ANATOMY OF THE TREASURY MARKET: WHO MOVES YIELDS?

Manav Chaudhary (LSE), Julie Zhiyu Fu (WashU Olin), Haonan Zhou (HKU) NBER SI Asset Pricing

el Framework

. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

TRACING TREASURY YIELD CHANGES TO FACTOR \times Investor Drivers

What moves the Treasury yields?

Macro/Financial News \rightarrow Portfolio Allocation \rightarrow Yields

lel Framework

I. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

TRACING TREASURY YIELD CHANGES TO FACTOR×INVESTOR DRIVERS

What moves the Treasury yields?

$\textbf{Macro/Financial News} \rightarrow \textbf{Portfolio Allocation} \rightarrow \textbf{Yields}$

Traditional factor approach: regress yields on factors

 \implies we learn aggregate responses

lel Framework

Quantifying Sensitivity

2. Decomposing Yield: 0000 3. Dissecting Flight-to-Safety O Conclusion O

TRACING TREASURY YIELD CHANGES TO FACTOR \times Investor Drivers

What & who moves the Treasury yields?

Macro/Financial News \rightarrow Portfolio Allocation \rightarrow Yields

Traditional factor approach: regress yields on factors

 \implies we learn aggregate responses...but don't know who drives it

el Framework

Quantifying Sensitivity

2. Decomposing Yield: 0000 3. Dissecting Flight-to-Safety O Conclusion O

TRACING TREASURY YIELD CHANGES TO FACTOR×**INVESTOR DRIVERS**

What & who moves the Treasury yields?

Macro/Financial News ightarrow Portfolio Allocation ightarrow Yields

Traditional factor approach: regress yields on factors

 \implies we learn aggregate responses...but don't know who drives it

Our approach: brings back investors' portfolio allocation,

- Bridging factors and yields
- Decomposing yield movements by factors and investors
- Three applications to uncover the anatomy of Treasury market

Introd	uction
00	

Quantifying Sensitivity

2. Decomposing Yields

RELATED LITERATURE

- Drivers of yields and investor dynamics in the Treasury markets:
 - Pricing: Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009; Joslin, Priebsch, and Singleton, 2014; Moench and Soofi-Siavash, 2022; Vayanos and Vila, 2021
 - Foreign investors: Warnock and Warnock, 2009; Ahmed and Rebucci, 2024
 - ▶ The Fed and the QE: Gagnon, Raskin, Remache, and Sack, 2011; Hamilton and Wu, 2012
- Estimating demand-based asset pricing models:
 - Methodology: Koijen and Yogo, 2019; Gabaix and Koijen, 2024; Qian, 2024; Chodorow-Reich, Gabaix, Koijen, and Viviano, 2024
 - Application to government bond markets: Koijen, Koulischer, Nguyen, and Yogo, 2017; Fang, Hardy, and Lewis, 2022; Jansen, Li, and Schmid, 2024; Zhou, 2023; Eren, Schrimpf, and Xia, 2023; Jansen, Li, and Schmid, 2024; Jiang, Richmond, and Zhang, 2024

. Quantifying Sensitivity

2. Decomposing Yield:

3. Dissecting Flight-to-Safet O Conclusion O

- 1. <u>Data</u>: Investors (*i*) are the FoF sectors; and sample periods (*t*) 2003Q4-2023Q4
- Treasury defined as market portfolio of 1yr+ Treasury securities
- Quantity data from Flow of Funds (FoF) + Call Report (banks) + TIC (foreign countries)

	ctic	

. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safet O Conclusion O

- 1. Data: Investors (i) are the FoF sectors; and sample periods (t) 2003Q4-2023Q4
- 2. Modelling portfolio choice: log-linearization of any portfolio choice,

$$\underbrace{\Delta q_{i,t}}_{\text{\% change quantity}} = -\underbrace{\zeta_i}_{\text{elasticity}} \times \underbrace{\Delta p_t}_{\text{\% change price}} + \underbrace{\nu_{i,t}}_{\text{Demand shifter}}$$

\circ	\circ				

. Quantifying Sensitivity

2. Decomposing Yield:

- 1. Data: Investors (i) are the FoF sectors; and sample periods (t) 2003Q4-2023Q4
- 2. Modelling portfolio choice: log-linearization of any portfolio choice,

$$\Delta q_{i,t} = -\zeta_i \times \Delta p_t + \underbrace{\lambda_i \eta_t}_{\text{common factors}} + \underbrace{u_{i,t}}_{\text{idiosyncratic shocks}}$$

- Demand shifters: macro-financial factors + unobserved PCs + idio. shocks
 - Observable factors η_t^{obs} : e.g, VIX, Fed funds rate, inflation, ...
 - Unobserved factors η_t^{unobs} : principal components (PCs) extracted from granular flows

Z

. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safet O Conclusion O

- 1. Data: Investors (i) are the FoF sectors; and sample periods (t) 2003Q4-2023Q4
- 2. Modelling portfolio choice: log-linearization of any portfolio choice,

$$\Delta q_{i,t} = -\zeta_i \times \Delta p_t + \underbrace{\lambda_i \eta_t}_{\text{common factors}} + \underbrace{u_{i,t}}_{\text{idiosyncratic shocks}}$$

- Demand shifters: macro-financial factors + unobserved PCs + idio. shocks
 - Observable factors η_t^{obs} : e.g, VIX, Fed funds rate, inflation, ...
 - Unobserved factors η_t^{unobs} : principal components (PCs) extracted from granular flows
 - ► Idiosyncratic shocks *u*_{*i*,*t*}: e.g., private info, sector-specific regulation, ...

Z

l. Quantifying Sensitivity

2. Decomposing Yield:

MODEL FRAMEWORK

- 1. Data: Investors (i) are the FoF sectors; and sample periods (t) 2003Q4-2023Q4
- 2. Modelling portfolio choice: log-linearization of any portfolio choice,

$$\Delta q_{i,t} = -\zeta_i \times \Delta p_t + \underbrace{\lambda_i \eta_t}_{\text{common factors}} + \underbrace{u_{i,t}}_{\text{idiosyncratic shocks}}$$

- Demand shifters: macro-financial factors + unobserved PCs + idio. shocks
- 3. <u>Connecting quantities to prices</u>: using market clearing, $\sum_i S_i \Delta q_{i,t} = 0$, where S_i is size,

$$\Delta p_{t} = \frac{1}{\zeta_{s}} \sum_{i \in \text{sectors}} S_{i} \left(\lambda_{i} \eta_{t} + u_{i,t} \right)$$

• Decompose the price response to factors by sector: $\lambda_{s} = \frac{1}{\zeta_{s}} \sum_{i} S_{i} \lambda_{i}$

. Quantifying Sensitivity

2. Decomposing Yield:

MODEL FRAMEWORK

- 1. Data: Investors (i) are the FoF sectors; and sample periods (t) 2003Q4-2023Q4
- 2. Modelling portfolio choice: log-linearization of any portfolio choice,

$$\Delta q_{i,t} = -\zeta_i \times \Delta p_t + \underbrace{\lambda_i \eta_t}_{\text{common factors}} + \underbrace{u_{i,t}}_{\text{idiosyncratic shocks}}$$

- Demand shifters: macro-financial factors + unobserved PCs + idio. shocks
- 3. <u>Connecting quantities to prices</u>: using market clearing, $\sum_i S_i \Delta q_{i,t} = 0$, where S_i is size,

$$\Delta p_{t} = \frac{1}{\zeta_{s}} \sum_{i \in sectors} \mathsf{S}_{i} \left(\lambda_{i} \boldsymbol{\eta}_{t} + \boldsymbol{u}_{i,t} \right)$$

4. Identification: we assume idiosyncratic shocks are independent across investors,

$$\mathbb{E}\left[\mathbf{u}_{i,t}\mathbf{u}_{j,t}\right] = \mathbf{0}. \ \forall i \neq j$$

• Granular instrumental variable, with optimal weighting scheme for asymptotic efficiency

ction Model Fr O 1. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

Agg. elasticity $\zeta_s = 1.03$: a $\frac{1}{\zeta_s} = 97$ bps \uparrow prices to a 1% demand shock

l Framework

1. Quantifying Sensitivity

2. Decomposing Yield

. Dissecting Flight-to-Safety

Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

work

1. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

l Framework

1. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

l Framework

1. Quantifying Sensitivity

2. Decomposing Yield

. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

Framework

1. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

Framework

1. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

Framework

1. Quantifying Sensitivity

2. Decomposing Yield

. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

el Framework

1. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

el Framework

1. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

el Framework

1. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety O Conclusion O

1. QUANTIFYING SENSITIVITIES: AGGREGATE & SECTORAL PRICE ELASTICITIES

0				

Quantifying Sensitivity

2. Decomposing Yields

3. Dissecting Flight-to-Safet O Conclusion O

2. DECOMPOSING YIELDS: SECTORAL CONTRIBUTIONS

	2. Decomposing Yields ○●○○	
 	_	

2. DECOMPOSING YIELDS: POST-GFC DIMINISHING ROLE OF FOREIGN INVESTORS

 \implies Pre-GFC consistent with "saving glut" compressing yields…but no longer

Conclusior O

2. DECOMPOSING YIELDS: CHINA AND JAPAN ROLE PARTICULARLY DIMINISHED

1. Quantifying Sen

2. Decomposing Yields

3. Dissecting Flight-to-Safet O Conclusion O

2. DECOMPOSING YIELDS: GFC AND COVID, AND THE FED

The post-GFC Fed acts as a state-contigent liquidity provider

Nodel Framework

Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety

Conclusion O

3. ANATOMY OF EPISODES: DISSECTING FLIGHT-TO-SAFETY

Treasury prices rise in bad times:

el Framework

Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety

Conclusion O

3. ANATOMY OF EPISODES: DISSECTING FLIGHT-TO-SAFETY

Treasury prices rise in bad times: ...but who is "fleeing to safety"?

Introduction				
			ιτι	

. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety

Conclusion O

3. ANATOMY OF EPISODES: DISSECTING FLIGHT-TO-SAFETY

Two competing views on foreign demand speak to dollar exorbitant privilege

- Safe-asset view: foreigners buy Treasuries in crises
- Precautionary-saving view: foreigners hold Treasuries to sell in crises

Introduction				
			ιτι	

. Quantifying Sensitivity

2. Decomposing Yield

3. Dissecting Flight-to-Safety

Conclusion O

3. ANATOMY OF EPISODES: DISSECTING FLIGHT-TO-SAFETY

Two competing views on foreign demand speak to dollar exorbitant privilege

- Safe-asset view: foreigners buy Treasuries in crises
- Precautionary-saving view: foreigners hold Treasuries to sell in crises

CONCLUSION

Quantifying Sensitivity

2. Decomposing Yields

3. Dissecting Flight-to-Safe O Conclusion

This paper: Develop a flexible framework to quantify what and who drives Treasury prices:

① Quantify market & investor sensitivities: Inelastic market & large investor differences

- **2** Decompose yields to factor x investor drivers: Post-GFC significant changes in drivers
- **3 Zoom into specific episodes:** Foreigners do not flee-to-safety

This framework can be applied to study other markets

OptimalGIV package available in Julia & Python

REFERENCES

- Ahmed, Rashad and Alessandro Rebucci (Nov. 1, 2024). "Dollar Reserves and U.S. Yields: Identifying the Price Impact of Official Flows". In: *Journal of International Economics* 152, p. 103974. ISSN: 0022-1996. DOI: 10.1016/j.jinteco.2024.103974. URL: https://www.sciencedirect.com/science/article/pii/S0022199624001016 (visited on 07/07/2025).
- Chodorow-Reich, Gabriel et al. (July 5, 2024). *Propagation of Shocks in Networks: Identification and Applications.* DOI: 10.2139/ssrn.4885984. URL:

https://papers.ssrn.com/abstract=4885984 (visited on 09/24/2024). Pre-published.

Cochrane, John H. and Monika Piazzesi (Mar. 2005). "Bond Risk Premia". In: American Economic Review 95.1, pp. 138–160. URL:

https://ideas.repec.org/a/aea/aecrev/v95y2005i1p138-160.html.

- Eren, Egemen, Andreas Schrimpf, and Fan Dora Xia (2023). "The Demand for Government Debt". In: SSRN Electronic Journal. ISSN: 1556-5068. DOI: 10.2139/ssrn.4466154. URL: https://www.ssrn.com/abstract=4466154 (visited on 06/07/2024).
- Fang, Xiang, Bryan Hardy, and Karen K. Lewis (May 2022). Who Holds Sovereign Debt and Why It Matters. DOI: 10.3386/w30087. National Bureau of Economic Research: 30087. URL: https://www.phan.org/appeng/w20087 (wicited on 11/11/2022). Bro-published

TREASURY MACRO MULTIPLIERS IMPLIED BY THE LITERATURE

We map literatures' price impact estimates to macro multipliers:

QUANTIFYING SENSITIVITIES: IDENTIFICATION ROBUSTNESS

Key concern: there are still some residual correlations across $u_{i,t}$

 \implies downward bias: $\hat{\zeta}_{S} \approx \zeta_{S} \sqrt{1 - R^2}$ of Δp explained by resid. correlation.,

QUANTIFYING SENSITIVITIES: IDENTIFICATION ROBUSTNESS

Key concern: there are still some residual correlations across $u_{i,t}$

 \implies downward bias: $\hat{\zeta}_{S} \approx \zeta_{S} \sqrt{1 - R^2}$ of Δp explained by resid. correlation.,

Residual correlation appears limited, as $\hat{\zeta}_{\rm S}$ remain stable even when

Controlling for more common variation using more macro & PCA factors
 Robustness
 Leaving-out one-sector at a time in estimation:

ROBUSTNESS: PRICE ELASTICITIES

Sector	Baseline	More factors	1970-2023	Including Bills
Aggregate	1.04	1.08	1.3	2.09
	(0.81, 1.27)	(0.83, 1.34)	(1.11, 1.5)	(1.26, 2.91)
Other	-0.24	-0.11	0.19	0.56
	(-0.46, -0.01)	(-0.34, 0.11)	(0.02, 0.36)	(0.26, 0.87)
Households	10.07	11.09	10.5	4.34
	(5.26, 14.88)	(5.71, 16.46)	(7.29, 13.7)	(0.78, 7.9)
Pension	0.2	0.2	-0.23	0.17
	(0.04, 0.36)	(0.04, 0.36)	(-0.39, -0.07)	(-0.07, 0.4)
Insurance	0.51	0.38	-0.67	-0.01
	(0.21, 0.81)	(0.09, 0.66)	(-0.93, -0.41)	(-0.51, 0.49)
Mutual Funds	0.58	0.51	0.47	0.55
	(0.11, 1.05)	(0.03, 1.0)	(0.23, 0.72)	(-0.11, 1.21)
ETF	-0.1	-0.2	0.23	-0.33
	(-0.46, 0.26)	(-0.56, 0.17)	(0.04, 0.42)	(-0.83, 0.17)
Dealers	7.42	7.94	-1.47	1.11
	(-1.49, 16.32)	(-1.22, 17.1)	(-8.37, 5.43)	(-10.11, 12.33)
Fed	0.44	0.49	0.03	0.24
	(0.15, 0.72)	(0.2, 0.79)	(-0.06, 0.13)	(-0.13, 0.6)
Banks	0.53	0.43	1.0	0.63
	(0.35, 0.7)	(0.26, 0.6)	(0.51, 1.49)	(0.42, 0.85)
RoW	0.44	0.39	0.39	0.57
	(0.3, 0.58)	(0.25, 0.53)	(0.27, 0.52)	(0.36, 0.79)
Supply	0.05	0.04	0.26	1.33
	(-0.02, 0.12)	(-0.03, 0.11)	(0.18, 0.33)	(0.32, 2.34)
MMF				2.4
				(0.33, 4.47)

Figure 1: Raw Dollar Flows

Figure 2: BD Flows vs Net Demand by Others

GROSS EXTERNAL ASSETS OF CHINA AND JAPAN: 2010-2023

China

Japan

▶ Back

Figure 4: GFC (07-09 Monthly)

