A HIDDEN MARKOV MODEL OF WAGES AND EMPLOYMENT MOBILITY WITH WORKER AND FIRM HETEROGENEITY

EVIDENCE FROM ITALIAN (AND DANISH) DATA

Long Hong Rasmus Lentz Jean-Marc Robin

NBER SI 2025 – The Micro and Macro Perspectives of the Aggregate Labor Market Iuly 14-18. 2025

INTRODUCTION

WAGE AND JOB MOBILITY DETERMINANTS

• How important are type dynamics to a worker's wage and job mobility outcomes?

WAGE AND JOB MOBILITY DETERMINANTS

- · How important are type dynamics to a worker's wage and job mobility outcomes?
- We develop a rich framework for the flexible identification of determinants of wage and job mobility outcomes that includes the identification of,
 - · Latent worker type heterogeneity
 - Latent firm type heterogeneity
 - A Markov process for worker type dynamics that also depends on the worker's current employer's type.

WAGE AND JOB MOBILITY DETERMINANTS

- · How important are type dynamics to a worker's wage and job mobility outcomes?
- We develop a rich framework for the flexible identification of determinants of wage and job mobility outcomes that includes the identification of,
 - · Latent worker type heterogeneity
 - · Latent firm type heterogeneity
 - A Markov process for worker type dynamics that also depends on the worker's current employer's type.
- We make significant progress in the classification of firms by use of variational EM methods.

• Identify a combination of latent permanent worker type heterogeneity with type dynamics within each permanent type.

- Identify a combination of latent permanent worker type heterogeneity with type dynamics within each permanent type.
- Worker wage effect variance dominant explanation of wage variance. Firm wage effects much smaller contribution and less than the contribution from sorting.

- Identify a combination of latent permanent worker type heterogeneity with type dynamics within each permanent type.
- Worker wage effect variance dominant explanation of wage variance. Firm wage effects much smaller contribution and less than the contribution from sorting.
- Human capital and Search capital growth:
 - Wage growth by experience primarily explained with worker wage effect growth. Firm wage effect growth plays a non-negligible role, especially for women.

- Identify a combination of latent permanent worker type heterogeneity with type dynamics within each permanent type.
- Worker wage effect variance dominant explanation of wage variance. Firm wage effects much smaller contribution and less than the contribution from sorting.
- · Human capital and Search capital growth:
 - Wage growth by experience primarily explained with worker wage effect growth. Firm wage effect growth plays a non-negligible role, especially for women.
- Worker wage effect (human capital) growth varies substantially across firm types:
 - Higher wage firms grow a worker's wage effect by more.
 - Supermodularity: Higher wage firms grow higher wage workers' wage effects by more.

MODEL

MATCHES AND AGENT HETEROGENEITY

- Adds HMM to Bonhomme, Lamadon, and Manresa (2019) and Lentz, Piyapromdee, and Robin (2023).
- A job is a match between a worker and a firm.
- A worker is at any point in time characterized by latent type $k \in \{1, ..., K\}$. No ordering imposed.
- A firm is characterized by (ℓ, θ) where
 - latent type $\ell \in \{1, ..., L\}$. No ordering imposed.
 - heta is probability that a worker meets the firm conditional on meeting a type ℓ firm.
- At any given time, a worker can be matched with at most one firm or be non-employed.
- · A firm can be matched with many workers.
- Non-employment treated as match with firm j = 0 with $(\ell, \theta)_{j=0} = (0, 1)$.

WORKER TYPE TRANSITIONS

- A worker's type k follows a hidden Markov process.
- Each spell-year a type k worker matched with type ℓ draws a type realization from $A(k' \mid k, \ell)$.
- A spell-year ends when the calendar year or the match ends, whichever comes first.

JOB MOBILITY

- Each period, a type k worker currently with a type ℓ firm moves to a type ℓ' firm with probability $M_{k\ell\ell'}$.
- By implication, probability of staying is $M_{k\ell \neg} = 1 \sum_{\ell'=0}^{L} M_{k\ell\ell'}$.

INITIALIZATION

- Initial worker type distribution, π^w
- Initial firm type distribution, π^f .
- Initial match distribution, $m(k, \ell)$, where $\sum_{\ell=0}^{L} m(k, \ell) = 1$.

MATCH WAGES

- Match wages are log-normally distributed.
- Specifically, log wage, w, is distributed according to,

$$f_{k\ell}(w|x) = \frac{1}{\sigma_{k\ell}(x)} \varphi\left(\frac{w - \mu_{k\ell}(x)}{\sigma_{k\ell}(x)}\right).$$

- $\mu_{k\ell}(x)$ is a k-worker's average log-wage when matched with an ℓ -firm.
- $\sigma_{k\ell}(x)$ is the standard deviations of the noise innovations.
- $\varphi(\cdot)$ is the Gaussian kernel.

DATA AND ESTIMATION

DATA

- Italian register data, 1982-2001.
- Data on monthly wages, worker and employer IDs.
- Observable worker characteristics: Age, sex, coarse occupation description.
- As in Lentz, Piyapromdee, and Robin (2023), more observable characteristics can be included in analysis. Danish data are richer in this respect.
- For the Italian data, a period is a month. Wages are aggregated to the spell-year level.

DATA SUMMARY

	(1) Mean	(2) S.D.	(3) Median
Daily wage	137.67	281.24	
Age	33.00	8.16	32
Wage chg cond on move	0.10	2.67	0
Movers	0.18	0.38	
Female	0.34	0.47	
Obs in Veneto	0.71	0.45	
Firm-year level stats for firms In Veneto			
Firm size	10.82	65.84	3.00
Movers per firm-year	1.57	13.62	0.00
Frac of movers per firm-year	0.17	0.29	0.00
Person-year observations Number of workers Number of firms	23,733,747 2,433,225 630,698		

VARIANCE DECOMPOSITIONS

$$\ln w_{it} = \alpha_i + \psi_{j(i,t)} + \beta X_{it} + u_{it}$$

	AKM Plug-in	KSS Leave pers-yr	KSS Leave match
$Var(\alpha)$	47.0%	40.1%	38.1%
$Var(\psi)$	20.1%	17.9%	16.9%
$2 \times Cov(\alpha, \psi)$	4.7%	8.0%	
Total (α, ψ)	71.8%	66.0%	64.3%
$Corr(\alpha, \psi)$	0.08	0.15	0.18
Variance of y	0.139		

BIPARTITE DEGREE CORRECTED STOCHASTIC BLOCK MODEL.

• Worker *i*'s history comprises *S_i* spell-year observations,

$$X_i(1) = (Y_i(1), W_i(1), D_i(s), Y_i(2))$$

 $X_i(s) = (W_i(s), D_i(s), Y_i(s+1)), s = 2, ..., S_i - 1$
 $X_i(S_i) = (W_i(S_i), D_i(S_i)),$

where,

- Indicator $Y_{ij}(s) = 1$ if worker i matched with firm j in spell-year s. $\sum_{j} Y_{ij}(s) = 1$.
- $D_i(s)$ is duration of spell-year s.
- $W_i(s)$ is wage in spell-year s.

BIPARTITE DEGREE CORRECTED STOCHASTIC BLOCK MODEL.

• Worker i's history comprises S_i spell-year observations,

$$X_i(1) = (Y_i(1), W_i(1), D_i(s), Y_i(2))$$

 $X_i(s) = (W_i(s), D_i(s), Y_i(s+1)), s = 2, ..., S_i - 1$
 $X_i(S_i) = (W_i(S_i), D_i(S_i)),$

where,

- Indicator $Y_{ij}(s) = 1$ if worker i matched with firm j in spell-year s. $\sum_{i} Y_{ij}(s) = 1$.
- $D_i(s)$ is duration of spell-year s.
- $W_i(s)$ is wage in spell-year s.
- · Worker latent types (communities):
 - $Z_{ik}^{W}(s) = 1$ if worker i is type k in spell s. $\sum_{k} Z_{ik}^{W}(s) = 1$.
- Firm latent types (communities):
 - $Z_{i\ell}^f = 1$ if firm j is type ℓ . $\sum_{\ell} Z_{i\ell}^f = 1$.
 - Degree $\theta_{j\ell}$.

VARIATIONAL EXPECTATION MAXIMIZATION (VEM)

- Goal: Maximize incomplete likelihood $\mathcal{L}(X;b)$. Integrates over latent types $Z=(Z^w,Z^f)$.
- EM algorithm does this through iterative maximization of the expected *complete log likelihood*, $b^{m+1} = \arg\max_b [\sum_Z R^m(Z) \ln \mathcal{L}(X,Z;b)]$, where $R^m(Z) = \mathcal{L}(Z \mid X;b^m)$ is Z posterior given data and model parameters b^m . Application of Minorization-Maximization algorithm.

VARIATIONAL EXPECTATION MAXIMIZATION (VEM)

- Goal: Maximize incomplete likelihood $\mathcal{L}(X;b)$. Integrates over latent types $Z=(Z^w,Z^f)$.
- EM algorithm does this through iterative maximization of the expected complete log likelihood, $b^{m+1} = \arg\max_b [\sum_Z R^m(Z) \ln \mathcal{L}(X,Z;b)]$, where $R^m(Z) = \mathcal{L}(Z \mid X;b^m)$ is Z posterior given data and model parameters b^m . Application of Minorization-Maximization algorithm.
- In our case, not feasible to obtain $\mathcal{L}(Z \mid X; b^m)$. Firm type posterior dependence.

VARIATIONAL EXPECTATION MAXIMIZATION (VEM)

- Goal: Maximize incomplete likelihood $\mathcal{L}(X;b)$. Integrates over latent types $Z=(Z^w,Z^f)$.
- EM algorithm does this through iterative maximization of the expected complete log likelihood, $b^{m+1} = \arg\max_b [\sum_Z R^m(Z) \ln \mathcal{L}(X,Z;b)]$, where $R^m(Z) = \mathcal{L}(Z \mid X;b^m)$ is Z posterior given data and model parameters b^m . Application of Minorization-Maximization algorithm.
- In our case, not feasible to obtain $\mathcal{L}(Z \mid X; b^m)$. Firm type posterior dependence.
- VEM algorithm:
 - Pseudo E step: Given feasible set \mathcal{R} , choose \hat{R}^m to minimize distance to $\mathcal{L}(Z \mid X; b^m)$.
 - M step: $b^{m+1} = \arg\max_b [\sum_Z \hat{R}^m(Z) \ln \mathcal{L}(X, Z; b)]$
 - Update b^m with b^{m+1} . Repeat until convergence.

VEM FOR OUR MODEL

- Choice of feasible set \mathcal{R} ,
 - Force independence between worker and firm types, $R(Z) = R^w(Z^w)R^f(Z^f)$.
 - Force independence between firms priors, au_j , where $\sum_{\ell} au_{j\ell} =$ 1,

$$R^{f}(Z^{f}) = \prod_{j=1}^{J} R_{j}^{f}(Z_{j}^{f}) = \prod_{j=1}^{J} \tau_{j\ell}^{Z_{j\ell}^{f}}.$$

VEM FOR OUR MODEL

- Choice of feasible set \mathcal{R} ,
 - Force independence between worker and firm types, $R(Z) = R^w(Z^w)R^f(Z^f)$.
 - Force independence between firms priors, au_j , where $\sum_\ell au_{j\ell} =$ 1,

$$R^{f}(Z^{f}) = \prod_{j=1}^{J} R_{j}^{f}(Z_{j}^{f}) = \prod_{j=1}^{J} \tau_{j\ell}^{Z_{j\ell}^{f}}.$$

- With that, the pseudo E-step is tractable (and quite fast), and M-step remains a simple set of analytical solutions for model parameters based on first order conditions.
 - Baum-Welch algorithm remains available for the determination of worker type marginals, $\zeta_{ik}(s) = \Pr(Z^w_{ik}(s) = 1)$ and $\zeta_{ikk'}(s) = \Pr(Z^w_{ik}(s-1) = 1)$ and $Z^w_{ik'}(s) = 1)$.
 - τ_j follows from sparse system of first order conditions (minimize distance to $\mathcal{L}(Z \mid X; b^m)$).

VEM FOR OUR MODEL

- Choice of feasible set \mathcal{R} ,
 - Force independence between worker and firm types, $R(Z) = R^w(Z^w)R^f(Z^f)$.
 - Force independence between firms priors, au_j , where $\sum_\ell au_{j\ell} =$ 1,

$$R^{f}(Z^{f}) = \prod_{j=1}^{J} R_{j}^{f}(Z_{j}^{f}) = \prod_{j=1}^{J} \tau_{j\ell}^{Z_{j\ell}^{f}}.$$

- With that, the pseudo E-step is tractable (and quite fast), and M-step remains a simple set of analytical solutions for model parameters based on first order conditions.
 - Baum-Welch algorithm remains available for the determination of worker type marginals, $\zeta_{ik}(s) = \Pr(Z_{ib}^w(s) = 1)$ and $\zeta_{ikk'}(s) = \Pr(Z_{ib}^w(s-1) = 1)$ and $Z_{ib'}^w(s) = 1)$.
 - τ_j follows from sparse system of first order conditions (minimize distance to $\mathcal{L}(Z \mid X; b^m)$).
- Concentration: When firm priors τ_j are fully concentrated (full mass on single type), the assumptions of posterior independence no longer restrictive, and \mathcal{R} includes $\mathcal{L}(Z \mid X; b^m)$.
 - Links back to Lentz, Piyapromdee, and Robin (2023) CEM estimation where we search over hard firm classifications.

ESTIMATOR PERFORMANCE

- Identification proof strategy similar to BLM and LPR. Sufficient to have 3 periods.
- We have demonstrated that estimator can reliably capture true model parameters on simulated data. More systematic work still to be done.
- For a sense of speed, in the following a single estimate takes 5-10 minutes for a single 128 cores machine. We are showing the best of 500 restarts.

PRELIMINARY RESULTS

TYPES

- $K = 3 \times 3 = 9$ and L = 5.
- Observed characteristics: $z \in 1, ..., 8$. Entry age by sex. Age: (21-27), (27-33), (34-40), (41-50).
 - Enter through initial worker type realization distribution, $\pi_w(z)$ and $m(k, \ell|z)$.
- 3 permanent types (blocks). Each block has type dynamics characterized by A_{ℓ}^{b} with 3 states.
 - · Impose block diagonal structure on type transition matrix,

$$A(k,k',\ell) = \begin{pmatrix} A_{\ell}^{1} & 0 & 0 \\ 0 & A_{\ell}^{2} & 0 \\ 0 & 0 & A_{\ell}^{3} \end{pmatrix},$$

where A_{ℓ}^{b} is a (3×3) matrix, $b \in \{1, 2, 3\}$.

MODEL DYNAMICS

- For a given worker, model implies an overall Markov process in (k, ℓ) . 54 states.
- Given spell-year time structure and monthly frequency, step state forward 11 times according to,

$$\Pr(k', \ell'|k, \ell) = \begin{cases} M_{k\ell\ell'} A(k'|k, \ell) & \text{if } k' \neq k \\ M_{k\ell \neg} + M_{k\ell\ell} A(k|k, \ell) & \text{if } k' = k \text{ and } \ell' = \ell \\ M_{k\ell\ell'} A(k|k, \ell) & \text{otherwise.} \end{cases}$$

· For end-of-year, step forward according to,

$$\Pr(k', \ell' | k, \ell) = \begin{cases} [M_{k\ell \neg} + M_{k\ell\ell}] A(k' | k, \ell) & \text{if } \ell' = \ell \\ M_{k\ell\ell'} A(k' | k, \ell) & \text{otherwise.} \end{cases}$$

MODELFIT TO EMPLOYMENT AND WAGE DYNAMICS

WAGE LABELS

• Wage types assigned through the linear projection:

$$\mu_{k\ell} = \bar{\mu} + a_k + b_\ell + \tilde{\mu}_{k\ell}.$$

- *a_k* worker wage type.
- b_{ℓ} firm wage type.
- Order worker types by average block a_k , then by a_k . Low to high.
- Order firm types by b_{ℓ} . Low to high.

WAGE LABELS AND RESIDUALS

FIRM TYPES. CONCENTRATION (max τ), AND SIZE DISTRIBUTION BY TYPE

FIRM TYPE CONDITIONAL WORKER TYPE DISTRIBUTION

WAGE VARIANCE DECOMPOSITION

$Var(\mu_{k\ell})$		0.092
Decomposed into:		
$Var(a_k)$	0.625	
$Var(b_{\ell})$	0.123	
$Var(ilde{\mu}_{k\ell})$	0.094	
$2Cov(a_k,b_\ell)$	0.158	
$Corr(a_k, b_\ell)$		0.285

WAGE VARIANCE DECOMPOSITION OVER TIME

COHORT WAGE GROWTH

• Decompose a cohort's wage growth by experience into worker and firm wage effect growth (leaving out non-linearity change). Loosely, think human capital vs search capital growth.

• Especially, for men, wage growth primarily explained through own wage effect growth.

COHORT WAGE GROWTH, BY PERMANENT TYPES (BLOCKS)

COHORT WAGE SORTING, OVERALL AND BY PERMANENT TYPES

a_k growth heterogeneity across firm types

- There is substantial variation across firm types in how much they grow a worker's wage effect. Think training heterogeneity by firm type.
- Perform counterfactual of continued employment with a given firm type.

COUNTERFACTUAL: EMPLOYMENT WITH A FIXED FIRM TYPE. MEN < 27 YEARS OLD

COUNTERFACTUAL: IMPACT OF FIRST JOB ON a_k PATH. Men < 27 YEARS OLD

CONCLUDING THOUGHTS

- · Worker type variation dominant contribution to static wage variance.
- Growth in worker wage type dominant source of overall wage growth.
- Firm heterogeneity seemingly important determinant in worker type dynamics variability.
 - · Higher type firms grow worker effects by more.
 - Furthermore, higher type firms grow higher type workers by more.
- We demonstrate VEM as an attractive method for worker and firm classification.

APPENDIX

• The complete likelihood where $Z = (Z^w, Z^f)$ is known,

$$\ln \mathcal{L}(X, Z^f, Z^W) = \ln \mathcal{L}(Z^f) + \sum_{i=1}^{l} \ln \mathcal{L}_i(X_i, Z_i^W \mid Z^f),$$

where,

$$\ln \mathcal{L}\left(Z^f\right) = \sum_{j=1}^J \sum_{\ell=1}^L Z_{j\ell}^f \ln \pi_\ell^f.$$

Norker i firm classification conditional complete log likelihood

Worker i's complete log likelihood is,

$$\ln \mathcal{L}_{i} \left(X_{i}, Z_{i}^{w} \mid Z^{f} \right) = \sum_{j=0}^{J} Y_{ij}(1) \sum_{\ell=1}^{L} Z_{j\ell}^{f} \sum_{k=1}^{K} Z_{ik}^{w}(1) \ln \left[\pi_{k}^{w} m_{k\ell} \theta_{j\ell} \right]$$

$$+ \sum_{s=2}^{S_{i}} \sum_{k=1}^{K} Z_{ik}^{w}(s-1) \sum_{k'=1}^{K} Z_{ik'}^{w}(s) \ln \alpha_{kk'}(s|Z^{f}) + \sum_{s=2}^{S_{i}} \sum_{k=1}^{K} Z_{ik}^{w}(s) \ln \beta_{k}(s|Z^{f}),$$

where for
$$s = 2, \ldots, S_i$$
,

$$\ln \alpha_{kk'}(s|Z^f) = \sum_{j=1}^{J} Y_{ij}(s-1) \sum_{\ell=0}^{L} Z_{j\ell}^f \ln A_{k\ell k'}$$

$$\ln \beta_k(s|Z^f) = \sum_{j=0}^{J} Y_{ij}(s) \sum_{\ell=1}^{L} Z_{j\ell}^f \left(\mathbf{1} \{ j \neq 0 \} \ln f_{k\ell}(W_i(s)) + D_i(s) \ln M_{k\ell \neg} + \sum_{j'=0}^{J} Y_{ij'}(s+1) \sum_{\ell'=0}^{L} Z_{j'\ell'}^f \mathbf{1} \{ j' \neq j \} \left[\ln M_{k\ell\ell'} + \ln \theta_{j'\ell'} \right] \right).$$

VARIATIONAL EM

• For model parameters b and a probability distribution R(Z), define a lower bound on the incomplete log likelihood, $\mathcal{J}(R, X; b)$ using the Kullback-Leibler divergence,

$$\mathcal{J}(R, X; b) = \ln \mathcal{L}(X; b) - D_{KL}(R \parallel \mathcal{L}(Z \mid X; b))$$

$$= \ln \mathcal{L}(X; b) - \sum_{Z} R(Z) \ln \left(\frac{R(Z)}{\mathcal{L}(Z \mid X; b)}\right)$$

$$= \sum_{Z} R(Z) \ln \mathcal{L}(X, Z; b) + \mathcal{H}(R),$$

where $\mathcal{H}(R) = -\sum_{Z} R(Z) \ln R(Z)$ is the R distribution entropy.

- If $\mathcal{L}(Z \mid X; b)$ is tractable, then EM algorithm is available to maximize incomplete likelihood.
 - Uses $R^*(Z;b) = \mathcal{L}(Z \mid X;b)$ in which case $\mathcal{J}(R^*(Z;b^0),X;b)$ becomes a minorization of $\ln \mathcal{L}(X;b)$ in b^0 .
- VEM: Given feasible set \mathcal{R} , choose R to maximize \mathcal{J} ,

$$\widehat{R} = \arg\max_{R \in \mathcal{R}} \mathcal{J}(R, X) = \arg\max_{R \in \mathcal{R}} \sum_{Z} R(Z) \ln \mathcal{L}(Z \mid X) - \sum_{Z} R(Z) \ln R(Z)$$

POSTERIOR DEPENDENCE EXAMPLE

- Firms A and B connected by worker i through move from A to B. Ignore worker classification.
- 2 firm types. Worker i mobility matrix,

$$M = \left(\begin{array}{cc} M_{11} & 0 \\ 0 & M_{22} \end{array}\right).$$

- The data conditional classification prob has $\mathcal{L}(Z_{A1}^f=1,Z_{B2}^f=1\mid X)=\mathcal{L}(Z_{A2}^f=1,Z_{B1}^f=1\mid X)=0.$
- Our VEM imposes,

$$R^f(Z_{A1}^f = 1, Z_{B2}^f = 1) = \tau_{A1}\tau_{B2}$$

 $R^f(Z_{A1}^f = 1, Z_{B2}^f = 1) = \tau_{A2}\tau_{B1}$