Hours Mismatch and Annual Taxes

NBER Public Economics - July 23, 2025

Andreas R Kostøl ¹ Matthew C Merkle ² Andreas Myhre ³ Mark Whitmeyer ⁴

¹BI Norwegian Business School

²UCL & IFS

³Statistics Norway

⁴Arizona State University

Outline

Introduction

Theory and Empirical Framework

Policy Environment and Data

Evidence

Conclusion

Workers often mismatched with respect to their desired hours of work

reflected by surveys, willingness to pay for flexibility + hours×employer switching (e.g., Kahn and Lang, 1991, Mas & Pallais 2017, Maestas et al 2023, Lachowska et al., 2025)

Workers often mismatched with respect to their desired hours of work

- reflected by surveys, willingness to pay for flexibility + hours×employer switching (e.g., Kahn and Lang, 1991, Mas & Pallais 2017, Maestas et al 2023, Lachowska et al., 2025)
- contributing to gender gap as women more often take wage cut for more flexibility (e.g., Goldin 2014)

Workers often mismatched with respect to their desired hours of work

- reflected by surveys, willingness to pay for flexibility + hours×employer switching (e.g., Kahn and Lang, 1991, Mas & Pallais 2017, Maestas et al 2023, Lachowska et al., 2025)
- contributing to gender gap as women more often take wage cut for more flexibility (e.g., Goldin 2014)
- central to understanding fluctuations in employment over the business cycle (e.g. Hansen 1985, and Rogerson 1988, and Chetty et al. 2013 for a review)

Workers often mismatched with respect to their desired hours of work

- reflected by surveys, willingness to pay for flexibility + hours×employer switching (e.g., Kahn and Lang, 1991, Mas & Pallais 2017, Maestas et al 2023, Lachowska et al., 2025)
- contributing to gender gap as women more often take wage cut for more flexibility (e.g., Goldin 2014)
- central to understanding fluctuations in employment over the business cycle (e.g. Hansen 1985, and Rogerson 1988, and Chetty et al. 2013 for a review)

Despite its importance, no evidence on how hours frictions interact with taxes

Workers often mismatched with respect to their desired hours of work

- reflected by surveys, willingness to pay for flexibility + hours×employer switching (e.g., Kahn and Lang, 1991, Mas & Pallais 2017, Maestas et al 2023, Lachowska et al., 2025)
- contributing to gender gap as women more often take wage cut for more flexibility (e.g., Goldin 2014)
- central to understanding fluctuations in employment over the business cycle (e.g. Hansen 1985, and Rogerson 1988, and Chetty et al. 2013 for a review)

Despite its importance, no evidence on how hours frictions interact with taxes

Our goals: offer a new approach to identifying the prevalence of hours constraints

assess how hours mismatch affects labor supply responses to taxes

1. Show that hours constraints + annual taxes generate a distinct participation response

- 1. Show that hours constraints + annual taxes generate a distinct participation response
 - as cumulative income creeps into new tax bracket, worker faces a dynamic problem
 - ▶ at risk of overworking, decide to **continue** or **stop** work until **tax resets** next year

- 1. Show that hours constraints + annual taxes generate a distinct participation response
 - as cumulative income creeps into new tax bracket, worker faces a dynamic problem
 - ▶ at risk of overworking, decide to **continue** or **stop** work until **tax resets** next year
- 2. Develop empirical approach to non-parametrically identify prevalence and responses
 - probability to work will drop as cumulative income enters a higher tax schedule
 - ightarrow missing mass of work at kink yields the participation response

- 1. Show that hours constraints + annual taxes generate a distinct participation response
 - as cumulative income creeps into new tax bracket, worker faces a dynamic problem
 - ▶ at risk of overworking, decide to **continue** or **stop** work until **tax resets** next year
- 2. Develop empirical approach to non-parametrically identify prevalence and responses
 - probability to work will drop as cumulative income enters a higher tax schedule
 - ightarrow missing mass of work at kink yields the participation response
 - lacktriangledown comparing missing mass to standard excess earnings o % hours constrained

Introduction: Empirical Setting and Results

Application: Norwegian setting w/ two attractive features

- monthly data with information on every employer
- sharp year-end incentives from the tax and transfer system
 - marginal ("participation") taxes from 9%-60%, from 10th to 90th percentile

Introduction: Empirical Setting and Results

Application: Norwegian setting w/ two attractive features

- monthly data with information on every employer
- sharp year-end incentives from the tax and transfer system
 - marginal ("participation") taxes from 9%-60%, from 10th to 90th percentile

Findings: hours constraints are prevalent among marginally attached workers

Introduction: Empirical Setting and Results

Application: Norwegian setting w/ two attractive features

- monthly data with information on every employer
- sharp year-end incentives from the tax and transfer system
 - marginal ("participation") taxes from 9%-60%, from 10th to 90th percentile

Findings: hours constraints are prevalent among marginally attached workers

- ightharpoonup prevalence of hours mismatch pprox 60%, participation elasticity is 0.8
- lacktriangle limiting case: all workers hours constrained, participation elasticity $\longrightarrow 1.3$
- ▶ much less important in broader tax system: 0.1 at top, 0.5 at bottom

Contributions – What's New?

Research on labor supply elasticities and optimization frictions

(e.g. Diamond 1980; Slemrod Kopczuk 2002; Saez 2010; Chetty el al 2011, 2012; Chetty & Saez 2012; Kleven & Waseem 2013; Bastani & Selin 2014; Kline and Tartari 2016; Gelber et. al 2017; Søgaard 2019; Bastani & Waldenström 2021; Kostøl Myhre 2021 ++)

— nesting traditional bunching, decomposition of lumpy versus smooth behavior

Research on models of compensating wage differentials and job search

(e.g. Rosen 1974, Ham 1980, Blundell 1988, Altonji & Paxson 1988, Kahn & Lang 1993, Stewart & Swaffield 2003; Lachowska etal 2022; Labanca & Pozzoli 2022 ++)

— method to nonpar. test for hours constraints in the precence of annual taxes

Large literature on dynamic labor supply and micro-macro elasticities

(e.g. review by Keane 2011, Kreiner et al 2014, 2016 on year-end tax planning, and Chetty et. al 2013 for micro-macro puzzle)

— hours constraints account for divergence between micro and macro Frisch elasticities

Outline

Introduction

Theory and Empirical Framework

Policy Environment and Data

Evidence

Conclusion

Setup and Preferences

Two cases:

- (A) free to choose $h_t \in [0, M]$,
- (B) exogously assigned fixed $h_t = ilde{h}$

Setup and Preferences

Two cases:

- (A) free to choose $h_t \in [0, M]$,
- (B) exogously assigned fixed $h_t = \tilde{h}$

Indiv. face T subperiods, t = 1, ..., T

- ightharpoonup discount the future according to δ .
- workers paid w
- cumulative income is $CI_{t-1} = \sum wh_{t-1}$
- consume labor income and transfers x_t (as in Diamond 1980 & Saez 2003)

Setup and Preferences

Two cases:

- (A) free to choose $h_t \in [0, M]$,
- (B) exogously assigned fixed $h_t = \tilde{h}$

Indiv. face T subperiods, t = 1, ..., T

- **b** discount the future according to δ .
- workers paid w
- cumulative income is $CI_{t-1} = \sum wh_{t-1}$
- consume labor income and transfers x_t (as in Diamond 1980 & Saez 2003)

Max utility $c_t - \theta_i D(h_t)$ choosing work

▶ where *i* is individual, $D(\cdot)$ is convex

s.t. to dynamic budget (ignoring search)

$$c_{t} \leq h_{t} w \left(1 - \tau \left(C I_{t-1}\right)\right) + x_{t}$$

$$\tau \left(C I_{t-1}\right) = \begin{cases} 0, & \text{if } C I_{t-1} \leq K \\ \tau, & \text{if } K < C I_{t-1} \end{cases},$$

Setup and Preferences

Two cases:

- (A) free to choose $h_t \in [0, M]$,
- (B) exogously assigned fixed $h_t = \tilde{h}$

Indiv. face T subperiods, t = 1, ..., T

- **b** discount the future according to δ .
- workers paid w
- cumulative income is $CI_{t-1} = \sum wh_{t-1}$
- ightharpoonup consume labor income and transfers x_t (as in Diamond 1980 & Saez 2003)

Max utility $c_t - \theta_i D(h_t)$ choosing work

ightharpoonup where *i* is individual, $D(\cdot)$ is convex

s.t. to dynamic budget (ignoring search)

$$c_{t} \leq h_{t} w \left(1 - \tau \left(C I_{t-1}\right)\right) + x_{t}$$

$$\tau \left(C I_{t-1}\right) = \begin{cases} 0, & \text{if } C I_{t-1} \leq K \\ \tau, & \text{if } K < C I_{t-1} \end{cases},$$

Assumption of smooth $\sim \theta_i$ gives smooth $\sim CI_t$ with excess mass at K.

Theory Insights: Lumpy Response Mechanisms

- (A) Free to choose hours
 - ► smooth disutility of work
 - never optimal to quit

Theory Insights: Lumpy Response Mechanisms

- (A) Free to choose hours
 - smooth disutility of work
 - never optimal to quit
- (B) Hours frictions
 - ightharpoonup quitting comes at a cost $\psi_i > 0$,
 - quitting is optimal if for some subperiod s,

$$\underbrace{\psi_{i}}_{\text{Quit cost}} < \underbrace{\sum_{t=s}^{T} \delta^{t-s} \left(u\left(x\right) - \left[u\left(h_{t}w\left(1 - \tau\left(CI_{t-1}\right)\right) + x\right) - \theta_{i}D\left(h_{t}\right)\right] \right)}_{\text{Cost of overwork}}$$

... assuming work disutility at zero hours is 0

Theory Insights: Lumpy Response Mechanisms

- (A) Free to choose hours
 - smooth disutility of work
 - never optimal to quit
- (B) Hours frictions
 - ightharpoonup quitting comes at a cost $\psi_i > 0$,
 - quitting is optimal if for some subperiod s,

(C) Inattention to taxes

- mis-specified: work throughout year, adjust hours after learning
- never optimal to quit

$$\underbrace{\psi_{i}}_{\text{Quit cost}} < \underbrace{\sum_{t=s}^{T} \delta^{t-s} \left(u\left(x\right) - \left[u\left(h_{t}w\left(1 - \tau\left(CI_{t-1}\right)\right) + x\right) - \theta_{i}D\left(h_{t}\right)\right] \right)}_{\text{Cost of overwork}}$$

... assuming work disutility at zero hours is 0

Empirical Approach: Identifying Quits

Basic idea behind the empirical approach: Participation Probability Function $(p_{e,t})$

where *e* is a cumulative earnings bin

Empirical Approach: Identifying Quits

Basic idea behind the empirical approach: Participation Probability Function $(p_{e,t})$

where e is a cumulative earnings bin

- gray area is denoted missing mass
- width of the response region is determined by the severity of hours mismatch

Empirical Approach: Participation Response and Missing Mass

Goal: estimate participation response (Δp) and share hours constrained (α)

$$\Delta p = E[ilde{p}_{e,t} - p_{e,t} | e = K], \qquad \text{where } ilde{p}_{e,t} \text{ is counterfactual}$$

Missing mass defined over response region, from lower to upper bound

$$m_t = rac{1}{ ilde{
ho}_{K,t}} \sum_{e= ext{lower bound}}^{ ext{upper bound}} (ilde{
ho}_{e,t} -
ho_{e,t})$$

Share (α) relates missing mass (m_t) to excess mass in year-end earnings (b_T)

Empirical Approach: Participation Response and Missing Mass

Goal: estimate participation response (Δp) and share hours constrained (α)

$$\Delta p = E[\tilde{p}_{e,t} - p_{e,t}|e = K],$$
 where $\tilde{p}_{e,t}$ is counterfactual

Missing mass defined over response region, from lower to upper bound

$$m_t = rac{1}{ ilde{
ho}_{K,t}} \sum_{e= ext{lower bound}}^{ ext{upper bound}} (ilde{
ho}_{e,t} -
ho_{e,t})$$

Share (α) relates missing mass (m_t) to excess mass in year-end earnings (b_T)

$$E[\alpha_T \mid b = K] = \frac{M_T}{B_T}$$
, where M, B are frequencies

Estimation method: rectangular histogram estimator for **m** (+ polynomial for **b**)

Outline

Introduction

Theory and Empirical Framework

Policy Environment and Data

Evidence

Conclusion

Policy Environment: Labor Markets and Tax-Transfer System

Norwegian labor markets: flexibility and regulation

- permanent contracts are standard, temporary work usually regulated
- hour schedules and wages collectively bargained, little variation within occupations (most mass of weekly hours at 37.5, 30, 22.5, 15, and 7.5)

Tax system and transfer system: annual taxes and benefit offsets

- ▶ income tax: kinks of 25% at 5th, ..., and 9% at the 90th percentile of distribution
- ▶ disability insurance: kink of 60% at about \$8K, no withholding

Data: Administrative Employment Records and Samples

Several advantages of Norwegian data: monthly reports by every employer

- ▶ for every employee, all ages, part- and full-time jobs
- hours of work, salary and hourly income, bonus payments (but not self-employment)

Program participation data from the welfare administration (NAV)

monthly data on disability insurance (DI) receipt

Our baseline samples: (A) all taxpayers, and (B) All part-time working DI recipients

Data: Summary Statistics

	A. W	orkforce	B. DI F	B. DI Recipients		
	Mean	SD	Mean	SD		
Age	41.4	(13.7)	50.0	(11.6)		
Fraction female	.47		.54			
Monthly earnings (\$)	5,225	(3,210)	971	(1,247)		
Regular pay (\$)	3,771	(3,232)	328	(855)		
Variable pay (\$)	1,048	(1,812)	498	(836)		
Fraction regular pay	.71		.25			
Fraction hourly pay	.26		.43			
Contracted hours per week	32.8	(12.7)	12.7	(15.3)		
Fraction full time	.68		.19			
Fraction part time	.28		.49			
Observations	2,87	71,511	47	,009		

Notes: Sample of all taxpayers aged 18-66, and part-time working DI recipients aged 18-66.

Outline

Introduction

Theory and Empirical Framework

Policy Environment and Data

Evidence

Conclusion

Evidence: Missing Work by Month and Aggregation

Notes: Sample of part-time working DI recipients, $\tau = 50\%$. Pooled data from 2015-2017.

Evidence: Annualized Participation Response and Year-End Earnings

Figure: Participation Response and Missing Mass

Evidence: Annualized Participation Response and Year-End Earnings

Figure: Participation Response and Missing Mass

Figure: Year-End Bunching and Share Constrained

 $\textit{Notes:} \ \mathsf{Sample} \ \mathsf{of} \ \mathsf{part-time} \ \mathsf{working} \ \mathsf{DI} \ \mathsf{recipients}, \ \tau = \mathsf{50\%}. \ \mathsf{Left:} \ \mathsf{Last} \ \mathsf{employment} \ \mathsf{observation}. \ \mathsf{Right:} \ \mathsf{Last} \ \mathsf{month} \ \mathsf{of} \ \mathsf{the} \ \mathsf{year}.$

	2	<i>∆p</i>		ρ̃		cipation icity (ϵ)	Obs
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
A: Baseline	37	(.02)	.74	(.02)	.80	(.03)	93,975

		<i>∆p</i>		ρ		cipation icity (ϵ)	Obs
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
A: Baseline	37	(.02)	.74	(.02)	.80	(.03)	93,975
B: Polynomial approach	35	(.02)	.72	(.01)	.78	(.03)	93,975

		\ ρ		ρ̃	Participation elasticity (ϵ)		Obs	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
A: Baseline	37	(.02)	.74	(.02)	.80	(.03)	93,975	
B: Polynomial approach	35	(.02)	.72	(.01)	.78	(.03)	93,975	
C: Years 2015-2016	39	(.02)	.75	(.02)	.84	(.04)	68,288	

	$\triangle p$			$ ilde{m{ ho}}$		Participation elasticity (ϵ)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
A: Baseline	37	(.02)	.74	(.02)	.80	(.03)	93,975
B: Polynomial approach	35	(.02)	.72	(.01)	.78	(.03)	93,975
C: Years 2015-2016	39	(.02)	.75	(.02)	.84	(.04)	68,288
D: Working next year (2015-2016) i) In same firm ii) In different firm	44 45 36	(.02) (.02) (.06)	.82 .84 .77	(.02) (.02) (.04)	.85 .86 .76	(.03) (.03) (.09)	50,791 46,162 10,573

	riangle p		$ ilde{ ho}$		Participation elasticity (ϵ)		Obs	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
A: Baseline	37	(.02)	.74	(.02)	.80	(.03)	93,975	
B: Polynomial approach	35	(.02)	.72	(.01)	.78	(.03)	93,975	
C: Years 2015-2016	39	(.02)	.75	(.02)	.84	(.04)	68,288	
D: Working next year (2015-2016) i) In same firm ii) In different firm	44 45 36	(.02) (.02) (.06)	.82 .84 .77	(.02) (.02) (.04)	.85 .86 .76	(.03) (.03) (.09)	50,791 46,162 10,573	
E: Not working next year (2015-2016)	20	(.05)	.32	(.04)	.98	(.15)	17,497	

Notes: Sample of part-time working DI recipients, $\tau=50\%$. Baseline specification is linear fit for \tilde{p} . Standard errors are bootstrapped using 500 repetitions

Evidence: Population Shares

		Missing mass (m)		Excess mass year-end (b_{12})		Fraction hours constrained (α)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
A: Baseline (2015-2017)	2.35	(.25)	2.79	(.13)	.59	(.12)	93,975
B: Years 2015-2016	2.88	(.23)	2.93	(.17)	.77	(.12)	50,791
i) In same firm	2.91	(.22)	3.01	(.17)	.78	(.12)	46,162
ii) In different firm	3.00	(.62)	2.09	(.34)	1.02	(.44)	10,573

Notes: Baseline specification is linear fit for \tilde{m} , and polynomial fit for \tilde{b} . Standard errors are bootstrapped using 500 repetitions

Evidence: Adjustments and Extensions

Frisch Participation Elasticity

- ightharpoonup assuming workers fully aware of au
- limiting case: all are hours constrained

$$\epsilon^* = \frac{\Delta LFP}{\tilde{p}_{K,t}} \cdot \frac{1}{\alpha} = \frac{-.37}{.74} \cdot \frac{1}{0.59} = 1.3$$

Evidence: Adjustments and Extensions

Frisch Participation Elasticity

- ightharpoonup assuming workers fully aware of au
- limiting case: all are hours constrained

$$\epsilon^* = \frac{\Delta LFP}{\tilde{p}_{K,t}} \cdot \frac{1}{\alpha} = \frac{-.37}{.74} \cdot \frac{1}{0.59} = 1.3$$

Extension: Tax System

- examine all tax brackets
- ▶ at lowest bracket: $\epsilon = 0.2$, $\epsilon^* = 0.47$
- ▶ imprecise estimates from 4 of 6 kinks
- second-to-top bracket: some quits
 - $\boldsymbol{-}$ very imprecise estimates of excess mass

Extensions: Broader Tax System

	mtr	mtr			cipation ϵ ity (ϵ)		ssing s (m)		r-end $ng(b_{12})$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Kink point:									
\$6,667	25	25	.20	(.06)	.082	(.029)	.115	(.024)	
\$9,851	8.2	-16.8	08	(.06)	.020	(.023)	059	(.024)	
\$11,789	23.6	15.4	.01	(.09)	.017	(.027)	.043	(.025)	
\$27,612	35.2	11.6	05	(.06)	001	(.019)	.009	(.028)	
\$73,407	44.2	9	.06	(.02)	.016	(.006)	.021	(.023)	
\$118,080	47.2	3	12	(.11)	008	(.012)	.142	(.055	

Notes: Baseline specification is linear fit for \tilde{m} , and polynomial fit for \tilde{b} . Standard errors are bootstrapped using 500 repetitions

Outline

Introduction

Theory and Empirical Framework

Policy Environment and Data

Evidence

Conclusion

Conclusion

We offer the first non-parametric evidence on prevalence of hours frictions, generating important extensive margin responses among marginally attached workers

Lack of Response in Broader Tax System: hours constraints bind

strong career concerns dominates the cost of ignoring incentive

Micro-Macro Divergence: we show that hours constraints are important

- marginally attached workers have low quitting costs / career concerns
- ▶ help understand the pro-cyclical application rates for DI (e.g., Autor & Duggan 2003, Maestas Mullen Strand 2013, and many more)

Method has broader applicability: a lot to be done, broader safety net + EITC