The Long-Term Decline of the U.S. Job Ladder

Aniket Baksy, University of Melbourne Daniele Caratelli, Department of the U.S. Treasury Niklas Engbom, New York University & NBER NBER EF&G Meeting, July 2025

The views expressed are those of the authors and do not necessarily reflect those of the OFR or the Department of Treasury.

• Over the past four decades, real wages for the average American worker have barely grown

- A vast literature highlights several important drivers
 - Technological change (e.g. Acemoglu & Restrepo, 2020)
 - Globalization (e.g. Autor, Dorn & Hanson, 2013)
 - Institutional changes (e.g. Autor, Manning & Smith, 2016)
- The role of changes to the structure of the labor market have received less attention
 - Mismatch
 - Concentration
 - Frictions and search behavior

Influence worker mobility and through that wage growth

Findings from an estimated structural job ladder model:

- 1. Upward job mobility has fallen by 40% between the 1980s and 2010s
- 2. Primarily accounted for by changes in three structural factors:
 - (a) Greater mismatch between open jobs and searching workers
 - (b) Greater employer concentration that has limited the scope for job shopping
 - (c) Less search by employed workers
- 3. Combined effect: **4 p.p. lower real wages** (\approx 40% of fall in aggregate labor share)

The Stylized Job Ladder Model

- A unit mass of ex-ante identical workers move in and out of employment & across jobs
- Unemployed workers receive job offers at rate λ drawn from the offer distribution F(w)
 - We assume that parameters are such that the unemployed accept all offers
- Employed workers earn a fixed wage w for as long as they are employed
 - **Outside offers** at rate $\phi \lambda$ with a wage from F(w) that workers may accept
 - **Reallocation shocks** at rate $\delta \lambda^f$ with a wage from F(w) that workers must accept
 - Job loss shocks at rate $\delta(1 \lambda^f)$ that leave the worker unemployed

Inferring Net Upward Mobility

\circ The steady-state wage distribution G(w) is given by

$$G(w) = rac{F(w)}{1 + \kappa (1 - F(w))}, \qquad \underbrace{\kappa}_{ ext{net upward mobility rate}} \equiv rac{\phi \lambda}{\delta}$$

- \circ Net upward mobility rate, κ = Average # of outside offers between two separation events
- $\circ~$ Greater upward mobility \Rightarrow faster wage growth \Rightarrow larger gap btw offer & wage distributions

Inferring Net Upward Mobility

$\circ~$ The steady-state wage distribution G(w) is given by

$$G(w) = \frac{F(w)}{1 + \kappa (1 - F(w))}, \qquad \underbrace{\kappa}_{\text{net upward mobility rate}} \equiv \frac{\phi \lambda}{\delta}$$

- $\circ~$ Net upward mobility rate, $\kappa=$ Average # of outside offers between two separation events
- $\circ~$ Greater upward mobility \Rightarrow faster wage growth \Rightarrow larger gap btw offer & wage distributions
- Strategy: Non-parametrically estimate G(w) and F(w) using cross-sectional data
 - Wage distribution G(w): wages cond. on demographics & occupation separately by year
 - Offer distribution F(w): residual wages of those who were non-employed in the previous month
- \circ Infer net upward mobility κ decade-by-decade (or year-by-year)

pprox 40% decline in net upward mobility between the 1980s and 2010s

pprox 40% decline in net upward mobility between the 1980s and 2010s

The Full Job Ladder Model

1. Robustness to other factors behind the offer-wage gap

2. Identify the structural factors

3. Quantify their consequences for aggregate wage growth

Three Main Goals of the Full Model

1. Robustness to other factors behind the offer-wage gap

- **On-the-job wage dynamics**: log wages evolve according to an AR1 in continuous time Joint distribution over wages at *t* and *t* + 12 of stayers
- **Unobserved heterogeneity**: Types differ in non-employment incidence and earnings ability Joint distribution over wages at *t* and *t* + 12 of job losers

2. Identify the structural factors

3. Quantify their consequences for aggregate wage growth

Three Main Goals of the Full Model

1. Robustness to other factors behind the offer-wage gap

- **On-the-job wage dynamics**: log wages evolve according to an AR1 in continuous time Joint distribution over wages at *t* and *t* + 12 of stayers
- **Unobserved heterogeneity**: Types differ in non-employment incidence and earnings ability Joint distribution over wages at *t* and *t* + 12 of job losers

2. Identify the structural factors

- **Mismatch** between labor demand & supply across segmented labor markets Dispersion in labor market tightness across occupations
- **Employer concentration**: Finite # of firms; workers cannot accept jobs at their current employer Covariation between job mobility and firm size in panel of U.S. states
- 3. Quantify their consequences for aggregate wage growth

Three Main Goals of the Full Model

1. Robustness to other factors behind the offer-wage gap

- **On-the-job wage dynamics**: log wages evolve according to an AR1 in continuous time Joint distribution over wages at *t* and *t* + 12 of stayers
- **Unobserved heterogeneity**: Types differ in non-employment incidence and earnings ability Joint distribution over wages at *t* and *t* + 12 of job losers

2. Identify the structural factors

- **Mismatch** between labor demand & supply across segmented labor markets Dispersion in labor market tightness across occupations
- **Employer concentration**: Finite # of firms; workers cannot accept jobs at their current employer Covariation between job mobility and firm size in panel of U.S. states

3. Quantify their consequences for aggregate wage growth

- We estimate the model decade-by-decade
- Counterfactual wage growth with forces turned on or off

The Long-Term Decline of the Job Ladder: Stylized & Full Model

The richer model finds an even larger decline of the U.S. job ladder...

The Long-Term Decline of the Job Ladder: Stylized & Full Model

...mostly as a result of less gross upward mobility

The Factors Behind the Long-Term Decline of the U.S. Job Ladder

- Mismatch between labor demand & supply across occupations
 - Reduction in job finding rate relative to frictionless relocation across occupations
- Employer concentration: Workers cannot accept a job from their current employer
 - Finite number *m* of suitable employers for a worker

The Factors Behind the Long-Term Decline of the U.S. Job Ladder

Total	Matching efficiency	Aggregate tightness	Mismatch	Employer concentration	Relative search intensity
-55	-19	25	-17	-13	-38

The Consequences of the Long-Term Decline of the U.S. Job Ladder

We consider the following accounting exercise

• Let offered wages $(F_t(w))$ grow as in data

• Hold one/a few parameters fixed in 1980s

Quantify the impact on the gap and hence

overall wages = offered wages + gap

The Consequences of the Long-Term Decline of the U.S. Job Ladder

We consider the following accounting exercise

- Let offered wages $(F_t(w))$ grow as in data
- Hold one/a few parameters fixed in 1980s
- Quantify the impact on the gap and hence

overall wages = offered wages + gap

Combined effect: -4.0p.p. real wages (\approx 40% of labor share decline)

Conclusion

Findings from an estimated structural job ladder model:

- 1. Upward job mobility has fallen by 40% between the 1980s and 2010s
- 2. Primarily accounted for by changes in three structural factors:
 - (a) Greater mismatch between open jobs and searching workers
 - (b) Greater employer concentration that has limited the scope for job shopping
 - (c) Less search by employed workers
- 3. Combined effect: **4 p.p. lower real wages** (\approx 40% of fall in aggregate labor share)

In the paper: supporting evidence from individual wage & employment dynamics in the NLSY

The Long-Term Decline of the U.S. Job Ladder

Aniket Baksy, University of Melbourne Daniele Caratelli, Department of the U.S. Treasury Niklas Engbom, New York University & NBER NBER EF&G Meeting, July 2025

The views expressed are those of the authors and do not necessarily reflect those of the OFR or the Department of Treasury.

1. Demographic differences:

Appendix

Declines similar across genders

Declines similar across race groups

Decline larger for more educated workers

Decline larger for younger workers

_____ 20-29 _____ 30-39 _____ 40-49 _____ 50-59

Decline visible within broad occupation groups

Decline uneven across industries

Decline larger for occupations in the middle of the wage distribution

Decline larger in occupations with more non-competes

κ estimated at different percentiles

Greater Between-Occupation Mobility?

- Better screening implies bad matches are increasingly weeded out prior to formation
- Convergence of offer & wage distributions and fall in mobility, but this is benign
- Would expect a decline in EN mobility, especially among new matches

- Better screening implies bad matches are increasingly weeded out prior to formation
- Convergence of offer & wage distributions and fall in mobility, but this is benign
- Would expect a decline in EN mobility, especially among new matches

- Better screening implies bad matches are increasingly weeded out prior to formation
- Convergence of offer & wage distributions and fall in mobility, but this is benign
- Would expect a decline in EN mobility, especially among new matches

- Better screening implies bad matches are increasingly weeded out prior to formation
- Convergence of offer & wage distributions and fall in mobility, but this is benign
- Would expect a decline in EN mobility, especially among new matches

- Step I: λ , V and τ directly from the data step I
- Step II: Estimate 8 parameters jointly step II

$$\left\{ \ \lambda^{e} \ , \ \lambda^{f} \ , \ \mu \ , \ \rho \ , \ \sigma \ , \ \delta^{1} \ , \ \delta^{2} \ , \ \omega \right\}$$

- $\circ\;$ Key source of identification: joint distributions over wages
- **Step III**: *m* from $Cov\left(\frac{\lambda^e}{\lambda}, \text{fsize}\right)$ in panel of U.S. states **Step III**

Step I: λ , V & τ Directly from the Data

Step I: λ , V & τ Directly from the Data

$$\left\{ \ \lambda^{\boldsymbol{e}} \ , \ \lambda^{\boldsymbol{f}} \ , \ \mu \ , \ \rho \ , \ \sigma \ , \ \delta^{\boldsymbol{1}} \ , \ \delta^{\boldsymbol{2}} \ , \ \omega \right\}$$

1. Gap between the wage & wage offer distributions

$$\left\{ \; \boldsymbol{\lambda^{e}} \; , \; \boldsymbol{\lambda^{f}} \; , \; \boldsymbol{\mu} \; , \; \boldsymbol{\rho} \; , \; \boldsymbol{\sigma} \; , \; \boldsymbol{\delta^{1}} \; , \; \boldsymbol{\delta^{2}} \; , \; \boldsymbol{\omega} \; \right\}$$

1. Gap between the wage & wage offer distributions

2. Share of stayers

$$\left\{ \; \boldsymbol{\lambda^{e}} \; \; , \; \; \boldsymbol{\lambda^{f}} \; \; , \; \; \boldsymbol{\mu} \; \; , \; \; \boldsymbol{\rho} \; \; , \; \; \boldsymbol{\sigma} \; \; , \; \; \boldsymbol{\delta^{1}} \; \; , \; \; \boldsymbol{\delta^{2}} \; \; , \; \; \boldsymbol{\omega} \; \right\}$$

- 1. Gap between the wage & wage offer distributions
- 2. Share of stayers
- 3. Joint distribution among stayers details

$$\left\{ \; \lambda^{\boldsymbol{e}} \; \; , \; \; \lambda^{f} \; , \; \mu \; , \; \rho \; , \; \sigma \; , \; \delta^{\mathtt{l}} \; , \; \delta^{\mathtt{2}} \; , \; \omega \; \right\}$$

- 1. Gap between the wage & wage offer distributions
- 2. Share of stayers
- 3. Joint distribution among stayers details
- 4. Joint distribution among job losers details

Step II: λ^e Informed by Wage Relative to Offer Distributions

Step II: λ^f Informed by Share of Stayers

- The EN rate informs the EN rate $\delta(\mathbf{1} \lambda^f)$
- $\circ \lambda^e$ gives voluntary job-to-job flows
- Use the share that remain in job to get λ^f

Steps I-II: Parameter Estimates

Steps I-II: Parameter Estimates

- $\circ \ \lambda^{e} = \lambda \phi \frac{m-1}{m}$ declined by relatively more than λ
- Modest increase in reallocation shocks $\delta^i \lambda^f$

Steps I-II: Parameter Estimates

- $\circ \ \lambda^{e} = \lambda \phi \frac{m-1}{m}$ declined by relatively more than λ
- Modest increase in reallocation shocks $\delta^i \lambda^f$
- Less pronounced decline in realized EE mobility
 - 1. Voluntary mobility is less than half of total EE
 - 2. Workers are more likely to accept offer as λ^e falls

Step II: μ , ρ & σ Informed by Distribution of Stayers

Step II: δ^i & ω **Informed by Distribution of Losers**

• Assume: # markets B_s in state is prop. to empl. N_{sy} :

$$\beta = \frac{N_{sy}}{B_{sy}}$$

• It follows that the number of firms per market m_{sy} is:

$$m_{sy} = \frac{M_{sy}}{B_{sy}} = \frac{\beta}{fsize_{sy}}$$

- We first run steps I-II at state-year level to get $\lambda_{sy} \& \lambda_{sy}^e$.
- $\circ~$ We then estimate the parameter β by NLS from:

$$\ln \frac{\lambda_{sy}^e}{\lambda_{sy}} = \ln \left(1 - \frac{fsize_{sy}}{\beta} \right) + \alpha_s + \alpha_y + \varepsilon_{sy}$$

Step III: The Number of Recruiting Employers per Market

	(1)	(2)	(3)	(4)	(5)	(6)
β	43.454	34.133	63.754	39.185	38.834	39.143
	(5.255)	(2.050)	(17.543)	(7.510)	(9.526)	(7.186)
Trend						-0.000
						(0.000)
$\overline{\delta}$	-1.138	-0.187	-2.016	-2.224		-0.000
	(0.056)	(0.123)	(0.057)	(0.059)		(0.000)
λ	1.750	-8.416	-0.612	-0.227		-2.226
	(0.080)	(0.459)	(0.111)	(0.129)		(0.059)
Year FE	no	no	yes	yes	yes	yes
State FE	no	yes	no	yes	yes	yes
Obs.	2,000	2,000	2,000	2,000	2,000	2,000

Based on β , construct # recruiting employers at national level:

$$m_y = rac{eta}{fsize_y}$$

Step III: The Number of Recruiting Employers per Market

We compare our estimates of job mobility with that of Fujita, Moscarini & Postel-Vinay (FMP).

- Results based on year-by-year model estimation, smoothed using a five-year centered moving average
- Estimates closely align with FMP

Our estimates of job-to-job mobility and that of FMP

NLSY: Validation of wage distributions vs. CPS

Wage and offer distributions for 2000s cohort

CPS and NLSY wage and offer distributions are close together for both cohorts.

NLSY: Wage and offer distributions within individuals

Individual FE reduce wage dispersion, consistent w/ unobservable differences in earnings ability.

We compare wage growth in the two NLSY surveys: an 1980s versus a 2000s cohort.

- Wages of hires from non-employment grew similarly across cohorts
- Excess wage growth relative to hires of the same age was 13 log points lower for the 2000s cohort compared to the 1980s cohort

Wages of hires and all workers rel. to hires

Wage growth towards higher-paying occupations accounts for the majority of excess wage growth.

 2000s cohort shows slower wage growth moving toward higher paying occupations than their earlier peers

Between and within occupation relative wage growth

Decompose excess wage growth within occupation in contributions of stayers and job-to-job movers.

 Most of the change in excess wage growth between the 1980s and 2000s cohort is associated with job-to-job mobility

Decomposition of within-occupation wage growth

NLSY: Extensive and intensive margin of job-to-job wage growth

Decomposition of wage growth of JJ movers

Lower job-to-job mobility could be a result of *better initial matches* (cf. Mercan, 2017; Pries and Rogerson, 2022).

 Better initial matches would be reflected in relatively lower EN rates at the start of workers' careers, which we do not find evidence for

The EN transition rate

NLSY: Counterfactual

Run accounting exercise to quantify the impact of changes in the (i) frequency in and (ii) wage gain from job-to-job mobility on excess wage growth over first 10 years of career.

- With 1980s job-to-job mobility frequency:
 + 3 log-points wage growth
- With 1980s wage change upon move: + 3 log-points wage growth
- With both 1980s frequency and wage change upon move: + 10 log-points wage growth

