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In the near future, algorithms may assist law enforcement with
real-time legal advice. We take a step in this direction by eval-
uating how well current AI can perform legal analysis of the de-
cision to stop or frisk pedestrians, comparing multiple algorith-
mic and non-algorithmic approaches. We find that large language
models (LLMs) can accurately assess reasonable suspicion under
Fourth Amendment standards. Using 41,332 attorney-coded police
stops from 2014 to 2024, we fine-tune an LLM to identify whether
stops are illegal based on the content of police report narratives.
The LLM identifies illegal stops with 88% accuracy and is well-
calibrated in its confidence estimates. Importantly, it achieves 95%
accuracy on the 75% of cases about which the model is most confi-
dent. Using topic modeling and LLM annotation, we also identify
the primary justifications for stops and develop decision rules that
police could implement to reduce illegal stops most effectively. We
show that no set of rules is as effective as a fine-tuned LLM. These
findings demonstrate LLMs’ potential both to efficiently audit po-
lice practices and to provide real-time guidance.

I. Introduction

Law enforcement officers must routinely make split-second decisions with po-
tentially fatal consequences. One very common such decision is the determination
of whether to stop, frisk or search a suspect. While police shootings receive more
attention, police stops are far more frequent, in some cities occurring more than
1,000 times a day (New York Civil Liberties Union, 2025; Hausman and Kronick,
2023). Officers making these stops must carefully navigate between controlling
crime and respecting the constitutional rights of suspects.
In a stop, the officer often has little to go on beyond brief observation of the indi-

vidual, the environment, and perhaps radio information about criminal suspects.
Recent technological advances have the potential to transform this common police
practice. Body-worn cameras already digitize some of the data officers observe,
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but there is currently little analysis of this data. In this paper, we propose and
test new AI algorithms that could process data and make recommendations on the
legality of police stops in real time. While this application may not come into use
immediately due to technological, regulatory or inertial hurdles, we also demon-
strate an immediate application of our algorithms—for ex-post legal review of
police stops and frisks. These types of reviews are common in many jurisdictions,
especially in cities that have been subject to litigation about or investigation of
their policing practices. These reviews currently require large amounts of work
by trained individuals (typically lawyers) at high expense.

This paper presents analysis of a novel dataset with over 40,000 observations
of police stops in a major U.S. city, each of which includes a narrative of the
rationale for the stop. In these “Terry stops,” officers may make stops only if
there is reasonable and articulable suspicion (RAS) that the subject is involved in
a crime, and may conduct frisks only if there is RAS that the person is armed and
dangerous. Importantly, a team of expert attorneys coded each stop and frisk in
our dataset for whether it met the legal standard for RAS. We use these data to
train various machine learning (ML) models to identify whether stops and frisks
have RAS.

We find that algorithms can perform this core legal analysis at high levels of
accuracy compared to attorneys, and far exceeding that of police officers and law
students. In our data, the top-performing algorithm (fine-tuned Llama 3) has
87.9% accuracy and 0.901 AUC-ROC. Importantly, the models quantify predic-
tion confidence for each stop, which we use to rank them (calibrating confidence
on the train set and evaluating it out-of-sample on the test set). When keeping
only the top half of the observations about which the model is most confident,
accuracy jumps to 98.2%. We also show that we can keep 74.6% of the data and
still maintain 95% accuracy.

Llama 3’s performance compares favorably to various human benchmarks. Its
accuracy significantly exceeds the officers themselves, whose narratives justify
reasonable suspicion in 80.3% of stops. It also exceeds the performance of law
student RAs trained to assess RAS, who score 77.0% on accuracy and 0.759
on AUC-ROC. Finally, Llama 3’s accuracy roughly matched the rate of agree-
ment between expert attorneys hired by plaintiffs and by the city itself (87.0%
agreement). These comparison points, discussed in further detail in Section II.D,
suggest that it might be difficult to improve Llama 3’s performance further due
to subjective disagrement on RAS between experts.

In addition to Llama 3, we use OpenAI’s o3 model to evaluate RAS, with a de-
tailed prompt but without fine-tuning.1 We also compare Llama 3’s performance
with several older ML techniques, including random forest, logistic regression, and
linear probability models (LPMs).2 While Llama 3 has the best performance, ran-

1For replicability, we use the o3-2025-04-16 model checkpointed with a knowledge cutoff of May 31,
2024.

2We also tested support vector machines, but they performed significantly more poorly than the other
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dom forests and logistic regression also perform well and are well-calibrated. The
advantage of Llama 3 is most noticeable in the share of stops it can correctly
classify with 95% accuracy. There it exceeds all other methods tried by over 20
percentage points. We also compare performance with different inputs, finding
that Llama 3’s performance improves only very slightly when adding additional
covariates beyond the text narrative.
While the algorithmic approach shows excellent performance, there might be

technological and logistical barriers to full implementation. As an alternative,
one could create simple decision rules based on textual analysis that could help
decrease stops lacking RAS without omitting too many legal stops. We formulate
such guidelines using topic modeling with OpenAI’s o3 model to identify topics
in each police report and then use o3 to identify the main reason for each stop.
We are then able to estimate how much omitting stops with each main reason
would reduce overall stops and those lacking RAS.
We find that the distribution of stop reasons has a long tail, with many stops

justified by a rare main reason. This means a simple decision-rule approach, with
10 or fewer rules of thumb, would only eliminate a small share of stops lacking
RAS. In addition, decision rules are much less efficient than the algorithmic ap-
proach, in that they require far more stops to be eliminated to achieve a similar
reduction in the false positive rate compared to fine-tuned Llama 3.
The rest of the paper proceeds as follows: Section II provides a brief legal

background about stop and frisk policing along with summary statistics for our
jurisdiction. In Section III we present the methods employed to predict RAS,
compute confidence in rankings, and perform topic modeling. Section IV includes
our main results in each of those areas, and Section V concludes.

II. Background and Data

A. Literature Review

Inspired by recent advances in ML, a huge literature compares the performance
of humans and LLMs at legal tasks. Kleinberg et al. (2018)’s seminal paper
showed that simple predictive models could outperform judges in bail decisions,
and many scholars have built on this early work by demonstrating that LLMs per-
form well at legal analysis, whether as substitutes (Martin et al., 2024; Savelka
and Ashley, 2023; Nay et al., 2024) for or complements (Shao et al., 2025; Choi,
Monahan and Schwarcz, 2024; Choi and Schwarcz, 2025) to human analysis. More
broadly, researchers have compared the performance of LLM and human annota-
tion in domains such as content analysis (Bojić et al., 2025) and medicine (Lin
et al., 2023; Goh et al., 2024; Nori et al., 2025). The literature suggests that
LLMs can competently produce sophisticated analysis in a variety of domains.
At the same time, a substantial theoretical and empirical literature has explored

approaches to detecting racial disparities in police stops. (Knowles, Persico and

classic ML models and were therefore excluded from the final results.
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Todd, 2001) launched this literature with a simple optimizing model of police and
offender behavior and proposed an outcome test where a comparison of “hit rates”
- the fraction of frisks that yield contraband - by racial group could reveal dispar-
ities. This paper inspired various papers focused on largely on refining models of
racial disparity in police stops, including important contributions by (Anwar and
Fang, 2006), (Durlauf, 2006), (Dharmapala and Ross, 2004), and (Antonovics and
Knight, 2009). More recent work by (Gelbach, 2021) and (Feigenberg and Miller,
2022) among others has continued to broaden both models of racial disparities in
police stops and their empirical application.
While the work discussed above focuses on racial disparities in police stops,

fewer papers have attempted to model the policing optimization problem more
broadly. (Chalfin and McCrary, 2018) model the optimal number of police but
not the activities they engage in. (?) propose a “police production function”
where contraband discovery is the primary objective. (Campbell, 2025) considers
the optimization problem of a police captain choosing how to allocate personnel
between making stops and other potentially productive activities, such as patrol.
(Rivera and Ba, 2025) consider how police oversight impacts misconduct.
Our work takes on new significance given ongoing attempts to automate police

monitoring. Axon’s Draft One, for example, is an LLM-driven tool that generates
police reports based on audio from body-worn cameras (Ferguson, 2024). Tools
like these could generate raw data that could subsequently be fed into a model
like the ones that we train in this paper.
Due to the paucity of available data on this topic and the novelty of the re-

quired LLM tools, few attempts to computationally evaluate RAS exist. To our
knowledge, the only other attempt was Oliver et al. (2024), which annotates fac-
tors relating to RAS from court opinions involving vehicular stops and then uses
these factors to predict judicial rulings on RAS. However, their study differed
from ours in important respects. Because they use case law rather than stop nar-
ratives, their sample is highly selected and likely unrepresentative of real-world
policing practice. Moreover, they predict judicial decisions using text written
by the judges themselves—this potentially contaminates their prediction models,
since judges likely frame case facts selectively to support their judgments. Our
dataset does not suffer from this problem, since officers presumably believe there
is RAS in every case and the judgment we are predicting is a separate evaluation
by legal experts.

B. Conceptual Framework

Before proceeding to the empirical heart of this paper, it is worth a brief dis-
cussion of police incentives and the legal background. At a high level, a police
department is tasked with (among other things) reducing crime while respecting
citizens’ constitutional rights. This is accomplished in myriad ways within and
across police departments. Our focus is on Stop and Frisk policing, an extremely
common tactic that became popular in the early 2000’s.Many police leaders con-
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tinue to believe it has a substantial deterrent effect on crime, although no study
has yet validated this belief.
Although we do not formally model police incentives (as does (Campbell, 2025)),

one way to conceive of it is as a series of principal-agent problems: that between
citizens and the police chief/city mayor and that between the police chief/ lead-
ership and patrol officers. In each of these relationships, some of the most visible
performance measures are crime rates (particularly violent), “clearances” - the
share of crimes where an arrest is made, expenditures, and instances of viola-
tions of constitutional rights, particularly those that receive public attention. In
short, this is a constrained optimization problem where safety and liberty are the
primary objects of interest.
A general model of these agency problems is beyond the scope of this paper.

But it is worth describing police officer incentives to make stops and frisks, to
record them accurately, and to ensure they are legally justified, along with how
each of these may vary by type of suspected crime. 3

Police officers in our jurisdiction, as with many others, routinely stop and ques-
tion individuals when they have reasonable suspicion that they may be involved
in the commission of a crime or are planning criminal conduct. These are known
as Terry stops, after the Supreme Court ruling in Terry v. Ohio which estab-
lished the reasonable suspicion standard. Terry v. Ohio also established that, for
their protection, police officers may conduct a limited pat-down search, or “frisk,”
for weapons if they reasonably believe the person may be armed and dangerous.
In practice, officers must be able to articulate the specific observations or infor-
mation that led them to suspect criminal activity or the presence of weapons,
thereby justifying the stop and potential frisk.
Incentives of officers to make stops have varied over time as public attitudes

to the practice have changed. There have never been clear, numerical targets for
officers to stop or frisk, and in fact there is immense variation across officers in
how much they do so.
Data from police stops must be entered into an electronic database. Original

entry typically occurs through an application on a mobile data computer (MDC),
a laptop installed in a police vehicle. These are subsequently checked for com-
pleteness and compliance with Fourth Amendment standards by the supervising
sergeant. There has typically been no consequence to officers who fail to state
reasonable suspicion for a stop or frisk. Very recently, there has been an effort
to incentivize only stops and frisks with RAS. Officers who report stops or frisks
without RAS and Sergeants who fail to correct the officers are subject to re-
training, oral and written warnings and for repeat offenders to discipline in the
form of lost vacation days. However, the vast majority of repercussions have been
in the form of verbal warnings and either none or an extremely small number of
vacation days have been lost to date.
Of course, each interaction between police officers and citizens has the potential

3We omit the impact here of intrinsic incentives, which is explored by (Chalfin and Gonçalves, 2023).
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to go poorly. This is one reason why the reasonable suspicion standard exists.
It also means that potential gains from stops and frisks should be balanced by
a social planner against these potential harms. Potential gains—in deterred or
detected crimes—will be larger for more serious crimes. But in this paper we do
not distinguish between potential crime severity for three reasons. First, the initial
rationale for the stop is often different from a crime the individual is arrested for.
Second, the reasonable suspicion standard is independent from crime type, and
thus from a legal perspective must be followed uniformly, even if this may not
lead to the optimal solution to the constrained optimization problem (although
it may be optimal more broadly).

C. Data Description

Our study analyzes a novel dataset of pedestrian Terry stops conducted by
a major metropolitan police department between 2014 and 2024. Our dataset
contains 41,332 observations randomly selected from over a million stops during
this period. For each stop, the officer records details about the circumstances of
the stop, the individual stopped, the location and time of the stop, and officer
identifiers. Outcomes of the stop include whether the individual was frisked,
searched or arrested, and whether contraband was discovered (and if so, what
kind). Crucially, the officer provides a narrative intended to establish reasonable
and articulable suspicion (RAS) for the stop. These narratives constitute the bulk
of the data we analyze.

As part of a monitoring agreement stemming from litigation, a small group of
plaintiff’s attorneys with expertise in these matters manually read each police
narrative in the random subset of stops and code each stop as either having or
lacking reasonable suspicion (each lawyer makes only one assessment). For cases
where a frisk occurred, they separately evaluate whether the frisk had reasonable
suspicion. After dropping observations which could not be clearly coded, we
have 41,332 observations where stops were coded as having or lacking reasonable
suspicion and 7,795 observations where frisks were coded as having or lacking
reasonable suspicion. 4 While the attorneys coding the stops had access to the
full text of the police narrative without redaction, the RAS determination was
made based solely on ex ante information, meaning that a stop lacking reasonable
suspicion could not become justified ex post, merely because the suspect turned
out to have engaged in a crime.

Table 1 presents summary statistics for the key variables in our dataset. The
data reveal several important patterns relevant to our analysis. First, 80.3% of
stops in the lawyer-coded sample were assessed as having reasonable suspicion,

4In our current analysis, we only analyze stops coded as having or lacking reasonable suspicion. Thus
we drop stops that were incorrectly classified as such (such as arrests). We include only frisks coded as
having or lacking RAS where the stop preceding the frisk had RAS. Thus we exclude frisks that occur
despite the preceding stop lacking reasonable suspicion - this is considered “fruit of the poisonous tree”.
We also exclude miscoded frisks, e.g. those that were actually searches incident to arrest.
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suggesting that a substantial proportion of stops were legally unfounded. Frisks
occurred in 19.7% of stops, with 73.6% of these frisks coded as having reasonable
suspicion when the initial stop was lawful. As in many criminal justice datasets
from large cities, the population of individuals stopped by police is largely male
(85.9%) and non-White (70.3% Black and 9.4% Hispanic). The majority (57%)
of stops occur between 4PM and midnight and three-quarters of stops are made
when an officer has a partner. Contraband is discovered in 7.7% of stops - this
may include weapons, drugs, or stolen property.

Table 1—Summary Statistics for Police Stops, 2014-2024

Variable Mean Standard Deviation

Reasonable Suspicion for Stop 0.803 0.398
Individual Frisked 0.197 0.398
Reasonable Suspicion for Frisk 0.736 0.441
Male 0.859 0.348
Black 0.703 0.457
White 0.280 0.449
Hispanic 0.094 0.292
Age 33.2 13.2
Height 5.5 0.4
Weight 170.5 33.7
Year 2019.14 2.346
Evening 0.57 0.50
Daytime 0.31 0.46
Night 0.12 0.33
Officer with Partner 0.748 0.434
Contraband Discovered in Stop 0.077 0.266

Notes: This table presents summary statistics for key variables in the dataset of 41,332 police stops
from 2014 to 2024. The table reports the mean and standard deviation for the following variables:

Reasonable Suspicion for Stop (indicator variable equal to 1 if reasonable suspicion was present, 0

otherwise, calculated only for cases coded as “Yes” or “No”), Individual Frisked (indicator variable equal
to 1 if the suspect was frisked, 0 otherwise), Reasonable Suspicion for Frisk (indicator variable equal to 1

if reasonable suspicion was present for the frisk, 0 otherwise, calculated only for cases coded as “Yes” or

“No”), Gender (Male indicator variable equal to 1 if the suspect is male, 0 otherwise), Race (Black and
White indicator variables), Ethnicity (Hispanic indicator variable equal to 1 if the suspect is Hispanic, 0

otherwise), Age (in years), Height (in feet), Weight (in pounds), Year (calendar year of the stop), Month

(month of the stop), Time of Day (Evening (4 PM to midnight), Daytime (8 AM to 4 PM), and Night
(midnight to 8 AM) indicator variables), Officer with Partner (indicator variable equal to 1 if the officer

had a partner during the stop, 0 otherwise), and Contraband Discovered (indicator variable equal to 1 if

contraband was found, 0 otherwise).
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D. Ground Truth and Intercoder Reliability

Before proceeding, it is worth clarifying a key issue in this paper (and life):
what is truth? How does one know when a stop truly lacked RAS based on the
written narrative? When training and evaluating the performance of our ML
models (including Llama 3), we treat the assessment of the attorney coders as
ground truth. Thus, one may interpret the performance of the algorithms (and
humans) that we report in this paper as measured by how close they come to
these human experts.
Of course, legal evaluations are subjective, and even expert attorneys could

disagree in specific cases on whether RAS is present or absent. Many scholars
have observed the problem that human evaluations treated as ground truth might
in fact be subjective (Plank, 2022; Chen, Mermel and Liu, 2021). One standard
method to relax the assumption that human codings are ground truth is to have
multiple humans evaluate the same case and then calculate intercoder agreement
rates (Movva, Koh and Pierson, 2024). Then, we could simply compare intercoder
agreement between the humans against intercoder agreement between the humans
and the LLM.
In our study, we have three different human codings to compare against the

baseline generated by plaintiff’s attorneys. First, we have a subset of randomly
selected cases from 2024 that were coded both by the plaintiff’s attorneys and
the attorney for the city where the police stops occurred. Out of 1311 randomly
selected stops, when coding for the presence of RAS, the attorneys agreed on 1140
and disagreed on 171, giving an intercoder agreement rate of 87.0%. This is lower
than the intercoder agreement rate between our best model (fine-tuned Llama 3)
and the plaintiff’s attorneys of 87.9% (which we present below as the accuracy
of the fine-tuned Llama 3 model). This might suggest that our best model is
approaching the theoretical limit for performance, above which determinations
become subjective. On the other hand, the plaintiff’s and defendant’s attorneys
have opposing incentives in litigation, which could make their agreement rate
artificially low.
A second basis for human comparison is the agreement rate between the plan-

tiff’s attorneys and our human RA. This agreement rate was even lower, 77.0%
for stops and 52.0% for frisks, far lower than the agreement rate for fine-tuned
Llama 3 (76.9% for frisks). Again this might suggest task subjectivity, although it
might also suggest that the task is simply too difficult for a human RA to tackle.
A third basis for comparison is the rate of agreement between the plaintiff’s

lawyers and the police officers themselves. On the sample visible to us (which
excludes both true and false negatives, where the police did not believe RAS
was present), the plaintiff’s attorneys found that 80.3% of stops had reasonable
suspicion, and 73.6% of frisks. This again implies a rate of agreement lower than
the rate of agreement between fine-tuned Llama 3 and the plaintiff’s attorneys.
However, this comparison is especially fraught, since the point of the litigation
and settlement was a belief that police officers were violating the law and making
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stops when RAS was absent—our priors do not suggest that the disagreement
between officers and the lawyers was simply due to the subjectivity of RAS.

In the absence of recodings within the team of plaintiff’s attorneys, the above
offer only suggestive evidence of the extent of the subjectivity issue. Meanwhile,
the remainder of the paper still treats the plaintiff’s attorneys codings as ground
truth, but our performance statistics could be treated as lower bounds in light of
the subjectivity of RAS determinations.

III. Empirical Framework

A. Predicting RAS with Different Models

We evaluate three distinct approaches: fine-tuned large language models (Llama
3), classic machine learning algorithms, and a top-performing off-the-shelf large
language model (o3).

Our primary approach involves fine-tuning separate Llama 3 models to predict
the human evaluations of reasonable suspicion for stops and frisks independently.
Specifically, we generate predictions of whether there was RAS for the stop and,
separately, whether there was RAS for the frisk using Llama 3, a decoder-only
transformer model developed by Meta.5 The weights of Llama 3 are open-source
to researchers, making it suitable for fine-tuning, unlike closed models like An-
thropic’s Claude and OpenAI’s GPT and o-series models. This accessibility al-
lows us to fine-tune the model weights to optimize performance for our specific
prediction tasks.

We tested each model with three different sets of inputs: only the narrative
police report, the police report plus information that can easily be accessed pre-
stop, and all the information available (including post-stop data). We focus on the
narrative-only prompt in our analyses for reasons of legal alignment, interpretabil-
ity, and fairness. In addition, we found that including additional information did
not to improve the performance of the models, which is consistent with the human
experts’ appropriately making their determinations on the contents of the police
narratives alone. See Appendix B for details on the development and testing of
these variations of variables included in the models.

To adapt Llama 3 to our specific prediction tasks, we employ Low-Rank Adapta-
tion (LoRA), a parameter-efficient fine-tuning method that modifies only a small
subset of the model’s weights.6 Following standard practice for binary classifica-

5A decoder-only transformer is a neural network architecture that processes text sequentially from left
to right, predicting each next word based on all previous words. Unlike encoder-decoder models used for
translation tasks, decoder-only models are optimized for text generation and completion tasks. They use
self-attention mechanisms to capture long-range dependencies in text, making them particularly effective
for understanding complex narratives like police reports.

6We specifically employ Low-Rank Adaptation (LoRA), an implementation of Parameter-Efficient
Fine-Tuning (PEFT), which fine-tunes a subset of the model’s weights in order to reduce memory re-
quirements and training time (Ding et al., 2023; Hu et al., 2022). Appendix Section A.A2 describes
LoRA fine-tuning in greater detail.
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tion tasks in natural language processing (Devlin et al., 2019; Brown et al., 2020),
we minimize the cross-entropy loss:

(1) L = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

where yi is the outcome of interest, a dummy variable indicating whether there
was RAS for the stop or frisk and ŷi is the model’s continuous prediction, bounded
to be between 0 and 1. We use cross-entropy loss rather than squared error loss
because it is the standard loss function for binary classification tasks, providing
better gradient properties when the model outputs are interpreted as probabil-
ities.7 After fine-tuning, we evaluate its performance on a set of test examples
that was kept segregated during the training process.8

As alternative approaches, we also train classic machine learning models as a
baseline for comparison. Specifically, we implement three standard algorithms:
random forest classifiers with 100 estimators, logistic regression with L2 regular-
ization (also known as ridge regression), and simple ordinary least squares regres-
sion with no regularization (also known as a linear probability model (LPM)). For
these models, we convert the police narratives into bag-of-words features using
count vectorization with a maximum of 5,000 features and English stop words
removed. Each model is trained on the same training split (55% of the data)
used for the Llama fine-tuning, with hyperparameters tuned on the validation set
(15% of the data). Appendix C provides additional information about and formal
mathematical definitions of each of the baseline ML models.

Additionally, we evaluate OpenAI’s state-of-the-art o3 model in an off-the-
shelf configuration without fine-tuning. We prompt engineered both a short and
a detailed system prompt for o3 explaining the legal framework for reasonable
suspicion under Terry v. Ohio as applied in our jurisdiction. The text for these
prompts was previously developed to train law students to perform the RAS
evaluation. The model is asked to provide predictions on a 0-100 scale. We
convert this score to a dummy for RAS, using a threshold of 50 for comparison
with the binary classifications. We find that the longer, more detailed prompts
outperform the shorter prompts on the validation set, and therefore we use the
longer prompts as our main specification. Appendix Sections A.A4 and C.C3
contain additional details on the prompts used and full performance statistics.

7Cross-entropy loss is preferred over squared error loss for binary classification because it penalizes
confident wrong predictions more heavily and provides stronger gradients when predictions are far from
the true labels, leading to faster and more stable convergence during training.

8We use a 55%/15%/30% train/validation/test split, which allows us to tune hyperparameters on the
validation set while maintaining a completely held-out test set for final evaluation.
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B. Ranking Confidence in Predictions

In addition to simply optimizing prediction, it may be possible to identify some
subset of cases where the reasonable suspicion models can be used with high
confidence to make live recommendations to officers.

To identify cases where the model predictions are most reliable, we use a con-
fidence scoring mechanism based on each algorithm’s predicted probability of
reasonable suspicion. Specifically, we define the confidence score for observation
i as:

(2) ci = |P (yi = 1|xi)− 0.5|

where P (yi = 1|xi) is the model’s predicted probability that observation i has
reasonable suspicion.9 This metric captures the model’s decisiveness: predictions
closer to the decision boundary of 0.5 indicate greater uncertainty, while predic-
tions near 0 or 1 indicate higher confidence. By ranking observations according to
ci and selecting those with the highest confidence scores, we can identify a subset
of cases where the model’s predictions are most reliable. The confidence scores
are calibrated on the train set and validated out-of-sample on the test set.

C. Topic Modeling

In order to understand what words or phrases from the narratives were most
predictive of RAS, we perform topic modeling. Rather than analyzing individual
words,10 we developed a method to extract semantically meaningful topics from
police narratives. We employed OpenAI’s o3 model to identify generalizable topics
within each police report that reflect the rationale or justification for the stop.

For example, a report stating “Police observed male walking on the highway
at listed location. Police had prior knowledge that male had an open warrant
for assault” would yield two distinct topics: “Walking on Highway” and “Known
Warrant.” This approach allows us to identify semantically meaningful compo-
nents of police narratives rather than arbitrary text segments, providing clearer
insights into which types of observations drive legal assessments.

Complete details on our topic modeling method are described in Appendix
Section E.

9Certain algorithms, specifically LLMs (like Llama 3 and o3) and logistic regression, natively generate
log probabilities of outcomes rather than linear probabilities. In these cases, we exponentiate the log
probabilities to generate linearized probability values. Thus, if logP (yi = 1|xi) is the log probability,
then P (yi = 1|xi) = exp(logP (yi = 1|xi)).

10We also tested alternative interpretability methods including LIME (Local Interpretable Model-
agnostic Explanations) and SHAP (SHapley Additive exPlanations), but found they produced unintuitive
results with high importance scores assigned to seemingly random words. LIME, SHAP, and other older
methods evaluate the effects of single words in text, ignoring important context in the process. Our
topic-based approach preserves semantic context and produces more legally interpretable results.
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D. Evaluating Importance of Topics

While multiple topics may appear in a single police report, we posit that of-
ficers typically have a primary justification—a “main reason”—that motivates
their decision to conduct a stop or frisk. To identify this main reason, we again
employed OpenAI’s o3 model, providing it with the full police report and the list
of canonical topics present in that report. The model was instructed to identify
which single topic best represents the primary reason the stop or frisk was initi-
ated, considering factors such as the chronological order of events, what triggered
the initial police contact, and the most serious or significant reason if multiple
justifications exist. Appendix E and E provide complete details on how main
reasons were identified.
This main reason identification allows us to simulate targeted policy interven-

tions. Specifically, we can calculate what would happen to the false positive
rate—the proportion of stops or frisks that lack reasonable suspicion—if police
were instructed to discontinue stops or frisks when certain topics constituted the
main reason. By systematically evaluating the impact of removing each topic as a
main reason for stops or frisks, we can rank potential policy interventions by how
much they reduce unconstitutional stops or frisks while minimizing the impact
on legitimate police work. Appendix E.E1 formally describes the equations used
to calculate false positive rates and determine decision rules.

IV. Empirical Results

A. Model Comparison

We use fine-tuned Llama 3, classic machine learning algorithms (including lo-
gistic regression, LPM, and random forest), and OpenAI’s off-the-shelf o3 model
to predict the presence of reasonable suspicion. We compare these to two types
of human evaluations, those conducted by the police officer who wrote the re-
port, as well as by a law student given similar instructions to the o3 model (the
longer version). Table 2 presents the performance metrics for each approach on
the test set for stop predictions. Like the expert lawyers lawyers coding manually,
the models were given access to the full text of the police reports. By compari-
son, the police themselves were 80.3% accurate in making stops over our sample
and 73.6% accurate in making frisks, in both cases excluding unobserved false
negatives (since we do not observe the suspects the police chose not to stop).11

To provide a benchmark against which to compare our model results, we also
instructed a law student to assess whether there was RAS for each stop and frisk,
on a 10-point scale. Similar to the approach with the algorithms, we converted
those scores to a binary variable for RAS if the score was 5 or above. These

11The performance statistics reported here are for the narrative-only prompt configuration. As detailed
in Appendix B, we also tested configurations that included pre-stop metadata and all available metadata,
but found that the simpler narrative-only approach provided the most consistent performance.
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results are also included in Table 2 to show the performance of a person with
some legal background but no direct experience with police stops and to provide
a basis for comparison that includes both false positives and false negatives, like
the ML models.
The “Acc @ 50%” column shows the model’s accuracy when evaluating only

the 50% of cases for which the model is most confident, based on the predicted
probability of reasonable suspicion (determined based on the model’s training
without access to the outcome variable in the test set). The “Max Subset w/
95% Acc” column indicates the maximum percentage of cases that can be auto-
matically classified while maintaining at least 95% accuracy, again after ranking
the observations based on model confidence. For example, the fine-tuned Llama 3
model achieves 98.2% accuracy on its most confident 50% of predictions and can
maintain 95% accuracy while classifying 74.6% of all cases. These metrics reflect
both the performance of each model and each model’s calibration in estimating
the confidence of its predictions; ceteris paribus, better-calibrated models will
perform better on these metrics. For all metrics in the table, a higher value is
better.

Table 2—Comparison of Model Performance for Stop Reasonable Suspicion Prediction

Model AUC-ROC F1 Acc Acc Max Subset
@ 50% w/ 95% Acc

Fine-tuned Llama 3 0.901 0.927 0.879 0.982 74.6%
Logistic Regression 0.822 0.901 0.834 0.951 50.7%
Random Forest 0.814 0.907 0.836 0.943 43.0%
LPM 0.778 0.886 0.806 0.942 39.8%
o3 0.776 0.887 0.815 0.925 17.0%
Human Coding 0.759 0.853 0.770 0.935 41.9%

Notes: This table compares the performance of different models in predicting reasonable suspicion
for police stops. Models include fine-tuned Llama 3, classic machine learning algorithms (Logistic Re-

gression, Linear Probability Model, Random Forest), OpenAI’s o3 model, and human coding by a law

student. Performance metrics are: AUC-ROC (area under the Receiver Operating Characteristic curve),
F1 score, overall accuracy (Acc), accuracy on the most confident 50% of predictions (Acc @ 50%), and

the maximum percentage of cases that can be classified while maintaining at least 95% accuracy (Max

Subset w/ 95% Acc). Higher values indicate better performance for all metrics.

The fine-tuned Llama 3 model generally achieved the best performance, with
AUC-ROC of 0.901, F1 score of 0.927, and accuracy of 87.9%. Notably, this repre-
sents a substantial improvement over human coding performance, which achieved
an accuracy of 77.0%, F1 score of 0.853, and AUC-ROC of 0.759. While the
human RA achieved solid performance when highly confident (93.5% accuracy
at 50%), he could only maintain 95% accuracy on 41.9% of cases, compared to
74.6% for the fine-tuned Llama 3 model.
OpenAI’s o3 model, despite being a more advanced architecture than Llama 3,

achieved lower performance (AUC-ROC of 0.776, F1 score of 0.887, and 81.5%
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accuracy) when used off-the-shelf with prompting alone (rather than fine-tuning,
as we did for Llama 3). The classic ML models—the random forest, logistic re-
gression, and LPM—showed varying performance, with random forest and logistic
regression performing reasonably well.
The superior performance of the fine-tuned Llama 3 model can be attributed

to several factors. First, fine-tuning allows the model to adapt specifically to the
legal nuances and writing style of our police reports (unlike the human coding
and o3). Second, the transformer architecture can capture complex contextual
relationships in the narratives that bag-of-words approaches miss (unlike the clas-
sic ML models). Third, the model benefits from pre-training on a large corpus of
text, providing a strong foundation for understanding language patterns (unlike
the classic ML models).
Similar patterns emerged for frisk predictions, as shown in Table 3. The fine-

tuned Llama 3 model again outperformed all alternatives, though the performance
gap was slightly smaller for this more challenging prediction task.
In practice, empiricists generally prefer AUC-ROC as a measure of performance

because it is not sensitive to the cutoff chosen for binary classification, unlike the
other metrics. (The metrics that rely on binary classification tend to dispropor-
tionately penalize poorly calibrated models.) To illustrate the Receiver Operating
Characteristic (ROC) analysis, we plot the true positive rate (sensitivity) against
the false positive rate (1 - specificity) at various classification thresholds for each
model. The fine-tuned Llama 3 model achieves the highest Area Under the Curve
(AUC) of 0.901, indicating strong predictive power—for any randomly chosen
pair of stops, one with reasonable suspicion and one without, the model will cor-
rectly rank them 90.1% of the time. This substantially outperforms the other
approaches, with Logistic Regression achieving an AUC of 0.822, Random Forest
0.814, and Human Coding 0.759.
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Figure 1. Receiver Operating Characteristic (ROC) Curves for Multiple Models Predicting

Reasonable Suspicion in Police Stops

Notes: This figure displays the Receiver Operating Characteristic (ROC) curves comparing multiple

models’ predictions of reasonable suspicion in police stops. The curves plot the true positive rate (sen-
sitivity) against the false positive rate (1 - specificity) at various classification thresholds using the test

dataset. The diagonal dashed line represents random chance (AUC = 0.5).

In practical terms, the ROC curves reveal significant performance differences
among the models. For the fine-tuned Llama 3 model, choosing a threshold that
limits the false-positive rate (where the model falsely identifies a stop as having
reasonable suspicion when it does not) to 5.1% still yields a true-positive rate of
60%, and relaxing the false-positive rate to 10% pushes the true positive rate to
72.4%. Put differently, if the Llama 3 model were calibrated to designate only
one stop in twenty as lawful when attorneys would disagree, it could nevertheless
automatically identify well over half of the truly lawful cases. The other models
show lower true positive rates at these same false positive thresholds, confirming
that fine-tuned Llama 3 had the best overall performance.

The frisk prediction results follow a similar pattern. The fine-tuned Llama
3 model achieved the best performance on AUC-ROC, Accuracy at 50%, and
Maximum Subsample at 95% Accuracy (although the Random Forest has a higher
F1 score and Accuracy), outperforming classic ML approaches, the off-the-shelf
o3 model, and the human RA. This task proved more challenging than stop
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predictions across all models. The o3 model struggled particularly with frisk
predictions, achieving only 64.1% accuracy even with detailed legal prompting,
suggesting that domain-specific fine-tuning is especially valuable for this more
nuanced legal determination.

Table 3—Comparison of Model Performance for Frisk Reasonable Suspicion Prediction

Model AUC-ROC F1 Acc Acc Max Subset
@ 50% w/ 95% Acc

Fine-tuned Llama 3 0.793 0.849 0.769 0.913 29.6%
Random Forest 0.746 0.861 0.769 0.874 16.1%
Logistic Regression 0.746 0.833 0.747 0.875 20.7%
LPM 0.546 0.637 0.547 0.799 0.0%
o3 0.699 0.725 0.641 0.851 21.8%
Human Coding 0.567 0.636 0.520 0.680 1.9%

Notes: This table compares the performance of different models in predicting reasonable suspicion for

police frisks. Models include fine-tuned Llama 3, classic machine learning algorithms (Random Forest,

Logistic Regression, LPM), and OpenAI’s o3 model. Performance metrics are the same as in Table 2:
AUC-ROC, F1 score, overall accuracy, accuracy on the most confident 50% of predictions, and maximum

percentage of cases classifiable at 95% accuracy. Higher values indicate better performance for all metrics.

Figure 2 illustrates the ROC curves for frisk predictions. The fine-tuned Llama
3 model achieves the highest AUC of 0.793, followed by Random Forest (0.746)
and Logistic Regression (0.746). While the overall performance is lower than for
stops, the relative ranking of models remains consistent, with fine-tuned language
models outperforming traditional approaches.
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Figure 2. Receiver Operating Characteristic (ROC) Curves for Multiple Models Predicting

Reasonable Suspicion in Police Frisks

Notes: This figure displays the Receiver Operating Characteristic (ROC) curves comparing multiple

models’ predictions of reasonable suspicion in police frisks. The curves plot the true positive rate (sen-
sitivity) against the false positive rate (1 - specificity) at various classification thresholds using the test

dataset. Models include fine-tuned Llama 3 (AUC = 0.793), Random Forest (AUC = 0.746), Logistic

Regression (AUC = 0.746), Linear Probability Model (AUC = 0.546), and OpenAI’s o3 model (AUC =
0.699). The diagonal dashed line represents random chance (AUC = 0.5).

Why is model performance substantially worse on frisks than on stops? First,
identifying reasonable suspicion for frisks may be inherently more difficult than
for stops—the police themselves perform at 73.6% accuracy for frisks versus 80.3%
for stops (excluding unobserved false negatives). Second, our train set for frisks
is much smaller than for frisks, which would tend to decrease model performance
even on a task of equivalent difficulty.

B. Ensemble Methods

To further improve prediction accuracy, we implemented several ensemble meth-
ods that combine predictions from multiple models. Ensemble techniques have
been shown to reduce overfitting and improve generalization by combining the
strengths of different models (Dietterich, 2000).
We tested several methods of ensembling predictions from different models: (1)
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simple averaging of model probabilities, (2) weighted averaging based on individ-
ual model performance, (3) median voting, (4) stacking with logistic regression
as a meta-learner, and (5) a novel neural stacking technique using a DistilBERT-
based architecture that combines text embeddings with base model predictions.
The neural stacking approach allows the meta-learner to access both the raw po-
lice narrative and the models’ predictions, potentially allowing the predictions to
be combined in a more nuanced way. Technical details of these ensemble methods
are provided in Appendix D.

Despite their theoretical advantages, our ensemble methods provided only marginal
improvements over the fine-tuned Llama 3 model alone. As detailed in Tables D1
and D2 in the Appendix, the best-performing ensemble method (stacking with
logistic regression) achieved AUC-ROC improvements of only 0.001 for stop pre-
dictions and 0.021 for frisk predictions. This suggests that the fine-tuned language
model already captures most of the predictive signal in the police narratives, leav-
ing little room for improvement through model combination.

C. Ranking Confidence in Predictions

Ultimately, the decision of whether to employ an algorithm will depend on what
error rates are deemed acceptable by those charged with making the assessments.
Even if it is not possible to classify all narratives with a high enough level of
confidence, it may be possible to use LLMs to audit police practice if we can
identify narratives that can be classified with very high confidence.

One can also imagine a second and more ambitious use of police narrative
classification algorithms. Police officers could describe their justification for a
stop in real time, and algorithm could provide immediate feedback about the
legality of the stop. This could help prevent stops or frisks where the officer
is unsure whether the facts rise to the level of reasonable suspicion. Real-time
algorithmic feedback might not be available in all cases, for example in a fast-
moving or chaotic situation. But even if only applicable some of the time, it could
help eliminate a large proportion of illegal stops.

One crucial barrier to practical implementation is whether we can identify some
subset of cases for which the models are sufficiently accurate that police depart-
ments would feel comfortable relying on them. As discussed above in Section
III.B, one simple way to accomplish this is to test the ex ante confidence as-
signed by each of the models to its prediction that reasonable suspicion is or is
not present. Because each model generates a probability in the range [0, 1], we
can simply treat the distance in each model’s predicted probability from 0.5 as
its level of confidence, with 0 or 1 reflecting the highest level of confidence and
0.5 representing the lowest. Having produced a ranking of cases based on model
confidence, we can generate subsets of cases comprising the top np% of cases for
which the model is most confident.

We then plot accuracy for each subset of cases as follows:
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Accuracy(p) =
1

np

∑
i∈Sp

I(ŷi = yi)

Where p is the percentage of cases included, Sp represents the subset of cases
with highest predicted confidence, np = |Sp| is the number of cases in that subset,
ŷi is the predicted label (using the 0.5 threshold), yi is the true label, and I is the
indicator function.
Thus the actual accuracy of the test subset is plotted on the y-axis of the Figure,

and the
np

n % of cases with the lowest predicted error used as the test subset to
determine the accuracy on the y-axis is plotted on the x-axis.
Figure 3 shows how reasonable suspicion model accuracy changes as we include

more cases, sorted by their predicted error.

Figure 3. Accuracy of Multiple Models’ Predictions by Confidence Ranking for Stops

Notes: This figure shows how the accuracy of different models’ predictions of reasonable suspicion for
stops varies as a function of the percentage of cases included, sorted by each model’s confidence ranking.
The x-axis represents the percentage of test cases included (from most to least confident), while the y-

axis shows the accuracy achieved on that subset. The fine-tuned Llama 3 model (orange) maintains 95%
accuracy (horizontal dashed line) while automatically classifying 74.6% of cases, substantially outper-

forming other approaches. When restricted to its most confident 50% of predictions, the Llama 3 model

achieves 98.2% accuracy. Other models shown include Logistic Regression (blue), Linear Probability
Model (brown), Random Forest (green), Human Coding (red), and OpenAI’s o3 model (purple).

The resulting curves demonstrate clear performance differences among the mod-
els. The fine-tuned Llama 3 model achieves the best performance, maintaining
95% accuracy while automatically classifying nearly three-quarters (74.6%) of
cases. In comparison, Logistic Regression can maintain 95% accuracy for 50.7%
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of cases, while Random Forest achieves this threshold for 43.0% of cases. This
suggests substantial potential for automated classification in practice—the Llama
3 model could reliably handle the majority of straightforward stops, providing im-
portant context to officers otherwise prone to much higher rates of error (19.7%
in our sample).
Note that the models trained on actual data are well-calibrated, in the sense

that the accuracy curve monotonically declines as more cases are included. This
is not true either of the o3 model (which peaks in accuracy near 50% of cases,
suggesting that the model is overconfident about its predictions at extremes) or
the human RA’s coding (which has multiple spikes in accuracy).

Figure 4. Accuracy of Multiple Models’ Predictions by Confidence Ranking for Frisks

Notes: This figure shows how the accuracy of different models’ predictions of reasonable suspicion

for frisks varies as a function of the percentage of cases included, sorted by each model’s confidence
ranking. Similar to Figure 4 for stops, the x-axis represents the percentage of test cases included (from
most to least confident), while the y-axis shows accuracy. The fine-tuned Llama 3 model maintains

95% accuracy while classifying only 29.6% of frisk cases, substantially lower than the 74.6% achieved
for stops. This reduced performance across all models suggests that predicting reasonable suspicion for

frisks is inherently more challenging than for stops.

On the other hand, the results of Figure 4 are less promising across all models.
The fine-tuned Llama 3 model performs best but can only maintain 95% accuracy
for 29.6% of cases, while Logistic Regression achieves this threshold for 20.7%
of cases. The consistently lower performance across all models suggests that
predicting frisks is a more difficult task than stops, a problem compounded by
the smaller train set of frisks. Again, the models trained on actual data are
well-calibrated, but the o3 model is not.
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To demonstrate model calibration, Figures 5 and 6 show how model accuracy
varies across different predicted probability ranges for stops and frisks, respec-
tively. A well-calibrated model should exhibit a V-shaped curve in these plots
(the black dashed lines represent perfect calibration), with high accuracy at both
extremes (near 0 and 1) where the model is most confident, and lower accuracy
near 0.5 where predictions are most uncertain.

Figure 5. Model Accuracy by Predicted Probability Range for Stop Reasonable Suspicion

Notes: This figure shows how accuracy varies across different predicted probability ranges for each model

when predicting reasonable suspicion in police stops. The x-axis represents the predicted probability of

reasonable suspicion (binned into 10 equal intervals), while the y-axis shows the accuracy within each
bin. The dashed black line represents perfect calibration.
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Figure 6. Model Accuracy by Predicted Probability Range for Frisk Reasonable Suspicion

Notes: This figure shows how accuracy varies across different predicted probability ranges for each

model when predicting reasonable suspicion in police frisks. Similar to Figure 5, the x-axis represents
the predicted probability of reasonable suspicion (binned into 10 equal intervals), while the y-axis shows

the accuracy within each bin. The dashed black line represents perfect calibration.

For both stops and frisks, the fine-tuned Llama 3 model and classic ML ap-
proaches display the expected V-shaped pattern, achieving high accuracy when
predicting probabilities far from 0.5. However, the o3 model and human coder
deviate significantly from this ideal, particularly at the extremes. For frisks (Fig-
ure 6), these patterns are even more pronounced: the human coder’s performance
is notably poor across all probability ranges, with accuracy often below 70% even
at the extremes where confidence should be highest. These calibration issues ex-
plain why the o3 and human models fail to produce monotonic accuracy curves
when cases are ranked by confidence, as in Figures 3 and 4. Figures C1 and C2 in
Appendix C.C4 provide additional information about calibration along the same
lines.

These results are largely to be expected; the classic ML models and the LLM
were trained on empirical data that improve calibration. In contrast, the o3 model
and the human coders did not receive direct feedback about their miscalibration
and therefore did not have an opportunity to correct for it. It is possible that
their performance would have improved had they received such feedback (Mellers
et al., 2014).
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D. Topic Modeling and Decision Rules for Stops

Using the canonical topics identified through our topic modeling, we analyzed
which topics most frequently serve as the primary justification for stops and how
targeted policy interventions could reduce false positive rates.

Distribution of Main Reasons

The distribution of main reasons reveals important patterns in police stop justi-
fications. Table 4 presents the five most common main reasons for stops. Notably,
15% of stops were justified primarily by the top 5 topics, and 25% of stops were
justified primarily by the top 10 topics, suggesting that police stops are driven
by a relatively concentrated set of circumstances.

Table 4—Top Five Main Reasons for Police Stops

Main Reason Count Percentage of Stops

Suspect Matches Description 431 3.75%
Person with Gun Call 357 3.10%
Theft in Progress Call 315 2.74%
Odor of Marijuana 308 2.68%
Public Urination 300 2.61%

Notes: This table presents the five most common main reasons identified as primary justifications for

police stops in our test set. The main reason represents the single most important topic that motivated
the officer’s decision to conduct the stop, as determined by the o3 model’s analysis of police narratives.

These top five reasons account for 14.87% of all stops in the test set. The counts represent the number

of stops where each topic was identified as the main reason.

The distribution of police stops across canonical topics identified as main rea-
sons follows an approximately exponential distribution, as shown in Figure E1 in
Appendix E; a small number of topics account for a large proportion of stops.

Simulated Policy Interventions

To evaluate potential policy interventions, we simulate the impact of instructing
officers not to make stops when certain topics constitute the main reason for the
stop. We rank topics by their effect on decreasing the aggregate false positive
rate. This balances the false positive rate associated with each stop justification
against the frequency of that justification; if some justification has a very high
false positive rate but is very rare, telling officers to discontinue stops based on
that justification will have little effect in reducing overall false positives. We
assume perfect officer compliance with the policy interventions.
Table 5 presents the cumulative impact of progressively discontinuing stops

based on the most problematic main reasons. The results demonstrate that dis-
continuing stops based on the single most problematic main reason topic would
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reduce the false positive rate from 19.5% to 18.9% while eliminating 3.1% of all
stops. When extending this policy to the top five main reason topics, the false
positive rate decreases to 17.6% while eliminating 8.7% of stops.

Table 5—Cumulative Impact of Discontinuing Stops by Main Reason Topics

Number of Topics False Positive Percentage of Stops
Removed Rate Removed

0 19.5% 0.0%
1 18.9% 3.1%
2 18.4% 4.4%
3 18.1% 7.0%
4 17.9% 8.0%
5 17.6% 8.7%
10 16.8% 11.3%
15 15.8% 15.1%
20 15.5% 17.6%

Notes: This table shows the cumulative effect of removing stops where progressively more topics serve

as the main reason, ranked by their efficiency in reducing false positive rates. The false positive rate
represents the proportion of remaining stops that lack reasonable suspicion. The analysis assumes perfect

officer compliance with policy interventions.

Figure E3 in the Appendix visualizes these results, showing how the false posi-
tive rate decreases as more topics are removed as valid reasons for stops, plotted
against the percentage of total stops that would be affected by such policies.
Table 6 presents the five most effective topics to target for policy interven-

tion—those that would reduce false positives the most.
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Table 6—Top Five Topics for Reducing False Positive Rates in Police Stops

Topic Topic FPR FPR Reduction % of Stops

Person with Gun Call 38.4% 3.10% 3.10%
Suspicious Conduct/Behavior 54.2% 2.25% 1.25%
Odor of Marijuana 30.2% 1.51% 2.68%
Panhandling 58.5% 1.44% 0.71%
Loitering 76.9% 1.00% 0.34%

Notes: This table identifies the five most effective topics to target for reducing false positive rates

in police stops, based on the train set. Topics are ranked by their efficiency in reducing false positive
rates—the reduction in unconstitutional stops relative to the total proportion of stops affected. Topic

FPR represents the false positive rate within each topic category (proportion of stops lacking reasonable

suspicion). FPR Reduction shows the relative percentage decrease in the overall false positive rate if
stops based on this topic were discontinued (based solely on the train set). The analysis assumes perfect

officer compliance with policy interventions.

These findings are further illustrated by comparing our decision rule approach
with an alternative method using the Llama model’s predicted probabilities di-
rectly. Figure 7 shows the false positive rate achieved when retaining different
percentages of stops, comparing two approaches: (1) our decision rules based on
removing stops with specific main reasons, and (2) ranking stops by the Llama
model’s predicted probability of reasonable suspicion and removing those with
the lowest probabilities. The blue line represents the false positive rate when
implementing decision rules to discontinue stops, where the decision rules are de-
termined using the train set and implemented on the test set. This represents a
realistic, cross-validated application of decision rules. The green line represents
the false positive rate when decision rules are determined using the test set and
implement on the test set. While not realistic, this represents the theoretical
optimal performance from a set of decision rules.
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Figure 7. Comparison of False Positive Rate Reduction Strategies

Notes: This figure compares two approaches for reducing false positive rates in police stops. The x-axis

shows the percentage of stops retained, while the y-axis shows the resulting false positive rate. The red
line shows the performance of the Llama model, if we remove stops with the lowest predicted probabilities

of reasonable suspicion (having calibrated the Llama model using the train set and then tested it using

the test set). The blue and green lines represent a decision rule approach that progressively removes
stops based on problematic main reason topics, ranked by their ability to reduce false positives. The blue

line reflects the false positive rate when decision rules are determined using the train set and tested using

the test set, and the green line represents the false positive rate when decision rules are both determined
using the test set and tested using the test set. The green line therefore represents the theoretical optimal
performance of a decision-rule approach, whereas the blue line represents a realistic implementation. The
decision rules do not monotonically decrease the false positive rate in the blue line due to overfitting;
certain rare justifications for stops have a high false positive rate in the train set and seem promising to

remove but turn out to have a lower false positive rate in the test set.
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The comparison reveals that while both approaches successfully reduce false
positive rates, the Llama model consistently outperforms the realistic implemen-
tation (blue line) and also outperforms the theoretically optimal implementation
of decision rules (green line) except at very high levels of stops discontinued
(around 70% of stops discontinued). Table ?? quantifies this difference at key
retention levels.

Stops Decision Llama Difference
Retained (%) Rules FPR Model FPR

90 0.172 0.120 +0.053
80 0.148 0.075 +0.073
70 0.127 0.049 +0.079
60 0.107 0.031 +0.076
50 0.097 0.020 +0.077

Table 7—Performance Comparison of Decision Rules vs. Llama Model at Key Retention

Percentages

Notes: This comparison was generated by ranking all stops either by their main reason topic (for
decision rules) or by their Llama-predicted probability of reasonable suspicion. The table shows false

positive rates (FPR) at different retention levels. The “Difference” column shows the decision rules FPR

minus the Llama model FPR; positive values indicate the Llama model achieves lower false positive rates.
Results are based on a test dataset of 11,501 stops, and the decision rules were determined based on

the train set and then evaluated on the test set (the blue line in the prior figure). For the decision rule

approach, stops were progressively removed based on the ranking of main reason topics by how much
their removal decreased the false positive rate of the remaining stops. For the Llama model approach,

stops were ranked by their predicted probability of having reasonable suspicion, and those with the lowest

probabilities were progressively removed.

This comparison was generated using the same test dataset of 11,501 stops.
For the decision rule approach, stops were progressively removed based on the
ranking of main reason topics by how much their removal would reduce false
positives for the remaining set of stops. For the Llama model approach, stops
were ranked by their predicted probability of having reasonable suspicion, and
those with the lowest probabilities were progressively removed. At each retention
level, we calculated the false positive rate among the remaining stops.
The superior performance of the Llama model approach suggests that while

simple decision rules based on main reasons can reduce unconstitutional stops, the
neural network captures more nuanced patterns that enable better discrimination
between lawful and unlawful stops. However, the decision rule approach offers
advantages in terms of interpretability and ease of implementation—officers can
be given clear, actionable guidance about which types of stops to avoid, whereas
the Llama model operates as a “black box” that would be more difficult to explain
and implement in practice. We report the same analysis for frisks in Appendix
F.



28

V. Discussion

A. Limitations

While our results suggest potential promising applications for LLMs in provid-
ing real-time feedback to law enforcement officers, there are a number of potential
issues that could arise in implementation.
One broad issue is that the data that we use to train models were collected in

a particular setting (ordinary policing without LLM feedback), and introducing
LLM feedback could change that setting in a manner that affects the performance
of the model. For instance, officers currently exercise their own judgment and
plausibly only make stops when they believe that RAS is present. Live AI advice
might change that decisionmaking dynamic—officers might ask the AI for advice
about borderline cases where they believe that RAS is not actually present, in
order to get a second opinion. Because none of these cases are presently in the
train set, this could decrease the performance of our AI models when applied in
the field. The extent of the problem is difficult to anticipate—it depends on the
sorts of issues that would arise in these marginal cases and how much they differ
from the current set of cases used to train the LLM.
Relatedly, the effect of AI feedback depends on behavioral questions in how

officers respond to that feedback. Ideally, officers would now have a tight feedback
loop from live advice and would quickly improve their instincts about the sorts
of scenarios that have or lack RAS, and they would use these improved instincts
to make fewer unconstitutional stops. But there are two potential alternatives,
both problematic.
First, officers might simply ignore the AI’s feedback and make stops as they

were before. Whether this occurs or not depends on details of implementation—
for instance, the specific instruction officers receive about how to use AI feedback
and the informal emphasis placed by the department on compliance with AI
instructions.
Second, officers could use this information not to make fewer unconstitutional

stops, but to manipulate their descriptions of stops to trick their superiors and
courts into allowing stops that are truly unconstitutional. That is, providing this
feedback to officers could simply drive unconstitutional behavior underground.
However, if AI advice is complemented by body-worn cameras, or if body-worn
camera content is itself used to generate the AI advice, this potential problem
may be less likely. Descriptions of stops produced by body-worn cameras are
likely more difficult (although not impossible) to manipulate.
A final issue with our current approach is it the lack of explanation may meet

resistance by officers in the field. Currently, our models simply produce a classi-
fication of whether RAS is present or not; it would be better to accompany these
assessments with an explanation of why a stop has or lacks RAS. These could
also be generated by an LLM and could draw on a database to identify the most
likely legal issues with a given police stop.
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We hope to conduct a follow-on field experiment providing AI feedback to actual
law enforcement officers, in which case we can develop more explainable ML
techniques and attempt to quantify the impact of the potential issues discussed
above.
Note that none of the limitations discussed above apply in the context of using

LLMs to audit police practice, as is currently done in many cities, making it a
safe and useful starting point to deploy LLMs for classification of RAS.

B. Alternative Hypotheses

There are other police stop issues of substantial interest that we do not address
here. Most notably, there is great interest (see subsection II.A ) in assessing racial
disparities in policing, and incorporating text data could potentially allow sub-
stantial improvement. Predicting which frisks most likely to result in contraband
discovery is another topic of strong interest.
After some initial work on these topics, we choose not to include them because

both suffer from what may be termed an endogeneity problem. Police officers may
vary in how they describe a situation based on the race of the individual stopped
or frisked. For example, consciously or unconsciously, they may use different
wording, include or exclude certain facts, or vary their tone depending on the
race of the individual stopped. If related to the outcome of interest (e.g. RAS) a
good LLM will pick up on these differences.
As a simple example, assume an officer always uses the word “loiter” to describe

a Black individual and “linger” for White individuals. If RAS is less common for
Blacks than Whites, loiter will predict RAS. Including it as a control variable in
an analysis of differential racial effects will lead to incorrectly underestimating
racial differences.
A similar problem is present if trying to predict contraband detection. Since

the officer knows whether or not contraband has been detected before writing
the report, there could also be subtle differences in wording—but not in any real
world actions—that the LLM would pick up as predictive of contraband. The
officer may, for example, be more likely to mention a “bulge” when a weapon
was in fact found, but omit it when not. Then bulge would be associated with
contraband in the text, but not in reality. Since it is real-world predictors of
contraband that would be of interest, this would not be helpful.
Importantly, neither of these issues is a concern in our task, predicting RAS.

This is because what is of interest is the narrative text itself. If words in the
narratives predict RAS for whatever reason, this is useful, since this is exactly the
task of attorneys—to determine RAS based on text. There is somewhat greater
concern in considering the usefulness of the predictions for the potential future
applications of giving real-time advice - narratives that suffer from ex-post bias.
However, the presence of RAS is crucially different from contraband discovery in
that officers believe there is RAS in 100% of stops. Thus, there should not be
conscious or unconscious wording variation based on their RAS assessment if they
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believe it to always be present.
Still, application of this methodology for real-time legal assessments would cer-

tainly require training with video and audio data from body-worn cameras. Re-
lying primarily or exclusively on objective sources of information would reduce or
eliminate any incentives for officers to “shade” narratives in ways that are ex-post
favorable. There are potential costs from this approach, however, in loss of infor-
mation and judgment from officers, as well as potential decreased job satisfaction
from reduced officer autonomy.

VI. Conclusion

We evaluated multiple approaches, including classic ML algorithms (random
forest, logistic regression, and LPM), OpenAI’s state-of-the-art o3 model with
detailed legal prompting, and fine-tuned Llama 3 models. Our results demon-
strate that fine-tuned Llama 3 models can effectively predict the legality of both
stops and frisks, with the stop model achieving 87.9% accuracy and the frisk model
achieving 76.9% accuracy. Moreover, fine-tuned Llama 3 was even more accurate
on subsets for which it had high confidence, with 95% accuracy on 74.6% of stops
and 29.6% of frisks. Fine-tuned Llama 3 models consistently outperformed all
ML models, as well as our human RA.
The fact that fine-tuned Llama 3 outperformed o3, even though o3 is a much

stronger model absent fine-tuning, suggests the importance of fine-tuning in order
to capture domain-specific knowledge in criminal law. The fact that Llama 3 sub-
stantially simpler ML models, like random forests and logistic regression, suggests
that understanding context and nuance (i.e., Llama 3’s ability to understand the
relationships between words rather than treating narratives as bags of words) is
also important.
In addition, the fact that justifications for stops are so diverse, and the difficulty

in formulating simple decision rules that can substantially reduce unconstitutional
stops (especially when compared to Llama 3) underscores the complexity of RAS
determinations in the field.
The ability of algorithms to classify police narratives as having or lacking rea-

sonable suspicion for both stops and frisks has important practical implications.
Most immediately, our methods enable low-cost audits of the legality of police
departments’ current practices. Rather than relying on small samples or costly
large-scale audits involving human lawyers, departments could use LLMs to ef-
ficiently identify problems in policing, and plaintiff’s lawyers could use LLMs to
decrease the costs of litigation.
Contingent on details of implementation, our method could also provide live

feedback to officers before making stops or conducting frisks, advising them
whether their actions are likely to be deemed illegal. This is particularly im-
portant for frisks, where officers must meet the additional burden of articulating
why they believe a suspect is armed and dangerous. By providing real-time guid-
ance, these algorithms could help reduce unconstitutional police encounters while
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maintaining public safety.



32

REFERENCES

Antonovics, Kate, and Brian G. Knight. 2009. “A New Look at Racial Pro-
filing: Evidence from the Boston Police Department.” The Review of Economics
and Statistics, 91: 163–177.

Anwar, Shamena, and Hanming Fang. 2006. “An Alternative Test of Racial
Prejudice in Motor Vehicle Searches: Theory and Evidence.” The American
Economic Review, 96: 127–151.
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Appendix A: Data Processing, Fine-Tuning, and Prompt Engineering

A1. Data Processing

The dataset underwent several preprocessing steps to ensure data quality and
consistency. The following procedures were applied:

1) Standardizing Variables: Variables were standardized to decrease the
number of discrete values (e.g., mapping “Y”, “Yes”, “yes” to “Yes”).

2) Age Processing:

• Ages were converted to numeric values.

• Observations with ages younger than 9 or older than 99 were dropped.

• Negative ages and age 0 were dropped.

3) Physical Characteristics:

• Height values outside the range of 4’6” to 7’ were dropped.

• Weight values lower than 50 lbs or greater than 500 lbs were dropped.

• Unrealistic weight-build combinations (e.g., ’Thin’ with weight greater
than 300 lbs) were dropped.

4) Date and Time:

• A ’minutes since 2000’ variable was created as a linear time control.

• A Month variable was created.

• Time of day was categorized as ’Night’ (0:00-8:00 hours), ’Day’ (8:00-
16:00 hours), or ’Evening’ (16:00-24:00 hours).

5) Location Information:

• Police Service Area (PSA) 7700 was removed.

6) Text Cleaning:

• ’apos;’ was replaced with apostrophes in the stop narratives.

• Newline characters were replaced with spaces in the stop narratives.

7) Rare Value Handling:

• Observations with rare values (frequency < 0.5%) Eye Color and Build
were dropped.

• Observations involving officers with fewer than 10 stops were dropped.

8) Duplicate Removal: Duplicate rows were removed if they matched based
on the following variables: location, officer ID, further suspect description,
suspect sex, suspect age, suspect height.
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A2. LoRA Fine-Tuning

In LoRA, the weight update for a layer is represented as the product of two
low-rank matrices, significantly reducing the number of trainable parameters com-
pared to full fine-tuning (Hu et al., 2022).
For a given weight matrix W0 in the original model, LoRA decomposes the

weight update into the product of two low-rank matricesB ∈ Rd×r andA ∈ Rr×k,
where r is the chosen rank (typically much smaller than d and k):

(A1) W = W0 + αBA

Where W0 is frozen during training, α is a scaling factor, and only B and A are
trained. This reduces the number of trainable parameters from d× k to r(d+ k).
For example, if d = k = 1000 and r = 8, this reduces the number of trainable
parameters from 1,000,000 to 16,000.
During the forward pass, given an input x, the output is computed as:

(A2) h = Wx = W0x+ α(BA)x

This decomposition allows for efficient fine-tuning while maintaining model per-
formance through the low-rank approximation of the weight updates.
This approach has shown comparable performance to full fine-tuning on vari-

ous natural language processing tasks while dramatically reducing the number of
trainable parameters (Hu et al., 2022).

A3. LoRA Fine-Tuning Hyperparameters

We used the following hyperparameters and configurations to fine-tune Llama
3:

• Base Model: We used a 4-bit quantized version of the Llama 3.2-8B In-
struct model, which allows for faster loading and reduced memory usage.

• Sequence Length: The maximum sequence length was set to 2048 tokens.

• LoRA Configuration:

– Rank (r): 16

– LoRA Alpha: 32

– LoRA Dropout: 0

– Bias: none

• Training Configuration:
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– Batch Size: 16 per device

– Gradient Accumulation Steps: 1

– Warmup Steps: 100

– Number of Epochs: 3

– Learning Rate: 0.0001

– Optimizer: AdamW (8-bit)

– Weight Decay: 0.01

– Learning Rate Scheduler: Cosine

• Precision: We used mixed precision training, automatically selecting be-
tween FP16 and BF16 based on hardware support.

• Gradient Checkpointing: We used Unsloth for gradient checkpointing.

A4. OpenAI o3 Model Prompts

We evaluated OpenAI’s o3 model using two different prompt styles for each pre-
diction task: a short prompt and a detailed prompt that incorporates additional
information about the relevant legal framework. The detailed prompts performed
better and were used for the results reported in the main text.

Stop Reasonable Suspicion Prompts

Short Prompt:

You are being given the text of a police report describing a police stop
in [CITY]. Determine whether the police had reasonable suspicion to
make the stop, as required under the Supreme Court’s decision in
Terry v. Ohio, as interpreted under the laws of [CITY] and [STATE].

Express your answer on a scale from 0 (meaning there was definitely no
reasonable suspicion) to 100 (meaning there was definitely reasonable
suspicion). Give only the number in your answer.

Detailed Prompt:

You are an expert on Fourth-Amendment “stop-and-frisk” law in
[STATE].

Below you will receive the narrative portion of a police department
stop form.

Your single task is to decide whether, based only on what the
officer actually wrote, the officer had reasonable suspicion to stop
the person(s) under Terry v. Ohio, as that doctrine is applied in
[CITY] and [STATE].
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LEGAL FRAMEWORK – APPLY ONLY TO THE STOP (not frisk,
search, or arrest)

1. Three required elements of reasonable suspicion (RS)

• Person-specific – facts tie the suspicion to the particular indi-
vidual stopped.

• Reliability – the information is reasonably trustworthy. Direct
observation≥ identified citizen> known informant> anonymous
tip.

• Crime-suggestive – facts indicate past, present, or imminent
criminal activity (mere “suspicious” behavior is not enough).

2. Sources of information and their weight

• Officer’s own observations – high reliability; ordinarily satisfy
both person-specific and reliability.

• Flash / radio / third-party report – medium; require (a) a
concrete description that the stopped person matches and (b)
an identified or clearly reliable source.

• Anonymous information alone – low; never enough unless
independently corroborated by the officer’s own observations.

3. Examples that can justify a stop (when all three elements
are met)

• Observed drug transaction (“observed transaction”).

• Specific description plus corroboration of a violent crime suspect
(e.g., “orange shirt, camo jacket, brown pants, breaking car win-
dows with a hammer”).

• Report of person with a gun plus matching description or flight
or visible bulge.

• Observed open container, apparent intoxication, curfew/truancy
when age plausible (<18/<17).

• Observed trespass inside abandoned property, casing cars, ag-
gressive panhandling (with conduct described).

• Officer personally knows subject has an outstanding warrant be-
fore the stop.

• Immediate reaction to gunshots in the vicinity (stops made mo-
ments after shots are treated as RS).
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4. Examples that never alone justify a stop (prohibited by
the PPD consent decree)

• “Loitering,” “loitering in a high-crime/drug area.”

• “High-crime area” standing alone.

• “Suspicious,” “furtive movements,” “investigation of person,”
“acting nervous.”

• Anonymous “man with gun” (no corroboration).

• Merely riding in a vehicle stopped for a traffic infraction (pas-
senger).

• Vague “involved in a disturbance” unless the disturbance is de-
scribed (e.g., fight witnessed).

• General driver/traffic infractions are assumed valid for the driver;
do not create RS to detain a pedestrian or passenger unless ad-
ditional facts link that person to a crime.

5. Special notes

• If the narrative plainly records something that is not really a
“stop” (e.g., executing an arrest warrant, assisting a complainant),
output “n/a” instead of a number.

6. Scoring scale – output must be a single integer 0-100

• 0–10: Clearly no RS (only prohibited or vague reasons).

• 11–30: Very weak; maybe one element partially present.

• 31–49: Insufficient; at least one element missing.

• 50: Borderline; elements just barely satisfied.

• 51–70: More likely than not that RS exists.

• 71–89: Strong RS; all three elements well supported.

• 90–100: Definitive RS; detailed, specific, reliable facts of criminal
activity.

7. Method

• Read only what is written. Do not invent facts or discount ones
that are written, even if implausible.

• Apply sections 1–4 to decide whether all three elements are met.

• Choose the score from section 6 that best reflects the strength of
RS.

• Respond with only:

– the integer score, or
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– “n/a” if no stop analysis is required.

WHEN YOURESPOND, PROVIDE ONLY THE INTEGER (or “n/a”).
NO WORDS, NO EXPLANATION.

Frisk Reasonable Suspicion Prompts

Short Prompt:

You are being given the text of a police report describing a police
stop. Determine whether the police had reasonable suspicion to frisk
the person, as required under the Supreme Court’s decision in Terry
v. Ohio, as interpreted under the laws of [CITY] and [STATE].

Express your answer on a scale from 0 (meaning there was definitely
no reasonable suspicion to frisk) to 100 (meaning there was definitely
reasonable suspicion to frisk). Give only the number in your answer.

Detailed Prompt:

You are an expert on Fourth-Amendment “stop-and-frisk” law in
STATE. Below you will receive the narrative portion of a police de-
partment stop form. Your single task is to decide whether, based
only on what the officer actually wrote, the officer had reason-
able suspicion to frisk the person(s) under Terry v. Ohio, as that
doctrine is applied in [CITY] and [STATE].

LEGAL FRAMEWORK – APPLY ONLY TO THE FRISK (not stop,
search, or arrest)

1. Three required elements of reasonable suspicion (RS)

• Person-specific – facts tie the suspicion to the particular indi-
vidual frisked.

• Reliability – the information is reasonably trustworthy. Direct
observation≥ identified citizen> known informant> anonymous
tip.

• Weapon or danger indicator – facts suggest the person is
armed and presently dangerous.

2. Sources of information and their weight

• Officer’s own observations – high reliability; still need a weapon/danger
indicator.
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• Identified victim or eyewitness – medium-high; officer must
note how the source is identifiable.

• Known informant with a track record – medium; officer
must say the informant has been reliable before.

• Anonymous tip or vague “flash” – low; needs independent
corroboration by the officer.

3. Examples that can justify a frisk (when all three elements
are met)

• Visible weapon or unmistakable bulge consistent with a weapon.

• Refusal to remove hands from pockets after the officer directs the
person to do so.

• Nature of suspected crime is violent (robbery, assault, gun of-
fense).

• Reliable report of a gun plus match to description and corrobo-
rating behavior (flight, visible bulge, etc.).

• Violent disturbance in progress (fight, domestic assault) observed
or reliably reported.

• Gunshots just heard nearby; officer stops persons fleeing or lin-
gering at the scene.

• Specific description of an armed suspect matched by the stopped
person.

• Officer knew, before the stop, of an outstanding warrant for a
violent or weapons offense.

4. Examples that never alone justify a frisk (prohibited by
the PPD consent decree)

• High-crime or high-drug area by itself.

• “Furtive movements,” “acting suspiciously,” “belligerent,” “in-
vestigation of person.”

• Loitering or loitering in a high-crime area.

• Anonymous unverified “man with gun.”

• Drug possession or transaction alone (unless other violent-crime
indicators are present).

• Merely placing the person in a patrol car for officer “safety.”

• General nervousness, ordinary hands-in-pockets, or being a pas-
senger in a traffic stop.

5. Special notes
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• The officer must have specific, articulable facts that would lead
a reasonable officer to believe the person is armed and presently
dangerous.

• Evaluate the frisk separately from the stop. A bad stop does not
automatically invalidate a good frisk (and vice-versa), though
evidence from an unlawful stop can be suppressed as “fruit of
the poisonous tree.”

• A clear weapon-shaped bulge, by itself, is barely enough but still
counts as RS.

• Hands-in-pockets plus refusal to remove them plus a context in-
volving possible violence can supply RS.

• If the narrative is not really about a frisk (e.g., search incident to
arrest, warrant execution, medical assist), output “n/a” instead
of a number.

6. Scoring scale – output must be a single integer 0-100

• 0–10: Clearly no RS (only prohibited or vague reasons).

• 11–30: Very weak; maybe one element partially present.

• 31–49: Insufficient; at least one element missing.

• 50: Borderline; elements just barely satisfied.

• 51–70: More likely than not that RS exists.

• 71–89: Strong RS; all three elements well supported.

• 90–100: Definitive RS; detailed, specific, reliable facts of a weapon
or danger.

7. Method

• Read only what is written. Do not invent facts or discount ones
that are written, even if implausible.

• Apply sections 1–4 to decide whether all three elements are met.

• Choose the score from section 6 that best reflects the strength of
RS.

• Respond with only:

– the integer score, or

– “n/a” if no frisk analysis is required.

WHEN YOURESPOND, PROVIDE ONLY THE INTEGER (or “n/a”).
NO WORDS, NO EXPLANATION.
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Appendix B: Feature Configurations for Model Evaluation

To optimize the performance of our models, we evaluated three different feature
configurations with different levels of detail. This comparison allowed us to de-
termine whether additional metadata beyond the police narrative would improve
prediction performance.

Based on the performance of the configurations as described below, we ulti-
mately decided to use police narratives alone. Using only police narratives also
had the benefit of simplicity and real-world feasibility.

B1. Overview of Feature Configurations

We developed three distinct configurations designed to answer key questions
about model performance and practical deployment:

Configuration 1: Narrative Only. This configuration uses only the police
officer’s written narrative description of the stop, representing the core informa-
tion that officers must provide to justify their actions under Terry v. Ohio. This
approach offers simplicity, interpretability, and eliminates the risk of the model
learning demographic biases.

Configuration 2: Pre-Stop Information. This configuration includes the
police narrative plus information readily available to officers before making a stop,
enabling potential real-time guidance. This tests whether contextual information
about the officer, location, and timing improves predictions while remaining prac-
tical for field deployment.

Configuration 3: All Variables. This configuration includes all available
information, including post-stop data that could only be obtained after the stop
was completed. While not suitable for real-time use, this configuration allowed
us to test whether additional information improved the model’s ability to predict
legal assessments and whether demographic factors influenced coding decisions.

B2. Mathematical Formulation

We formally define each feature configuration as follows:

Configuration 1: Narrative Only

For the narrative-only configuration, we use only the police report text:

(B1) xnarr,i = f(ri)

where f(·) denotes the text transformation function (bag-of-words with 5,000
vocabulary size for baseline models, or tokenization for language models), and ri
is the police stop narrative for observation i.
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Configuration 2: Pre-Stop Information

The pre-stop configuration adds information available before the stop to the
narrative:

(B2) xpre,i = [f(ri); f(di); c
pre
i ;mi]

where the components are:

• f(ri): transformed police narrative

• f(di): transformed free-text description of the suspect (if available)

• cprei = [oi;pi;wi; ti]: concatenation of pre-stop categorical features

• mi: linear time (minutes since 2000)

The pre-stop categorical features cprei include:

• oi: officer fixed effects vector

• pi: police service area fixed effects vector

• wi: binary indicator for whether officer had a partner

• ti: time of day fixed effects vector (daytime/evening/night)

Configuration 3: All Variables

The “all variables” configuration adds post-stop information:

(B3) xall,i = [f(ri); f(di); c
pre
i ;mi; c

post
i ;npost

i ]

where the additional components are:

• cposti = [si;ai; li; ei;bi;hi;ki; ji]: post-stop categorical features

• npost
i = [gi; vi]: post-stop numerical features

The post-stop categorical features are:

• si: sex indicator

• ai: race fixed effects vector

• li: Latino/Hispanic indicator

• ei: eye color fixed effects vector

• bi: build fixed effects vector (e.g., thin, medium, heavy)

• hi: hair color fixed effects vector
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• ki: complexion fixed effects vector

• ji: reason for stop fixed effects vector

The post-stop numerical features are:

• gi: height

• vi: weight

B3. Implementation Details

For baseline machine learning models (Random Forest, Logistic Regression,
LPM), text features were created using count vectorization with a maximum vo-
cabulary of 5,000 words and English stop words removed. All categorical variables
were one-hot encoded with unknown categories handled by ignoring them dur-
ing transformation. Numerical features were standardized to zero mean and unit
variance using train set statistics.
For the Llama 3 model, the exact prompt format for stops using the narrative-

only configuration was:

“Here is a police report provided by a police officer containing details about a pedestrian
stop: [REASON DESC]. Based on the description in the police report above, did the

officer have a reasonable suspicion that the suspect had committed, was committing, or

was about to commit a crime, as required by Terry v. Ohio? Cases considered to give rise
to reasonable suspicion include but are not limited to (1) curfew stops of persons 23 or

younger and (2) stops where the suspects have contraband (contraband includes guns or

other weapons, whether legal or illegal, illegal drugs, stolen property, and large amounts
of cash). Answer only ‘Yes’ or ‘No’.”

For configurations with additional features, for Llama 3 the relevant information
was incorporated into structured prompts that maintained the same basic format
while including the supplementary data fields as additional text in the prompt.
For the baseline machine learning models, numerical and categorical features were
directly encoded as numerical variables and one-hot fixed effects, respectively.

B4. Summary of Feature Configurations

Table B1 provides a comprehensive overview of the data fields included in each
configuration:
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Table B1—Data Fields Included in Each Feature Configuration

Data Field Narrative-Only Pre-Stop All Variables

Core Information
Police Narrative (REASON DESC) ✓ ✓ ✓

Pre-Stop Information (Available Before Stop)
Officer ID ✓ ✓
Police Service Area ✓ ✓
Officer Has Partner ✓ ✓
Time of Day ✓ ✓
Date/Time of Incident ✓ ✓
Further Description ✓ ✓

Post-Stop Information (Available Only After Stop)
Suspect Sex ✓
Suspect Race ✓
Suspect Latino/Hispanic ✓
Suspect Age ✓
Suspect Height ✓
Suspect Weight ✓
Suspect Build ✓
Eye Color ✓
Hair Color ✓
Complexion ✓
Reason for Stop Category ✓

Appendix C: Baseline Model Specifications

This appendix describes in detail the baseline machine learning models evalu-
ated in our study. All models were implemented in Python using scikit-learn and
trained on the same data splits as the fine-tuned Llama 3 model to ensure a fair
comparison. The feature configurations used for these models are described in
Appendix B.

C1. Model Specifications

Random Forest

The Random Forest model constructs an ensemble of decision trees, where each
tree Tm is trained on a bootstrap sample of the data with random feature selection
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at each split:

(C1) p̂(y = 1|x) = 1

M

M∑
m=1

I[Tm(x) = 1]

where M is the number of trees and I[·] is the indicator function.

Hyperparameters: The model uses 100 estimators with maximum features
per split set to

√
p, where p is the total number of features. The minimum samples

per split is 2, minimum samples per leaf is 1, and bootstrap sampling is enabled.

Logistic Regression

Logistic regression models the probability of reasonable suspicion using:

(C2) p(y = 1|x) = 1

1 + exp(−(wTx+ b))

The model is trained by minimizing the regularized negative log-likelihood:

(C3) min
w,b

−
n∑

i=1

[yi log(pi) + (1− yi) log(1− pi)] +
λ

2
∥w∥22

where pi = p(y = 1|xi) and λ is the regularization strength.

The model uses L2 regularization (ridge regression) with regularization strength
λ = 1.0. The lbfgs solver is employed with a maximum of 1,000 iterations.

Linear Probability Model (LPM)

The Linear Probability Model uses ordinary least squares regression (without
regularization) to directly predict the probability:

(C4) ŷi = wTxi + b

The model minimizes the squared error loss:

(C5) min
w,b

n∑
i=1

(yi −wTxi − b)2

Since OLS predictions are not constrained to [0,1], we clip the predictions:

(C6) p̂(y = 1|x) = max(0,min(1,wTx+ b))
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C2. Implementation Details

All models were trained using the 55%/15%/30% train/validation/test split
used for all analysis in this paper. For text processing, the bag-of-words features
were created using a maximum vocabulary size of 5,000 words with English stop
words from NLTK removed. The token pattern followed the default configuration,
capturing words of 2 or more alphanumeric characters. Text was converted to
lowercase, and we used term frequencies rather than binary features.
Missing values were handled systematically across different data types. Text

fields were replaced with empty strings, categorical variables were replaced with
a ’missing’ category, and numerical variables were replaced with 0 after standard-
ization.
All sparse matrices from text vectorization and one-hot encoding were combined

using scipy.sparse.hstack to maintain memory efficiency.

C3. Model Performance with Different Feature Configurations

Tables C1 and C2 present the complete performance metrics on the validation
set for all models across all three feature configurations described in Appendix
B. We used the validation set because we consider the choice of optimal feature
configuration to be a pseudo-hyperparameter that should be selected during val-
idation. We evaluated fine-tuned Llama 3, classic machine learning algorithms
(logistic regression, random forest, and LPM), and OpenAI’s o3 model with both
short and detailed prompts. The o3 model was evaluated on a randomly selected
subset of 500 observations from the validation set to reduce API token costs.
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Table C1—Validation Set Performance for Stop Reasonable Suspicion Prediction

Model Variables AUC-ROC F1 Acc Acc Max Subset
@ 50% w/ 95% Acc

Llama 3
All Variables 0.900 0.928 0.880 0.975 71.2
Pre-Stop 0.701 0.879 0.798 0.886 0.0
Narrative 0.896 0.926 0.876 0.976 72.9

Log Reg
All Variables 0.821 0.900 0.833 0.950 50.5
Pre-Stop 0.821 0.899 0.832 0.950 47.1
Narrative 0.827 0.903 0.839 0.952 51.1

LPM
All Variables 0.735 0.869 0.785 0.908 0.5
Pre-Stop 0.735 0.870 0.786 0.913 2.3
Narrative 0.786 0.888 0.810 0.942 46.0

Rand Forest
All Variables 0.792 0.903 0.827 0.931 37.5
Pre-Stop 0.805 0.905 0.831 0.941 45.4
Narrative 0.815 0.910 0.841 0.942 45.3

o3 (Detailed)
All Variables 0.778 0.879 0.800 0.916 19.3
Pre-Stop 0.741 0.888 0.816 0.912 17.6
Narrative 0.770 0.888 0.817 0.937 17.2

o3 (Short)
All Variables 0.685 0.862 0.771 0.833 0.0
Pre-Stop 0.742 0.863 0.775 0.816 28.9
Narrative 0.710 0.876 0.796 0.857 13.0
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Table C2—Validation Set Performance for Frisk Reasonable Suspicion Prediction

Model Variables AUC-ROC F1 Acc Acc Max Subset
@ 50% w/ 95% Acc

Llama 3
All Variables 0.753 0.861 0.778 0.897 7.9
Pre-Stop 0.714 0.844 0.752 0.873 0.0
Narrative 0.772 0.855 0.772 0.918 24.3

Log Reg
All Variables 0.734 0.829 0.739 0.897 19.7
Pre-Stop 0.733 0.832 0.742 0.897 15.1
Narrative 0.731 0.833 0.744 0.887 22.1

LPM
All Variables 0.622 0.712 0.615 0.832 0.0
Pre-Stop 0.619 0.712 0.611 0.821 0.0
Narrative 0.531 0.651 0.549 0.770 0.5

Rand Forest
All Variables 0.734 0.869 0.776 0.852 12.8
Pre-Stop 0.755 0.871 0.778 0.873 26.4
Narrative 0.753 0.871 0.782 0.883 15.1

o3 (Detailed)
All Variables 0.728 0.753 0.660 0.874 33.3
Pre-Stop 0.665 0.724 0.630 0.838 5.7
Narrative 0.692 0.725 0.636 0.860 16.7

o3 (Short)
All Variables 0.629 0.731 0.634 0.813 5.4
Pre-Stop 0.631 0.722 0.636 0.882 17.8
Narrative 0.635 0.681 0.592 0.723 0.9

C4. Additional Calibration Graphs

Figures C1 and C2 provide another illustration of model calibration for stops
and frisks, respectively. They take each set of model predictions, bucket them
into deciles, and plot the average probability that the model predicts of reasonable
suspicion within each decile against the actual percentage of the time that the
expert coder decided that reasonable suspicion was present.
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Figure C1. Model Calibration for Stop Reasonable Suspicion Predictions

Notes: This figure illustrates the calibration of different models’ predictions for reasonable suspicion

in police stops. Each point represents a decile of model predictions, with the x-axis showing the aver-
age predicted probability of reasonable suspicion within that decile and the y-axis showing the actual
percentage of stops with reasonable suspicion. A perfectly calibrated model would follow the diagonal

dashed line.
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Figure C2. Model Calibration for Frisk Reasonable Suspicion Predictions

Notes: This figure illustrates the calibration of different models’ predictions for reasonable suspicion in
police frisks. Similar to Figure C1, each point represents a decile of model predictions, plotting average

predicted probability against actual percentage of frisks with reasonable suspicion.
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As the figures show, Llama and the classic ML techniques (random forest and
logistic regression) were generally the best-calibrated; the LPM was generally
poorly calibrated when the model deemed reasonable suspicion unlikely. o3 was
poorly calibrated in that it consistently overestimated the likelihood that stops
had reasonable suspicion, and the same for frisks (except at high predicted prob-
abilities). The human codings were extremely poorly calibrated, with the human
RA’s predictions having only a loose relationship to empirical probabilities.



VOL. NO. PROSE AND CONS 55

Appendix D: Ensemble Methods

We implemented a variety of ensemble methods to combine predictions from
our base models (fine-tuned Llama 3, logistic regression, random forest, LPM,
and OpenAI o3). The ensemble methods were evaluated on both stop and frisk
reasonable suspicion predictions. In all cases, we trained initial models on the
train set, determined ensemble hyperparameters using the validation set, and
then tested ensemble performance using the test set. Below we describe the
technical details of each ensemble approach.

Traditional Ensemble Methods

Simple Average Ensemble: This method computes the arithmetic mean of
the predicted probabilities from all base models:

(D1) p̂avg =
1

M

M∑
m=1

p̂m

where M is the number of base models and p̂m is the predicted probability from
model m.

Weighted Average Ensemble: This approach assigns weights to each model
based on their individual performance, specifically using the absolute correlation
between each model’s predictions and the target variable on the validation set:

(D2) p̂weighted =
M∑

m=1

wmp̂m, where wm =
|ρm|∑M
j=1 |ρj |

and ρm is the Pearson correlation coefficient between model m’s predictions and
the binary target.

Median Ensemble: Instead of averaging, this method takes the median of all
model predictions, providing robustness against outlier predictions:

(D3) p̂median = median(p̂1, p̂2, ..., p̂M )

Stacking: This meta-learning approach trains a logistic regression model to
optimally combine base model predictions:

(D4) p̂stack = σ(β0 +

M∑
m=1

βmp̂m)

where σ is the sigmoid function and β0, β1, ..., βM are learned parameters.
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Neural Stacking with Text Integration

Our most sophisticated ensemble method is a neural stacking approach that
combines both the base model predictions and the original police narrative text.
This method uses a pre-trained DistilBERT model to encode the narrative text
and combines these embeddings with the numerical predictions from base models.

The architecture consists of:

1) Text Encoder: A pre-trained DistilBERT model that converts police nar-
ratives into 768-dimensional embeddings. We use the [CLS] token represen-
tation as the text embedding.

2) Feature Combination: The text embedding is concatenated with the M
base model predictions to create a combined feature vector of dimension
768 +M .

3) Classification Head: A multi-layer perceptron (MLP) with one hidden
layer processes the combined features:

h = ReLU(W1[e[CLS]; p̂] + b1)(D5)

ŷ = σ(wT
2 h+ b2)(D6)

where e[CLS] is the text embedding, p̂ = [p̂1, ..., p̂M ]T are the base model
predictions, and W1,b1,w2, b2 are learned parameters.

The model is trained using binary cross-entropy loss with different learning
rates for the DistilBERT encoder (2e-5) and the MLP classifier (1e-3) to account
for the pre-trained nature of the text encoder.

Implementation Details

All ensemble methods were implemented using the validation set for train-
ing/weight determination and evaluated on the held-out test set. For methods
requiring hyperparameter tuning (stacking and neural stacking), we used 5-fold
cross-validation on the validation set. The neural stacking model was trained for
3 epochs with a batch size of 16 using the AdamW optimizer.

Despite the theoretical advantages of ensemble methods, our results show that
they provide only marginal improvements over the fine-tuned Llama 3 model
alone. The best ensemble method (stacking) improved accuracy by only 0.2% and
F1 score by 0.2% for stop predictions, and 1.4% and 1.4% respectively for frisk
predictions compared to Llama 3. This suggests that the fine-tuned language
model already captures most of the predictive signal in the police narratives,
leaving little room for improvement through model combination.
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Ensemble Method Performance Results

Tables D1 and D2 present the performance of our ensemble methods. The
ensemble models were trained using all available base model predictions. As
shown in Table D1, all ensemble methods achieved similar performance levels,
with accuracies ranging from 85.4% to 88.0% for stop predictions and 74.8% to
78.4% for frisk predictions on the test set.

Table D1—Performance of All Ensemble Methods

Stop Predictions Frisk Predictions

Ensemble Method Accuracy F1 AUC Accuracy F1 AUC

Test Set Results (with available models)
Simple Average 0.872 0.925 0.894 0.777 0.854 0.806
Weighted Average 0.874 0.925 0.898 0.784 0.860 0.811
Median Voting 0.870 0.924 0.891 0.777 0.856 0.808
Stacking 0.880 0.928 0.902 0.783 0.861 0.814
Neural Stacking 0.854 0.913 0.846 0.748 0.839 0.723

Validation Set Results
Simple Average (Val) 0.880 0.929 0.895 0.788 0.865 0.791
Weighted Average (Val) 0.883 0.931 0.898 0.792 0.869 0.795
Median Voting (Val) 0.876 0.927 0.892 0.787 0.867 0.792
Stacking (Val) 0.882 0.929 0.901 0.790 0.870 0.793
Neural Stacking (Val) 0.850 0.912 0.831 0.747 0.850 0.761

Notes: Test set results use all models available in the test data. Validation set results include O3

predictions when available. The specific models included in each ensemble depend on data availability.

Table D2 provides a direct comparison between the fine-tuned Llama 3 model
and the best-performing ensemble method. The results demonstrate that while
the ensemble approach achieves slightly higher performance metrics, the improve-
ments are marginal.
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Table D2—Comparison of Fine-tuned Llama 3 vs. Best Ensemble Method

Accuracy F1 Score AUC-ROC

Model Stop Frisk Stop Frisk Stop Frisk

Fine-tuned Llama 3 0.878 0.769 0.926 0.847 0.901 0.793
Best Ensemble (Stacking) 0.880 0.783 0.928 0.861 0.902 0.814

Improvement +0.002 +0.014 +0.002 +0.014 +0.001 +0.021
Notes: Improvement row shows the absolute percentage point difference between the best ensemble and

fine-tuned Llama 3.

These results suggest that the fine-tuned Llama 3 model already captures most
of the predictive signal in the police narratives. The marginal improvements from
ensemble methods do not justify the additional computational complexity and
reduced interpretability that comes with combining multiple models. This finding
aligns with work showing that large language models can achieve near-optimal
performance on text classification tasks when properly fine-tuned (Hansen and
Salamon, 1990; Polikar, 2006).
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Appendix E: Topic Modeling Methodology

Our topic modeling approach was designed to extract semantically meaning-
ful and generalizable topics from police narratives while handling the scale and
complexity of the dataset. This approach was inspired by TopicGPT (Pham
et al., 2023), which uses LLMs to identify topics in text corpora. However, our
implementation differs substantively in architecture, especially in our hierarchi-
cal deduplication process. TopicGPT has been shown to outperform classic topic
modeling techniques including Latent Dirichlet Allocation (LDA), BERTopic, and
SeededLDA in producing coherent and interpretable topics (Pham et al., 2023).
Below we describe the technical details of our implementation.

Topic Extraction Process

We employed OpenAI’s o3 model to process all police narratives using the
following prompt:

You are being given the text of a police report. Your task is to identify generalizable topics
within the police report that reflect the rationale or justification for the stop. Output the

existing topics as identified in the police report, along with exact quotation(s) from the

police report corresponding to those topics. The quotations should reflect the content in
the report related to each topic, so that if the quotations were masked the topic would be

removed from the report.

[Examples]

Example 1: Identifying “* Walking on Highway and * Known Warrant”

Police Report:

POLICE OBSERVED MALE WALKING ON THE HIGHWAY AT LISTED LOCATION.

POLICE HAD PRIOR KNOWLEDGE THAT MALE HAD AN OPEN WARRANT FOR
ASSAULT. REFER TO DC#16-02-044212. MALE WAS PLACED INTO CUSTODY

AND TRANSPORTED TO SVU.

Your response:

• Walking on Highway: “MALE WALKING ON THE HIGHWAY”

• Known Warrant: “POLICE HAD PRIOR KNOWLEDGE THAT MALE HAD AN
OPEN WARRANT FOR ASSAULT”

[Instructions]

1) Determine topics mentioned in the police report.

• The topic labels must be as GENERALIZABLE as possible. They must not
be report-specific.

• Each topic label must reflect a SINGLE topic instead of a combination of
topics.

• The new topics must be preceded by *, have a short general label, and have
exact quotations that if masked would entirely remove that topic from the

report. You may include multiple quotations for a single topic, separated by
a comma.

2) Perform ONE of the following operations:

a) If there are topics in the police report, output the topics.
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b) If the police report contains no topic, return “None”.

This prompt design ensures that topics are generalizable across reports, focused
on single concepts, and accompanied by exact quotations that enable precise
interpretation. To handle the large volume of reports efficiently, we used OpenAI’s
Batch API, which processes multiple requests asynchronously while maintaining
consistency in the extraction approach.

Topic Deduplication Algorithm

After initial extraction, we identified substantial redundancy in topic labels due
to minor variations in phrasing. Our deduplication algorithm maps similar topics
to canonical forms through the following process:

1) Similarity scoring: We compute embeddings for all topics using Ope-
nAI’s text-embedding-3-large model (3072 dimensions) and calculate cosine
similarity between topic pairs. Additionally, we employ BM25 scoring to
capture lexical similarity. Topics are then processed in batches of up to 20,
where each batch is constructed by selecting an anchor topic and including
similar topics based on a 50/50 combination of embedding similarity and
BM25 scores.

2) Canonical selection: Each batch of similar topics is processed by the o3
model using the following prompt:

You are a data cleansing assistant. You will be given a list of topic labels from police
reports. Your task is to analyze these labels and do one of two things:

a) If multiple labels represent the same or similar concepts, map them all to
a single canonical label (choose the most representative one or create a new

standardized name)

b) If a label is unique and doesn’t belong with others, map it to itself (the canon-

ical label is the same as the original)

IMPORTANT: For topics to be grouped together, ALL semantic elements present

in one topic must also be present in the other topics being grouped with it. The
canonical label must contain ALL the semantic elements that are common to all

topics being mapped to it. Do not map topics together if one contains elements that

the others do not share.

Be conservative - only group topics that are clearly referring to the same concept, in
the same direction. For example, ’Warrant for Arrest’ and ’No Warrant for Arrest’
should not be grouped together. When in doubt, keep topics separate by mapping
them to themselves.

Only respond in valid JSON format with one key: ’canonical mapping’. The ’canon-
ical mapping’ should map each original label to its canonical label. Do not include

any explanation or extra text, only provide the JSON.

The model returns a JSON mapping that assigns each topic in the batch
to its canonical form. This process is repeated for all topics in the current
iteration. After processing all batches, the algorithm performs transitive
closure to update all mappings. That is, if topic A maps to B in one
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iteration and B maps to C in another, then A ultimately maps to C. After
each iteration and its accompanying transitive closure, the model begins
a new iteration with the resulting canonical topics. The iterative process
continues until convergence is reached, defined as when at least 75% of
batches produce no changes.

Main Reason Identification Methodology

After extracting and deduplicating topics from police narratives, we imple-
mented a systematic approach to identify which topic serves as the primary justi-
fication—the “main reason”—for each stop. This analysis enables us to simulate
targeted policy interventions by calculating the impact of discontinuing stops
based on specific main reasons.

Main Reason Identification Prompt

We employed OpenAI’s o3 model to identify the main reason for each stop using
the following structured prompt:
System Prompt:

You are analyzing a police stop report to identify which of a list of topics represents the

MAIN REASON for the stop.

You will be given:

1) The full police report text

2) A list of topics identified in this report

Your task is to determine which ONE of these topics best represents the PRIMARY reason
the stop was initiated. Consider:

• The chronological order of events in the report

• What triggered the initial police contact

• The most serious or significant reason if multiple exist

Output ONLY the exact topic that represents the main reason, or “NONE” if you cannot

determine a clear main reason from the given topics.

Distribution of Main Reasons for Stops and Frisks
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Figure E1. Distribution of Police Stops by Main Reason Topic

Notes: This figure displays the distribution of police stops in the test set across canonical topics identified

as main reasons. The blue bars represent the number of stops for each topic, sorted in descending order

by frequency. The red line shows the cumulative percentage of stops, demonstrating the distribution’s
long tail. The distribution follows an approximately exponential pattern based on its probability density

function (PDF) and cumulative distribution function (CDF).
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Figure E2. Distribution of Police Frisks by Main Reason Topic

Notes: This figure displays the distribution of police frisks in the test set across canonical topics identi-

fied as main reasons. The blue bars show the number of frisks for each topic (sorted by frequency), while

the red line shows the cumulative percentage of frisks. Like the stops distribution, this follows an ap-
proximately exponential pattern, indicating that a small number of topics account for a disproportionate

share of frisks.
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E1. Decision Rule Formulas

Formally, let S denote the set of all stops, and let Si ⊆ S represent the subset
of stops where topic i serves as the main reason. For each stop s ∈ S, let ys = 0 if
the stop lacks reasonable suspicion and ys = 1 if reasonable suspicion is present.
The topic-specific false positive rate for topic i is defined as:

(E1) FPRi =

∑
s∈Si

I(ys = 0)

|Si|

where I(·) is the indicator function and |Si| denotes the cardinality of set Si.
The overall false positive rate across all stops is:

(E2) FPR =

∑
s∈S I(ys = 0)

|S|

To evaluate progressive policy interventions involving multiple topics, we em-
ploy a greedy optimization algorithm. This algorithm iteratively selects topics to
remove based on which removal would minimize the false positive rate among the
remaining stops at each step.
Let T = {1, 2, ...,K} denote the set of all canonical topics. The greedy algo-

rithm proceeds as follows:

1) Initialize the set of available topics A0 = T and the set of removed topics
R0 = ∅.

2) At each iteration m, identify the topic i∗m that minimizes the FPR among
remaining stops:

(E3) i∗m = arg min
i∈Am−1

∑
s∈S\

⋃
j∈Rm−1∪{i} Sj

I(ys = 0)

|S| − |
⋃

j∈Rm−1∪{i} Sj |

3) Update the sets: Rm = Rm−1 ∪ {i∗m} and Am = Am−1 \ {i∗m}.

4) Continue until all topics are removed or no stops remain.

This greedy approach ensures monotonically decreasing false positive rates as
topics are progressively removed. After m iterations, the cumulative false positive
rate is:

(E4) FPR−Rm =

∑
s∈S\

⋃
j∈Rm

Sj
I(ys = 0)

|S| − |
⋃

j∈Rm
Sj |
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The proportion of stops discontinued under this policy is:

(E5) Proportion Discontinuedm =
|
⋃

j∈Rm
Sj |

|S|

This framework generates a policy frontier showing the tradeoff between false
positive rate reduction (FPR− FPR−Rm) and the proportion of stops discontin-
ued.

Cumulative Impact of Discontinuing Stops/Frisks by Main Reason Topics



66

Figure E3. Cumulative Impact of Discontinuing Stops Based on Problematic Main Reasons

Notes: This figure illustrates the cumulative effect of progressively discontinuing stops based on the main
reason for each stop, ranked by how much each removal would reduce the aggregate false positive rate of

the remaining stops (largest reductions first) in the train set. The x-axis then shows the percentage of

total stops in the test set that would be eliminated by discontinuing stops based on an increasing number
of problematic topics. The y-axis shows the resulting false positive rate among the remaining stops in

the test set, both for the train set (blue) and the test set (red). Because the decision rules are formulated
using the train set but then evaluated on the test set, only stops with at least one main reason shared

between the train set and the test set were evaluated. The figure assumes perfect officer compliance with

decision rules.
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Figure E4. Cumulative Impact of Discontinuing Frisks Based on Problematic Main Reasons

Notes: This figure illustrates the cumulative effect of progressively discontinuing frisks based on the main
reason for each frisk, ranked by how much each removal would reduce the aggregate false positive rate of
the remaining frisks (largest reductions first) in the train set. The x-axis then shows the percentage of

total frisks in the test set that would be eliminated by discontinuing frisks based on an increasing number
of problematic topics. The y-axis shows the resulting false positive rate among the remaining frisks in

the test set, both for the train set (blue) and the test set (red). Because the decision rules are formulated
using the train set but then evaluated on the test set, only frisks with at least one main reason shared

between the train set and the test set were evaluated. The figure assumes perfect officer compliance with
decision rules.
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Appendix F: Topic Modeling and Guidelines for Frisks

To evaluate potential policy interventions for frisks, we simulated the impact of
instructing officers not to conduct frisks when certain topics constitute the main
reason. We ranked topics by their efficiency in reducing false positives—that is,
how many unconstitutional frisks would be prevented relative to the total number
of frisks forgone. As with stops, we assume perfect officer compliance with the
policy.
Table F1 presents the cumulative impact of progressively discontinuing frisks

based on the most problematic main reasons. The results demonstrate that dis-
continuing frisks based on the single most problematic main reason topic would
reduce the false positive rate from 28.3% to 26.9% while eliminating 8.3% of all
frisks. When extending this policy to the top five main reasons, the false positive
rate decreases to 25.4% while eliminating 12.8% of frisks.

Table F1—Cumulative Impact of Discontinuing Frisks by Main Reason Topics

Number of Topics False Positive Percentage of Frisks
Removed Rate Removed

0 0.282 0.0%
1 0.269 8.3%
2 0.265 10.0%
3 0.260 11.0%
4 0.257 11.8%
5 0.254 12.8%
10 0.244 17.4%
15 0.245 19.8%
20 0.237 24.5%

Notes: This table shows the cumulative effect of removing frisks where progressively more topics serve

as the main reason, ranked by their efficiency in reducing false positive rates. The false positive rate

represents the proportion of remaining frisks that lack reasonable suspicion. The analysis assumes perfect
officer compliance with policy interventions.

Figure E4 visualizes these results, showing how the false positive rate decreases
as more topics are removed as valid reasons for frisks, plotted against the per-
centage of total frisks that would be affected by such policies.
Table F2 presents the five most effective topics to target for policy interven-

tion—those that would reduce false positives the most.
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Table F2—Top Five Topics for Reducing False Positive Rates in Police Frisks

Topic Topic FPR FPR Reduction % of Frisks

Person with Gun Call 4.18% 4.40% 8.33%
Execution of Search Warrant 8.33% 1.80% 0.91%
Odor of Marijuana 47.1% 1.17% 1.72%
Suspicious Bulge 52.4% 0.92% 1.06%
Suspicious Conduct/Behavior 52.6% 0.85% 0.96%

Notes: Topics are ranked by their efficiency in reducing false positive rates—the reduction in unconsti-

tutional frisks relative to the total proportion of frisks affected. Topic FPR represents the false positive
rate within each topic category. FPR Reduction shows the relative percentage decrease in the overall

false positive rate if frisks based on this topic were discontinued. The analysis assumes perfect officer

compliance with policy interventions.

The distribution of main reasons for frisks reveals important patterns in police
frisk justifications, as shown in Figure E2 in Appendix E. Similar to stops, the
distribution follows an approximately exponential pattern.
These findings are further illustrated by comparing our decision rule approach

with an alternative method using the Llama model’s predicted probabilities di-
rectly. Figure F1 shows the false positive rate achieved when retaining different
percentages of frisks, comparing two approaches: (1) our decision rules based on
removing frisks with specific main reasons, and (2) ranking frisks by the Llama
model’s predicted probability of reasonable suspicion and removing those with
the lowest probabilities. The blue line represents the false positive rate when
implementing decision rules to discontinue frisks, where the decision rules are de-
termined using the train set and implemented on the test set. This represents a
realistic, cross-validated application of decision rules. The green line represents
the false positive rate when decision rules are determined using the test set and
implemented on the test set. While not realistic, this represents the theoretical
optimal performance from a set of decision rules.
The comparison reveals that the Llama model consistently outperforms the

decision rule approach for frisk predictions for the realistic set of decision rules
(blue line), similar to the pattern observed for stops. The Llama model also
dominates the theoretically optimal set of decision rules up to a point (when
around 20% of frisks has been discontinued). Table F3 quantifies this difference
at key retention levels.
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Table F3—Performance Comparison of Decision Rules vs. Llama Model for Frisks at Key

Retention Percentages

Frisks Decision Llama Difference
Retained (%) Rules FPR Model FPR

90 0.219 0.201 +0.019
80 0.220 0.156 +0.064
70 0.215 0.151 +0.065
60 0.201 0.138 +0.063
50 0.195 0.113 +0.083

Notes: This comparison was generated by ranking all frisks either by their main reason topic (for

decision rules) or by their Llama-predicted probability of reasonable suspicion. The decision rule FPRs
reflect results when decision rules are determined based on the train set and evaluated on the test set.

The table shows false positive rates (FPR) at different retention levels. The “Difference” column shows

the decision rules FPR minus the Llama model FPR; positive values indicate the Llama model achieves
lower false positive rates.
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Figure F1. Comparison of False Positive Rate Reduction Strategies for Frisks

Notes: This figure compares two approaches for reducing false positive rates in police frisks. The x-axis
shows the percentage of frisks retained, while the y-axis shows the resulting false positive rate. The red

line shows the performance of the Llama model, if we remove frisks with the lowest predicted probabilities

of reasonable suspicion (having calibrated the Llama model using the train set and then tested it using
the test set). The blue and green lines represent a decision rule approach that progressively discontinues

frisks based on problematic main reason topics, ranked by their ability to reduce false positives. The

blue line reflects the false positive rate when decision rules are determined based on the train set, and
the green line represents the false positive rate when the decision rules are determined based on the test

set. The green line therefore represents the theoretical optimal performance of a decision-rule approach,
whereas the blue line represents a realistic implementation. The decision rules do not monotonically

decrease the false positive rate for the blue line due to overfitting; certain rare justifications for frisks

have a high false positive rate in the train set and seem promising to remove but turn out to have a lower
false positive rate in the test set. To ensure a fair comparison, we only include frisks in this graph where

there was a main reason found in the train set as well as the test set. Because frisks had more diverse
main reasons than stops as well as a much smaller starting sample size, the N for this graph was much
lower, which resulted in the jaggedness in the figure. If we had included all frisks in the test set, the red

line would have been smooth and monotonic.
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This comparison was generated using the same methodology as for stops. For
the decision rule approach, frisks were progressively removed based on the ranking
of main reason topics by their efficiency in reducing false positives. For the
Llama model approach, frisks were ranked by their predicted probability of having
reasonable suspicion, and those with the lowest probabilities were progressively
removed. At each retention level, we calculated the false positive rate among the
remaining frisks.
The superior performance of the Llama model approach for frisks mirrors the

results for stops, suggesting that while simple decision rules based on main rea-
sons can effectively reduce unconstitutional frisks, the neural network captures
more nuanced patterns that enable even better discrimination between lawful and
unlawful frisks. The performance gap is slightly larger for frisks than for stops,
which may reflect the additional complexity of frisk determinations requiring both
reasonable suspicion and indications that a suspect is armed and dangerous. As
with stops, however, the decision rule approach offers advantages in terms of in-
terpretability and ease of implementation—officers can be given clear, actionable
guidance about which types of frisks to avoid.


