanged, as aggregate growth (rather than equity cash-flow growth) is the relevant outcome
for the SDF. For equity cash flows, denote dividend growth by gt+1,d = dt+1−dt. We continue
to use gt+1 to refer to output and consumption growth. Rather than imposing gt+1,d = λgt+1

(where we continue to use gt+1 to refer to output and consumption growth), we now allow
for an arbitrary dividend growth process. So it may be the case that Corr(g∗t , g∗t,d) < 1. Our
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resulting equity-yield decomposition now becomes

ey∗t = ρ∗t + γg∗t − g∗t,d + (rp∗t − L∗
t,M)

= ρ∗t + γg∗t − g∗t,d − L∗
t,MR. (21)

The implications for a change in each of the terms in r∗t on equity valuations are effectively
unchanged from those in Result 1. Only shocks to the pure discounting term ρ∗t pass through
directly from rates to equity yields. Comovements induced by risk shocks are also unchanged.
And though the passthrough of growth-rate shocks may be different than in Result 1, it is
still the case that such shocks induce weaker pass-through than pure-discounting shocks as
long as Corr(g∗t , g∗t,d) > 0. While there may now be pure dividend-growth shocks (i.e., changes
to g∗t,d without corresponding changes in g∗t ), these are entirely separate from the interest-rate
dynamics considered in our empirical decomposition for r∗t , as we return to shortly.

To reconcile this result with the importance of profit-share shocks as estimated by
Greenwald, Lettau, and Ludvigson (2025), note that such changes may increase prices without
affecting equity yields. Their effect on equity yields depends on changes in the path of
expected future cash-flow growth. If profit-share shocks have tended to cause unanticipated
increases in contemporaneous (i.e., already materialized) cash flows rather than expected
future growth rates, then both prices and cash flows will increase concurrently, leaving equity
yields unaffected as compared to the baseline analysis.23

The other possibility is that equity cash-flow growth expectations have diverged meaning-
fully from output-growth expectations. As discussed above, we view this as a separate shock
to anticipated future profit shares. That is, defining π∗

t ≡ g∗t,d − λg∗t for leverage λ, we can
write (21) as

ey∗t = ρ∗t + (γ − λ)g∗t − π∗
t − L∗

t,MR,

and a change in the wedge between dividend-growth expectations and levered output-growth
expectations is thus a shock to π∗

t .
While shocks to π∗

t are separate from the interest-rate shocks we study, it is an empirically
relevant question whether the dynamics of g∗t,d may have differed from those of g∗t , and
whether forward-looking π∗

t has increased in a manner that has happened to offset declines in
expected output growth. We can address this question using two sets of additional forecast
data, though in both cases the data are only available for the U.S. rather than the full panel.

23As a corollary, however, note that the price exposure to such shocks (corresponding to the price exposures
analyzed in Result 2) should be significant.
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First, the long-term Consensus Economics forecast data provides nominal corporate profit
growth forecasts since 1998 for only the U.S. sample. Using this, we construct a proxy for
real g∗t,d by subtracting the inflation forecast from the nominal profit-growth forecast for
year t + 5. In this available post-1998 U.S. sample,24 profit-growth forecasts have in fact
fallen by meaningfully more than output-growth forecasts:

∆g∗t = −0.50, ∆g∗t,d = −1.26.

With a leverage parameter of λ ≈ 2 — close to estimated coefficient on expected growth in the
real-rate decomposition in Table 1, consistent with the insignificant equity effect estimated
in (2) — we accordingly estimate that the change in the expected profit-share term ∆π∗

t has
been very close to 0 over this sample. As a result, our main conclusions for the U.S. data are
unchanged. Profit-share shocks appear to have materialized mainly as changes in current
cash flows rather than expected future growth rates, leaving equity yields close to unaffected.
And our estimated effect of the pure discounting residual, and the resulting pass-through of
roughly 1/3 of the decline in r∗t to equity valuations in U.S. data, remains unchanged.

As a secondary check on this analysis, we obtain aggregate long-term earnings growth
(LTG) forecasts for U.S. equities from Nagel and Xu (2022). These are analyst forecasts
for earnings growth for U.S. equities, which Nagel and Xu aggregate to the index level and
convert to real terms by subtracting forecasted inflation. Using this series as our second
proxy for g∗t,d, for the full sample over which we can implement our real-rate decomposition
and measure equity yields, we estimate that ∆g∗t = −0.70, ∆g∗t,d = −0.60.25 If one again
assumes a leverage parameter of about λ = 2.5, this implies that there has been a modest
increase in the profit-share term ∆π∗

t , but our main results are largely unaffected.
While Greenwald, Lettau, and Ludvigson (2025) differ from us in their focus on profit-

share effects on prices, our results echo some of their findings. They find that “essentially
all of the increase in equity values relative to output from the mid-1990s to the end of the
sample” can be accounted for by assuming a fixed ratio of market equity to earnings (p 1093),
indicating that shocks to contemporaneous earnings relative to output drive the vast majority
of equity price (but not equity yield) movements. This is also reflected in the analysis of
Atkeson, Heathcote, and Perri (2024), who find that increases in the ratio of cash flows to

24This post-1998 sample corresponds to a period during which the majority of the decline in expected
output growth took place in the U.S. forecasts.

25We prefer the Consensus Economics data because the LTG-based forecasts are much more volatile than
the other forecast series (see Bordalo et al., 2024), so the full-sample differences are highly sensitive to the start
and end date. Starting the sample in 1992 instead of 1990 gives ∆g∗t,d = −1.88; meanwhile, ending the sample
a year later gives ∆g∗t,d = 0.14. Given such large cyclical LTG forecast variation (σLTG = SD(LTG) = 2.0, vs.
σprofit = 0.8, σGDP = 0.4), we view the baseline forecasts as better capturing low-frequency variation.
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value added have affected valuation much more than the ratio of price to cash flows. While
we do not have direct evidence on the importance of profit-share changes outside the U.S.,
Atkeson, Heathcote, and Perri (2024) also estimate (see their Figure 7) that the increase in
cash flows to value added appears fairly specific to the U.S. data.

Finally, we also rerun our higher-frequency return regressions in Table 2, but now with
changes in the two g∗t,d proxies (profit growth and LTG) as explanatory variables in addition
to the change in expected output growth. Results are presented in Table B.2 in Appendix B.2.
Results are very consistent with those presented in Table 2, with the coefficient on (∆̂ρ∗t ) very
close to the original estimate of -19.1. The loading on ∆LTG is also significant and positive.
Overall, our main results continue to apply even when considering changes in the profit share.

4.2 Cross-Country Capital Flows

While the framework introduced in Section 2 does not explicitly rule out cross-border
investment, that analysis proceeded from a country-specific domestic SDF and thus did not
characterize how foreign capital flows may affect our analysis. Here, we discuss how such
flows affect our decompositions both theoretically and empirically, and we show that capital
flows help account for the variation in country-level pure discount rates observed in the data.

Consider two large countries i and j. We refer to i as the domestic (or dollar) economy,
and j as foreign. Denote the exchange rate, expressed as dollars per unit of foreign currency,
by Qt. (While we refer to Qt in currency terms, it should be understood as a real exchange
rate.) Denote its log by qt. Also denote the log forward exchange rate by ft, where the
forward horizon matches that of the real rate.

Define ρ̃∗t,c as the subjective rate of time preference for the average (or marginal) household
in country c ∈ {i, j}. We will analyze a shock occurring at date t. Assume that prior to the
shock, both countries are in steady state, and their decompositions (8) hold with ρ∗t,c = ρ̃∗t,c,

r∗t,c = ρ̃∗t,c + γg∗t,c − L∗
t,M,c, c ∈ {i, j}, (22)

so that the pure discounting term is equal to the true rate of time preference in each country.
We then consider a shock dr∗t,j < 0 in country j. Assume for simplicity that the shock is

permanent, so dr∗t,j = drft+1,j. The shock to interest rates could come from any of the three
terms in the decomposition (22), or a combination thereof. For concreteness, one can consider
the experience of Japan in the 1990s, which — in the wake of its financial crisis — featured
a large decline in expected growth alongside what Caballero, Farhi, and Gourinchas (2008,
p. 367) describe as a “realization that local financial instruments are less sound than they were
once perceived to be.” This can be represented as a negative growth shock dg∗t,j < 0 combined
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with a positive pure discounting shock dρ∗t,j = dρ̃∗t,j > 0, such that dρ∗t,j + γdg∗t,j < 0. More
generally, any dr∗t,j < 0 arising from a shock to country j’s domestic variables is permissible.

Under no arbitrage, covered interest parity dictates that fpt = r∗t,i−r∗t,j , where fpt ≡ ft−qt
denotes the log forward currency premium. As a result, we have

dr∗t,j = dr∗t,i − dfpt.

So a decrease in country j’s real rate implies some combination of (i) a decrease in country i’s
real rate, and (ii) an increase in the currency premium for country j relative to i (likely
achieved via an immediate depreciation in j’s currency and a resulting future forward-implied
appreciation).26 In the absence of a full general equilibrium model (e.g., Alvarez, Atkeson, and
Kehoe, 2009, Itskhoki and Mukhin, 2021, or the literature discussed at the end of Section 1),
one cannot fully characterize the split between these two channels. But even without fully
specifying a supply side, frictions in intermediation or adjustment, or market clearing, one
can nonetheless make robust predictions for the effects of dr∗t,j on country i’s decompositions.

Consider two extreme cases. First, consider the case in which dr∗t,j = dr∗t,i, so the decrease
in country j’s real rate passes through fully to country i with no change in the forward
premium. This would hold, for example, in the case of a currency peg, or approximately in
a case in which j is much larger than i or currency intermediation is relatively frictionless.
Since dr∗t,i < 0 and there are (by assumption) no contemporaneous shocks affecting country i
directly, it must be the case on impact that dρ∗t,i < 0: a decrease in country i’s interest rate
without any corresponding change in forward-looking i-specific expectations must decrease
the effective pure discount rate implied by country i’s interest rates.

Note that given such a shock, however, ρ∗t,i is no longer equal to the subjective rate of time
preference for country i households. Assume that since the shock is permanent, dL∗

t,M,i = 0.
Country i’s households’ Euler equations still hold, so it must be that dg∗t,i < 0 — households
immediately consume more given capital inflows (implying lower growth), so that their Euler
equations hold — so dr∗t,j < 0 leads to both dρ∗t,i < 0 and dg∗t,i < 0. That is, a shock that
lowers country j’s interest rates leads in this case to a lower pure discount rate and lower
expected consumption growth in country i. And by the same derivations as in Section 2,
the dρ∗t,i < 0 effect will lead to a decrease in equity yields (an increase in valuations), while
dg∗t,i < 0 will have an ambiguous effect. As long as the survey data effectively measure the
change in expected growth in country i, our analysis carries through, and the capital flows
from j to i will have the effect of lowering the measured pure discount term in i.

26One of these two signs could in principle be flipped with a large enough change in the other term, but
all benchmark equilibrium models predict that both terms will be (weakly) of the sign indicated in the text.
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Figure 6: Pure Discount Rates and Net Capital Flows in the U.S.
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Notes: The line plotted on the left axis shows the end-of-year estimated pure discounting residual ρ̂∗t,j in
the U.S. data, as plotted in Figure 2. The line plotted on the right axis shows the U.S. net capital account
balance as a share of GDP, as reported by the IMF (we use their “Net Financial Account” series).

The second extreme case features dr∗t,j = −dfpt, so that the decrease in country j’s real
rate affects only the forward exchange premium. This would hold if, for example, i is much
larger than j, or if currency intermediation is highly frictional so that exchange rates adjust
to absorb all demand for country i assets. This case features no change in any of country i’s
decomposition terms.

So in either case, as well as in the more empirically relevant intermediate cases, our
decompositions still apply in this more realistic setting with international financial markets.
A negative shock to a foreign country j’s real rate will (weakly) decrease the pure discount
rate and the expected growth rate in the domestic country i. As a result, such shocks — and
resulting capital flows from foreign to domestic — serve as one (though certainly not the
only) potential channel for decreases in the pure discounting term in i.

Motivated by this theory, we examine whether capital flows help explain the pure discount-
rate changes in the data. We begin with time-series evidence in the U.S. data. As Figure 6
shows, the variation in estimated ρ∗ (plotted on the left axis) aligns well with annual net
capital flows (plotted on the right axis, where negative numbers indicate net inflows into U.S.
assets).27 The main decline in the U.S.’s ρ∗ occurred in the mid-to-late 1990s and early 2000s.
This coincides with a sharp decrease in net capital flows, in line with the “global imbalances”
period highlighted and analyzed by Caballero, Farhi, and Gourinchas (2008).

In Figure 7, we analyze whether capital flows help account for pure discount-rate changes
27The time-series regression coefficient of ρ̂∗ on capital flows is significant at the 1% level using the robust

test recommended by Lazarus et al. (2018). Note that the figure plots ρ̂∗ against annual flows, as Proposition 1
of Caballero, Farhi, and Gourinchas (2008) shows that permanent shocks lead to persistent annual flow effects.
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Figure 7: Cross-Country Pure Discounting Changes vs. Cumulated Capital Flows
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Notes: The vertical axis shows the country-level change in the pure discounting residual, as plotted on the
horizontal axis in the first panel of Figure 3. The horizontal axis shows the cumulative sum of that country’s
net capital account balance as a share of annual GDP, as reported by the IMF (we use their “Net Financial
Account” series). The sample is 1990–2023, or the longest available span for the given country.

in the full panel of G7 countries. There is a fairly strong, positive relation between the
full-sample change in a country’s estimated ρ∗ and the change in its net foreign asset position.
As this change in the net foreign position is calculated from cumulated net capital flows,
it does not include mechanical valuation effects. That said, capital flows are themselves
determined in equilibrium, and they likely have further spillover effects that we do not consider
in this illustrative analysis. So while these flows help account for the observed changes in our
country-level residuals, we leave a deeper analysis of underlying causal drivers to future work.

5. Additional Empirical Implications

This section uses our framework to shed light on three questions that have been debated
in recent literature. We use our methodology to (1) shed light on the “duration-matched”
equity premium (Section 5.1), (2) quantify the effect of decreasing interest rates on the value
premium (Section 5.2), and (3) help understand the role of an information effect in explaining
stock-price responses to monetary policy news (Section 5.3).
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5.1 A Significant Duration-Matched Equity Premium

As discussed in the introduction, van Binsbergen (2024) shows that long-term bond portfolios
have performed nearly as well as equities in recent decades (see also Andrews and Gonçalves,
2020). In particular, average monthly holding period returns on long-term nominal bond
portfolios, constructed to approximate the cash-flow duration of the stock market, have been
very close to the average returns on the market since the mid-1990s. So while the premium
on the market relative to the short-term risk-free rate has remained high, it appears as if
there has been little to no “duration-matched” premium.28

The interpretation of this result, however, is less clear. Measuring a duration-matched
equity premium is certainly a useful exercise, as it helps in understanding the extent to
which high stock returns may have arisen as an essentially mechanical result of the decline in
interest rates. But as analyzed in Section 2, bond returns may be high as a result of multiple
possible structural drivers, each of which should pass through differently to equities. As a
result, an unadjusted nominal Treasury portfolio may not represent an ideal counterfactual
long-term bond return for comparison with equities.29

van Binsbergen (2024) notes this issue in detail when discussing his results: “the fact that
investors have not received compensation for long duration dividend risk does not necessarily
mean that investors were not expecting to receive at least some compensation ex ante.” In
particular, “The results that stocks had poor long-term performance compared to their fixed
income counterparts could be driven by a secular decline in long-term real and nominal
expected economic growth rates (and/or secular increase in long-term risk premia) over these
decades. . .[but] long-run expected growth measures are not in ample supply.” Our data and
approach help disentangle the extent to which bond returns should have passed through to
equities, and thus how puzzling the apparent low duration-matched equity premium is.

To answer these questions, we construct an alternative counterfactual long-term safe asset
return to compare to equity returns. Following the logic above, when seeking to estimate
the direct contribution of declining interest rates to realized equity returns, our relevant
long-term counterfactual is a duration-matched “pure discounting claim.” To understand
such a claim, we start by considering a standard zero-coupon bond with maturity n and log
yield yt,t+n. Its log return from t to t+ 1 can be expressed as

rt+1,n = yt,t+n − (n− 1)(yt+1,t+n − yt,t+n).

28As van Binsbergen (2024) states in his conclusion, “One could argue that this simply means that the
equity premium puzzle has resolved itself.”

29Of course, the excess return on equity relative to long-term bonds corresponds to the return from a
feasible long-short portfolio; the question is in how to interpret this portfolio’s returns.
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As usual, the return depends on the initial yield minus the maturity-scaled yield change. A
pure discounting claim, by analogy, has return

rt+1,ρ = αt − (n− 1)(ρt+1 − ρt). (23)

The last term in parentheses is the most important for this exercise: our pure discounting
claim is constructed so that it appreciates when the pure discounting component of interest
rates ρt — or, in practice, our estimate of the trend component ρ̂∗t — decreases. Because
such a decrease should pass through to equity returns in proportion to equity duration D
from Result 2(i), we set the maturity-scaling term to be n− 1 = D = 19.1 years, where the
estimate D = 19.1 comes from column (2) of Table 2. As a result, this provides a relevant
counterfactual (and in this case, fictitious) long-term bond return to compare to equity
returns. The last question is how to define the upfront yield αt, which determines the level of
returns when ∆ρt = ρt+1 − ρt = 0. Our approach is to set this value to

αt = ρ̂∗t + Et[πt+5], (24)

where ρ̂∗t is the pure discounting term estimated from (18), and Et[πt+5] is the consensus
survey expectation of long-term inflation (i.e., annual inflation in year t + 5). The pure
discounting term is defined in real terms, so we add back inflation to put the initial yield in
nominal terms (for comparison with a nominal stock return).

We then calculate the excess return on the market relative to this duration-matched pure
discounting claim return rt+1,ρ, and cumulate returns over time. We compare this duration-
adjusted excess return to both (1) the market return in excess of the short-term nominal
risk-free rate, and (2) the market return in excess of a duration-matched nominal Treasury
security (unadjusted for changes in growth rates or risk), analogous to van Binsbergen
(2024).30

These three cumulative returns are plotted in Figure 8. As can be seen in the black line,
the market has had high average returns relative to the short-term risk-free rate over this
period, with a realized annual equity premium of 7.1%. The red line shows a version of the
finding in van Binsbergen (2024): when compared to the holding-period returns on long-term
nominal Treasuries, much of this premium disappears. The full-sample average return on

30Our nominal bond return calculation is somewhat less sophisticated than his. He constructs a bond
portfolio with multiple nominal bonds, each weighted in proportion to the value weight of the market’s
expected future dividend at the corresponding maturity. In contrast, our counterfactual nominal bond return
is equal to rt+1,n = yt,t+10−D(yt+1,t+11−yt,t+10). That is, we assume a parallel shift in the yield curve equal
to the change in the 10-year nominal yield, and then we calculate the return on a D = 19.1-year Treasury
that would result from such a shift.
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Figure 8: Cumulative Excess Returns for the U.S. Market
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Notes: This figure shows cumulative returns on the value-weighted U.S. stock market in excess of three
different counterfactual bond returns. The black line shows the return relative to the short-term risk-free
rate. The blue line shows the return relative to the duration-matched pure discounting claim, calculated as in
(23)–(24) using the estimated ρ̂∗t from (18). The red line shows the return relative to an unadjusted nominal
Treasury security with duration D = 19.1 years; see footnote 30 for details of construction.

this nominal-Treasury-adjusted basis is 3.6%. But before considering the last three years of
the sample (which featured increasing interest rates and high equity returns), there was no
excess return relative to the duration-matched nominal Treasury: the red line in Figure 8
crosses zero in the first quarter of 2021, indicating precisely zero average excess return in the
preceding thirty years of the sample.

By contrast, the return on equity in excess of the duration-matched pure discounting
claim, shown in blue, is high and stable. On an annualized basis, this realized excess return
is estimated to be 6.1% over this period, only slightly (and insignificantly) lower than the
standard notion of the equity premium in excess of the short-term risk-free rate. As a result,
we estimate a significant duration-matched equity premium once we construct a relevant
counterfactual corresponding to the return on a long-term risk-free claim whose appreciation
should pass through to equities. We find that it does indeed pass through in the theoretically
predicted manner. The return on equity relative to long-term Treasury securities is thus
rationalizable: Treasury returns were high in large part because expected growth rates
decreased (and, to a lesser extent, because uncertainty increased). The relative performance
of stocks over this period is accordingly no longer puzzling once this effect on bond returns is
properly accounted for.
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5.2 The Value Premium and Interest Rates

We next turn to a puzzling pattern observed in the cross-section of stocks in recent decades.
The value premium — measured as the average return on stocks with high book-to-market
ratios minus stocks with low book-to-market ratios, or HML (Fama and French, 1993) —
has been substantially weaker in recent decades than implied by historical averages. One
potential explanation for this underperformance could be that interest rates have dropped,
which has led to an unexpected capital gain for the long-duration growth firms, leading
growth firms to have performed better than expected ex ante.31 On the surface, this effect
could be meaningful. Imagine that growth firms have a 30-year longer duration than value
firms. A naive calculation would imply that a roughly 3 percentage point drop in interest
rates would have led to a 90 percentage point relative outperformance of growth firms. Over
a 20-year span, this translates to a relative outperformance of more than 4 percent per year,
which is large enough to wipe out effectively the entirety of the historical value premium as
measured by Fama and French (1993).

The above calculations are, however, not the full story, as discussed in previous sections.
First, while interest rates have dropped by close to 3 percentage points in the U.S., the pure
discounting term has dropped by only about 1 percentage point, and it is only this component
that should pass through to long-duration assets. Second, we estimate that the spread in
duration for value-sorted portfolios is substantially below the 30 years assumed above. The
net effect on the realized return on the value factor is therefore substantially smaller.32

We illustrate and quantify the effect of changes in the pure discounting term for the value
factor in the U.S. data in Figure 9. The figure shows both cumulative returns for the HML
factor (in black, corresponding to the left axis), and the estimated contribution of changes
in the pure discounting component of real rates (in blue, right axis). This pure-discounting
contribution is estimated by regressing HML returns on the change in the residual ρ̂∗t,j from
equations (17)–(18), controlling for changes in growth rates and uncertainty,33 and then
multiplying the estimated coefficient by the cumulative change in ρ̂∗t,j since 1990.

As the figure shows, the effect of the pure-discounting term is modest but non-trivial,
reaching a cumulative effect of -20% return at the trough in 2020, but only 10% over the full

31This hypothesis is discussed by Maloney and Moskowitz (2021) and Asness (2022), among others.
32Consistent with this view, Figure 3 of Gormsen and Lazarus (2023) shows that the return and alpha on

a short-minus-long-duration strategy has been quite consistently positive over recent decades.
33This estimation exercise parallels the one in equation (20) for the overall market, with the exception

that here we use the change in the residual ρ̂∗t,j estimated in levels from (17) (rather than the residual from
the first-difference estimation in (19)). We do so because this allows for straightforward estimation of a
cumulative effect of the change in ρ̂∗t,j in levels, as needed for the exercise in Figure 9. Cumulating the
effects of three-year changes ∆̂ρ∗t,j , by contrast, would only allow for measurement of the pure discounting
contribution every three years (so the blue line in Figure 9 would only show 11 equally spaced points).
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Figure 9: The Contribution of Pure Discounting Changes to Value Factor Returns

Notes: The black line shows the cumulative return on the Fama and French (1993) HML value factor for
the U.S. sample since 1990, obtained via Ken French’s website, plotted on the left axis. The blue line
shows the contribution we estimate is attributable to the pure discounting component of real rates, plotted
in cumulative percent terms on the right axis. For this estimated contribution, we begin with the pure
discounting residual ρ̂∗t,j , estimated using (17)–(18) following the main specification in column (3) of Table 1,
as plotted in Figure 2. We regress three-year HML returns on the three-year change in this residual, along
with the three-year change in expected growth rates and the three-year change in the squared VIX (akin
to (20)). The estimated contribution from the three-year residual is then the estimated coefficient on ∆ρ̂∗t,j
multiplied by the cumulative change in ρ̂∗t,j since 1990.

sample. In addition, Figure 9 also shows that the crash and rebound of the value factor from
2020–2023 matches the dramatic changes to the pure discount term experienced over those
years at least in timing, if not fully in magnitude: the cumulative HML return over that
period is around 30% (on the left axis), while the percent attributable to the pure discounting
term is around 10% (on the right axis). So while the pure discounting contribution is often
important, it is clearly not the full story explaining the performance of value in recent decades
in the U.S. sample.

In Figure 10, we exploit our global panel to study what share of the cross-country
differences in realized value returns since 1990 can be explained by cross-country differences
in the evolution of the pure discounting term. The figure shows that value firms in countries
that have experienced a larger decrease in the pure discount term have had lower realized
premia relative to growth firms over the sample period. And Japan — which has had an
increase in the pure discounting term over our sample — has had the largest realized value
premium. The cross-sectional R2 demonstrates meaningful explanatory power, but it also
indicates that the returns to the value factor cannot be fully summarized by changes in the

42



Figure 10: Interest Rates and Value Returns: Long-Term Global Evidence
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Notes: The left panel plots the country-level average annual return on the high-minus-low (HML) book-to-
market value factor versus the change in estimated trend real rate r∗ over the 1990–2023 sample. Following
Fama and French (1993), each country’s HML factor is constructed based on a 2×3 size and book-to-market
double sort, with returns calculated as the average of the high-minus-low return for small and large firms. See
Gormsen and Lazarus (2023) for details. The right panel plots the same average annual HML return against
the change in the pure discounting term estimated using using (17)–(18) following the main specification in
column (3) of Table 1. The sample is 1990–2023. Note that HML returns are available starting in 1990 for
all countries, whereas the equity yield samples start later than this in some cases (see Appendix B.1). As a
result, the ∆r∗ terms in this figure may differ relative to Figure 3, given the earlier start date for the changes
calculated in this figure.

pure discounting term.34 So while this pure discounting change is important for explaining
some share of the cross-country value premium, it clearly does not represent the full story
over this period.

5.3 Unpacking Monetary Policy Shocks

As a final exercise, we use our decomposition and estimation results to help unpack the effects
of surprise changes in short-term interest rates by monetary policymakers. These surprises,
when properly measured (e.g., using high-frequency changes in interest rates around policy
announcements), are by construction exogenous shocks to short-term nominal rates. These
shocks then pass through strongly to long-term nominal and real rates (e.g., Hanson and
Stein, 2015). But while some papers have treated the resulting changes in long-term rates as
if they represent pure discounting shocks (i.e., shocks to ρt), this is not necessarily a valid

34We find that the same results hold — both within and across countries — when considering HML alpha
(i.e., on a market-adjusted basis), rather than considering the raw value premium.
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assumption: while the change in the short-term rate is exogenous, the long-term yield change
depends on changes to the pure discount rate as well as changes to perceived long-term
growth and uncertainty.35 That is, the long-term real yield response depends not just on the
pure short-rate shock (and the perceived persistence of this shock), but also on the market’s
perceived future changes to endogenous outcomes resulting from this shock.

In practice, if positive interest-rate shocks are contractionary (i.e., decrease expected
growth rates) and cause increases in uncertainty, then the observed long-term real yield
change ∆yt,t+n will in fact tend to understate the change in the pure discounting term ∆ρt,
from (5). In this case, attributing the entirety of the yield change to ∆ρt may be innocuous
as a conservative assumption. But in the presence of something like an information effect
(Nakamura and Steinsson, 2018), under which positive interest-rate shocks lead the market
to revise growth expectations up, then the validity of such an assumption is less clear.

A benefit of our framework is that we can estimate directly the perceived effect of any
given shock on the separate components of real rates. One approach to this would be to
observe the change in expected growth rates around an announcement and then strip out
these changes, akin to the approach taken in Section 3. But the timing of the Consensus
Economics surveys makes such an approach challenging when considering high-frequency
shocks like monetary policy surprises. First, the surveys are conducted infrequently (either
every six months or every three months), and forecasters may exhibit inertia in changing their
growth-rate forecasts after a given shock.36 Second, the surveys prior to a given monetary
policy change may be stale by the time of the FOMC meeting, inducing a possibly spurious
positive relation between expected-growth revisions and policy surprises: if positive shocks
tend to occur in the wake of good economic news revealed between the most recent Consensus
Economics survey and the next FOMC meeting, then this could result in positive revisions
that do not reflect the change in forecasts resulting from the announcement itself. See Bauer
and Swanson (2023b) for an extensive related discussion.

Instead, we can take advantage of the fact that we observe three high-frequency asset-price
changes on the announcement dates themselves: we observe the change in long-term yields

35To take one recent example, Kroen et al. (2024) “empirically analyze the impact of falling rates on firms
using high frequency interest rate shocks at FOMC announcements as exogenous shifters to the interest rate,”
and then use this assumption to estimate the duration of market leaders (large stocks) relative to followers
(small stocks) based on their relative return responses to interest-rate shocks. Such stock-price changes pin
down duration only under the assumption that the shock consists only of a pure discount-rate shock. As we
find in the analysis presented here, this assumption is not too far from the truth on average. In addition, in
separate analysis, we estimate that large stocks appear to have somewhat longer durations than small stocks
(measured using exposure to pure discounting changes) in the recent low-rate sample, which is the relevant
subsample for the Kroen et al. (2024) analysis. That said, prior to 2013, small stocks in general have longer
estimated durations than large stocks, consistent with the full-sample results in Gormsen and Lazarus (2023).

36Partly due to this inertia, our difference-based estimation in Section 3.3 considers three-year changes.
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∆yt,t+n, the return on the market rmkt
t , and the change in uncertainty proxied by ∆VIX2

t .
And our previous estimation provides a mapping from any change in ρt, expected growth
gt, and uncertainty VIX2

t to a change in long-term yields and stock returns. As a result,
this mapping can be inverted to provide an estimate of the change in ρt and gt implied by
the observed asset-price changes. For example, a positive market return coinciding with an
increase in yields implies that expected growth must have increased by enough, or uncertainty
must have decreased by enough, to offset any given increase in the pure discounting term.
Given that we can observe the change in uncertainty, these two reactions in fact exactly pin
down the required change in both terms.37

To implement this idea, we start with a slightly modified version of the yield change
decomposition in (19). The benchmark yield change we will use in the high-frequency data
is a change in the 10-year yield, whereas (19) was estimated for the five-year yield. We
therefore re-estimate that equation using three-year changes in the 10-year trend real yield as
our starting point. In practice, the resulting estimates are quite close to those presented in
Table B.1.38 Next, we estimate (20) using the three resulting terms from that decomposition.
Estimates are again quite similar to the benchmark shown in Table 2.39

We then use data from Bauer and Swanson (2023a), who provide changes in 10-year
nominal yields, S&P 500 futures returns, and monetary policy shocks (orthogonalized with
respect to ex ante predictors) in 30-minute windows around FOMC announcements.Based
on the results of Nakamura and Steinsson (2018), we assume that the change in 10-year
nominal yields is equal to the change in 10-year real yields, ∆yt,t+10. Finally, we calculate
the daily change in the VIX2

t on the announcement day. Using these observed high-frequency
changes and our estimated coefficients in the real-rate and stock-return regression, we invert
the following two equations for the two unknowns ∆ρt and ∆gt:

∆yt,t+10 = ∆ρt + γ̂∆gt + β̂j ∆VIX2
t ,

rmkt
t,j = π̂ρ∆ρt + π̂g∆gt + π̂V ∆VIX2

t .

We then regress the recovered ∆ρt and ∆gt, as well as ∆yt,t+10 and ∆VIX2
t , on the orthogo-

nalized monetary policy shocks mpst from Bauer and Swanson (2023a).
Across all post-1994 announcements, a 100-basis-point shock (i.e., a shock scaled so that

37Our estimation approach is somewhat similar in spirit, if not in implementation, to the one used by Knox
and Vissing-Jorgensen (2024) to decompose contemporaneous changes in observed returns. Our approach
requires slightly more structure than the one in Nagel and Xu (2024), but it is again similar in spirit.

38The estimated growth-rate loading is indistinguishable from the one presented in column (3) of that
table, while the loading on VIX is slightly smaller (-2.3 in the U.S., rather than -4.3).

39In this case, they are statistically indistinguishable from the figures presented in column (2), with the
very slight change being that the estimated loading on the expected-growth change is now 2.4.
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the impact on the one-year Eurodollar futures contract is +100 bps) results in the following:

(i) An increase in the 10-year yield of ∆yt,t+10 = 45 basis points (similar to Nakamura and
Steinsson, 2018). This result is significant at 1%, and the regression has an R2 of 0.36.

(ii) An increase in the VIX of ∆VIX2
t = 0.013 (or, in non-squared terms, an increase of

0.2%). This small increase is nonetheless significant at 1%. The regression R2 is 0.04.

(iii) An increase in the pure discounting term of ∆ρt = 29 basis points. This is again
significant at 1%, and the regression has a high R2 of 0.30.

(iv) An increase in expected growth of ∆gt = 7 basis points. This is significant only at 10%,
and the R2 is 0.04.

As a result, we conclude that the average monetary policy shock indeed appears reasonably
close to a pure discounting shock, at least in its effect on long-term yields. This conclusion is
fairly similar to that of Nagel and Xu (2024), using different methods. But there is nonetheless
a small, somewhat noisily estimated positive expected-growth-rate change estimated as
resulting from a contractionary shock. Intuitively, while stock returns decrease following
contractionary shocks, they do not decrease on average by quite enough — i.e., they decrease
by less than 19% (given an estimated duration of around 19 years) for every one-percentage-
point change in long-term yields — to be consistent with a pure discounting shock alone.40

As a result, we find some evidence in favor of an information effect on average, using different
methods than those used by Nakamura and Steinsson (2018).

The fact that the R2 in the growth-rate regression is so low indicates that there is
meaningful announcement-specific heterogeneity in the perceived effects on growth rates
(as well as the other endogenous variables): there are some announcements with strong
conventional policy responses, and others with strong apparent information effect–type
responses. For example, the accommodative announcements on March 23, 2020, during the
depths of the market downturn at the onset of the Covid crisis, is estimated to have increased
long-term expected growth rates significantly. In future work, we plan on unpacking this
heterogeneity in greater detail to take advantage of our announcement-specific estimates.

6. Discussion and Conclusion

We provide a new framework and measurement tools to decompose any change in real interest
rates into mutually exclusive underlying structural changes. According to our decomposition,
only pure discounting shocks should pass through perfectly from real yields to equity valuations

40They would in fact need to decrease by more than 19% to be consistent with such a shock, given the
small positive effect on the VIX.
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theoretically. When implemented empirically with long-term survey forecast data and a panel
of asset prices, the decomposition works very well: pure discounting shocks are estimated to
pass through one-for-one to equity yields, while the other components of interest-rate changes
do not.

The recovered pure discounting component of real rates helps us answer a range of
important questions related to asset pricing, macroeconomics, and secular economic trends
observed in recent decades. In the U.S. data, we estimate that a sizable share of the decline
in interest rates since 1990 — around 35% — is attributable to the pure discounting term,
indicating some meaningful pass-through from declining yields to rising risky-asset valuations.
But assuming perfect pass-through, as a range of literature has done, nonetheless overstates
the effect of declining interest rates by roughly three times. The partial pass-through we find
implies that much of the rise in household wealth (and inequality) was likely non-mechanical.41

Our estimates also imply that stocks have continued to exhibit a sizable equity premium
relative to a duration-adjusted counterfactual. In further analysis, we use our decomposition
to speak to higher-frequency equity returns, explain interest rates in the cross-section of
stocks, and better understand the perceived effects of monetary policy shocks.

Unpacking the drivers of country-level changes in the pure discounting term in a structural
sense, over and above the analysis of capital flows in Section 4.2, will be important for better
understanding how to interpret these changes. But in spite of the work to be done on this, our
paper provides a clear framework and tools to understand the relationship between stocks and
bonds. This bond-stock relationship appears chaotic, both at high frequencies and over the
long run, as is apparent from the stock–yield disconnect shown in the left panel of Figure 1.
But our simple framework, combined with long-term survey data, works very well at isolating
a pure discounting component of interest rates that explains both higher-frequency stock
returns and longer-term secular changes in equity valuations, as in the right panel of Figure 1.

One implication of our findings is that we can nearly perfectly explain the long-term
changes in both interest rates and equities without the need for any additional convenience
yield specific to Treasuries. While such market-specific shocks may be quite important for
explaining shorter-term fluctuations (as seen, for instance, in Di Tella et al., 2024), “standard”
asset pricing evidently works reasonably well at explaining the data at a low frequency.

41That said, more work needs to be done to understand the pass-through of interest-rate changes to assets
other than equity, which are important for many households’ wealth.
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Appendix

A. Additional Theoretical Derivations and Discussion

This appendix provides proofs, derivations, and discussion of theoretical results as referenced
in the main text.

A.1 Additive Log SDF Decomposition

This subsection discusses the additive decomposition for the log SDF in equation (2), and
its relation to the decomposition in Hansen (2012). Given our discrete-time environment,
for notational simplicity we will in fact more directly build on Proposition 4.2.1 of Hansen
and Sargent (2022). That result provides a discrete-time analogue to the continuous-time
decomposition for additive functionals in Theorems 3.1–3.2 of Hansen (2012),42 which we
then apply to our specific setting.

We begin by defining the process S such that S0 = 1 and Mt+1 =
St+1

St
, so mt+1 = st+1−st.

We consider three separate cases for fundamental dynamics, which parallel the three cases
considered in Section 2.3.43

A.1.1 Stationarity with Unanticipated Breaks

Following Hansen and Sargent (2022), begin by defining Xt (t = 0, 1, 2, . . .) to be a stationary
Markov process of dimension n with transition equation

Xt+1 = φ(Xt,Wt+1), (A.1)

where φ(·, ·) is a Borel-measurable function andWt+1 is a k-dimensional vector of unanticipated
shocks satisfying Et[Wt+1] = E[Wt+1|Xt] = 0. The dynamics in (A.1) induce a transition
distribution P for X.

Given the log SDF mt+1 = st+1 − st, assume that the process s is an additive functional,
in the sense that it can be represented as

st+1 = st + κ(Xt,Wt+1),

where κ : Rn × Rk → R is a measurable function. Define the unconditional expectation of

42See also Hansen (2019).
43The first case is a generalization of Case I in Section 2.3, allowing for arbitrary Markov dynamics (rather

than the specialized version with conditionally i.i.d. dynamics in Section 2.3) along with unanticipated breaks.
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the increment st+1 − st to be ν = E[κ(Xt,Wt+1)]. Define κ(x) = E[κ(Xt,Wt+1)|Xt = x]− ν

to be the deviation of the expected increment conditional on Xt = x from its unconditional
mean. Using the infinite sum of all such future deviations as of t, define

Ht = κ(Xt−1,Wt)− ν︸ ︷︷ ︸
(st+1−st)−ν

+
∞∑
j=0

Et[κ(Xt+j)], (A.2)

and assume that the sum in (A.2) converges in mean square to a finite variable. Next, define

h(Xt) = Et[Ht+1] =
∞∑
j=0

Et[κ(Xt+j)]. (A.3)

Finally, define the martingale increment

εt+1 = Ht+1 − h(Xt), (A.4)

so that Et[εt+1] = 0 by construction.
Given the above setup and the additional assumption that E[κ(Xt,Wt+1)

2] <∞, Proposi-
tion 4.2.1 of Hansen and Sargent (2022) then gives that mt+1 = st+1−st satisfies the following
additive decomposition:44

mt+1 = ν + h(Xt+1)− h(Xt) + εt+1. (A.5)

The first term represents the linear trend in st. The second component, h(Xt+1)− h(Xt), is
a stationary difference. The last term is a mean-zero martingale increment.

We now map to our interpretation of the first term as representing discounting and the
second term as depending on cash-flow growth. Denote the log cash-flow process by ct, and
assume that

ct+1 − ct = µc(Xt) + σc(Xt)BcWt+1,

Xt+1 = AxXt + σx(Xt)BxWt+1,
(A.6)

where µc(Xt), σc(Xt), and σx(Xt) are measurable functions. This nests many common
specifications for fundamentals. If (i) Wt is a 3 × 1 i.i.d. standard normal vector, where
the first entry contains a shock to contemporaneous cash flows (so only the first entry of

44Theorem 3.2 of Hansen (2012) gives an exactly analogous decomposition in continuous time, with the
added interpretation of h as a finite-second-moment solution to limt↘0

1
tE0[h(Xt) − h(x)|X0 = x] = κ(x),

where κ(x) is the deviation of the local mean of the increment in s from its unconditional mean ν.
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the row vector Bc is non-zero), (ii) Xt is a 2 × 1 vector, where the first entry X1,t affects
expected cash-flow growth (µc(Xt) = µ + X1,t), the second captures stochastic volatility
(σc(Xt) = σx(Xt) =

√
σ2 +X2,t), and Ax and Bx are 2 × 2 diagonal matrices, then this

represents the long-run risks model of Bansal and Yaron (2004) with stochastic volatility.
The Campbell and Cochrane (1999) habit formation model, meanwhile, applies if Wt is scalar
i.i.d. standard normal, µc(Xt) = µ, σc(Xt) = σ, Bc = 1, and Xt+1 is the deviation of the log
surplus consumption ratio s̃t from its long-run mean (with σx(Xt) representing Campbell and
Cochrane’s “sensitivity function” λ(s̃t)). Other settings fit similarly within the framework.

To relate the SDF dynamics to cash flows, assume that the log SDF can be written as

mt+1 = −ρ− γ̃(ct+1 − ct) + nt+1, (A.7)

for some constant γ̃ and process nt+1 = µn(Xt)+σn(Xt)BnWt+1. This is again quite general.45

As in Section 2.2, it holds in a representative-agent, power-utility setting, where ρ = − log β

is the time discount rate, γ̃ = γ is relative risk aversion, and nt+1 = 0. If the representative
agent has Epstein-Zin preferences with elasticity of intertemporal substitution (EIS) ψ,
time discount rate ρ, and relative risk aversion γ, (A.7) holds, but now with γ̃ = 1

ψ
and

nt+1 = (1/ψ− γ)(vt+1− (1− γ)−1(logEt[V 1−γ
t+1 ]), where Vt+1 is continuation utility and vt+1 is

its log.46 In the Campbell and Cochrane (1999) habit setting, (A.7) holds, with γ̃ = γ again
representing risk aversion and nt+1 = −γ(s̃t+1 − s̃t), where s̃t is the log surplus consumption
ratio. It can also be mapped straightforwardly to various heterogeneous-agent models, such
as that of Constantinides and Duffie (1996) or subsequent models.

To relate the above representation to the additive decomposition (A.5), we can construct
each of the terms in that decomposition under our assumptions on cash flows in (A.6) and the
SDF in (A.7). Define νc = E[ct+1−ct] = E[µc(Xt)] and νn = E[nt+1] = E[µn(Xt)], and assume
that νn = 0. This will hold as long as the additional perturbation nt+1 to the log SDF either
(i) follows a martingale difference sequence or (ii) features transitory, unconditional-mean-zero
disturbances, as is the case in many models.47 The ν in (A.5) is therefore

ν = −ρ− γ̃νc. (A.8)

45It is slightly more general, for example, than the assumption in Backus, Chernov, and Zin (2014, eq. (22)).
46In the unit EIS case with ψ = 1, Nt+1 = exp(nt+1) is a martingale, but nt+1 is typically not.
47This holds in, for example, the Campbell and Cochrane (1999) model, and see Borovička, Hansen, and

Scheinkman (2016) for further discussion. If it does not hold, then the ρ in our decomposition should be
understood to contain both the time discount rate and any small component arising from E[nt+1] (e.g.,
from a Jensen’s inequality correction for the continuation utility term in an Epstein–Zin framework). See
Appendix A.2 for a discussion of how this affects the r∗t decomposition in a tractable alternative case.
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Similarly, split κ(Xt) into two parts, κ(Xt) = κc(Xt)+κn(Xt), where κc(Xt) = −γ̃µc(Xt)+γ̃νc

and κn(Xt) = µn(Xt). Build up hc(Xt) and hn(Xt) accordingly from these κ functions as
in (A.3), and h(Xt) = hc(Xt) + hn(Xt). The εt+1 term inherits the remaining martingale-
difference components of −γ̃(ct+1 − ct) and nt+1, as in (A.4).48 Define these two processes’
respective martingale increment terms as εc,t+1 and εn,t+1. Finally, define the martingale
difference ε̃t+1 = εt+1 − εc,t+1 = εn,t+1.

To map the above steps and results to the decomposition in (2), we construct an expanded
state vector X̃t = (ct, Xt)

′, where Xt is the previous state vector. This expanded state vector
still follows a Markov process. With non-zero average consumption growth, X̃t will no longer
be stationary, but its differences will be. This expanded state vector will stand in for the
state vector used in (2). We can now construct our alternative decomposition. Define

f(X̃t+1)− f(X̃t) = γ̃(ct+1 − ct)− (hn(Xt+1)− hn(Xt)). (A.9)

Using (A.5), (A.8), and (A.9), we accordingly have our decomposition

mt+1 = −ρ− (f(X̃t+1)− f(X̃t)) + ε̃t+1, (A.10)

where f(X̃t+1)−f(X̃t) is a stationary difference and ε̃t+1 is a mean-zero martingale difference,
as in (2). Note that while Et[f(X̃t+1) − f(X̃t)] does not depend only on cash-flow growth
ct+1 − ct in general, the limiting forward expectation limτ→∞ Et[f(X̃t+τ+1)− f(X̃t+τ )] used
in the trend real-rate decomposition (5) does:

g̃∗t = lim
τ→∞

Et[f(X̃t+τ+1)− f(X̃t+τ )] = γ̃E[ct+1 − ct] = γ̃νc. (A.11)

Finally, to complete the characterization of this setting’s decomposition, we now allow for
unanticipated changes in the economic environment. We accordingly denote the transition
distribution describing the Markov process X at date t to be Pt, and assume that this
distribution governs Xt+1 and is expected to govern Xt+1+τ for all τ > 0. There may then be
an unanticipated change in the transition distribution to Pt+1, at which point this distribution
will govern Xt+2 and will be expected to govern all future Xt+2+τ thereafter. Again defining
the expanded state vector X̃t = (ct, Xt)

′, the stationary (under Pt) difference f(X̃t+1)− f(X̃t)

in (A.9), and the now potentially time-varying ρt in (A.7), our decomposition (A.10) becomes

mt+1 = −ρt − (f(X̃t+1)− f(X̃t)) + ε̃t+1. (A.12)

48See Borovička, Hansen, and Scheinkman (2016) for explicit characterizations of the martingale components
in alternative models.
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This now aligns with (2), with X̃t and ε̃t+1 here in place of Xt and εt+1 in the text. The
limiting expectation g̃∗t as defined in (A.11) may also be time-varying here, as g̃∗t = γ̃tνc,t.

A.1.2 Drifting Steady State

Analogous to Case II in Section 2.3, we now consider an alternative case in which fundamentals
(and resulting expected returns and valuation ratios) follow a random walk, or “drifting steady
state.” Define Wt+1 as in Appendix A.1.1, and assume that the cash-flow process c and
one-dimensional process X are modified from (A.6) to now follow

ct+1 − ct = µc +Xt + σc(Xt)BcWt+1,

Xt+1 = Xt + σx(Xt)BxWt+1.

The volatility term σx(Xt) may be specified so as to ensure that X remains bounded in L2 in
order to rule out explosive dynamics (or one could assume alternative bounded-martingale
dynamics for X), but we do not impose this directly.49

In place of (A.7), the log SDF follows

mt+1 = −ρt − γ̃(ct+1 − ct) + nt+1,

ρt+1 = ρt +BρWt+1,

nt+1 = ηt+1 − ηt,

where Et[ηt+1] = ηt. Defining X̃t = (ct, Xt)
′, we again immediately obtain a decomposition of

the form (A.12) and (2):

mt+1 = −ρt − (f(X̃t+1)− f(X̃t)) + ε̃t+1,

where f(X̃t+1) − f(X̃t) = γ̃(ct+1 − ct) = γ̃(µc + Xt) is difference-stationary, and where
ε̃t+1 = nt+1 is a martingale difference.

A.1.3 Stationarity

Finally, analogous to Case III in Section 2.3, we consider a setting building on Appendix A.1.1,
without unanticipated breaks but with stationary variation in ρt. The stationarity of Xt and
ρt in this setting will imply that infinite-horizon expectations of the discounting and growth

49Instead, the drifting steady state model is intended as a convenient tool to represent persistent fluctuations
in fundamentals, rather than being a reasonable candidate model over an infinite horizon.
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terms are constant. As a result, we discuss how to redefine long-run expectations in a manner
incorporating persistent time variation in these processes.

We start with exactly the same setting as in Appendix A.1.1, with everything through
equation (A.6) unchanged. We modify (A.7) slightly to allow for ρt to follow stationary
Markov dynamics: assume that ρt is an element of the state vector Xt in (A.1) and (A.6),
and

mt+1 = −ρt − γ̃(ct+1 − ct) + nt+1,

with the assumptions on the remaining terms in mt+1 unchanged. We also define ρ = E[ρt].
The above time variation in ρ can be thought of as representing a time-varying subjective
discount rate for the representative agent, but it also serves as a stand-in for many other
sources of potential variation in the intertemporal marginal rate of substitution. It may arise
from demographic changes, a heterogeneous-agents model with time variation in the marginal
investor (and differences in investors’ personal discount rates), or as discussed later in the
appendix, capital flows from foreign investors.

We can then follow nearly exactly the same steps as in Appendix A.1.1 to obtain the
following valid decomposition:50

mt+1 = −ρt − (f(X̃t+1)− f(X̃t)) + ε̃t+1,

with f(X̃t+1)− f(X̃t) defined as in (A.9) and ε̃t+1 defined as before (A.9).
In this case, all infinite-horizon expectations defined after the r∗t decomposition (5) are

constant, with ρ∗t = limτ→∞ Et[ρt+τ ] = ρ, g̃∗t = limτ→∞ Et[f(X̃t+τ+1)− f(X̃t+τ )] = γ̃νc, and
L∗
t,M = limτ→∞ Et[Lt+τ (Mt+τ+1)] =

∑∞
n=2

κn(mt+1)
n!

, where κn(mt+1) is the nth cumulant of the
unconditional log SDF distribution. To formalize long-horizon variation in the terms in our
r∗t decomposition in this context, we redefine the above terms as discounted sums:

z∗t = (1− δ)
∞∑
τ=0

δτEt[zt+τ+1], (A.13)

zt ∈ {ρt, gt, Lt(Mt+1), r
f
t+1},

50To spell out these steps in further detail: first, with the same definitions and assumptions on νc
and νn as before, the ν in (A.5) becomes ν = −ρ − γ̃νc. We now split κ(Xt) into three parts, κ(Xt) =
κρ(Xt) + κc(Xt) + κn(Xt), where κc(Xt) and κn(Xt) are as before, and κρ = −µρ(Xt) + ρ. Build up hρ(Xt),
hc(Xt), and hn(Xt) accordingly from these κ functions as in (A.3), and h(Xt) = hρ(Xt) + hc(Xt) + hn(Xt).
The εt+1 term inherits the remaining martingale components of ct+1 − ct and nt+1 as in (A.4), with no
additional term for ρt given its stationary Markov dynamics, so we define ε̃t+1 as before. The expanded state
vector is again X̃t = (ct, Xt)

′. The decomposition thus applies as stated.
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where δ ∈ (0, 1) is a loglinearization constant and where gt+τ+1 ≡ f(X̃t+τ+1)− f(X̃t+τ ). We
define the loglinearization constant δ in the appendix for Section 2.3 below, and we discuss
how the definition (A.13) maps well to the equity yield decomposition in the stationary
case. As (1− δ)

∑∞
τ=0 δ

τ = 1, equation (A.13) defines the starred long-run terms as weighted
averages of all future expected realizations of zt, as in (13) in the main text.

A.2 Interest-Rate Decomposition

A.2.1 Benchmark Case

The general version of the decomposition for r∗t provided in equation (5) in Section 2.1
follows immediately from the SDF decomposition derived and discussed in Appendix A.1,
along with equations (1) and (3). For the consumption-based version in Section 2.2, the
second expression provided in (7) starts from equation (4) and then applies equation (25)
of Backus, Chernov, and Martin (2011), which relates the log SDF’s cumulants to the
consumption-growth cumulants in a power-utility setting according to

κn,t(mt+1) = (−γ)nκn,t(gt+1). (A.14)

See also equation (8) and the preceding equation in Martin (2013), which provides the same
interest-rate expression as in (7). Equation (8) then follows directly from the preceding steps.
Again see the previous appendix subsection for details on the definitions of the terms in (5)
and (8) given each of our three sets of assumptions on the dynamics of fundamentals.

A.2.2 Extension with Epstein–Zin Preferences

As discussed above equation (A.8) and in detail in footnote 47, if the additional term nt+1

in the log SDF specification (A.7) does not feature E[nt+1] = 0, then the ρ (or ρt) in our
decomposition should be understood to contain both the time discount rate and any small
component arising from E[nt+1]. This does not pose serious issues for either the decompositions
or for the paper’s interpretation of ρt: as discussed in Section 3.2, we do not view shifts in ρt
in the data as likely to be arising purely from changes in aggregate patience among domestic
investors. That said, given the use of Epstein–Zin preferences in Section 2.3, we briefly discuss
precisely how such preferences affect the interest-rate decomposition in a tractable case.

In place of (6), we follow Epstein and Zin (1989) and set

Ut =
{
(1− βt)C

1−γ
θ

t + βt(Et[U1−γ
t+1 ])

1
θ

} θ
1−γ

,
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where θ ≡ (1− γ)/(1− 1
ψ
) and where ψ is the elasticity of intertemporal substitution (EIS).

We again set ρt = − log βt. In a complete-markets setting in which there is a consumption
claim whose value is aggregate wealth, the SDF is

Mt+1 =

(
βt

(
Ct+1

Ct

)− 1
ψ

)θ (
Rw
t+1

)−(1−θ)
, (A.15)

where Rw
t+1 is the gross return on the wealth portfolio. If we further assume jointly lognormal

and homoskedastic Ct+1 and Rw
t+1, the risk-free rate is then

rft+1 = ρt +
1

ψ
Et[gt+1]−

θ

2ψ2
σ2
g −

1− θ

2
σ2
w, (A.16)

as in Campbell (2018), equation (6.44), where σ2
g = Vart(gt+1) and σ2

w = Vart(rwt+1). Given
(A.15), the SDF’s entropy is

Lt(Mt+1) =
θ2

2ψ2
σ2
g +

(1− θ)2

2
σ2
w +

θ(1− θ)

ψ
σgw, (A.17)

where σgw = Covt(gt+1, r
w
t+1). Combining this with (A.16), we can write

rft+1 = ρt +
1

ψ
Et[gt+1]− Lt(Mt+1) +

θ(θ − 1)

2
Vart

(
gt+1

ψ
− rwt+1

)
= ρ̃t +

1

ψ
Et[gt+1]− Lt(Mt+1), (A.18)

where ρ̃t = ρt +
θ(θ−1)

2
Vart

(
gt+1

ψ
− rwt+1

)
. As a result, (8) still holds, with ρ̃∗t in place of ρ∗t

and with 1
ψ

in place of γ.

Equivalently, since Lt(Mt+1) =
1
2
Vart

(
θgt+1

ψ
− (θ − 1)rwt+1

)
from (A.17), we can write

rft+1 = ρt +
1

ψ
Et[gt+1]− (1 + ω)Lt(Mt+1),

where ω ≡
θ(1− θ)Vart

(
gt+1

ψ
− rwt+1

)
Vart

(
θgt+1

ψ
− (θ − 1)rwt+1

)
is a constant given the homoskedastic setting. Given that our empirical estimation allows for a
flexible loading of the risk-free rate on our SDF entropy proxy, this constant of proportionality
1 + ω will be incorporated in the empirical versions of the decompositions in such a setting.

As an alternative to the assumption of lognormality after (A.15), assume that gt+1 is i.i.d.,
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in which case the log SDF becomes mt+1 = −ρt − γgt+1, exactly as in the benchmark case in
Section 2.2, so the previous decomposition applies.

A.3 Equity Yields and Duration

Following the main text (and similar to Appendix A.1), we derive our results for equity yields
in three different settings. We then briefly discuss how the implications for equity duration
follow directly.

A.3.1 Case I (Gordon Growth)

Equity Yields and Risk Premia. Given i.i.d. consumption growth gt+1 = ct+1 − ct and
dt+1 − dt = λgt+1, the setting here mirrors that of Martin (2013, Section 1). He works with a
risk premium defined slightly differently than ours: while we use the expected log return and
set rpt ≡ Et[rmkt

t+1 ]− rft+1, he instead uses the log expected return and considers what we will
define as r̃pt ≡ logEt[Rmkt

t+1 ] − rft+1. By definition of entropy, these two versions of the risk
premium differ by

r̃pt − rpt = Lt(R
mkt
t+1 )

=
∞∑
n=2

λnκn,t(gt+1)

n!
, (A.19)

where the second line uses that rmkt
t+1 = λgt+1 + constant (where the constant is in fact ey) in

this i.i.d. setting, and then applies the same relation as in (A.14).
Result 1 of Martin (2013), and in particular equation (7), gives that

ey∗t = r∗t + r̃p∗t −
∞∑
n=1

λnκn,t(gt+1)

n!
, (A.20)

where we note that the summation in the last term starts with the first cumulant (n = 1)
rather than the second as in (A.19). This last term is therefore equal to the cumulant-
generating function (CGF) for consumption growth, c(ϑ) ≡

∑∞
n=1

ϑnκn,t(gt+1)

n!
, evaluated at

ϑ = λ.
Using (A.19) and (A.20), we have that

ey∗t = r∗t + rp∗t − λg∗t , (A.21)

as stated in equation (10) and Result 1.
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For the risk-premium expressions in (11), we start from equation (5) of Martin (2013),
which gives that r̃p∗t = c(λ) + c(−γ)− c(λ− γ), and solve for rp∗t using (A.19):

rp∗t = r̃p∗t − (c(λ)− λg∗t )

= λg∗t + c(−γ)− c(λ− γ)

=
∞∑
n=2

(−γ)nκn,t(gt+1)

n!
−

∞∑
n=2

(λ− γ)nκn,t(gt+1)

n!

= Lt(Mt+1)− Lt(Mt+1R
mkt
t+1 ). (A.22)

The first line uses the definition of the CGF in (A.19); the second substitutes in the r̃p∗t
solution above; the third expands the CGFs and uses that the first moments cancel; and the
last uses that mt+1 + rmkt

t+1 = constant + (λ − γ)gt+1 and applies (A.14). (See also Backus,
Chernov, and Martin, 2011, p. 2008, for similar steps.) Both lines of (11) follow directly.

To see that rpt = Lt(Mt+1) − Lt(Mt+1R
mkt
t+1 ) holds in any no-arbitrage setting, one can

follow Backus, Boyarchenko, and Chernov (2018, p. 12): take logs of the pricing equation
Et[Mt+1R

mkt
t+1 ] = 1 and use the definition of entropy and equation (1) to obtain

0 = logEt[Mt+1R
mkt
t+1 ] = Et[mt+1 + rmkt

t+1 ] + Lt(Mt+1R
mkt
t+1 )

= Et[rmkt
t+1 ]− rft+1 − Lt(Mt+1) + Lt(Mt+1R

mkt
t+1 ).

Rearranging gives that rpt = Lt(Mt+1)− Lt(Mt+1R
mkt
t+1 ), as stated.

Using (A.21) and (A.22), along with the interest-rate decomposition derived in the previous
appendix sections, Result 1 then follows. We note as well that equations (5) and (7) of Martin
(2017) also hold with Epstein–Zin utility, so (A.21) and (A.22) are identical in this case, as
stated on page 11.

Risk Shocks. In part (iii) of Result 1, it is stated that equity yields change by − ∂rp∗t
∂L∗

t,M
+ 1

per unit increase in r∗t if ∂rp∗t
∂L∗

t,M
is well-defined. The third line of (A.22) shows the need for

this qualification: L∗
t,M and rp∗t are both functions of the consumption growth cumulants

κn,t(gt+1), and there are many potential changes to the different cumulants that generate
identical changes in Lt(Mt+1) but different effects on rp∗t .51 In certain settings, though, this
partial derivative is well-defined. One such setting is when γ = λ: in this case, rp∗t = L∗

t,M ,

51This motivates our consideration of the average change using the beta of the risk premium with L∗
t,M ,

where we use that Cov(rp∗t − L∗
t,M , L

∗
t,M ) = Cov(rp∗t , L∗

t,M )− Var(L∗
t,M ). When the partial derivative does

not exist, one can take ∂rp∗
t

∂L∗
t,M

to represent a stand-in for βL.
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so ∂rp∗t
∂L∗

t,M
= 1.

Case (i) of the three bond–stock comovement cases described on page 14 is another such
setting. This case assumes lognormal growth, so that κn,t(gt+1) = 0 for n > 2. We therefore
have that rp∗t =

1
2
λ(2γ − λ)Vart(gt+1) =

λ(2γ−λ)
γ2

L∗
t,M , so

− ∂rp∗t
∂L∗

t,M

+ 1 = −λ(2γ − λ)

γ2
+ 1 =

(λ− γ)2

γ2
,

which is strictly positive if λ ̸= γ. In a lognormal, power-utility setting, the discount-rate
effect of an increase in volatility always dominates, so equity prices increase given an increase
in volatility as considered here. But the pass-through of interest rates to equity yields (i.e.,
− ∂rp∗t
∂L∗

t,M
+ 1 above) is nonetheless strictly below one as long as (λ− γ)2 < γ2, or equivalently

2γ > λ, as stated in the text.
We now consider the other two cases introduced on page 14. Case (ii) is based on the

rare-disasters model of Barro (2006). Consumption growth is modeled as gt+1 = g1,t+1+g2,t+1,
where the two components g1,t+1 and g2,t+1 are independent of each other and independent
over time. The first component is normal with Et[g1,t+1] = g∗1 and variance σ2. The second
component is a jump component, and we follow Backus, Chernov, and Martin (2011) and
assume that it follows a Poisson-normal mixture: a given period has j ∈ N jumps with
probability e−ωωj/j! (so ω is the effective jump intensity), and conditional on j, the jump
size is normal with mean −jm (with m > 0) and variance js2. This implies (see p. 2002 of
Backus, Chernov, and Martin) that the consumption-growth CGF is

c(ϑ) = ϑg∗1 +
1

2
ϑ2σ2 + ω

(
e−ϑm+ 1

2
ϑ2s2 − 1

)
.

Given that Lt(exp(ϑgt+1)) = c(ϑ)− ϑEt[gt+1] and that in this setting Et[gt+1] = g∗1 − ωm, we
have that

L∗
t,MR = Lt(exp((λ− γ)gt+1)) = c(λ− γ)− (λ− γ)(g∗1 − ωm)

= (λ− γ)ωm+
1

2
(λ− γ)2σ2 + ω

(
e−(λ−γ)m+ 1

2
(λ−γ)2s2 − 1

)
.

Using this,

ey∗t = ρ∗t + (γ − λ)g∗t − L∗
t,MR

= ρ∗t + (γ − λ)g∗1 −
1

2
(λ− γ)2σ2 − ω

(
e−(λ−γ)m+ 1

2
(λ−γ)2s2 − 1

)
.
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Given a change in the average disaster size m, we therefore have

∂ey∗t
∂m

= (λ− γ)ω e−(λ−γ)m+ 1
2
(λ−γ)2s2

This is strictly positive (so valuations go down given an increase in mean disaster size) iff
λ > γ.

Meanwhile, following similar steps for the SDF’s entropy and plugging into the risk-free
rate decomposition,

r∗t = ρ∗t + γg∗1 −
1

2
γ2σ2 − ω

(
eγm+ 1

2
(λ−γ)2s2 − 1

)
.

As a result,

∂r∗t
∂m

= −γ ω eγm+ 1
2
(λ−γ)2s2 < 0,

so r∗t strictly decreases given an increase in mean disaster size. We conclude that such changes
induce negative comovement between equity yields and real rates as long as γ < λ.

More generally, for any change in higher (n ⩾ 2) moments κn,t(gt+1) for n odd, if λ > γ,

∂L∗
t,M

∂κn,t(gt+1)
=

(−γ)n

n!
< 0,

∂L∗
t,MR

∂κn,t(gt+1)
=

(λ− γ)n

n!
> 0.

Thus, greater negative skewness (i.e., a decrease in κ3,t) will increase the SDF’s entropy L∗
t,M

but decrease the entropy of the discounted return L∗
t,MR, and similarly for other higher odd

cumulants. Since the risk-free rate decreases in L∗
t,M and the equity yield decreases in L∗

t,MR,
these odd-higher-moment shocks will induce negative comovement in the γ < λ case.

For case (iii) on page 14, with Epstein–Zin utility (and parameters as defined in Ap-
pendix A.2.2), using equations (4)–(5) in Martin (2013) and considering a consumption claim
(λ = 1), we can write

r∗t = ρ∗t +
∞∑
n=1

κn,t(gt+1)

n!
((1− 1/θ)(1− γ)n − (−γ)n)

ey∗t = ρ∗t +
∞∑
n=1

κn,t(gt+1)

n!
(−(1− γ)n/θ) .

So considering any change in higher (n ⩾ 2) moments κn,t(gt+1) for n even, we can use the
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assumptions ψ > 1, γ > 1, and plug in for θ (and use θ < 0 with those assumptions) to get

∂r∗t
∂κn,t(gt+1)

=
1

n!

(
1

ψ
− γ

)
(1− γ)n−1 − (−γ)n < 0,

∂ey∗t
∂κn,t(gt+1)

=
1

n!
(−(1− γ)n/θ) > 0,

so equity yields and risk-free rates move in opposite directions, as stated.

A.3.2 Case II (Drifting Steady State)

If Et[eyt+1] = eyt ≡ ey∗t (and all underlying fundamentals similarly are martingales), we
can follow Gao and Martin (2021, eq (12)–(14)): since Rmkt

t+1 = Dt+1+Pt+1

Pt
, taking logs and

expectations yields

ey∗t = Et[rmkt
t+1 ]− λEt[gt+1]− log

(
1− e−eyt

)
+ Et

[
log
(
1− e−eyt+1

)]
.

To a first order for eyt+1 around its expectation eyt, the last two terms cancel, giving
equation (12) as stated. Given that r∗t satisfies the same decomposition (as shown in
Appendix A.1.2), Result 1 therefore holds as stated.

A.3.3 Case III (Stationarity)

In this case, we apply Result 2 of Gao and Martin (2021) directly to obtain that to a first
order around the unconditional expectation ey ≡ E[eyt],

ey∗t ≡ eyt = (1− δ)
∞∑
τ=1

δτEt[rmkt
t+τ+1 − λgt+τ+1],

where δ ≡ e−ey. Therefore, defining rp∗t (and its underlying components) and g∗t as in
(13), and using the definition for r∗t and its underlying components from (A.13), the stated
decomposition follows. So given the decomposition for r∗t as shown in Appendix A.1.3,
Result 1 again holds as stated.

A.3.4 Equity Duration

The equity duration implications in Section 2.4 for the most part follow from direct application
of the previous expressions. For equation (15), we use that Et[Dt+n] = Dte

n(λg) and then
evaluate the resulting series. The remaining derivatives in (16) and Result 2 then follow
directly from (14)–(15).
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A.3.5 Empirical Entropy Proxy

As stated in Section 3 (see page 18), if the market is growth-optimal and the distribution of
log growth is symmetric, then L∗

t,M,j = L∗
t,R,j. To see this, note from (A.14) and (A.19) that

κn,t(mt+1) = (−γ)nκn,t(gt+1),

κn,t(r
mkt
t+1 ) = λnκn,t(gt+1).

Growth optimality requires λ = γ, and a symmetric log growth distribution implies that
κn,t(gt+1) = 0 for all odd n (aside from n = 1, which does not enter into the entropy sum).
And for even n, given γ = λ, we have (−γ)n = λn. As a result, κn,t(mt+1) = κn,t(r

mkt
t+1 ) for

all n, and so L∗
t,M,j = L∗

t,R,j, as stated. This (along with Martin, 2017, Result 3) motivates
our use of the squared VIX to proxy for the SDF entropy term L∗

t,M in estimating our r∗t
decomposition.

B. Additional Empirical Details and Results

This appendix provides additional measurement details and empirical results as referenced in
the main text.

B.1 Measurement Details

Section 3.1 explains most of the paper’s data sources and variable definitions. Here, we
provide additional details on two aspects of the data mentioned further in the text.

VIX Measurement. The squared VIX is defined for horizon T − t as

VIX2
t,T =

2Rf
t,T

T − t

(∫ Ft,T

0

putt,T (K)

K2
dK +

∫ ∞

Ft,T

callt,T (K)

K2
dK
)
,

where Ft,T is the forward price and putt,T (K) and callt,T (K) are prices of European put and
call options with strike K expiring at T . To implement this formula, we use a cleaned version
of a global panel of index option prices from OptionMetrics. As in the main text, the sample,
data filters, and implementation approach are taken from Gandhi, Gormsen, and Lazarus
(2023); see that paper for details.

Our options data are available starting in 1990 in the U.S. sample, but the samples for
other countries start between 2002 and 2006. To obtain a full sample corresponding to
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the forecast data, we project VIX2
t,j in the available sample onto realized volatility in the

country j index return, and then obtain predicted values V̂IX
2

t,j using the observed volatility
for any dates in the sample for which we cannot calculate VIX directly.

Equity Yields and Data Availability. As in the text, the equity yield eyt,j is measured by
starting with the five-year earnings-to-price ratio Et−4,t,j/Pt,j = [(Et−4,j + . . .+ Et,j)/5]/Pt,j,
where earnings and prices are calculated on a value-weighted basis for all available traded
stocks in the country. Earnings Et,j are defined as net income for the full calendar year
corresponding to date t, while prices Pt,j are end-of-period aggregate market capitalizations.
We then scale this Et−4,t,j/Pt,j by 0.5, very close to the unconditional average payout ratio of
0.494 in our post-1990 sample, to obtain our final measure of equity yields eyt,j . Algebraically,
ey ≡ log(1 +D/P ) ≈ D/P = (D/E) × (E/P ). Our unconditional average payout ratio is
calculated as the average ratio of five-year-average common dividends to five-year-average
net income, to put the dividend and earnings figures in common terms, and the average is
across all years and G7 countries starting in 1990.

In some countries, the share of publicly traded companies with available earnings data
is low in the early part of our sample. We drop any country–year equity yield observations
with such coverage issues. The resulting samples start in 1990 for the U.S. and Canada;
1992 for the U.K.; 1993 for Japan; 1994 for France and Germany; and 1998 for Italy. Any
estimated relationship between changes in earnings yields and changes in interest rates uses
a country-specific start date consistent with the beginning of this equity yield sample; for
example, the r∗ difference for Italy in Figure 3 is the difference starting from 1998, consistent
with the difference calculated for its equity yields. While all our analyses use data through
2023, the need for full-year net income data to calculate eyt,j, along with the fact that our
data is only available through part of 2023, means that we measure equity yields through the
end of 2022. In all cases where we calculate full-sample differences in the real rate (and its
components), we again match this full-sample difference with the actual available sample
for our equity data. (Any analysis focusing solely on the real-rate data — for example, the
first-stage regression in Table 1 — uses all the data through 2023.)
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B.2 Additional Results

See below for additional figures and tables referenced in the main text.

Figure B.1: Residualized Equity Yield Changes vs. Growth and Uncertainty
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Notes: This figure plots the country-level change in equity yields against changes in interest rates from growth
rates and uncertainty, where the equity yield change has now been residualized against the pure discounting
change shown in the left panel of Figure 3. The sample is 1990–2023, or the longest available span for the
given country. See Figure 3 for additional details.
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Table B.1: Regressions for Three-Year Changes in Trend Real Rates

(1) (2) (3)
U.S. All All

Change in expected growth ∆g∗t,j 0.5** 0.3** 0.3**
(0.2) (0.1) (0.1)

Change in uncertainty ∆VIX2
t,j -4.3** -0.9 βj

(2.1) (1.8)

Constant -0.3*** -0.5*** -0.5***
(0.1) (0.1) (0.1)

Country FEs ✗ ✓ ✓

Country-Specific VIX2
t,j Loading ✓ ✗ ✓

Obs. 74 784 784
R2 0.17 0.05 0.06
Within R2 — 0.02 0.04

Notes: This table shows estimated OLS coefficients in the regression (19), along with standard errors in
parentheses. In column (1), standard errors are obtained using a block bootstrap. In columns (2)–(3),
standard errors are clustered by country and date. Statistical significance at the 10% level, 5% level, and 1%
level are denoted by *, **, and ***, respectively. In column (3), the country-specific loadings on the squared
VIX, βj , are statistically significant at the 10% level for 6 of the 12 countries in our sample, and at the 5%
level for 3 of the 12 countries (including the U.S.). The sample is 1990–2023.
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Figure B.2: Portfolio Exposures to Pure Discount Rate Changes: Global Stocks
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Notes: This figure repeats the analysis shown in Figure 5 using the full global sample of stocks. We form
duration-sorted portfolios in the international panel following Gormsen and Lazarus (2023), and then we
estimate the same regressions as in Figure 5, with country-level fixed effects. The sample is 1990–2023.
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Table B.2: Three-Year Return Regressions: Profit-Share Robustness

(1) (2) (3) (4)
U.S. U.S. U.S. U.S.

∆10y yield 4.19
(3.51)

∆pure discount (∆̂ρ∗t ) -19.1** -24.6*** -17.9***
(7.64) (8.95) (6.61)

∆exp. growth -1.49 -15.3 -2.30
(14.0) (16.7) (12.7)

∆exp. profit growth -0.14
(4.02)

∆LTG 5.94***
(2.03)

∆VIX2 × 100 -3.08** -4.62*** -2.88***
(1.33) (1.46) (1.09)

Obs. 74 74 58 74

R2 0.04 0.20 0.47 0.36

Notes: This table replicates the analysis in Table 2 for U.S. data, but with additional predictor variables for
other measures related to equity dividend growth. See the notes for Table 2 for details on the estimation and
inference, and see Section 4.1 for descriptions of the additional predictor variables.
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