Estimating Demand with Recentered Instruments

Kirill Borusyak

UC Berkeley

Mauricio Cáceres Bravo

Baruch

Peter Hull Brown

NBER Frontier Econometric Methods, July 2025

Introduction

Demand for differentiated products is key to many economic analyses

- IO: welfare effects of mergers or new products; conduct testing
- Trade: welfare effects of tariffs; gains from trade or internal migration

Modern demand systems tractably model rich substitution patterns:

- IO: mixed logit (Berry, Levinsohn, Pakes '95), nested logit
- Trade: nested CES (Hottman, Redding, Weinstein '18), mixed CES (Adao, Costinot, Donaldson '17)

But finding credible IVs to estimate these models' parameters can be hard

• We propose a new IV construction under weaker assumptions

1

Mixed/Nested Logit Overview

Markets m with products $j \in \mathcal{J}_m$ and an outside good j = 0

- Researcher observes prices p_{im} and product characteristics x_{im}
- + market shares s_{jm} arising from random utility maximization:

$$s_{jm} = S_j(\boldsymbol{\delta}_m; \sigma, \boldsymbol{x}_m^{(1)}, \boldsymbol{p}_m)$$
 for $\delta_{jm} = \alpha p_{jm} + \beta' x_{jm} + \xi_{jm}$

 ξ_{jm} captures unobserved product characteristics and consumer tastes, lpha governs own-price elasticities, σ governs substitution patterns

Berry '94, Berry et al. '95 famously show the model can be inverted:

$$\mathfrak{D}_{j}(\boldsymbol{s}_{m};\sigma,\boldsymbol{x}_{m}^{(1)},\boldsymbol{p}_{m})=\delta_{jm}$$

Yields moment conditions given suitable instruments...

Endogeneity and Conventional IVs

E.g. in nested logit:

$$\log(s_{jm}/s_{0m}) - \sigma\log(s_{jm}/\sum_{k \in \mathsf{nest}(j)} s_{km}) = \delta_{jm} = \alpha p_{jm} + \xi_{jm}$$

- ullet Endogeneity #1: p_{jm} is likely correlated with ξ_{jm}
 - Natural IV: exogenous cost shocks g_{jm} (assume available)
- ullet Endogeneity #2: $oldsymbol{s}_m$ is correlated with $oldsymbol{\xi}_{jm}$ even if prices are random

Standard IVs for σ : fn's of rivals' characteristics (BLP '95, Gandhi-Houde '20)

- ullet E.g. # of rivals w/ characteristics close to j (nested logit: in j's nest)
- Usually relevant: e.g. larger nests have smaller within-nest shares
- Excluded from utility
- But validity requires characteristics to be econometrically exogenous
 - Violated e.g. if firms introduce more products in nests for which consumers have a higher preference ξ

Our Instruments

Fn's of cost shocks and characteristics of rival products that are "recentered": by construction uncorrelated with any fn's of characteristics

- E.g. average cost shock of products with characteristics similar to x_{jm} (nested logit: products in j's nest)
- If cost shocks are exogenous, valid even with endogenous characteristics, thanks to recentering (Borusyak-Hull 2023)
- Relevant: e.g. favorable cost shocks of rivals reduce s_{jm}
 - Choose the fn optimally, a la Chamberlain (BLP '99, Borusyak-Hull '25)
 - Bonus: varies across markets even if the choice set does not (Nevo '01)
- Intuition: Think of product substitution as spillover effects
 - Nested logit \equiv peer effects model: $\log \frac{s_{jm}}{s_{0m}} = \alpha p_{jm} + \sigma \log \frac{s_{jm}}{s_{\text{nest}(j)m}} + \xi_{jm}$
 - Peer groups can be endogenous if shocks to peers are exogenous

4

Related Literatures

Demand estimation without exogenous characteristics:

- Restricting unobservables: Sweeting '13, Moon et al. '18
- Modeling product entry: Fan '13, Petrin et al. '22
 - ▶ We leave unobservables and entry unrestricted
- Using IVs orthogonal to characteristics: Ackerberg and Crawford '09
 - ▶ We propose a way to construct such IVs by reusing cost shocks

Identifying models with shift-share and other "formula" IVs:

- Linear models: Borusyak, Hull, Jaravel '22, '25a,b; Borusyak, Hull '23, '25
- Linearized models: Adao, Arkolakis, Esposito '25, Borusyak, Dix-Carneiro, Kovak '23
 - ► We work with a nonlinear model directly
- Recentered IVs yield robustness to misspecification: Andrews et al. '25
 - ▶ We show a different advantage and propose a specific IV construction

Outline

- 1. Introduction ✓
- 2. Theoretical Results
 - Identification assumption
 - IV construction
 - Special cases
 - Estimation and asymptotics
 - Extensions
- 3. Monte Carlo Simulations

Exogenous Cost Shocks

Observe supply-side shocks g_{jm} : to input costs, productivity, taxes/subsidies, firm ownership

Assumption 1: $\mathbb{E}\left[\xi_{jm} \mid \boldsymbol{g}_{m}, \boldsymbol{x}_{m}, \boldsymbol{q}_{m}\right] = \mathbb{E}\left[\xi_{jm} \mid \boldsymbol{x}_{m}, \boldsymbol{q}_{m}\right]$ where optional q_{m} collects other data, e.g. lagged prices and shares

- g_m should not affect product entry or consumer preferences, or correlate with any variables affecting these
- E.g. exchange rate fluctuations when estimating the demand for cars
- Relative to standard assumption $\mathbb{E}\left[\xi_{jm} \mid \boldsymbol{g}_{m}, \boldsymbol{x}_{m}\right] = 0$, allows observed characteristics to correlate with own & rivals' $\boldsymbol{\xi}$

7

Optimal IV (extending Borusyak and Hull '25)

Lemma: $\mathbb{E}[z_{jm}\xi_{jm}] = 0$ follows from Assumption 1 if and only if z_{jm} consists of recentered formula IVs:

$$z_{jm} = f_{jm}(\boldsymbol{g}_m, \boldsymbol{x}_m, \boldsymbol{q}_m)$$
 such that $\mathbb{E}\left[f_{jm}(\boldsymbol{g}_m, \boldsymbol{x}_m, \boldsymbol{q}_m) \mid \boldsymbol{x}_m, \boldsymbol{q}_m\right] = 0$

Proposition: For $\nabla_{jm} = \frac{\partial \xi_{jm}}{\partial \theta}$, the asymptotically optimal IV is $(z_{jm}^*)_{j,m} = \mathbb{E}\left[\xi \xi' \mid \mathbf{x}, \mathbf{q}\right]^{-1} (\mathbb{E}\left[\nabla \mid \mathbf{g}, \mathbf{x}, \mathbf{q}\right] - \mathbb{E}\left[\nabla \mid \mathbf{x}, \mathbf{q}\right])$

Our proposed IV approximates the numerator of z_{im}^* :

- 1) Approximate $\mathbb{E}[\nabla_{jm} | \boldsymbol{g}, \boldsymbol{x}, \boldsymbol{q}]$ by $\hat{\nabla}_{jm}(\boldsymbol{g}_m, \boldsymbol{x}_m, \boldsymbol{q}_m)$
- 2) Recenter it: $z_{jm} = \hat{\nabla}_{jm} \mu_{jm}$ for $\mu_{jm} = \mathbb{E}\left[\hat{\nabla}_{jm}(\boldsymbol{g}_m, \boldsymbol{x}_m, \boldsymbol{q}_m) \mid \boldsymbol{x}_m, \boldsymbol{q}_m\right]$
- $\hookrightarrow z_{jm} = \text{unexpected part of } \nabla_{jm} \text{ due to } \boldsymbol{g}_m$

Our IV Construction: For lpha and eta

Recall
$$\xi_{jm} = \mathfrak{D}_j\left(\boldsymbol{s}_m; \sigma, \boldsymbol{x}_m^{(1)}, \boldsymbol{p}_m\right) - \alpha p_{jm} - \beta' x_{jm}$$

For α : predicted response of $\frac{\partial}{\partial \alpha} \xi_{jm} = -p_{jm}$ to shocks

- ullet Just use g_{jm} : implicit pass-through model $p_{jm}=\pi g_{jm}+\omega_{jm}$
- Can improve power by adding a supply side

Can't identify eta using cost shocks: they don't affect $rac{\partial}{\partial eta} \xi_{jm} = -x_{jm}$

- ullet But cross-price elasticities do not involve $oldsymbol{eta}$ (Ackerberg-Crawford '09)
- ullet Same for counterfactuals that hold x_{jm} fixed, even new products
- ullet Can control for x_{jm} for efficiency, like pre-period covariates in an RCT

9

Our IV Construction: For σ

- 1) Pick preliminary parameter estimates $\check{\alpha}, \check{\sigma}$ (needn't be consistent)
 - E.g. using characteristic-based IVs
- 2) Construct a "no-shock scenario" $(\check{p}_m, \check{s}_m)$ as a fn of (x_m, q_m)
 - E.g. pre-period prices and shares, if available
- 3) Construct eq'm changes due to cost shocks as a fn of (g_m, x_m, q_m) :
 - Prices: $\hat{p}_{jm} \check{p}_{jm} = \check{\pi}g_{jm}$ for pass-through $\check{\pi}$
 - Mean utilities: $\hat{\delta}_{jm} \check{\delta}_{jm} = \check{\alpha} \check{\pi}_{jm} g_{jm}$
 - Shares: $\hat{s}_{jm} \check{s}_{jm} = S_j(\hat{\boldsymbol{\delta}}_m; \check{\boldsymbol{\sigma}}, \boldsymbol{x}_m^{(1)}, \hat{\boldsymbol{p}}_m) S_j(\check{\boldsymbol{\delta}}_m; \check{\boldsymbol{\sigma}}, \boldsymbol{x}_m^{(1)}, \check{\boldsymbol{p}}_m)$
 - $\hat{\nabla}_{jm} \check{\nabla}_{jm} = \frac{\partial}{\partial \sigma} \mathcal{D}_j(\hat{\mathbf{s}}_m; \check{\sigma}, \mathbf{x}_m^{(1)}, \hat{\mathbf{p}}_m) \frac{\partial}{\partial \sigma} \mathcal{D}_j(\check{\mathbf{s}}_m; \check{\sigma}, \mathbf{x}_m^{(1)}, \check{\mathbf{p}}_m)$
 - Or 1st-order approximation: $\hat{\nabla}_{jm} \check{\nabla}_{jm} \approx \sum_{k \in \mathcal{J}_m} w_{jk}(\mathbf{x}_m, \mathbf{q}_m) \cdot \mathbf{g}_{km}$
- 4) Recenter $\hat{\nabla}_{jm}$: set $z_{jm} = \hat{\nabla}_{jm} \mathbb{E}\left[\hat{\nabla}_{jm} \mid \mathbf{x}_m, \mathbf{q}_m\right]$. How?

How to Recenter $\hat{\nabla}_{jm}$? (see Borusyak and Hull '23)

Compute $\mu_{jm} = \mathbb{E}\left[\hat{\nabla}_{jm} \mid \pmb{x}_m, \pmb{q}_m\right]$ without nonparametric regression:

• Use formula for $\hat{\nabla}_{jm}$ + view cost shocks as a natural experiment, i.e. a draw from some "serendipitous randomized trial" (DiNardo '04)

Example: leveraging exchange rates of the country of car production

- Assume a random walk for each currency
- ullet Define g_{jm} as exchange rate increments, $\mathbb{E}\left[g_{jm} \mid \pmb{x}_m, \pmb{q}_m\right] = 0$
- Shift-share IVs don't need recentering:

$$\mu_{jm} = \mathbb{E}\left[\sum_{k \in \mathcal{J}_m} w_{jk}(\boldsymbol{x}_m, \boldsymbol{q}_m) \cdot g_{km} \mid \boldsymbol{x}_m, \boldsymbol{q}_m\right] = 0$$

• For nonlinear IVs, draw many counterfactuals $\mathbf{g}_{m}^{(c)}$ as permutations of increments over time for each currency and compute

$$\mu_{jm} = \frac{1}{C} \sum_{c} \hat{\nabla}_{jm}(\boldsymbol{g}_{m}^{(c)}, \boldsymbol{x}_{m}, \boldsymbol{q}_{m})$$

Special Cases

• In nested logit, $\partial \xi_{jm}/\partial \sigma = \log(s_{jm}/s_{\text{nest}(j)m}) \Longrightarrow$

$$z_{jm} \propto g_{jm} - \sum_{k \in \text{nest}(j)} \frac{\check{s}_{km}}{\check{s}_{\text{nest}(j)m}} g_{km}$$

- Increased prices of rivals in the nest raise $\log(s_{jm}/s_{0m}) \Longrightarrow \sigma > 0$
- In the "local to logit" approximation to mixed logit, i.e. $\check{\sigma} \approx 0$ (Salanie-Wolak '22, here for a non-price random coefficient)

$$z_{jm} \approx x_{jm} \cdot \sum_{k \in \mathcal{J}_m} \check{s}_{km} (x_{km} - \bar{x}_m) g_{km}, \qquad \bar{x}_m = \sum_{k \in \mathcal{J}_m} \check{s}_{km} x_{km}$$

• Increased prices of rivals with higher-than-average x_{km} raise market shares of products with high $x_{jm} \Longrightarrow \sigma > 0$

Extensions

Improve IV power by leveraging an auxiliary supply model

- Incorporate observed consumer characteristics
- Use input shocks with estimated mapping from inputs to products
- ullet Identify eta using exogenous shocks to non-price characteristics
- Alternative demand models: nested/mixed CES, Hotelling model (Houde 2012), "principles of differentiation" (Bresnahan et al. 1997), etc.
- Nonparametric identification: straightforward without a random coefficient on price

 Details Conjecture

Outline

- 1. Introduction ✓
- 2. Theoretical Results ✓
- 3. Monte Carlo Simulations
 - Power comparison with exogenous characteristics
 - Bias comparison with endogenous characteristics

Monte Carlo I: Exogenous Characteristics

DGP based on Gandhi and Houde (2020), 100 simulations:

- 100 regional markets r over time periods t = 1,2; m = (r,t)
- 15 products per market with 2 observed time-invariant characteristics and random coefficients on them
- Shocks g_{jr2} affect costs in period 2
- Estimate $(\alpha, \sigma_1, \sigma_2)$ with our exact and shift-share IVs (continuously updating, in differences)
- Compare with Gandhi-Houde local and quadratic IVs and BLP '95 IV (in period 2)

Price Coefficient (Exogenous Characteristics)

Nonlinear Parameters (Exogenous Characteristics)

Monte Carlo II: Endogenous Characteristics

Assume each region has a "bliss point" B_r for the first characteristic

- ullet Products near B_r are more popular (subtract $3(x_{jr1}-B_r)^2$ from ξ_{jrt})
- More entry near the bliss point $(x_{jr1} \sim N(B_r, 1))$
- ⇒ GH instruments are invalid: popular products are in the dense part of the local distribution of characteristics

Characteristic-Based IVs Have Strong Bias

Conclusion

A new IV construction for nested/mixed logit and similar demand models

- Leverages product characteristics but does not require their exogeneity
- Inspired by thinking of product substitution as spillovers

Open questions:

- Usefulness with microdata (e.g., individual-level choice data)?
 - For MLE or "micro-BLP" GMM estimation of mixed logit
- Usefulness beyond demand, e.g. for estimation of games?
 - Key: IV-GMM estimation

In-progress applications:

- Demand for automobiles, with exchange rate shocks
- Demand for contraceptives, with price cap shocks

Random Utility Model (Back)

Consumers max:

$$u_{ijm} = \delta_{jm} + \eta_{i0} \rho_{jm} + \eta_i' x_{jm}^{(1)} + \varepsilon_{ijm}, \quad \delta_{jm} = \alpha \rho_{jm} + x_{jm}' \beta + \xi_{jm}$$

for observed characteristics $x_{jm} = (x_{jm}^{(1)}, x_{jm}^{(2)})$ and random coefficients $\eta_{i\ell}$

- Assume $(\eta_{i\ell})_{\ell} \stackrel{\textit{iid}}{\sim} \mathscr{P}(\cdot; \sigma)$ for known \mathscr{P} (e.g. Gaussian)
- Nested logit corresponds to $x_{jm}^{(1)} =$ nest dummies and a special distribution of η_i

Estimator and Asymptotics (Back)

Given initial $\check{\theta}=(\check{\alpha},\check{\sigma})$ and $\check{\pi}$, we estimate θ using moment conditions:

$$\mathbb{E}\left[z_{jm}(\check{\boldsymbol{\theta}},\check{\boldsymbol{\pi}})\cdot\left(\mathfrak{D}_{j}(\boldsymbol{s}_{m};\boldsymbol{\sigma},\boldsymbol{x}_{m}^{(1)},\boldsymbol{p}_{m})-\alpha\rho_{jm}-\mathfrak{B}_{j}(\boldsymbol{x}_{m},\boldsymbol{q}_{m};\boldsymbol{\gamma},\check{\boldsymbol{\theta}})\right)\right]=0$$

where \mathscr{B}_j generalizes non-causal controls, e.g. $\mathscr{B}_j=\xi_{jm}^{\rm pre}$ (estimation in differences) or $\mathscr{B}_j=\gamma'x_{jm}$, with $\hat{\gamma}(\theta)$ minimizing residual sum of squares

Initial estimates $\check{ heta}$ can come from conventional characteristic-based IVs

• Better: "continuously updating" $z_{jm}(\theta, \check{\pi})$

Consistency, asymptotic normality, and inference:

- When markets are iid, follow from standard GMM results
- With non-*iid* markets but if z_{jm} is a shift-share, extend shock-level asymptotics of Adao, Kolesar, Morales (2019), Borusyak, Hull, Jaravel (2022)
 - E.g. if all regions are affected by the same exchange rate shocks

Nested Logit Shares (Back)

Let $\delta_{jm} = \alpha p_{jm} + \xi_{jm}$ and $D_{nm} = \sum_{j \in \mathcal{J}_m} d_{jn} \exp(\delta_{jm}/(1-\sigma))$. Then nested logit shares satisfy:

$$egin{aligned} rac{s_{jm}}{s_{n(j)m}} &= rac{\exp\left(\delta_{jm}/(1-\sigma)
ight)}{D_{n(j)m}}, \ s_{nm} &= rac{D_{nm}^{1-\sigma}}{1+\sum_{n'}D_{nm}^{1-\sigma}}, \ s_{0m} &= rac{1}{1+\sum_{n'}D_{nm}^{1-\sigma}} \end{aligned}$$

Manipulating these terms yields share inversion:

$$\log(s_{jm}/s_{0m}) = \alpha p_{jm} + \sigma \log(s_{jm}/s_{n(j)m}) + \xi_{jm}$$

IV Construction for Nested Logit (Back)

Exact prediction: For $\hat{p}_{jm} = \check{\pi}_0 + \check{\pi}g_{jm}$ and $\delta_{jm} = \check{\alpha}\hat{p}_{jm}$:

$$\begin{split} \widehat{\log} \frac{s_{jm}}{s_{n(j)m}} &= \frac{\check{\alpha}}{1 - \check{\sigma}} \left(\check{\pi}_0 + \check{\pi} g_{jm} \right) - \log \sum_{k \in \mathcal{J}_m} d_{kn} \exp \left(\frac{\check{\alpha}}{1 - \check{\sigma}} \left(\check{\pi}_0 + \check{\pi} g_{jm} \right) \right) \\ &= \frac{\check{\alpha}}{1 - \check{\sigma}} \check{\pi} g_{jm} - \log \sum_{k \in \mathcal{J}_m} d_{kn} \exp \left(\frac{\check{\alpha}}{1 - \check{\sigma}} \check{\pi} g_{jm} \right). \end{split}$$

First-order approximation around $g_{km} = \mu_g$:

$$\begin{split} \widehat{\log} \frac{s_{jm}}{s_{n(j)m}} &\approx \frac{\check{\alpha}}{1-\check{\sigma}} \check{\pi} \mu_g - \log \sum_{k \in \mathcal{J}_m} d_{kn} \exp\left(\frac{\check{\alpha}}{1-\check{\sigma}} \check{\pi} \mu_g\right) \\ &+ \frac{\check{\alpha}}{1-\check{\sigma}} \check{\pi} (g_{jm} - \mu_g) - \frac{\sum_{k \in \mathcal{J}_m} d_{kn} \exp\left(\frac{\check{\alpha}}{1-\check{\sigma}} \check{\pi} \mu_g\right) \frac{\check{\alpha}}{1-\check{\sigma}} \check{\pi} (g_{jm} - \mu_g)}{\sum_{k \in \mathcal{J}_m} d_{kn} \exp\left(\frac{\check{\alpha}}{1-\check{\sigma}} \check{\pi} \mu_g\right)} \\ &= -\log N_{n(j)m} + \frac{\check{\alpha}}{1-\check{\sigma}} \check{\pi} \left(g_{jm} - \frac{1}{N_{n(j)m}} \sum_{k \in \mathcal{J}_m} d_{kn} g_{jm}\right). \end{split}$$

Incorporating a Supply Model Back

Assume constant MC c_{jm} + Nash-Bertrand:

$$oldsymbol{p}_m^* = oldsymbol{c}_m - \left(oldsymbol{H}_m \odot rac{d}{doldsymbol{p}_m'} oldsymbol{s}_m(oldsymbol{p}_m^*)
ight)^{-1} oldsymbol{s}_m(oldsymbol{p}_m^*)$$

- **1** Given $(\check{\alpha}, \check{\sigma})$ solve for c_{jm} . Regress $c_{jm} = \hat{\pi} \tilde{g}_{jm} + \text{error}_{jm}$
- ② Solve for costs \check{c}_{jm} corresponding to $(\check{p}_m, \check{s}_m)$
- **3** Predict costs $\hat{c}_{jm} = \check{c}_{jm} + \hat{\pi} \tilde{g}_{jm}$
- Predict prices $\hat{\pmb{\rho}}_m = \pmb{p}_m^*(\hat{\pmb{c}}_m)$ (or via 1st-order approximation in g_{km})
- **1** Use $\hat{\boldsymbol{p}}$ to construct recentered IVs

Nonparametric Identification (*Back)

Demand model w/index restriction $p_{jm} + \xi_{jm} = \mathcal{D}_j(s_m, x_m)$ for unknown \mathcal{D}_j (generalizes mixed logit with no random coefficient on price)

- Assume (i) shock exogeneity: $\mathbb{E}[\xi_{jm} \mid \mathbf{g_m}, \mathbf{x_m}] = \mathbb{E}[\xi_{jm} \mid \mathbf{x_m}],$ (ii) completeness: $\mathbb{E}[h(\mathbf{s_m}, \mathbf{x_m}) \mid \mathbf{g_m}, \mathbf{x_m}] \stackrel{a.s.}{=} 0 \implies h(\mathbf{s_m}, \mathbf{x_m}) \stackrel{a.s.}{=} 0$
- Then \mathcal{D}_j and ξ_{jm} are identified up to an additive function $\beta(\mathbf{x}_m)$; enough for counterfactuals that hold x_{jm} fixed

- Nonparametric demand with an index restriction on a non-price characteristic: $x_{im} + \xi_{im} = \mathcal{D}_i(\boldsymbol{p}_m, \boldsymbol{s}_m)$ (fixing other characteristics)
- Berry and Haile (2014): if $\mathbb{E}[x_{jm} + \xi_{jm} \mid \mathbf{x}_m, \mathbf{g}_m] = x_{jm}$, NPIV identifies $\mathcal{D}_j(\cdot)$ under completeness of $(\mathbf{p}_m, \mathbf{s}_m) \mid (\mathbf{g}_m, \mathbf{x}_m)$
 - Conclusion: not enough to have exogenous g_m ; also need exogenous x_m
 - But interactions of endogenous x_m & cost shocks are valid IVs!
- Conjecture (Borusyak, Chen, Hull in progress):
 If g_m ⊥ ξ_m | x_m, then 𝒩(·) is identified up to invertible transformations r(·) ⇒ "conditional demand" is point-identified
 - So far proved assuming $p_m \perp x_m \mid (\delta_m, g_m)$ (index restriction on prices, includes the case of exogenous prices)
 - In general, $\mathbb{E}[\mathfrak{D}(\boldsymbol{p}_m, \boldsymbol{s}_m) \mid \boldsymbol{g}_m, \boldsymbol{x}_m] = \boldsymbol{h}(\boldsymbol{x}_m)$ for some $\boldsymbol{h}(\cdot)$
 - Given $h(\cdot)$, completeness implies at most one $f(\cdot)$ via NPIV
 - This equation is satisified by $\mathfrak{D}(\cdot)$ but also $r(\mathfrak{D}(\cdot))$ for any $r(\cdot)$
 - For any $h(\cdot)$ such that $\exists r \colon \mathbb{E}[r(x_m + \xi_m) \mid x_m] = h(x_m)$ a.s., there is no other solution. But we don't know about other $h(\cdot)$ functions yet

Monte Carlo I: Details (Back)

DGP:

- $x_{jr\ell} \sim N(0,1)$, $\xi_{jr1} \sim N(0,1)$, $\xi_{jr2} = 0.5\xi_{jr1} + \sqrt{1 0.5^2} \cdot N(0,1)$
- Costs: $c_{jrt} = \gamma' x_{jrt} + g_{jrt} + \omega_{jrt}$, $\omega_{jr1} \sim N(0,1)$, $g_{jr1} = 0$, $\omega_{jr2} = 0.9 c_{jr1} + \sqrt{1 0.9^2} \cdot N(0,1)$, $g_{jr2} \sim N(0,0.04)$
- Prices set by simultaneous Nash-Bertrand

Estimate (α, σ) via alternative moment conditions:

- $\mathbb{E}[\Delta \xi_{jr} \cdot (g_{jr}, z_{jr})] = 0$ where z_{jm} is continuously-updating recentered IV from first-order approximation or exact prediction
- $\mathbb{E}\left[\xi_{jr2}\cdot(g_{jr},x_{jr},z_{jr}^C)\right]=0$ where z_{jr}^C is BLP or Differentiation IVs

Recentered IVs Benefit from Cost Shock Variation

GH IVs Benefit from Characteristic Variation

