Can We Rebuild a City? The Dynamics of Urban Redevelopment

Vincent Rollet

MIT

NBER Summer Institute July 24, 2025

Home prices are growing much faster than income in large cities

Why can't these cities grow?

- Strict zoning is often denounced as a culprit.
 - → Some deregulation happening in many cities.

Why can't these cities grow?

- Strict zoning is often denounced as a culprit.
 - → Some deregulation happening in many cities.
- In urban cores, vacant land is scarce, change comes from redevelopment.
 - → Demolishing and replacing old buildings.
 - → Increasingly how cities grow (Frolking et al., 2024).
 - → Requires to pay large fixed costs.

Why can't these cities grow?

- Strict zoning is often denounced as a culprit.
 - → Some deregulation happening in many cities.
- In urban cores, vacant land is scarce, change comes from redevelopment.
 - → Demolishing and replacing old buildings.
 - → Increasingly how cities grow (Frolking et al., 2024).
 - → Requires to pay large fixed costs.

This paper:

- Describe redevelopment.
- Measure the extent to which regulation vs. adjustment costs hinder growth.

Challenges to studying redevelopment

• Challenge 1: Need data on developer behavior.

Challenges to studying redevelopment

- Challenge 1: Need data on developer behavior.
- Challenge 2: Modeling developers' choices.
 - → Developers make forward-looking decisions.
 - → These decisions are distorted by **zoning**.
 - → Construction in one area changes prices throughout the city → GE effects.

This paper

• I build a land use panel at the parcel level for NYC.

This paper

- I build a land use panel at the parcel level for NYC.
- I evaluate the effects of recent zoning changes.

This paper

- I build a land use panel at the parcel level for NYC.
- I evaluate the effects of recent zoning changes.
- I estimate a **dynamic general equilibrium** model of redevelopment.
 - → **Supply**: Behavior of forward-looking developers given prices and regulation.
 - → **Demand**: Quantitative spatial model predicts how development affects prices.
 - → **Validation** using quasi-experimental evidence.

Findings

- **1** Zoning strongly hinders construction.
 - → In NYC, zoning is the primary determinant of supply elasticities.
 - \rightarrow Removing zoning would more than quadruple the city's supply elasticity and growth rate.

Findings

- Zoning strongly hinders construction.
 - → In NYC, zoning is the primary determinant of supply elasticities.
 - → Removing zoning would more than quadruple the city's supply elasticity and growth rate.
- Pixed costs of redevelopment are an equally important barrier to growth.
 - → They increase sharply with the height of buildings to be demolished.
 - ightarrow Deregulation is effective in areas with high prices and low density.
 - → The (large) welfare gains from deregulation only materialize slowly.
 - \rightarrow When allowing 5 new units, only 1 will be built over the next 40 years.

Data and context

• Tracks 833,000 parcels over 2004–2022.

- Tracks 833,000 parcels over 2004–2022.
- I use cadastre maps to:
 - → Partition NYC in time-consistent parcels.
 - → Link land parcels to buildings at different points in time. (Boundary changes)

- Tracks 833,000 parcels over 2004–2022.
- I use cadastre maps to:
 - → Partition NYC in time-consistent parcels.
 - → Link land parcels to buildings at different points in time.

 Boundary changes
- Building characteristics from property tax records and StreetEasy (Zillow).

- Tracks 833,000 parcels over 2004–2022.
- I use cadastre maps to:
 - → Partition NYC in time-consistent parcels.
 - → Link land parcels to buildings at different points in time. (Boundary changes)
- Building characteristics from property tax records and StreetEasy (Zillow).
- Prices from real estate transactions over 2003-2022 (1.2 million observations).

Construction timelines for 22,000 redevelopment events

Zoning

- I match my land use panel with zoning regulations for each year.
- Main zoning instrument in NYC: limits on the Floor Area Ratio (FAR).
 - \rightarrow FAR = sq. ft of floorspace/sq. ft of land.

Buildings with a FAR of 2

- Several neighborhoods of NYC have been upzoned in the past decades.
 - → Focus on large upzonings initiated by planners.
 - → Many veto players: exact zoning changes and timing unclear when upzoning discussions begin.

Stylized facts

Redevelopment leads to densification

- New buildings 3.4 times larger than the ones they replace (on average).
- Allows to cover large fixed costs of redevelopment.

Change in number of units

Redevelopment mostly happens when upward growth is allowed

 Buildings at or over the zoning limit are seldom redeveloped.

Upzoning prompts construction

- Compare parcels upzoned earlier vs. later.
- 10 years after upzoning, developers have used 1/10 of newly allowed floorspace.

Relaxing use constraints

Upzoning prompts construction

When prices are high, on parcels that are initially less built-up

A dynamic model of redevelopment

Supply of floorspace

Developer profit function

$$\pi_{it}^{\theta} = \max_{h^{\text{new}} \leq \bar{h}_{\theta it}} \left[\underbrace{P_{it}(h^{\text{new}}, \mathbf{x}_{it}^{\text{new}}) - P_{it}(h^{\text{old}}_{it}, \mathbf{x}_{it}^{\text{old}})}_{\text{Change in property value}} - \underbrace{[VC_{it}(h^{\text{new}}_{it}) + FC_{it}]}_{\text{Cost of redevelopment}} \right]$$

- P is the discounted sum of future rents.
 - \rightarrow As buildings age, $P_{it}(h_{it}^{\text{old}}, \mathbf{x}_{it}^{\text{old}})$ decreases, redevelopment becomes more profitable.
- Variable costs: construction costs, increase with size of new building h.
- Fixed costs: eviction, demolition, permitting, etc.
 - → Vary by building (e.g., larger for bigger buildings in dense neighborhoods).

$$\pi_{it}^{\theta} = \max_{h^{\text{new}} \leq \bar{h}_{\theta it}} \left[\underbrace{P_{it}(h^{\text{new}}, \mathbf{x}_{it}^{\text{new}}) - P_{it}(h^{\text{old}}_{it}, \mathbf{x}_{it}^{\text{old}})}_{\text{Change in property value}} - \underbrace{[VC_{it}(h^{\text{new}}_{it}) + FC_{it}]}_{\text{Cost of redevelopment}} \right]$$

Estimation: Prices and variable costs

- Estimate prices $P_{it}(h_{it}, \mathbf{x}_{it})$ through a **hedonic regression** on the sales data.
 - \rightarrow Function of location, FAR h_{it} , and quality controls \mathbf{x}_{it} (age, grade, type, etc.).

Estimation: Prices and variable costs

- Estimate prices $P_{it}(h_{it}, \mathbf{x}_{it})$ through a **hedonic regression** on the sales data.
 - \rightarrow Function of location, FAR h_{it} , and quality controls \mathbf{x}_{it} (age, grade, type, etc.).
- Estimate variable costs $VC_{it}(h_{it})$ using a **revealed preferences** approach.
 - → Data on the FARs chosen by developers and prices/zoning they faced.
 - → Assume that developers maximize profits under the zoning constraint.
 - → Estimated construction costs consistent with engineering estimates.

Estimation: Fixed costs

• Idea:

- → Compute expected profit from redevelopment, excluding fixed costs.
- → Compare with redevelopment probability.

Estimation: Fixed costs

• Idea:

- → Compute expected profit from redevelopment, excluding fixed costs.
- → Compare with redevelopment probability.
- Parameterization: fixed costs
 - → Increase with size of old building.
 - → Increase with neighborhood density.
 - → Larger in historic districts. More

Estimation: Fixed costs

- Idea:
 - → Compute expected profit from redevelopment, excluding fixed costs.
 - → Compare with redevelopment probability.
- Parameterization: fixed costs
 - → Increase with size of old building.
 - → Increase with neighborhood density.
 - → Larger in historic districts. More
- Estimation using full-solution approach (extending Rust, 1987)

 Parameter estimates

Model validation: Predicted effect of upzonings

- Using the model, I simulate how recently upzoned parcels would have evolved if zoning had not changed.
 - → Compute model-implied causal effect of upzoning.

Model validation: Predicted effect of upzonings

- Using the model, I simulate how recently upzoned parcels would have evolved if zoning had not changed.
 - Compute model-implied causal effect of upzoning.
- Effects align with quasi-experimental estimates.

Model validation: Predicted effect of upzonings (Excluding upzoned parcels)

Demand for floorspace

Demand model: Overview More

- Workers consume residential floorspace, choose where to live/work.
- Firms produce using commercial floorspace and labor.

Demand model: Overview More

- Workers consume residential floorspace, choose where to live/work.
- Firms produce using commercial floorspace and labor.
- **Key extensions**: Heterogeneous types and non-homothetic preferences for housing.

Demand model: Overview More

- Workers consume residential floorspace, choose where to live/work.
- Firms produce using commercial floorspace and labor.
- Key extensions: Heterogeneous types and non-homothetic preferences for housing.
- Additional ingredients:
 - → Migration
 - → Congestion
 - → Agglomeration externalities (internally estimated). More

Results

To what extent does zoning constrain NYC's growth?

Simulate the evolution of the city until 2060, keeping fundamentals at their 2019 level.

1 Status quo: zoning stays as is.

Simulate the evolution of the city until 2060, keeping fundamentals at their 2019 level.

- 1 Status quo: zoning stays as is.
- **2** Transit-Oriented Development: ambitious upzoning near transit stations.
 - → Increases total allowed FAR in NYC by 60%.

Simulate the evolution of the city until 2060, keeping fundamentals at their 2019 level.

- 1 Status quo: zoning stays as is.
- 2 Transit-Oriented Development: ambitious upzoning near transit stations.
 - → Increases total allowed FAR in NYC by 60%.
- 3 No zoning (excluding landmarks, historic districts, flood zones). Protected parcels Flood zones

Simulate the evolution of the city until 2060, keeping fundamentals at their 2019 level.

- 1 Status quo: zoning stays as is.
- 2 Transit-Oriented Development: ambitious upzoning near transit stations.
 - → Increases total allowed FAR in NYC by 60%.
- 3 No zoning (excluding landmarks, historic districts, flood zones). Protected parcels Flood zones
- 4 Frictionless benchmark (no zoning, no adjustment costs, price = marginal cost).

Under current zoning, NYC continues to grow slowly

TOD doubles NYC's growth rate

Completely removing zoning quadruples NYC's growth rate

Rent decreases are moderated by migration

A simpler model greatly overstates effects of removing zoning

Where is zoning a constraint?

Where does relaxing zoning lead to increased supply? Selection on gains

How does zoning affect floorspace supply elasticities?

Supply elasticities (Determinants)

40-year supply elasticity (status quo zoning)

Supply elasticities (Determinants)

Additional results in the paper

- Distributional effects. More
- Effects on city structure. More
- Alternative policies (tax breaks, inclusionary zoning).
- Historical analysis.

Conclusion

- Redevelopment is increasingly important for cities worldwide.
 - → This paper provides a framework to analyze this process.

- Redevelopment is increasingly important for cities worldwide.
 - → This paper provides a framework to analyze this process.
- Redevelopment usually unprofitable when prices are low/in dense neighborhoods.
 - → Leads to strong historical persistence regardless of zoning.

- Redevelopment is increasingly important for cities worldwide.
 - → This paper provides a framework to analyze this process.
- Redevelopment usually unprofitable when prices are low/in dense neighborhoods.
 - → Leads to strong historical persistence regardless of zoning.
- In NYC, zoning severely constrains the growth of some neighborhoods.
 - $\,\rightarrow\,$ Targeted upzoning can substantially boost floorspace supply.

- Redevelopment is increasingly important for cities worldwide.
 - → This paper provides a framework to analyze this process.
- Redevelopment usually unprofitable when prices are low/in dense neighborhoods.
 - → Leads to strong historical persistence regardless of zoning.
- In NYC, zoning severely constrains the growth of some neighborhoods.
 - → Targeted upzoning can substantially boost floorspace supply.
- The gains from upzoning are diffuse and take time to materialize.
 - → Effects of upzoning may look disappointing despite large welfare gains.

Appendix

Boundary changes (21,700 detected over 2004-2022)

◆ Back

Examples of digitized Certificates of Occupancy

Redevelopment duration (in years)

Mature cities grow by redeveloping old structures

• Since 2004, floorspace in NYC has grown at a rate of \sim 0.6% per year.

Changes in residential/commercial floorspace

Use restrictions constrain the reallocation of land uses

FAR allowances in NYC's zoning map

Evolution of median residential rents (\$/month)

Evolution of median household income (\$k/year)

Commercial-oriented areas became more attractive over time

Work from home will likely accelerate existing trends

Use restrictions constrain the reallocation of land uses

Zoning's goals

- Current zoning resolution adopted in 1961.
- Planners believed NYC has nearly reached its maximum size.
 - → Didn't view the zoning code as restrictive.
- Aims of the 1961 zoning resolution:
 - 1 Promote tower-in-the-park development.
 - 2 Better separate commercial/residential uses.
 - \rightarrow De facto: stabilization of existing land uses.
- Current zoning regulations closely aligns with the 1961 ordinance.

Since 1961: Persistence in zoning

Change in number of units

Residential-to-residential redevelopment

- New residential units are about 10% larger than the ones they replace.
- The number of units in new residential buildings is, on average, 3 times larger than in old structures.

■ Back

Effects of allowing residential use

Effects of allowing commercial use

Probability of a parcel sale (probit regression)

	Probit coefficients	
Parcel sold		
Office space (% of total floorspace)	-0.076	(0.006)
Retail space (% of total floorspace)	-0.018	(0.004)
Garage space (% of total floorspace)	0.000	(0.007)
Storage space (% of total floorspace)	0.033	(0.009)
Factory space (% of total floorspace)	0.001	(0.007)
Hotel space (% of total floorspace)	-0.015	(0.020)
Other space (% of total floorspace)	-0.327	(0.006)
Condo/Coop	-0.684	(800.0)
Parcel in Bronx	0.051	(0.003)
Parcel in Brooklyn	0.038	(0.003)
Parcel in Queens	0.036	(0.003)
Parcel in Staten Island	0.023	(0.003)
Constant	-1.615	(0.003)
Observations	13,156,064	

Parcel sales around redevelopment events

Around project approval

Around project completion

Estimation details: Building values

Using the sales data, I estimate separately for residential and commercial structures:

$$\log(\mathsf{price}_s) = \underbrace{\rho_{1,n(s)}^{\theta}}_{\mathsf{Neigh. FE}} + \underbrace{\rho_{2,bt(s)}^{\theta}}_{\mathsf{Borough} \times \mathsf{year FE}} + \beta \underbrace{\left(\mathbf{x}_s - \overline{\mathbf{x}}_s\right)}_{\mathsf{Structure characteristics}} + \nu_s$$

- Expected value of floorspace in a new building: $\bar{p}_{nt} = \exp(\hat{\rho}_{1,n} + \hat{\rho}_{2,b(n)t} + \hat{\sigma}_{\nu}/2)$
- Negative coefficient on (log) FAR, more negative for commercial.
 - → Less usable floorspace in tall buildings (e.g., because of mechanical space).
 - → Lower floor of commercial buildings is more valuable.

Hedonic regression coefficients (Back)

	(1	L)	(2)
	Resid	ential	Comr	nercial
(log) Built FAR	-0.027	(0.002)	-0.091	(0.011)
(log) Unit size	-0.065	(0.002)	-0.108	(0.005)
Age	-0.002	(0.000)	0.000	(0.000)
Rent-stabilized	-0.336	(0.002)		
Landmark	-0.078	(0.006)	0.087	(0.060)
Grade A	0.162	(0.003)	0.222	(0.032)
Grade B	0.025	(0.002)	0.095	(0.019)
Grade C	0.007	(0.002)	-0.024	(0.019)
Brick	-0.155	(0.003)	-0.001	(0.084)
Frame	-0.068	(0.003)	-0.224	(0.118)
Masonry	-0.156	(0.003)	-0.071	(0.019)
Office building			0.147	(0.025)
Retail building			0.222	(0.021)
Garage building			0.004	(0.025)
Industrial building			0.030	(0.025)
Hotel			0.352	(0.048)
Neighborhood FE	Yes		Yes	
$Borough \times Year FE$	Yes		Yes	
Observations	428,338		15,795	

Developers build taller when facing high prices

Estimated cost paramters

(a) Variable cost parameters						
α^{0}	Baseline cost of materials	80.4	(2.3)			
ζ	Capital cost share	0.51	(0.005)			
σ_{η}	Cost shock standard deviation	1.08	(0.02)			
(b) Fixed cost parameters						
δ^0	Base fixed cost	175.2	(7.7)			
$\delta^{\sf demolition}$	Demolition multiplier	1853.8	(37.6)			
$\delta^{\sf density}$	Neighborhood density multiplier	318.5	(11.3)			
δ protected	Protected parcels multiplier	0.77	(0.03)			
(c) Profit shock parameters						
σ_{ϵ}^0	Base profit shock variance	73.7	(2.9)			
$\sigma_{\epsilon}^{\stackrel{ extsf{demolition}}{ extsf{demolition}}}$	Demolition multiplier	138.8	(5.1)			
$\sigma_{\epsilon}^{ extsf{density}}$	Neighborhood density multiplier	248.2	(4.9)			

Construction costs

Construction costs for skyscrapers

Protected areas

Flood zones

Model fit: Residential vs. commercial construction (Back)

Out-of-sample model fit (Back)

- Re-estimate the model using first half of the data (2004–2011):
 - → Price levels:
 - → Preferences and location fundamentals;
 - → Sale probabilities;
 - → Variable costs;
 - → Fixed costs.
- Predict the evolution of the city over 2012–2019.

Out-of-sample model fit: Parcel level (Back)

 \rightarrow Differences explained by high price growth post-2012.

Out-of-sample model fit: Aggregate growth (Back)

 \rightarrow Differences explained by high price growth post-2012.

Model validation, excluding upzoned parcels

Demand model (Back)

- Neighborhoods are endowed with commercial and residential floorspace.
- Workers choose home and work locations (i, j):

$$U_{ij} = \frac{B_i z_i^H z_j^W}{d_{ij}} c^{1-\beta} (h - \bar{h}_i)^{\beta}$$

- → Workers value housing, other consumption, and amenities.
- → They dislike commuting.
- \rightarrow They dislike high residential prices (budget constraint: $c + R_i h \leq \text{Income}$)
- → They must consume at least a subsistence amount of housing.
- → They have (Fréchet-distributed) idiosyncratic preferences for home/work locations.
- Heterogeneous workers, with effective labor supply $s(\vartheta)$, lognormally distributed.
 - \rightarrow City population increases with expected utility (migration elasticity $\varepsilon_m=3$).
 - → Congestion worsens as the city grows.

Demand model (Back)

Firms produce using labor and floorspace:

$$Y_j = A_j H_{Fj}^{\alpha_j} L_{Fj}^{1-\alpha_j}$$

Amenities and productivities vary with the density of residents and jobs.

$$B_i = \bar{B}_i \tilde{L}_{Ri}^{\gamma_{RR}} \tilde{L}_{Fi}^{\gamma_{CR}}$$
 $A_j = \bar{A}_j \tilde{L}_{Rj}^{\gamma_{RC}} \tilde{L}_{Fj}^{\gamma_{CC}}$

- $\rightarrow \gamma$ are the agglomeration elasticities.
- Income from rented floorspace redistributed proportionally to labor income.
- The calibrated model matches untargeted moments well. Estimation details Engel curve (Commuting flows) (Income sorting) (Share of floorspace in production) (Minimal housing consumption) (Survey data)

Price effects of new construction (Back)

- To calibrate γ , I measure local demand elasticities for floorspace:
 - → Isolate large new construction events.
 - → Draw 500-ft disks around them.
 - → Compare the evolution of rents in disks treated earlier vs. later.
 - → How do rents react to new construction?

Events (new residential buildings)

- New buildings
 500 ft buffers
 - Buildings with soul
 - Buildings with available rent data
 - Residential
- Commercial

Effects of residential construction

Effects of commercial construction

Price effects of new construction (Back)

• I calibrate agglomeration parameters through **indirect inference** to match reduced-form elasticities.

Price effects of new construction (Back)

- I calibrate agglomeration parameters through indirect inference to match reduced-form elasticities.
- I find agglomeration externalities in line with existing estimates in the literature.
 - \rightarrow Effect of residents on other residents: $\gamma_{RR} = 0.11$.
 - \rightarrow Effect of firms on other firms: $\gamma_{CC} = 0.07$.
 - → Corresponding estimates in Ahlfeldt et al. (2015): 0.16 and 0.07.

Event locations) (Buffer examples) (Excluding overlapping buffers) (Spatial decay) (Parameter estimates) (Sensitivity

Demand model estimation (1)

- Calibrate β to 0.1 using the ACS.
- Estimate the shape of z^W at 4.4 using the commuting data.
- Calibrate wages from the number of people working in each location.
 - → High-wage locations attract more workers, and from further away.
- Calibrate amenities B with residential prices and the number of residents in each location.
 - → Locations attracting many residents despite high prices must have high amenities.
- $oldsymbol{\bullet}$ Calibrate subsistence levels $ar{oldsymbol{h}}$ with the total housing consumption in each location.
 - ightarrow Higher levels of $ar{h}$ lead to more housing consumption.
 - \rightarrow Average \bar{h} of 224 sq. ft (IQR = [170 sq. ft, 265 sq. ft])

Demand model estimation (2)

- Calibrate the shape of z^H to 2.9 match the variance of average neighborhood incomes.
 - \rightarrow Higher variance of $z^H \implies$ less sorting across neighborhood by income.
- Calibrate productivities $\bf A$ and floorspace shares in production α using data on commercial floorspace quantities and prices, the number of jobs in each location, and the calibrated wages.
 - → Productivity is estimated to be higher near the center of the city.
 - \rightarrow α averages 0.18 across neighborhoods (IQR = [0.14, 0.21]). Close to benchmarks in the literature (0.2 in Ahlfeldt et al., 2015; 0.16 in Greenwood, Hercowitz, and Krusell, 1997).

Engel curve for housing

Demand model fit: Commuting flows and sorting

Demand model fit: α and \bar{h}

Amenity	Correlation between share of satisfied residents and B
Neighborhood cleanliness	0.47
Control of street noise	0.07
Household garbage pick-up	0.33
Recycling services	0.34
Snow removal	0.77
Rat control	0.36
Bike safety	0.25
Pedestrian safety	0.53
Street maintenance	0.53
Parking enforcement	0.74
Storm water drainage and sewer maintenance	0.57
Availability of healthcare services	0.52
Availability of cultural activities	0.60
Neighborhood parks	0.86
Fire protection services	0.75
Emergency medical services	0.73
Neighborhood public safety	0.66
Bus services	0.66
Subway services	0.71
Public services	0.63

Large construction events

Buffers around new residential buildings

Events (new residential buildings)

- New buildings
- 500 ft buffers

Buildings with available rent data

- Residential
- Commercial

Effects of residential construction

Effects of commercial construction

◆ Baseline ◆ With overlapping events

Spatial decay of price effects

Estimated spillover parameters

Parameter	Interpretation	Calibrated value	Targeted elasticity
γ^{RR}	Effect of residents on amenities	0.11	$arepsilon^{RR} = ext{-0.42}$
$\gamma^{\sf RC}$	Effect of residents on productivity	0.03	$arepsilon^{\sf RC} = {\sf 0.14}$
$\gamma^{\sf CR}$	Effect of jobs on amenities	-0.03	$arepsilon^{CR} = ext{-0.03}$
$\gamma^{\sf CC}$	Effect of jobs on productivity	0.07	$arepsilon^{CC} =$ -0.28

◆ Back

◀ Back

Transit-Oriented Development

→ Upzones 37% of the city, mostly in outer boroughs.

Dynamic vs. static model

Additional outcomes

◆ Back

Change by 2060, relative to 2019 (%)

Use vs. FAR limits

Use vs. FAR limits

Change by 2060, relative to 2019 (%)

No spillovers

◆ Back

FAR distribution of new buildings (Back)

Average FAR of new buildings (Back)

Transition paths (Back)

Upzonings' effects are concentrated (Back)

Spatial concentration of floorspace growth

Effects of the aggregate price level

50% lower price level (Miami)

67% lower price level (Chicago)

Targeted upzoning

Upzoned parcels

Floorspace growth, 2019-2060

Effects on city structure (Back)

Effects on city structure (Back)

Effects on city structure (Back)

Effects of upzoning vary widely across neighborhoods

- I simulate the effect of a 1.1 FAR point upzoning in each neighborhood and compute FAR increases over a 10-year horizon.
 - \rightarrow For comparison with event study.

Back

Effects of upzoning vary widely across neighborhoods

- I simulate the effect of a 1.1 FAR point upzoning in each neighborhood and compute FAR increases over a 10-year horizon.
 - ightarrow For comparison with event study.
- Wide heterogeneity in effects.
 - → Important consequences if upzoning is politically costly.

◆ Back

Effects of upzoning vary widely across neighborhoods

- I simulate the effect of a 1.1 FAR point upzoning in each neighborhood and compute FAR increases over a 10-year horizon.
 - \rightarrow For comparison with event study.
- Wide heterogeneity in effects.
 - → Important consequences if upzoning is politically costly.
- Realized upzonings were in areas ripe for redevelopment.
 - → They were "selected on gains."

■ Back

Removing zoning benefits low-income workers more (Back)

 Lower-income workers spend a larger share of income on housing.

Filtering (Exposure to redevelopment) (Decomposition

Removing zoning benefits low-income workers more (Back)

- Lower-income workers spend a larger share of income on housing.
- Increasing the housing stock lowers prices more in cheaper neighborhoods.

Filtering) (Exposure to redevelopment) (Decomposition

Effects on city structure (More) (1 Back)

Effects on city structure More (Back)

Effects on city structure More (Back)

Effects on city structure More (Back)

Alternative policies to favor construction and affordability •Back

Status quo zoning

Lowering construction costs marginally boosts construction (*Back)

Status quo zoning

Tax breaks are relatively ineffective and costly (*Back)

Status quo zoning

Upzoning dominates alternative policies (Back)

IZ: supply $\downarrow 0.6$ sq. ft per new affordable sq. ft \bigcirc

Richer households are more exposed to redevelopment

◆ Back

Decomposition of the welfare gains from removing zoning CEBACK

Effects of a 10% increase in the city's floorspace on rents

Supply elasticities (Back)

 Supply elasticities are largely determined by the share of the zoning envelope that has already been built out.

Supply elasticities (Back)

- Supply elasticities are largely determined by the share of the zoning envelope that has already been built out.
- Without zoning, citywide supply elasticity 5x higher.
 - → Mostly determined by built density. More

Determinants of supply elasticities

Why did NYC's planners impose such costly regulations?

- Zoning creates large welfare losses. Why is it in place?
- When the zoning code was crafted in 1961, restricting construction had limited costs.
 - Population had plateaued, land values were below historical trend. (More)
 - Floorspace prices were close to marginal cost.
- Zoning could help curb negative spillovers from manufacturing. More
- Much has changed since 1961:
 - → Floorspace prices have skyrocketed, manufacturing activity has plummeted. (Manufacturing)
 - → A typical housing unit is priced at \$1M but costs \$300k to build.
- But zoning has been much more persistent than planners anticipated and intended.
 - → Rezoning is vulnerable to obstruction by those with a stake in the status quo.

Historical population and land values

◆ Back

Effects of industrial construction on residential rents

Manufacturing in NYC has collapsed since 1961

