The Macroeconomic Effects of Climate Policy Uncertainty

Konstantinos Gavriilidis University of Stirling

Ramya Raghavan Northwestern University Diego R. Känzig Northwestern University

> James H. Stock Harvard University

Motivation

Uncertain times for climate policy

- Global shocks like Covid-19, energy crisis & geopolitical tensions shift focus from the climate challenge
- Economic pressures & political shifts may reverse climate commitments and delay stricter policies
- This creates substantial uncertainty about future path of climate policy
 - Especially since Trump's re-election
- How does climate policy uncertainty affect the environment and the economy?

This paper

- We construct a new measure of climate policy uncertainty (CPU) based on newspaper coverage in the United States
 - Building on approach by Baker, Bloom, and Davis (2016)
 - Index spikes near important events related to climate policy:
 Presidential announcements on international climate agreements, congressional debates on climate bills, or disputes about the right of the EPA and states to regulate emissions . . .
- Propose new IV capturing plausibly exogenous shifts in climate policy uncertainty
 - Quantified using newspaper coverage in tight window around events
- Provide new estimates on the dynamic effects of climate policy uncertainty
 - Notable differences to recursive approach commonly used in literature

Main results: aggregate impacts

- Climate policy uncertainty has significant macroeconomic effects
 - Higher uncertainty causes fall in output, private investment & employment
 - But also increases commodity and consumer prices
 - Emissions fall following economic contraction, no green paradox at aggregate level
- Climate policy uncertainty transmits to the economy as supply shocks
 - Differs from **economic policy uncertainty** moving output & prices in same direction
- No increase in other measures of uncertainty
 - Climate policy uncertainty is a distinct source of policy uncertainty
- No effect on government spending & emissions intensity unchanged
 - We successfully capture uncertainty and not news

Main results: firm-level effects

- Climate policy uncertainty has substantial firm-level impacts
 - Firms view climate policy uncertainty as material financial risk
- Firms respond more strongly when their climate change exposure is high
 - Holds even when controlling for sector by time fixed effects
- We document rich sectoral heterogeneity
 - Most sectors lower investment and R&D; higher investment in mining, oil & utilities
- But: R&D decreases particularly strongly in these sectors
 - Green paradox at micro level
 - Exacerbate transition costs through misallocative forces

Defining climate policy uncertainty

- **Definition**: Lack of clarity/predictability of government actions on climate change
 - Focus on climate policy with national significance
 - Includes uncertainty about new climate policies as well as political/legal challenges to existing policies
- Measurement is challenging
 - We follow approach by Baker, Bloom, and Davis (2016) leveraging informational content in newspaper articles

- **Idea**: use dictionary of words whose occurrence in newspaper articles is associated with coverage of topics related to climate policy uncertainty
 - Climate: climate change, carbon dioxide, greenhouse gas, green energy, ...
 - Policy: regulation, legislation, white house, congress, . . .
 - Climate policy: carbon tax, emissions trading, energy policy, EPA, ...
 - Uncertainty: uncertain*
- We specify these dictionaries based on corpus of news articles from specialized climate policy reporting agencies:

```
Inside Climate News, Carbon Control News, Washington Week (Energy)
```

 Identify article as CPU if it contains at least one term in: (Climate AND Policy AND Uncertainty) OR (Climate policy AND Uncertainty)

Figure 1: Climate policy dictionary

- Our sample contains ${\sim}5.46$ million news articles published leading American newspapers from mid-1980
 - New York Times, Wall Street Journal, Washington Post
 - These outlets provide comprehensive & systematic coverage of national climate policy developments
- Index counts, each month, the number of articles discussing uncertainty about climate policy, divided by the total number of published articles
 - Manual & LLM-augmented audit of sample of articles revealed that only few articles are false-positives
 - Results robust to varying dictionary terms

Climate policy uncertainty since the 80s

Figure 2: Climate Policy Uncertainty Index

Climate policy uncertainty since the 80s

- Climate policy uncertainty increased substantially, especially in recent years
 - Some notable spikes in first part of the sample, marked increase in late 2000s amid emissions trading proposals
 - Stark increase in uncertainty following Paris agreement and election of Trump
- Index uncorrelated with VIX & geopolitical risk
- Weakly correlated with EPU and trade policy uncertainty
 - Results robust to controlling for other uncertainty measures
 - CPU captures distinct variation from other dimensions of policy uncertainty

Identification

Identification

- Uncertainty about climate policy may increase in times of economic distress
- · Isolate plausibly exogenous increases in climate policy uncertainty
 - driven by climate-related, political or ideological considerations
- Based on narrative account of U.S. climate policy history, identify 72 events
 - legislative, regulatory, and judicial actions leading to climate policy uncertainty

Examples:

- inconsistent stance on international agreements like Kyoto or Paris agreement
- debates over proposed legislation such as cap-and-trade policies
- disputes about the right of the EPA and states to regulate emissions

A new climate policy uncertainty IV

 Quantify increases in climate policy uncertainty around events based on newspaper coverage (window: event day and the two days post-event)

$$\mathsf{CPU}_d^{\mathsf{Event}} = \frac{1}{3} \sum_{i} \sum_{d} \frac{n_{i,d}^{\mathsf{cp}}}{n_{i,d}^{\mathsf{tot}}}$$

where i is the newspaper, $n_{i,d}^{\text{cp}}$ and $n_{i,d}^{\text{tot}}$ are daily climate policy articles and total article counts

• Aggregate to monthly series

$$CPU_t = \begin{cases} CPU_d^{Event} & \text{if one event} \\ \sum_{Event} CPU_d^{Event} & \text{if multiple events} \\ 0 & \text{if no event} \end{cases}$$

Major climate policy uncertainty events

Figure 3: Climate policy uncertainty event series

Econometric framework

- Use climate policy uncertainty event series, z_t, as an instrument to identify a climate policy uncertainty shock
- Identifying assumptions:

$$\mathbb{E}[z_t \varepsilon_{1,t}] = \alpha \neq 0$$
 (Relevance)

$$\mathbb{E}[z_t \varepsilon_{2:n,t}] = \mathbf{0}, \tag{Exogeneity}$$

- For estimation, we rely on VAR techniques given the short sample
 - Sample: 1985 2019
 - Specification: 12 lags, 6 variables

CPU index, industrial production, unemployment rate ,commodity prices, consumer prices, policy rate

Use local projections as robustness and to map out wider effects

Aggregate Effects

The macro effects of climate policy uncertainty

First-stage regression: F-Statistic: $10.10, R^2$: 1.68%

Figure 4: Baseline VAR

The macro effects of climate policy uncertainty

- Climate policy uncertainty has meaningful economic effects
 - · Leads to significant fall in industrial production and an increase in unemployment
 - Importantly, commodity and consumer prices increase
 - Monetary response is ambiguous
- Thus, transmit more like supply shocks
- Notable differences to naive recursive approach, particularly for CPI and monetary response

The macro effects of climate policy uncertainty

Figure 5: Impacts on GDP, emissions and investment

- Significant fall in GDP and investment
- No response of government spending & investment
- Emissions fall but emissions intensity unchanged
- No evidence for green paradox

Is climate policy uncertainty special?

- What do we learn from looking at climate policy uncertainty?
- Contrast with effects of broader economic policy uncertainty
 - Use index from Baker, Bloom, and Davis (2016)
 - Estimate responses based on recursive VAR

The effects of economic policy uncertainty

Figure 6: VAR with EPU

Climate versus economic policy uncertainty

- Economic policy uncertainty transmits differently from climate policy uncertainty
 - Economic policy uncertainty also leads to fall in production and emissions
 - But commodity and consumer prices also tend to decrease
 - Monetary response accommodates the shock
- They thus transmit more like demand shocks
 - This is true for most uncertainty measures, e.g. an innovation to the VIX has very similar effects
- Response of prices to uncertainty shocks theoretically ambiguous
 - Different channels: precautionary demand, real options, precautionary pricing
 - Price response depends on relative strength of supply- and demand-side effects

Why is climate policy uncertainty inflationary?

- For CPU supply-side effects dominate, for EPU demand-side effects dominate
 - Consistently, consumer sentiment falls significantly for EPU but **not** for CPU shock
 - (a) Economic policy uncertainty shock

(b) Climate policy uncertainty shock

Figure 7: Impacts on sentiment

Firm-level impacts

- We revisit effects of climate policy uncertainty shocks in panel of firms
 - Construct quarterly panel of US listed firms
 - Unbalanced panel from 1986 to 2019 (136 quarters) with 11,872 firms
- Average effects turn out to be comparable to aggregate impacts
- How does effect vary with firm-level climate change exposure?
 - use exposure measures by Sautner et al. (2023) based on earnings conference calls
- Estimate local projection on shock **interacted** with exposure

$$y_{i,t+h} = \mu_{i,h} + \delta_t + \theta_h (\mathsf{Exp}_{i,t-1} - \overline{\mathsf{Exp}_i}) \times \varepsilon_{1,t} + \gamma_h' \mathbf{x}_{i,t-1} + \nu_{i,t+h},$$

- · focus on within-firm variation to net out permanent differences
- Allows to control for time fixed effects

Heterogeneity by climate exposure

Figure 8: Heterogeneous effects based on prior climate exposure

- Firms display **stronger fall** in investment and R&D when climate exposure is high
- Statistically and economically significant
- Robust to time or sector by time fixed effects

Sectoral impacts

(b) Oil, gas, and utilities

- Most sectors show significant fall in investment and R&D
 - Consistent with average response
- Except oil, gas & utilities
 - Investment increases!
 - R&D falls substantially
 - consistent with green paradox at micro level

Conclusion

- Climate policy uncertainty has **pervasive economic** effects at macro & firm-level
 - Broad-based effects beyond brown sectors
 - · Effects more pronounced when exposure to climate is high
- Contrary to other uncertainty shocks, climate policy uncertainty transmits more like supply shocks
 - Very persistent impacts dragging on investment and innovation
 - Monetary policy can make matters worse by leaning against inflationary pressures
- Illustrates importance of **clear and predictable** climate policies & coordination between fiscal and monetary policy

Thank you!

Related literature

Climate policy actions: Anderson, Marinescu, and Shor 2019; Martin, De Preux, and Wagner 2014; Metcalf 2019; Metcalf and Stock 2023; Bernard and Kichian 2021; Känzig 2023

Measuring policy uncertainty: Saiz and Simonsohn 2013; Baker, Bloom, and Davis 2016; Caldara and Iacoviello 2022; Caldara et al. 2020; Gambetti et al. 2023

Climate news and uncertainty: Engle et al. 2020; Sautner et al. 2023; Gavriilidis 2021; Basaglia et al. 2025; Noailly, Nowzohour, and Van Den Heuvel 2022; Fried, Novan, and Peterman 2021

Index validation

Validation exercise:

- To validate the index, we use OpenAl's gpt-4o-mini model
- We sample a set of articles from our Climate AND Policy corpus
- Next, we ask the LLM to classify articles into CPU and non-CPU articles
- This yields a false-positive rate below 10%
- Human audit of subset of articles confirms the accuracy of the classification

Robustness:

- Results are robust to using less restrictive set of dictionary terms
- Expanding the set of newspapers

Climate policy uncertainty events

(a) Timeline of the U.S. stance on the Paris Climate Agreement

(b) Timeline of the Waxman-Markey bill

(c) Timeline of California's waiver to set stricter emissions standards

Data

Figure 11: Transformed data series

Diagnostics

- Narrative account: ✓ Accords well with accounts on key historical episodes
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality: ✓ Uncorrelated with measures of other structural shocks (e.g. uncertainty, oil, or fiscal shocks)

Forecastability

 $\textbf{Table 1:} \ \, \mathsf{Granger} \ \, \mathsf{causality} \ \, \mathsf{tests}$

Variable	p-value
Instrument	0.1977
Industrial production	0.1643
Unemployment rate	0.9008
Commodity prices	0.5761
CPI	0.7375
Policy rate	0.9762
Economic policy uncertainty	0.4132
Trade policy uncertainty	0.5255
Geopolitical risk	0.7883
VXO	0.9294
Climate policy news	0.5455
Joint	0.6967

Orthogonality

Shock	Source	ρ	p-value	n	Sample
		-	p raide		
Panel A: Uncertainty Uncertainty	Bloom (2009)	-0.07	0.17	384	1986M01-2017M12
	Baker, Bloom, and Davis (2016)	0.08	0.10	384	1986M01-2017M12
	Piffer and Podstawski (2017)	-0.01	0.10	355	1986M01-2015M07
	Filler and Fodstawski (2017)	-0.01	0.01	333	1900W01-2015W07
Panel B: Oil shocks					
Oil price	Hamilton (2003)	-0.07	0.20	384	1986M01-2017M12
Oil supply	Kilian (2008)	0.09	0.20	225	1986M01-2004M09
	Caldara, Cavallo, and Iacoviello (2019)	0.00	0.97	360	1986M01-2015M12
	Baumeister and Hamilton (2019)	-0.04	0.37	408	1986M01-2019M12
	Kilian (2009)	-0.03	0.62	264	1986M01-2007M12
Global demand	Kilian (2009)	-0.05	0.46	264	1986M01-2007M12
Oil-specific demand	Kilian (2009)	-0.07	0.29	264	1986M01-2007M12
Oil supply news	Känzig (2021)	-0.06	0.23	408	1986M01-2019M12
Panel C: Productivit	v and news shocks				
Productivity	Basu, Fernald, and Kimball (2006)	-0.11	0.27	104	1986Q1-2011Q4
News	Barsky and Sims (2011)	0.00	0.98	87	1986Q1-2007Q3
	Kurmann and Otrok (2013)	-0.02	0.86	78	1986Q1-2005Q2
	Beaudry and Portier (2014)	0.03	0.74	107	1986Q1-2012Q3
Panel D: Monetary	policy				
Monetary policy	Bauer and Swanson (2023)	0.08	0.14	383	1988M02-2019M12
	Gertler and Karadi (2015)	0.09	0.12	324	1990M01-2016M12
	Romer and Romer (2004)	-0.03	0.70	132	1986M01-1996M12
	Smets and Wouters (2007)	-0.15	0.19	76	1986Q1-2004Q4
Panel E: Financial si	hocks				
Financial	Gilchrist and Zakrajšek (2012)	0.03	0.60	360	1986M01-2015M12
	Bassett et al. (2014)	-0.09	0.44	76	1992Q1-2010Q4
Panel F: Fiscal police	v shacks				
Fiscal policy	Romer and Romer (2010)	-0.09	0.40	88	1986Q1-2007Q4
py	Ramey (2011)	0.19	0.06	100	1986Q1-2010Q4
	Fisher and Peters (2010)	-0.00	1.00	92	1986Q1-2008Q4

Econometric framework

• Use identified climate policy uncertainty shock, $\varepsilon_{1,t}$ in local projection

$$y_{i,t+h} = \beta_{h,0}^i + \psi_h^i \varepsilon_{1,t} + \beta_{h,1}^i y_{i,t-1} + \dots + \beta_{h,p}^i y_{i,t-p} + \xi_{i,t,h}$$

- · assess possible truncation bias by relaxing dynamic VAR structure
- can also estimate effects on variables only available at lower frequencies
- To relax invertibility requirement, also present results from local projections-instrumental variable specification

External instrument approach

Structural VAR

$$\mathbf{y}_t = \mathbf{b} + \mathsf{B}_1 \mathbf{y}_{t-1} + \cdots + \mathsf{B}_{
ho} \mathbf{y}_{t-
ho} + \mathsf{S} arepsilon_t, \qquad arepsilon_t \sim \mathcal{N}(0, \Omega)$$

- External instrument: variable z_t correlated with the shock of interest but not with the other shocks
- Identifying assumptions:

$$\mathbb{E}[z_t \varepsilon_{1,t}] = \alpha \neq 0$$
 (Relevance)

$$\mathbb{E}[z_t \varepsilon_{2:n,t}] = \mathbf{0},$$
 (Exogeneity)

$$\mathbf{u}_t = \mathbf{S}\varepsilon_t$$
 (Invertibility)

 Use climate policy uncertainty event series as external instrument for climate policy uncertainty index

The macro effects of climate policy uncertainty

Figure 12: Local projections

Sensitivity

- CPU has **no** significant effect on other uncertainty measures Detail
 - economic policy uncertainty, trade policy uncertainty, geopolitical risk, financial uncertainty, . . .
- Results robust to
 - controlling for other uncertainty measures (other policy uncertainty, financial uncertainty, oil price uncertainty)
 - controlling for first moment shocks using climate news index
 - relaxing VAR assumptions (invertibility, dynamic VAR structure)

Impacts on other uncertainty measures

Figure 13: Impacts on other uncertainty measures

Controlling for news and other uncertainty measures

Figure 14: Additional controls

Relaxing VAR assumptions

Figure 15: Additional controls

Why is climate policy uncertainty inflationary?

- · Response of prices to uncertainty shocks theoretically ambiguous
- Key channels
 - Precautionary demand: Higher uncertainty leads agents to cut spending, reducing prices via lower demand
 - **Real options channel**: After a rise in uncertainty, firms delay investment and hiring. Price response depends on strength of demand- and supply-side effects
 - Precautionary pricing: Increased uncertainty raises the potential for higher future costs, leading firms to raise prices preemptively
- Price response depends on relative strength of supply- and demand-side effects

A simple two-sector NK model

- Why are CPU shocks inflationary?
- Study propagation of different uncertainty shocks in NK model with two sectors:
 - Energy sector producing energy/emissions using labor
 - Non-energy sector producing consumption good using energy and labor
- Standard household sector and fiscal/monetary authority

Non-energy sector

Technology

$$y_t = Z_{x,t} e_t^{\alpha} n_{x,t}^{1-\alpha}$$

Cost-minimization

$$p_{e,t} = \alpha m c_t \frac{y_t}{e_t}$$

$$w_t = (1 - \alpha) m c_t \frac{y_t}{n_{x,t}}.$$

· Price setting

$$\pi_{t}\left(\pi_{t} - \bar{\pi}\right) = \beta \mathbb{E}_{t}\left[\frac{\lambda_{t+1}}{\lambda_{t}} \pi_{t+1} \left(\pi_{t+1} - \bar{\pi}\right) \frac{y_{t+1}}{y_{t}}\right] + \frac{\varepsilon}{\Omega_{p}} \left(mc_{t} - \frac{\varepsilon - 1}{\varepsilon}\right)$$

• Consider uncertainty shock about productivity, $\sigma_{Z_{x,t},t}$

Energy sector

Technology

$$e_t = Z_{e,t} n_{e,t}$$

Cost-minimization

$$(1-\tau_t)p_{e,t} = \frac{\eta}{\eta-1}\frac{w_t}{Z_{e,t}}$$

Price setting

$$\pi_{t}^{e}\left(\pi_{t}^{e} - \bar{\pi}^{e}\right) = \beta \mathbb{E}_{t}\left[\frac{\lambda_{t+1}}{\lambda_{t}}\pi_{t+1}^{e}\left(\pi_{t+1}^{e} - \bar{\pi}^{e}\right)\frac{e_{t+1}}{e_{t}}\frac{p_{e,t+1}}{p_{e,t}}\right] + \frac{\eta}{\Omega_{p}^{e}}\left(\frac{w_{t}}{Z_{e,t}p_{e,t}} - \frac{(1 - \tau_{t})(\eta - 1)}{\eta}\right)$$

- In line with the data assume that energy prices much more flexible than goods prices
- Consider uncertainty shock about carbon tax, $\sigma_{ au_t,t}$

The differential impact of uncertainty shocks

Figure 16: Uncertainty shocks in model

The differential impact of uncertainty shocks

- Uncertainty about productivity in non-energy sector has very different implications
- Consistent with data, uncertainty about productivity is disinflationary while climate policy uncertainty is inflationary
- Precautionary pricing channel dominates precautionary demand channel for climate policy uncertainty

The role of monetary policy

- How important is **monetary policy** for transmission of climate policy uncertainty?
- Perform a counterfactual exercise using McKay and Wolf (2023) approach
 - Use monetary shocks from Bauer and Swanson (2023)
 - Robust to Lucas critique
- Use MP shocks to impose same monetary response after CPU shock as for EPU shock

The role of monetary policy

Figure 17: Monetary policy counterfactual

- Monetary policy response matters a great deal for the transmission of CPU shocks
 - Mitigates unemployment response substantially
 - Comes at cost of tolerating slightly higher inflation

• Should monetary policy respond **differently** to different sources of uncertainty?

Average effect

- Sales and employees fall significantly
- Substantial fall in firm-level investment and R&D
- Evidence consistent with macro results

Figure 18: Average effect on firm outcomes

Sectoral impacts

Figure 19: Sectoral impacts

Longer-term impacts

- Results are consistent with green paradox at micro level
- Climate policy uncertainty strengthens incentives to extract fossil fuels
- But: reduces R&D expenses that spur the green transition
- Climate policy uncertainty can exacerbate transition costs through misallocative forces

Longer-term impacts

(b) Average firm-level TFP

- Climate policy uncertainty is a drag on investment and innovation
- Distorts allocation leading to overinvestment in firms with uncertain long-term viability

Confirmed by significant and persistent fall in TFP