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Introduction

Demand for differentiated products is key to many economic analyses

IO: welfare effects of mergers or new products; conduct testing

Trade: welfare effects of tariffs; gains from trade or internal migration

Modern demand systems tractably model rich substitution patterns:

IO: mixed logit (Berry, Levinsohn, Pakes ‘95), nested logit

Trade: nested CES (Hottman, Redding, Weinstein ‘18), mixed CES
(Adao, Costinot, Donaldson ‘17)

But finding credible IVs to estimate these models’ parameters can be hard

We propose a new IV construction under weaker assumptions
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Mixed/Nested Logit Overview

Markets m with products j ∈Jm and an outside good j = 0

Researcher observes prices pjm and product characteristics xjm

+ market shares sjm arising from random utility maximization: Details

sjm = Sj(δδδ m;σ ,x(1)
m ,pm) for δjm = αpjm +β

′xjm +ξjm

ξjm captures unobserved product characteristics and consumer tastes,
α governs own-price elasticities, σ governs substitution patterns

Berry ‘94, Berry et al. ‘95 famously show the model can be inverted:
Dj(sm;σ ,x(1)

m ,pm) = δjm

Yields moment conditions given suitable instruments...
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Endogeneity and Conventional IVs
E.g. in nested logit:

log(sjm/s0m)−σ log(sjm/∑k∈nest(j) skm) = δjm = αpjm +ξjm

Endogeneity #1: pjm is likely correlated with ξjm

Natural IV: exogenous cost shocks gjm (assume available)

Endogeneity #2: sm is correlated with ξjm even if prices are random

Standard IVs for σ : fn’s of rivals’ characteristics (BLP ‘95, Gandhi-Houde ‘20)

E.g. # of rivals w/ characteristics close to j (nested logit: in j ’s nest)

Usually relevant: e.g. larger nests have smaller within-nest shares

Excluded from utility

But validity requires characteristics to be econometrically exogenous
Violated e.g. if firms introduce more products in nests for which
consumers have a higher preference ξ
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Our Instruments

Fn’s of cost shocks and characteristics of rival products that are
“recentered”: by construction uncorrelated with any fn’s of characteristics

E.g. average cost shock of products with characteristics similar to xjm
(nested logit: products in j ’s nest)

If cost shocks are exogenous, valid even with endogenous
characteristics, thanks to recentering (Borusyak-Hull 2023)

Relevant: e.g. favorable cost shocks of rivals reduce sjm

Choose the fn optimally, a la Chamberlain (BLP ‘99, Borusyak-Hull ‘25)
Bonus: varies across markets even if the choice set does not (Nevo ‘01)

Intuition: Think of product substitution as spillover effects
Nested logit ≡ peer effects model: log

sjm
s0m

= αpjm +σ log
sjm

snest(j)m
+ξjm

Peer groups can be endogenous if shocks to peers are exogenous
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Related Literatures
Demand estimation without exogenous characteristics:

Restricting unobservables: Sweeting ‘13, Moon et al. ‘18

Modeling product entry: Fan ‘13, Petrin et al. ‘22
▶ We leave unobservables and entry unrestricted

Using IVs orthogonal to characteristics: Ackerberg and Crawford ‘09
▶ We propose a way to construct such IVs by reusing cost shocks

Identifying models with shift-share and other “formula” IVs:

Linear models: Borusyak, Hull, Jaravel ‘22, ’25a,b; Borusyak, Hull ‘23, ‘25

Linearized models: Adao, Arkolakis, Esposito ‘25, Borusyak, Dix-Carneiro,
Kovak ‘23
▶ We work with a nonlinear model directly

Recentered IVs yield robustness to misspecification: Andrews et al. ‘25
▶ We show a different advantage and propose a specific IV construction
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Outline
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Identification assumption

IV construction

Special cases

Estimation and asymptotics

Extensions

3. Monte Carlo Simulations
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Exogenous Cost Shocks

Observe supply-side shocks gjm: to input costs, productivity,
taxes/subsidies, firm ownership

Assumption 1: E [ξjm | gm,xm,qm] = E [ξjm | xm,qm]

where optional qm collects other data, e.g. lagged prices and shares

gm should not affect product entry or consumer preferences,
or correlate with any variables affecting these

E.g. exchange rate fluctuations when estimating the demand for cars

Relative to standard assumption E [ξjm | gm,xm] = 0,
allows observed characteristics to correlate with own & rivals’ ξ
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Optimal IV (extending Borusyak and Hull ‘25)

Lemma: E [zjmξjm] = 0 follows from Assumption 1 if and only if zjm
consists of recentered formula IVs:

zjm = fjm(gm,xm,qm) such that E [fjm(gm,xm,qm) | xm,qm] = 0

Proposition: For ∇jm =
∂ξjm
∂θ

, the asymptotically optimal IV is

(z∗jm)j,m = E
[
ξ ξ

′ | x,q
]−1

(E [∇ | g ,x,q]−E [∇ | x,q])

Our proposed IV approximates the numerator of z∗jm:

1) Approximate E [∇jm | g ,x,q] by ∇̂jm(gm,xm,qm)

2) Recenter it: zjm = ∇̂jm −µjm for µjm = E
[
∇̂jm(gm,xm,qm) | xm,qm

]
↪→ zjm = unexpected part of ∇jm due to gm
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Our IV Construction: For α and β

Recall ξjm = Dj
(

sm;σ ,x(1)
m ,pm

)
−αpjm −β ′xjm

For α: predicted response of ∂

∂α
ξjm =−pjm to shocks

Just use gjm: implicit pass-through model pjm = πgjm +ωjm

Can improve power by adding a supply side

Can’t identify β using cost shocks: they don’t affect ∂

∂β
ξjm =−xjm

But cross-price elasticities do not involve β (Ackerberg-Crawford ’09)

Same for counterfactuals that hold xjm fixed, even new products

Can control for xjm for efficiency, like pre-period covariates in an RCT
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Our IV Construction: For σ Estimator & Asymptotics

1) Pick preliminary parameter estimates α̌, σ̌ (needn’t be consistent)
E.g. using characteristic-based IVs

2) Construct a “no-shock scenario” (p̌m, šm) as a fn of (xm,qm)

E.g. pre-period prices and shares, if available

3) Construct eq’m changes due to cost shocks as a fn of (gm,xm,qm):
Prices: p̂jm − p̌jm = π̌gjm for pass-through π̌

Mean utilities: δ̂jm − δ̌jm = α̌π̌jmgjm

Shares: ŝjm − šjm = Sj(δ̂δδ m; σ̌ ,x(1)
m , p̂m)−Sj(δ̌δδ m; σ̌ ,x(1)

m , p̌m)

∇̂jm − ∇̌jm = ∂

∂σ
Dj(ŝm; σ̌ ,x(1)

m , p̂m)− ∂

∂σ
Dj(šm; σ̌ ,x(1)

m , p̌m)

Or 1st-order approximation: ∇̂jm − ∇̌jm ≈ ∑k∈Jm wjk(xm,qm) ·gkm

4) Recenter ∇̂jm: set zjm = ∇̂jm −E
[
∇̂jm | xm,qm

]
. How?

10



How to Recenter ∇̂jm? (see Borusyak and Hull ‘23)

Compute µjm = E
[
∇̂jm | xm,qm

]
without nonparametric regression:

Use formula for ∇̂jm + view cost shocks as a natural experiment, i.e.
a draw from some “serendipitous randomized trial” (DiNardo ‘04)

Example: leveraging exchange rates of the country of car production
Assume a random walk for each currency
Define gjm as exchange rate increments, E [gjm | xm,qm] = 0
Shift-share IVs don’t need recentering:

µjm = E
[
∑k∈Jm

wjk(xm,qm) ·gkm | xm,qm
]
= 0

For nonlinear IVs, draw many counterfactuals g (c)
m as permutations of

increments over time for each currency and compute

µjm =
1
C ∑

c
∇̂jm(g (c)

m ,xm,qm)
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Special Cases

In nested logit, ∂ξjm/∂σ = log(sjm/snest(j)m) =⇒ Shares IV

zjm ∝ gjm − ∑
k∈nest(j)

škm
šnest(j)m

gkm

Increased prices of rivals in the nest raise log(sjm/s0m) =⇒ σ > 0

In the “local to logit” approximation to mixed logit, i.e. σ̌ ≈ 0
(Salanie-Wolak ‘22, here for a non-price random coefficient)

zjm ≈ xjm · ∑
k∈Jm

škm (xkm − x̄m)gkm, x̄m = ∑
k∈Jm

škmxkm

Increased prices of rivals with higher-than-average xkm raise market
shares of products with high xjm =⇒ σ > 0
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Extensions

Improve IV power by leveraging an auxiliary supply model Details

Incorporate observed consumer characteristics

Use input shocks with estimated mapping from inputs to products

Identify β using exogenous shocks to non-price characteristics

Alternative demand models: nested/mixed CES, Hotelling model
(Houde 2012), “principles of differentiation” (Bresnahan et al. 1997), etc.

Nonparametric identification: straightforward without a random
coefficient on price Details Conjecture
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Outline

1. Introduction ✓

2. Theoretical Results ✓

3. Monte Carlo Simulations

Power comparison with exogenous characteristics
Bias comparison with endogenous characteristics
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Monte Carlo I: Exogenous Characteristics

DGP based on Gandhi and Houde (2020), 100 simulations: Details

100 regional markets r over time periods t = 1,2; m = (r , t)

15 products per market with 2 observed time-invariant characteristics
and random coefficients on them

Shocks gjr2 affect costs in period 2

Estimate (α,σ1,σ2) with our exact and shift-share IVs
(continuously updating, in differences)

Compare with Gandhi-Houde local and quadratic IVs and BLP ‘95 IV
(in period 2)
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Nonlinear Parameters (Exogenous Characteristics) More
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Monte Carlo II: Endogenous Characteristics

Assume each region has a “bliss point” Br for the first characteristic

Products near Br are more popular (subtract 3(xjr1 −Br )2 from ξjrt)

More entry near the bliss point (xjr1 ∼ N(Br ,1))

⇒ GH instruments are invalid: popular products are in the dense part of
the local distribution of characteristics
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Characteristic-Based IVs Have Strong Bias
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Conclusion
A new IV construction for nested/mixed logit and similar demand models

Leverages product characteristics but does not require their exogeneity

Inspired by thinking of product substitution as spillovers

Open questions:
Usefulness with microdata (e.g., individual-level choice data)?

For MLE or “micro-BLP” GMM estimation of mixed logit

Usefulness beyond demand, e.g. for estimation of games?
Key: IV-GMM estimation

In-progress applications:

Demand for automobiles, with exchange rate shocks

Demand for contraceptives, with price cap shocks
20
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Appendix



Random Utility Model Back

Consumers max:

uijm = δjm +ηi0pjm +η
′
i x

(1)
jm + εijm, δjm = αpjm + x ′

jmβ +ξjm

for observed characteristics xjm = (x (1)
jm ,x (2)

jm ) and random coefficients ηiℓ

Assume (ηiℓ)ℓ
iid∼P(·;σ) for known P (e.g. Gaussian)

Nested logit corresponds to x (1)
jm = nest dummies and a special

distribution of ηi
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Estimator and Asymptotics Back

Given initial θ̌ = (α̌, σ̌) and π̌, we estimate θ using moment conditions:

E
[
zjm(θ̌ , π̌) ·

(
Dj(sm;σ ,x(1)

m ,pm)−αpjm −Bj(xm,qm;γ, θ̌)
)]

= 0

where Bj generalizes non-causal controls, e.g. Bj = ξ
pre
jm (estimation in

differences) or Bj = γ ′xjm, with γ̂(θ) minimizing residual sum of squares

Initial estimates θ̌ can come from conventional characteristic-based IVs

Better: “continuously updating” zjm(θ , π̌)

Consistency, asymptotic normality, and inference:

When markets are iid, follow from standard GMM results
With non-iid markets but if zjm is a shift-share, extend shock-level
asymptotics of Adao, Kolesar, Morales (2019), Borusyak, Hull, Jaravel (2022)

E.g. if all regions are affected by the same exchange rate shocks
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Nested Logit Shares Back

Let δjm = αpjm +ξjm and Dnm = ∑j∈Jm djn exp(δjm/(1−σ)). Then nested
logit shares satisfy:

sjm
sn(j)m

=
exp(δjm/(1−σ))

Dn(j)m
,

snm =
D1−σ

nm
1+∑n′ D1−σ

nm
,

s0m =
1

1+∑n′ D1−σ
nm

Manipulating these terms yields share inversion:

log (sjm/s0m) = αpjm +σ log
(
sjm/sn(j)m

)
+ξjm
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IV Construction for Nested Logit Back

Exact prediction: For p̂jm = π̌0 + π̌gjm and δjm = α̌ p̂jm:

l̂og
sjm

sn(j)m
=

α̌

1− σ̌
(π̌0 + π̌gjm)− log ∑

k∈Jm

dkn exp

(
α̌

1− σ̌
(π̌0 + π̌gjm)

)
=

α̌

1− σ̌
π̌gjm − log ∑

k∈Jm

dkn exp

(
α̌

1− σ̌
π̌gjm

)
.

First-order approximation around gkm = µg :

l̂og
sjm

sn(j)m
≈ α̌

1− σ̌
π̌µg − log ∑

k∈Jm

dkn exp

(
α̌

1− σ̌
π̌µg

)

+
α̌

1− σ̌
π̌ (gjm −µg)−

∑k∈Jm dkn exp
(

α̌

1−σ̌
π̌µg

)
α̌

1−σ̌
π̌ (gjm −µg)

∑k∈Jm dkn exp
(

α̌

1−σ̌
π̌µg

)
=− logNn(j)m +

α̌

1− σ̌
π̌

(
gjm − 1

Nn(j)m
∑

k∈Jm

dkngjm

)
.
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Incorporating a Supply Model Back

Assume constant MC cjm + Nash-Bertrand:

p∗
m = cm −

(
Hm ⊙ d

dp′
m

sm(p∗
m)

)−1
sm(p∗

m)

1 Given (α̌, σ̌) solve for cjm. Regress cjm = π̂ g̃jm + errorjm

2 Solve for costs čjm corresponding to (p̌m, šm)

3 Predict costs ĉjm = čjm + π̂ g̃jm

4 Predict prices p̂m = p∗
m(ĉm) (or via 1st-order approximation in gkm)

5 Use p̂ to construct recentered IVs
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Nonparametric Identification Back

Demand model w/index restriction pjm +ξjm = Dj(sm,xm) for unknown Dj
(generalizes mixed logit with no random coefficient on price)

Assume (i) shock exogeneity: E [ξjm | gm,xm] = E [ξjm | xm],
(ii) completeness: E [h(sm,xm) | gm,xm]

a.s.
= 0 =⇒ h(sm,xm)

a.s.
= 0

Then Dj and ξjm are identified up to an additive function β (xm);
enough for counterfactuals that hold xjm fixed
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Nonparametric Identification: A Conjecture Back

Nonparametric demand with an index restriction on a non-price
characteristic: xjm +ξjm = Dj(pm,sm) (fixing other characteristics)

Berry and Haile (2014): if E [xjm +ξjm | xm,gm] = xjm,
NPIV identifies Dj(·) under completeness of (pm,sm) | (gm,xm)

Conclusion: not enough to have exogenous gm; also need exogenous xm

But interactions of endogenous xm & cost shocks are valid IVs!

Conjecture (Borusyak, Chen, Hull in progress):
If gm ⊥⊥ ξξξ m | xm, then D(·) is identified up to invertible
transformations r(·) =⇒ “conditional demand” is point-identified

So far proved assuming pm ⊥⊥ xm | (δδδ m,gm) (index restriction on prices,
includes the case of exogenous prices)
In general, E [D(pm,sm) | gm,xm] = h(xm) for some h(·)
Given h(·), completeness implies at most one f (·) via NPIV
This equation is satisified by D(·) but also r(D(·)) for any r(·)
For any h(·) such that ∃r : E [r(xm +ξξξ m) | xm] = h(xm) a.s., there is
no other solution. But we don’t know about other h(·) functions yet
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Monte Carlo I: Details Back

DGP:

xjrℓ ∼ N(0,1), ξjr1 ∼ N(0,1), ξjr2 = 0.5ξjr1 +
√

1−0.52 ·N(0,1)

Costs: cjrt = γ ′xjrt +gjrt +ωjrt , ωjr1 ∼ N(0,1), gjr1 = 0,
ωjr2 = 0.9cjr1 +

√
1−0.92 ·N(0,1), gjr2 ∼ N(0,0.04)

Prices set by simultaneous Nash-Bertrand

Estimate (α,σ) via alternative moment conditions:

E [∆ξjr · (gjr ,zjr )] = 0 where zjm is continuously-updating recentered
IV from first-order approximation or exact prediction

E
[
ξjr2 · (gjr ,xjr ,zC

jr )
]
= 0 where zC

jr is BLP or Differentiation IVs
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Recentered IVs Benefit from Cost Shock Variation
σ1, by SD(gj)
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GH IVs Benefit from Characteristic Variation Back

σ1, by # of national brands
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