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What is the chance that Apple stock drops 20% over the next

month?

• We derive bounds on this quantity using index options and individual stock

options

• No distributional assumptions

• The bounds are observable in real time

• We argue that the lower bound should be expected to be closer to the truth

• And show that it forecasts well in and out of sample
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Probabilities of a 20% decline over the next month
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Today

1. Theory

2. Data

3. In-sample tests

4. Out-of-sample tests and the “crying wolf” problem

5. Industry crash risk series

6. Explaining crash probabilities
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Theory
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Information in market prices

• Market prices are often used for forecasting:
◦ forward rates

◦ CDS rates

◦ implied volatility

◦ breakeven inflation

◦ . . .

• These are almost continuously observable
• Don’t need to rely on economists’ models
• And they embody the collective views of market participants
• But they may be distorted by risk: people will pay more for insurance/hedge

assets that pay off in scary states of the world
4



Information in market prices

• Market prices are often used for forecasting:
◦ forward rates −→ risk-neutral expected future interest rates

◦ CDS rates −→ risk-neutral default probabilities

◦ implied volatility −→ risk-neutral volatility

◦ breakeven inflation −→ risk-neutral expected future inflation

◦ . . .

• These are almost continuously observable
• Don’t need to rely on economists’ models
• And they embody the collective views of market participants
• But they may be distorted by risk: people will pay more for insurance/hedge

assets that pay off in scary states of the world
4



We can infer risk-neutral probabilities directly from asset prices
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We can infer risk-neutral probabilities directly from asset prices

... almost in real time
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We can infer risk-neutral probabilities directly from asset prices

• The risk-neutral probability that the market declines by 20% over the next

month can be calculated from index options expiring in a month

P∗[R ≤ 0.8] = Rf ×
1

Rf

E∗[I(R ≤ 0.8)]︸ ︷︷ ︸
price of a binary option

= Rf × put′(0.8)︸ ︷︷ ︸
slope of put prices
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We can infer risk-neutral probabilities directly from asset prices

• The risk-neutral probability that the market declines by 20% over the next

month can be calculated from index options expiring in a month

P∗[R ≤ 0.8] = Rf ×
1

Rf

E∗[I(R ≤ 0.8)]︸ ︷︷ ︸
price of a binary option

= Rf × put′(0.8)︸ ︷︷ ︸
slope of put prices
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Strengths and weaknesses of risk-neutral probabilities

• Risk-neutral probabilities perform quite well in forecasting crashes

• But they overstate the probability of a crash

• And the extent to which they overstate varies

• They overstate most in scary times and for scary (≈ high beta) stocks

• This is unfortunate! These are the situations, and stocks, for which a crash

indicator is most useful
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So we want true, not risk-neutral, probabilities

• Require an assumption to link the true and risk-neutral probabilities
◦ that is, about the stochastic discount factor

• Take the perspective of a one-period marginal investor with power utility who

chooses to hold the market. So the SDF must be M = R−γ
m /λ

• The true expectation of a random payoff X then satisfies

E[X] = E[λMRγ
m︸ ︷︷ ︸

≡1

X] = λE[M × (Rγ
mX)] = λ

E∗[Rγ
mX]

Rf

• Eliminate λ by considering the case X = 1:

E[X] =
E∗[Rγ

mX]

E∗[Rγ
m] 8



So we want true, not risk-neutral, probabilities

• Setting X = I(Ri ≤ q), this implies that the crash probability of stock i is

P[Ri ≤ q] =
E∗ [Rγ

m I(Ri ≤ q)]

E∗ [Rγ
m]

◦ γ is the investor’s risk aversion

◦ In the case γ = 0, we are back to the risk-neutral probabilities

• Good news: We avoid the standard, undesirable, assumption that historical

measures are good proxies for the forward-looking risk measures that come

out of theory
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Calculating crash probabilities

• The crash probability of stock i is

P[Ri ≤ q] =
E∗ [Rγ

m I(Ri ≤ q)]

E∗ [Rγ
m]

• To calculate E∗ [Rγ
m], we need marginal risk-neutral distribution of Rm

◦ Easy, using index option prices (Breeden and Litzenberger, 1978)

• To calculate E∗ [Rγ
m I(Ri ≤ q)], we need the joint distribution of (Rm, Ri)

◦ Problem: Joint risk-neutral distribution is not observable (from traded assets)

◦ A general theme: we are often interested in covariances in financial economics

◦ The case i = m is easy. But testing the theory is hard because crashes are rare
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A 2× 2 example

• Suppose the risk-neutral probability of a crash in Apple is 5%

• Suppose the risk-neutral probability of a crash in the market is also 5%

• But they are consistent with different joint distributions, eg,

Apple

Crash No crash

S&P 500
Crash 5% 0%

No crash 0% 95%

Apple

Crash No crash

S&P 500
Crash 0% 5%

No crash 5% 90%
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A 2× 2 example

Apple

Crash No crash

S&P 500
Crash 5% 0%

No crash 0% 95%

Apple

Crash No crash

S&P 500
Crash 0% 5%

No crash 5% 90%

• In the left-hand world, AAPL is risky

◦ Risk-neutral probability of a crash will overstate the true probability of a crash

• In the right-hand world, AAPL is a hedge

◦ Risk-neutral probability will understate the true probability of a crash

• Moral: Even if we can’t observe the joint distribution, we may be able to derive

bounds on the true crash probability
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Bounding crash probabilities

P[Ri ≤ q] =
E∗ [Rγ

m I(Ri ≤ q)]

E∗ [Rγ
m]

• We do not observe the joint (risk-neutral) distribution, so cannot calculate

numerator

• But we do observe the individual (marginal) risk-neutral distributions of Rm

and Ri, from options on the market and on stock i

• Using these, the Fréchet–Hoeffding theorem provides upper and lower bounds

on the right-hand side, as in the 2× 2 example
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Result (Bounds on the probability of a crash)

We have
E∗ [Rγ

m I(Rm ≤ ql)]

E∗ [Rγ
m]

≤ P[Ri ≤ q] ≤ E∗ [Rγ
m I(Rm ≥ qu)]

E∗ [Rγ
m]

• The three (risk-neutral) expectations can be evaluated using index options

• The role of individual stock options?

14



The stock-i-specific quantiles ql and qu are such that

P∗[Rm ≤ ql] = P∗[Ri ≤ q] = P∗[Rm ≥ qu]
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The upper and lower bounds are attainable in principle

• Lower bound achieved for a stock that is comonotonic with the

market—i.e., whose return is a (potentially nonlinear) increasing function of

the market return

• Upper bound achieved for a stock that is countermonotonic—i.e., whose

return is a (potentially nonlinear) decreasing function of the market return

• Intuitively, asset prices will tend to overstate crash probabilities if crashes are

scary; or understate crash probabilities if crashes occur in good times

• A priori, we expect that the scary case is the relevant one, and hence that the

lower bound should be closer to the truth in practice
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Theory: summary

Result (Bounds on the probability of a crash)

E∗ [Rγ
m I(Rm ≤ ql)]

E∗ [Rγ
m]

≤ P[Ri ≤ q] ≤ E∗ [Rγ
m I(Rm ≥ qu)]

E∗ [Rγ
m]

Further theoretical results

• Both P[Ri ≤ q] and P∗[Ri ≤ q] lie in between the bounds

• γ = 0: the lower and upper bounds both equal P∗[Ri ≤ q], P∗ and P coincide

• As γ increases, the interval widens monotonically

• As γ → ∞, trivial: the lower bound → 0 and the upper bound → 1
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Data
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Data

• S&P 500 index and stock constituents from Compustat
• Risk-free rates and implied volatilities from OptionMetrics

◦ Monthly from 1996/01 to 2022/12

◦ On average around 492 firms each month

◦ Options maturing in 1, 3, 6 and 12 months

• Firm characteristics from Compustat

• Price, return, and volume data from CRSP

• Focus on “crashes” of 10%, 20% and 30% at τ = 1, 3, 6 and 12 months

• I’ll often focus on the case of a 20% decline over one month

• We set risk aversion, γ, equal to 2
18



In-sample tests
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Empirical tests

• I(Ri ≤ q) = 0 + 1× E[ I(Ri ≤ q) ]︸ ︷︷ ︸
P[Ri≤q]

+ε

• So a regression of the realized crash indicator I(Ri ≤ q) onto an ideal crash

probability measure P[Ri ≤ q] would yield zero constant term and a unit

regression coefficient

• If the lower bound is close to the truth, then in a regression

I[Ri,t→t+τ ≤ q] = αL + βL PL
i,t(τ, q) + εi,t+τ ,

we should find αL ≈ 0 and βL ≈ 1 at any horizon τ and for any crash size q
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In-sample tests (1)

Down by 30% (q = 0.7)

lower bound risk-neutral upper bound

maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01)

[0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01]

β 0.95 1.03 1.09 1.05 0.66 0.60 0.59 0.56 0.51 0.43 0.39 0.35

(0.15) (0.12) (0.11) (0.10) (0.11) (0.08) (0.07) (0.07) (0.09) (0.06) (0.05) (0.05)

[0.16] [0.14] [0.18] [0.15] [0.11] [0.11] [0.11] [0.11] [0.10] [0.09] [0.08] [0.07]

R2 3.90% 5.37% 5.17% 3.91% 3.77% 4.56% 4.01% 3.06% 3.63% 4.16% 3.41% 2.47%
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In-sample tests (1)
with time fixed effects

Down by 30% (q = 0.7)

lower bound risk-neutral upper bound

maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.93 1.05 1.11 1.14 0.68 0.70 0.74 0.78 0.55 0.55 0.58 0.60

(0.14) (0.10) (0.08) (0.08) (0.10) (0.07) (0.05) (0.05) (0.09) (0.05) (0.04) (0.04)

[0.16] [0.13] [0.12] [0.11] [0.13] [0.09] [0.10] [0.07] [0.09] [0.07] [0.06] [0.06]

R2-proj 3.27% 4.81% 5.06% 4.54% 3.21% 4.52% 4.87% 4.50% 3.16% 4.39% 4.74% 4.43%
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In-sample tests (2)

Down by 20% (q = 0.8)

lower bound risk-neutral upper bound

maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 −0.01 −0.01 0.02 0.00 −0.01 −0.02 0.00 0.00 −0.01 −0.01 0.01

(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02)

[0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.02] [0.03]

β 0.92 1.03 1.15 1.07 0.68 0.69 0.73 0.66 0.56 0.51 0.49 0.41

(0.11) (0.09) (0.09) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08) (0.06) (0.06) (0.06)

[0.11] [0.13] [0.15] [0.13] [0.09] [0.10] [0.11] [0.12] [0.07] [0.08] [0.10] [0.10]

R2 5.65% 5.15% 4.76% 3.69% 5.48% 4.50% 3.89% 2.96% 5.32% 4.11% 3.22% 2.30%
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In-sample tests (2)
with time fixed effects

Down by 20% (q = 0.8)

lower bound risk-neutral upper bound

maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.93 1.03 1.13 1.10 0.73 0.80 0.89 0.87 0.62 0.67 0.74 0.71

(0.09) (0.07) (0.06) (0.06) (0.07) (0.05) (0.05) (0.05) (0.06) (0.04) (0.04) (0.04)

[0.10] [0.10] [0.09] [0.09] [0.07] [0.07] [0.07] [0.06] [0.07] [0.07] [0.07] [0.06]

R2-proj 4.49% 4.65% 4.55% 4.01% 4.39% 4.53% 4.48% 4.00% 4.33% 4.45% 4.40% 3.98%
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Intermission: Probability of a rise of at least 20%

lower bound risk-neutral upper bound

maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 0.01 0.09 0.34 0.00 0.00 0.04 0.24 0.00 −0.01 0.03 0.21

(0.00) (0.00) (0.01) (0.02) (0.00) (0.01) (0.01) (0.03) (0.00) (0.01) (0.01) (0.03)

[0.00] [0.01] [0.01] [0.03] [0.00] [0.01] [0.02] [0.04] [0.00] [0.01] [0.02] [0.04]

β 1.35 1.58 1.32 0.12 1.03 1.17 1.08 0.46 0.85 0.91 0.82 0.42

(0.13) (0.11) (0.11) (0.15) (0.10) (0.09) (0.09) (0.12) (0.09) (0.08) (0.07) (0.09)

[0.13] [0.14] [0.15] [0.21] [0.11] [0.13] [0.15] [0.17] [0.09] [0.10] [0.11] [0.13]

R2 6.95% 5.78% 2.51% 0.01% 7.28% 6.66% 3.79% 0.38% 7.36% 6.81% 4.21% 0.72%

• For rises, the upper bound would be tight in the comonotonic case
• At the one year horizon, it is harder to predict rallies than crashes (perhaps

because rallies are more idiosyncratic so comonotonicity is less likely to hold)
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In-sample tests (3)

Down by 10% (q = 0.9)

lower bound risk-neutral upper bound

maturity 1 3 6 12 1 3 6 12 1 3 6 12

α −0.02 −0.01 −0.01 0.03 −0.02 −0.02 −0.02 0.00 −0.02 0.00 0.01 0.05

(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.03) (0.01) (0.02) (0.02) (0.03)

[0.01] [0.02] [0.02] [0.03] [0.01] [0.02] [0.03] [0.04] [0.01] [0.03] [0.04] [0.05]

β 1.05 1.07 1.12 1.01 0.88 0.83 0.80 0.68 0.75 0.63 0.54 0.41

(0.08) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08)

[0.08] [0.11] [0.12] [0.12] [0.07] [0.11] [0.12] [0.13] [0.08] [0.12] [0.12] [0.11]

R2 5.46% 3.71% 3.38% 2.41% 5.46% 3.39% 2.80% 1.83% 5.35% 3.03% 2.16% 1.23%
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In-sample tests (3)
with time fixed effects

Down by 10% (q = 0.9)

lower bound risk-neutral upper bound

maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.99 0.99 1.05 1.05 0.88 0.89 0.94 0.93 0.80 0.79 0.83 0.82

(0.06) (0.05) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.04) (0.04) (0.05)

[0.06] [0.07] [0.08] [0.08] [0.05] [0.07] [0.07] [0.08] [0.05] [0.06] [0.06] [0.06]

R2-proj 4.02% 3.15% 3.14% 2.85% 3.99% 3.12% 3.12% 2.83% 3.96% 3.08% 3.09% 2.82%
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Estimated slope β, by year: lower bound
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Estimated slope β, by year: risk-neutral probabilities
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Estimated slope β, by industry: lower bound
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Competitor variables from the literature

• We compare against 15 variables drawn from the literature

◦ Stock characteristics: CAPM β, (log) relative size, book-to-market, gross

profitability, momentum (prior 2-6 and 2-12 month returns), lagged return

◦ Chen–Hong–Stein, 2001: realized volatilities and monthly turnover

◦ Greenwood–Shleifer–You, 2019: sales growth

◦ Asquith–Pathak–Ritter, 2005; Nagel, 2005: short interest (shares shorted/shares

held by institutions)

◦ Campbell–Hilscher–Szilagyi, 2008: leverage, earnings, cash, log price per share

(winsorized from above at $15)

• All variables are standardized to unit standard deviation for comparability
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In-sample tests (4)

I(Rt→t+1 ≤ 0.8)

PL[Rt→t+1 ≤ 0.8] 3.40∗ 3.02∗ 4.41 2.72∗

(0.41) (0.58) (3.08) (0.33)

P∗[Rt→t+1 ≤ 0.8] 2.81∗ −1.39

(0.66) (3.36)

CHS-volatility 2.27∗ 0.31 0.44 0.32 0.50

(0.31) (0.37) (0.44) (0.39) (0.18)

short int. 0.39∗ 0.34∗ 0.37∗ 0.33∗ 0.27∗

(0.09) (0.08) (0.08) (0.08) (0.06)
...

...
...

...
...

R2/R2-proj. 4.49% 5.65% 5.82% 5.69% 5.83% 4.72%
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In-sample tests (4)
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Out-of-sample tests
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We compare OOS forecast performance of two models

1. Competitor model uses 15 char. + risk-neutral + lower bound
◦ We train predictive models using expanding or rolling windows

• variable selection using elastic net

• tuning parameters for sparsity: 5-fold cross validation based on the training sample

◦ Then make out-of-sample forecasts for the rest of the sample

2. Our lower bound, directly used to forecast with fixed α = 0 and β = 1

◦ Nothing is estimated

• Performance measure: out-of-sample R2

• Diebold–Mariano tests reject the null of equal forecasting accuracy
◦ Similar results for a “kitchen sink” competitor that also uses interactions and

squares of the 15 original characteristics (for a total of 137 variables)

◦ Also for a simpler competitor that attempts to rescale the risk-neutral

probabilities
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Out-of-sample forecasts
R2, expanding window, competing against in-sample mean crash probabilities

(firm-specific)
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Out-of-sample forecasts
β̂, expanding window, competing against in-sample mean crash probabilities

(firm-specific)
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Out-of-sample forecasts
R2, 3yr rolling window, competing against in-sample mean crash probabilities

(firm-specific)
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Out-of-sample forecasts
β̂, 3yr rolling window, competing against in-sample mean crash probabilities

(firm-specific)
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Industry crash risk
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Industry average crash probabilities
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• Substantial variation in crash probability over time and across industries

• News about crash risk is not just idiosyncratic: related industries’ probabilities

comove
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Industry average crash probabilities
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Explaining crash probabilities
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Explaining crash probabilities

• If you accept the lower bound as a tolerable measure of crash risk, then we

can use it to “de-noise” the realized crash event indicator

• This boosts power to detect variables that influence a stock’s likelihood of

crashing: we find R2 on the order of 70–75%

• Crash risk is higher for

◦ stocks with high CHS volatility (Chen, Hong and Stein, 2001) and penny stocks

(Campbell, Hilscher and Szilagyi, 2008)

◦ for certain industries: high beta, share turnover, short interest (Hong and Stein,

2003); poor recent returns, profit, and earnings

• Realized crash event regressions cannot reveal these patterns
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Regressions of the lower bound onto 15 characteristics
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Summary

• The lower bound successfully forecasts crashes in and out of sample
• For one month forecasts of 20% crashes, we find

◦ t-stats in the range 5 to 13

◦ estimated coefficient 10 times larger than the next most important competitor

• Risk-neutral probabilities perform well in sample, but overstate crash

probabilities, and time variation in overstatement hurts OOS performance:

“crying wolf” problem
• Our approach depends on one key assumption: the form of the SDF

◦ it allows to avoid the costly (and commonly made) assumptions that trailing

estimates are good proxies for the forward-looking measures backed by theory

• It seems the price of our assumption is worth paying
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