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What is the chance that Apple stock drops 20% over the next

month?

We derive bounds on this quantity using index options and individual stock

options

No distributional assumptions

The bounds are observable in real time

We argue that the lower bound should be expected to be closer to the truth

And show that it forecasts well in and out of sample



Probability of a 20% Crash

Probabilities of a 20% decline over the next month
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Information in market prices

Market prices are often used for forecasting:
o forward rates
o CDS rates
o implied volatility
o breakeven inflation
o ...
These are almost continuously observable
Don'’t need to rely on economists’ models
And they embody the collective views of market participants
But they may be distorted by risk: people will pay more for insurance/hedge

assets that pay off in scary states of the world



Information in market prices

e Market prices are often used for forecasting:
o forward rates — risk-neutral expected future interest rates

o CDS rates — risk-neutral default probabilities

o

implied volatility — risk-neutral volatility

e}

breakeven inflation — risk-neutral expected future inflation

o ...

These are almost continuously observable

Don'’t need to rely on economists’ models

And they embody the collective views of market participants

But they may be distorted by risk: people will pay more for insurance/hedge

assets that pay off in scary states of the world



We can infer risk-neutral probabilities directly from asset prices

Fed decision in July? ® A

@ $33,009,929 Vol. (© Jul 30,2025
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We can infer risk-neutral probabilities directly from asset prices

... almost in real time
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We can infer risk-neutral probabilities directly from asset prices

e The risk-neutral probability that the market declines by 20% over the next

month can be calculated from index options expiring in a month

1
PR < 0.8 = Ry x o E'I(R<08)] =Ry x  put'(0.8)
f
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We can infer risk-neutral probabilities directly from asset prices

e The risk-neutral probability that the market declines by 20% over the next

month can be calculated from index options expiring in a month

1
P[R<08] =Ry x —E*[I(R<08)] =R, x put/(0.8)
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We can infer risk-neutral probabilities directly from asset prices

e The risk-neutral probability that the market declines by 20% over the next

month can be calculated from index options expiring in a month

1
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We can infer risk-neutral probabilities directly from asset prices

e The risk-neutral probability that the market declines by 20% over the next
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We can infer risk-neutral probabilities directly from asset prices
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We can infer risk-neutral probabilities directly from asset prices

e The risk-neutral probability that the market declines by 20% over the next

month can be calculated from index options expiring in a month

1
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Strengths and weaknesses of risk-neutral probabilities

Risk-neutral probabilities perform quite well in forecasting crashes

But they overstate the probability of a crash

And the extent to which they overstate varies

They overstate most in scary times and for scary (= high beta) stocks

This is unfortunate! These are the situations, and stocks, for which a crash

indicator is most useful



So we want true, not risk-neutral, probabilities

Require an assumption to link the true and risk-neutral probabilities

o that is, about the stochastic discount factor
Take the perspective of a one-period marginal investor with power utility who
chooses to hold the market. So the SDF must be M = R 7 /A

The true expectation of a random payoff X then satisfies

E[X] = EDNMR), X] = AE[M x (R}, X)] = AE*{%X]

Eliminate A\ by considering the case X = 1:

_ B[R} X]



So we want true, not risk-neutral, probabilities

 Setting X = I(R; < q), this implies that the crash probability of stock i is

E* (R}, I(R; < q)]
E* [R}]

PlR; <¢] =

o 7 is the investor’s risk aversion

o In the case v = 0, we are back to the risk-neutral probabilities

e Good news: We avoid the standard, undesirable, assumption that historical
measures are good proxies for the forward-looking risk measures that come

out of theory



Calculating crash probabilities

e The crash probability of stock i is

E* (R}, I(R; < q)]

* To calculate E* [R} ], we need marginal risk-neutral distribution of R,,
o Easy, using index option prices (Breeden and Litzenberger, 1978)

* To calculate E* [R), I(R; < q)], we need the joint distribution of (R,,, R;)
o Problem: Joint risk-neutral distribution is not observable (from traded assets)

o A general theme: we are often interested in covariances in financial economics

o The case i = m is easy. But testing the theory is hard because crashes are rare



e Suppose the risk-neutral probability of a crash in Apple is 5%

A 2 x 2 example

e Suppose the risk-neutral probability of a crash in the market is also 5%

e But they are consistent with different joint distributions, eg,

Crash

No crash

S&P 500

Apple
Crash  No crash
5% 0%
0% 95%

Apple
Crash  No crash
Crash 0% 5%
S&P 500
No crash 5% 90%




A 2 x 2 example

Apple Apple
Crash  No crash Crash  No crash
Crash 5% 0% Crash 0% 5%
S&P 500 S&P 500
No crash 0% 95% No crash 5% 90%

e In the left-hand world, AAPL is risky
o Risk-neutral probability of a crash will overstate the true probability of a crash
e In the right-hand world, AAPL is a hedge

o Risk-neutral probability will understate the true probability of a crash

e Moral: Even if we can’t observe the joint distribution, we may be able to derive

bounds on the true crash probability



Bounding crash probabilities

E* (R}, I(R; < q)]

e We do not observe the joint (risk-neutral) distribution, so cannot calculate

numerator

e But we do observe the individual (marginal) risk-neutral distributions of R,,

and R;, from options on the market and on stock

e Using these, the Fréchet-Hoeffding theorem provides upper and lower bounds

on the right-hand side, as in the 2 x 2 example



Result (Bounds on the probability of a crash)

We have

E* [Rh]

E* [R;Yn I(Rm > qu)]
E* (R}

<PR; <] <

e The three (risk-neutral) expectations can be evaluated using index options

e The role of individual stock options?



The stock-i-specific quantiles ¢; and ¢, are such that

Option prices/Spot prices

0.10 0.15

0.05

—— Index Put / / ---- Stock Put
| Index Call / Stock Call
I I I
0.50 Toms ® 1.00 T 95 1.50

Strike prices/Spot prices



The upper and lower bounds are attainable in principle

Lower bound achieved for a stock that is comonotonic with the
market—i.e., whose return is a (potentially nonlinear) increasing function of

the market return

Upper bound achieved for a stock that is countermonotonic—i.e., whose

return is a (potentially nonlinear) decreasing function of the market return

Intuitively, asset prices will tend to overstate crash probabilities if crashes are

scary; or understate crash probabilities if crashes occur in good times

A priori, we expect that the scary case is the relevant one, and hence that the

lower bound should be closer to the truth in practice



Theory: summary

Result (Bounds on the probability of a crash)

Further theoretical results
e Both P[R; < ¢] and P*[R; < ¢] lie in between the bounds
e v = 0: the lower and upper bounds both equal P*[R; < ¢], P* and P coincide
e As v increases, the interval widens monotonically

e As v — oo, trivial: the lower bound — 0 and the upper bound — 1



Data



Data

S&P 500 index and stock constituents from Compustat
Risk-free rates and implied volatilities from OptionMetrics
o Monthly from 1996/01 to 2022/12

o On average around 492 firms each month

o Options maturing in 1, 3,6 and 12 months
Firm characteristics from Compustat
Price, return, and volume data from CRSP
Focus on “crashes” of 10%, 20% and 30% at 7 = 1, 3,6 and 12 months
I'll often focus on the case of a 20% decline over one month

We set risk aversion, v, equal to 2



In-sample tests



Empirical tests

e I(R,<q)=0+4+1xE[I(R <q)]+e
P[R;<q]
* So a regression of the realized crash indicator I(R; < ¢) onto an ideal crash
probability measure P[R; < ¢] would yield zero constant term and a unit

regression coefficient

e |If the lower bound is close to the truth, then in a regression
IRt se4r < q] = o + BL R’%t(ﬂ q) + Eitrr

we should find o ~ 0 and 3% ~ 1 at any horizon 7 and for any crash size ¢



In-sample tests (1)

Down by 30% (g = 0.7)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12
e 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01)
[0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01]
B 0.95 1.03 1.09 1.05 0.66 0.60 0.59 0.56 0.51 0.43 0.39 0.35
(0.15) (0.12) (0.11) (0.10) (0.11) (0.08) (0.07) (0.07) (0.09) (0.06) (0.05) (0.05)
[0.16] [0.14] [0.18] [0.15] [0.11] [0.11] [0.11] [0.11] [0.10] [0.09] [0.08] [0.07]
R? 3.90% 5.3™% 5.17% 3.91% 3.77% 4.56% 4.01% 3.06% 3.63% 4.16% 3.41% 247%

20



In-sample tests (1)

with time fixed effects

Down by 30% (¢ = 0.7)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12
B 0.93 1.05 111 1.14 0.68 070 074  0.78 0.55  0.55  0.58  0.60
(0.14) (0.10) (0.08) (0.08) (0.10) (0.07) (0.05) (0.05) (0.09) (0.05) (0.04) (0.04)
[0.16] [0.13] [0.12] [0.11] [0.13] [0.09] [0.10] [0.07] [0.09] [0.07] [0.06] [0.06]

R%proj 327% 4.81% 5.06% 4.54% 3.21% 4.52% 4.8™% 4.50%

3.16% 4.39% 4.74% 4.43%

20



In-sample tests (2)

Down by 20% (g = 0.8)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12
e 0.00 —0.01 -0.01 0.02 0.00 —0.01 -0.02 0.00 0.00 —-0.01 -0.01 0.01
(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02)
[0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.02] [0.03]
B 0.92 1.03 1.15 1.07 0.68 0.69 0.73 0.66 0.56 0.51 0.49 0.41
(0.11)  (0.09) (0.09) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08) (0.06) (0.06) (0.06)
[0.11] [0.13] [0.15] [0.13] [0.09] [0.10] [0.11] [0.12] [0.07] [0.08] [0.10] [0.10]
R? 5.66% 5.15% 4.76% 3.69% 5.48% 4.50% 3.89% 2.96% 5.32% 4.11% 3.22% 2.30%

21



In-sample tests (2)

with time fixed effects

Down by 20% (¢ = 0.8)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12
B 0.93 1.03 1.13 1.10 0.73 0.80 0.89 0.87 0.62 0.67 0.74 0.71
(0.09) (0.07) (0.06) (0.06) (0.07) (0.05) (0.05) (0.05) (0.06) (0.04) (0.04) (0.04)
[0.10] [0.10] [0.09] [0.09] [0.07] [0.07] [0.07] [0.06] [0.07] [0.07] [0.07] [0.06]

R%-proj 4.49% 4.65% 4.55% 4.01% 4.39% 4.53% 4.48% 4.00%

4.33% 4.45% 4.40% 3.98%

21



Intermission: Probability of a rise of at least 20%
lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12
a 0.00 0.0l 009 0.34 0.00 000 004 0.24 0.00 —0.01 003 021
(0.00) (0.00) (0.01) (0.02)  (0.00) (0.01) (0.01) (0.03)  (0.00) (0.01) (0.01) (0.03)
[0.00) [0.01] [0.01] [0.03  [0.00] [0.01] [0.02] [0.04]  [0.00] [0.01] [0.02] [0.04]
3 135 158 132 0.2 103 117 1.08  0.46 0.85 091 082 042
(0.13) (0.11) (0.11) (0.15)  (0.10) (0.09) (0.09) (0.12)  (0.09) (0.08) (0.07) (0.09)
(0.13] [0.14] [0.15] [0.21]  [0.11] [0.13] [0.15] [0.17)  [0.09] [0.10] [0.11] [0.13]
R? 6.95% 5.78% 2.51% 0.01%  7.28% 6.66% 3.79% 0.38%  7.36% 6.81% 4.21% 0.72%
e For rises, the upper bound would be tight in the comonotonic case

* At the one year horizon, it is harder to predict rallies than crashes (perhaps

because rallies are more idiosyncratic so comonotonicity is less likely to hold)

22



In-sample tests (3)

Down by 10% (g = 0.9)
lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12
e -0.02 -0.01 -0.01 0.03 -0.02 -0.02 -0.02 0.00 —0.02  0.00 0.01 0.05
(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.03) (0.01) (0.02) (0.02) (0.03)
[0.01] [0.02] [0.02] [0.03] [0.01] [0.02] [0.03] [0.04] [0.01] [0.03] [0.04] [0.05]
B 1.05 1.07 1.12 1.01 0.88 0.83 0.80 0.68 0.75 0.63 0.54 0.41
(0.08) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08)
[0.08] [0.11] [0.12] [0.12] [0.07] [0.11] [0.12] [0.13] [0.08] [0.12] [0.12] [0.11]
R? 5.46% 3.71% 3.38% 2.41% 5.46% 3.39% 2.80% 1.83% 5.35% 3.03% 2.16% 1.23%

23



In-sample tests (3)

with time fixed effects

Down by 10% (¢ = 0.9)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12
B 0.99  0.99 1.05 1.05 0.88 0.89 094 093 0.80 079 083 082
(0.06) (0.05) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.04) (0.04) (0.05)
[0.06] [0.07] [0.08] [0.08] [0.05] [0.07] [0.07] [0.08] [0.05] [0.06] [0.06] [0.06]

R2proj 4.02% 3.15% 3.14% 2.85%  3.99% 3.12% 3.12% 2.83%

3.96% 3.08% 3.09% 2.82%

23
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Competitor variables from the literature

e We compare against 15 variables drawn from the literature

©)

Stock characteristics: CAPM g, (log) relative size, book-to-market, gross
profitability, momentum (prior 2-6 and 2-12 month returns), lagged return
Chen-Hong-Stein, 2001: realized volatilities and monthly turnover
Greenwood-Shleifer-You, 2019: sales growth

Asquith-Pathak-Ritter, 2005; Nagel, 2005: short interest (shares shorted/shares
held by institutions)

Campbell-Hilscher-Szilagyi, 2008: leverage, earnings, cash, log price per share

(winsorized from above at $15)

e All variables are standardized to unit standard deviation for comparability

27



In-sample tests (4)

I(Ri—~¢11 <0.8)

PE[R; s41 < 0.8] 3.40* 3.02% 4.41 2.72%
(0.41)  (0.58) (3.08)  (0.33)
P*[Ry_st41 < 0.8] 2.81* —-1.39
(0.66)  (3.36)
CHS-volatility 2.27* 0.31 0.44 0.32 0.50
(0.31) (037)  (0.44)  (039)  (0.18)
short int. 0.39* 0.34* 0.37* 0.33*  0.27*
(0.09) (0.08)  (0.08) (0.08)  (0.06)
R?/R2-proj. 449%  565% 5.82% 5.69% 5.83% 4.72%

28



In-sample tests (4)

29



In-sample tests (4)

29



Out-of-sample tests



We compare OOS forecast performance of two models

1. Competitor model uses 15 char. + risk-neutral + lower bound
o We train predictive models using expanding or rolling windows
* variable selection using elastic net

* tuning parameters for sparsity: 5-fold cross validation based on the training sample
o Then make out-of-sample forecasts for the rest of the sample
2. Our lower bound, directly used to forecast with fixed a =0 and =1
o Nothing is estimated
e Performance measure: out-of-sample R?
e Diebold-Mariano tests reject the null of equal forecasting accuracy
o Similar results for a “kitchen sink” competitor that also uses interactions and
squares of the 15 original characteristics (for a total of 137 variables)

o Also for a simpler competitor that attempts to rescale the risk-neutral

30



Out-of-sample forecasts

R?, expanding window, competing against in-sample mean crash probabilities

(firm-specific)

20% crash in 1 months 20% crash in 3 months 20% crash in 6 months 20% crash in 12 months
S OIB-LB (@ =0, B=1) a4 OIB-LB (a =0, B=1) R 1 OIB-LB (0 =0, B=1) S OIB-LB (a =0, B=1)
—-- OIB-LB + RN + 15 Char. —-- OIB-LB + RN + 15 Char. —-- OIB-LB + RN + 15 Char. +1- OIB-LB + RN + 15 Char.
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Out-of-sample forecasts

B, expanding window, competing against in-sample mean crash probabilities
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Out-of-sample forecasts

R2, 3yr rolling window, competing against in-sample mean crash probabilities

(firm-specific)
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3, 3yr rolling window, competing against in-sample mean
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Industry average crash probabilities
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Industry average crash probabilities
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Explaining crash probabilities

If you accept the lower bound as a tolerable measure of crash risk, then we

can use it to “de-noise” the realized crash event indicator

This boosts power to detect variables that influence a stock’s likelihood of
crashing: we find R? on the order of 70-75%

Crash risk is higher for

o stocks with high CHS volatility (Chen, Hong and Stein, 2001) and penny stocks
(Campbell, Hilscher and Szilagyi, 2008)
o for certain industries: high beta, share turnover, short interest (Hong and Stein,

2003); poor recent returns, profit, and earnings

Realized crash event regressions cannot reveal these patterns
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Summary

The lower bound successfully forecasts crashes in and out of sample
For one month forecasts of 20% crashes, we find

o t-stats in the range 5 to 13

o estimated coefficient 10 times larger than the next most important competitor
Risk-neutral probabilities perform well in sample, but overstate crash
probabilities, and time variation in overstatement hurts OOS performance:
“crying wolf” problem
Our approach depends on one key assumption: the form of the SDF

o it allows to avoid the costly (and commonly made) assumptions that trailing

estimates are good proxies for the forward-looking measures backed by theory

It seems the price of our assumption is worth paying
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