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Abstract

This paper provides a guide for using causal inference with asset prices and quantities.
Our framework revolves around an elementary assumption about portfolio demand: ho-
mogeneous substitution conditional on observables. Under this assumption, standard
cross-sectional instrumental variables or difference-in-difference regressions identify the
relative demand elasticity between assets with the same observables, the difference be-
tween own-price and cross-price elasticity. In contrast, identifying aggregate elasticities
and substitution along specific characteristics requires joint estimation using multiple
sources of exogenous time-series variation. The same principles apply to the estimation
of multipliers measuring the price impact of supply or demand shocks. Our assumption
maps to familiar restrictions on covariance matrices in classical asset pricing models,
encompass demand models such as logit, and accommodate rich substitution patterns
even outside of these models. We discuss how to design experiments satisfying this
condition and offer diagnostics to validate it.
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Introduction

Causal inference methods that leverage plausibly exogenous sources of variation have become

essential tools in empirical economics (Angrist and Pischke, 2009). Recently, these methods

have gained traction in asset pricing to better understand the demand for financial assets,

through both specific experiments like index inclusions or central banks’ asset purchases

(Shleifer, 1986; Chang et al., 2014; Krishnamurthy and Vissing-Jorgensen, 2011), and as

building blocks for demand systems (Koijen and Yogo, 2019; Haddad et al., 2024). However,

these approaches differ sharply from traditional empirical methods in asset pricing (see, e.g.,

Cochrane, 2005; Campbell, 2017), which instead prioritize tests of equilibrium relationships

such as Euler equations or the CAPM.

We provide a framework for using causal inference in the asset pricing context. We

put forward elementary conditions that allow the use of the standard toolbox of causal

inference while entertaining a rich set of finance models.1 Under these conditions, we fully

characterize what sources of variation and estimation procedures identify portfolio demand

and its equilibrium impact.

Consider the example of a researcher who has detailed data on a pension fund’s corporate

bond holdings, and wants to understand how the fund’s portfolio choices respond to prices.

Regressing portfolio positions on prices suffers from the classic endogeneity issue: the holding

of a bond might respond to its price or the price might respond to heightened demand by the

fund and other investors. However, the researcher has found a source of exogenous variation

in prices: the Fed decides to engage in a one-off experiment and randomly purchases some

bonds but not others. The researcher handles this natural experiment as usual. They run

the following instrumental variable (IV) regression specification to estimate an elasticity of

demand pE :

∆Di “ pE∆Pi ` θ1Xi ` ei, (1)

∆Pi “ λZi ` η1Xi ` ui, (2)

where ∆Di is the change in demand for asset i, ∆Pi is the change in price, the instrument

Zi is the quantity purchased by the Fed, and Xi are observables like bond characteristics.

However, the researcher recalls a central tenet of finance: it is portfolio choice, not individual

security demand. The pension fund does not choose each holding in isolation but instead

1This framework offers a complement to approaches making stronger structural assumptions about port-
folio choice so that estimation can be done with fewer sources of exogenous variation (e.g., Koijen and Yogo
(2019) with asset demand of logit form) or without exogenous variation (e.g., Hansen and Singleton (1982)
with CRRA utility and rational expectations).
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forms a portfolio; the price of all assets affects the demand for all assets. For example,

if the fund sells the bond of a green firm following a price increase, it might replace this

position by investing disproportionately more in other green bonds than in brown bonds in

order to manage its portfolio’s environmental tilt. Portfolio choice implies that demand is

characterized by a matrix E :

∆D “ E∆P ` ϵ, (3)

where the off-diagonal elements capture substitution patterns. In general, this cross-dependence

implies that the regression of equations (1)-(2) is misspecified. This is the well-known chal-

lenge of demand estimation with multiple goods: the SUTVA assumption of canonical causal

inference is violated, and the many prices of other assets are omitted variables.2

We propose a solution to the researcher in the spirit of the causal inference literature:

make an elementary assumption about demand (technically, a restriction on the matrix E)
which is flexible enough to accommodate a wide range of plausible investor behaviors while

being restrictive enough to facilitate estimation. Informally, the assumption of homogeneous

substitution conditional on observables holds if, when choosing with which bonds to substi-

tute, the pension fund differentiates bonds with different observables — say greenness and

duration — but treats symmetrically bonds with the same value of these observables.

Under this assumption, the good news is that the coefficient pE consistently measures

relative elasticity: the response in demand for one asset relative to another one with the

same observables to a change in the relative price of these assets. The bad news is that

the researcher cannot estimate substitution across assets with different greenness or dura-

tion within a cross-sectional setting like the Fed’s experiment. Hence the researcher cannot

completely characterize how portfolio holdings would change with different prices — the en-

tire matrix E — with this experiment alone. Not all is lost though: we demonstrate that

the researcher can get at those substitution patterns by focusing on exogenous time series

variation in the aggregate price of bonds and the price of portfolios based on greenness and

duration. For example, one might imagine another series of Fed experiments which vary over

time the amount of bonds the Fed purchases, and the tilt of these purchases between green

and brown firms, and long-term and short-term bonds.

The paper derives these results formally and generally, and discusses how to apply them.

We spell out: a) which assumptions one needs to defend to use causal inference techniques, b)

diagnostics to assess the plausibility of these assumptions, c) which technique and source of

variation is appropriate for different economic questions, d) how to interpret causal estimates.

2An early statement of this challenge is in Deaton and Muellbauer (1980). Berry and Haile (2021) reviews
it in the context of the industrial organization literature, while Fuchs et al. (2025) does so for asset pricing.
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With this guide, we hope the reader will be empowered to use and interpret evidence from

natural experiments in asset markets as well as to understand their limits. The remainder of

the introduction highlights the main takeaways.

Multipliers. The framework also applies to the measurement of multipliers or price impacts,

i.e., the effect of an exogenous supply or demand shock for an asset on its price. For exam-

ple, how do Fed asset purchases affect bond prices? This type of question flips prices and

quantities compared to demand estimation, with the multiplier matrix M measuring how

demand for all assets affects the price of all assets. Under our assumption, cross-sectional

causal inference only estimates the relative multiplier yM: the relative response in price for

two assets with the same observables to a change in the relative supply of these assets.3

Estimating cross-multipliers is necessary to understand the price impact of broader shifts

such as a change in the demand for green bonds; doing so requires exogenous shifts in the

time-series of demand across the observables.

Formal assumptions. Our main assumption is homogeneous substitution conditional on ob-

servables: the demand for all assets in the estimation with the same values of observables

must react similarly to the price of all other assets in the investor’s investment set. For

example, this condition restricts the funds’ demand for 10-year bonds of Ford and General

Motors to respond in the same way to the price of 5-year bonds of First Solar. Meanwhile,

bonds with different duration or greenness are allowed to respond differently to First Solar’s

bond price. Importantly, this condition must apply both to substitution with respect to

other assets inside the estimation and outside of the sample.4 This assumption is central

to our identification results. For the cross-sectional regression, it ensures that the response

of demand to other prices is proportional to observables and hence is absorbed (but not

estimated) in the coefficient vector θ.

To simplify the analysis, our baseline adds an assumption of constant relative elasticity.

In this case, when the instrument Zi satisfies the usual exclusion and relevance conditions,

the cross-sectional estimate pE reveals this value: the difference between own and cross-price

elasticity for any two assets with the same values of observables. We show how to relax this

condition and obtain either conditional estimates or local average effects.5

What if the assumption is not satisfied? If variation in substitution is not captured by

3Under our assumptions, we analytically show that relative elasticity and multiplier are inverse of each
other with yM “ pE´1, implying that both estimation approaches convey the same information.

4Excluded assets outside of the sample can arise because of the common issue that the econometrician
does not observe all of the investor’s holdings, or by design so as to make the two conditions more plausible
in the sample.

5We favor the simple setting with homogeneous treatment as a baseline because standard regression
methods do not always lead to average treatment effect estimation in presence of controls. Goldsmith-
Pinkham et al. (2024) explain this challenge and propose some alternative estimation approaches.
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observables, the relative elasticity will generally be biased. Consider a situation where a bond

outside of the sample is a closer substitute to treated bonds than control bonds and its price

increases. The differential change in demand across the two groups when the pension fund

buys substitutes for this position will be wrongfully attributed to variation in the instrument.

Equilibrium spillovers and exclusion restriction. One might worry that because prices are

an equilibrium outcome, the natural experiment will generate spillovers across assets. In

our example, even if the Fed does not buy a bond, the price of this bond might respond to

purchases of its substitutes. This type of spillovers does not affect our identification result.

Instrument exogeneity only means that treatment status (whether the Fed bought the bond or

not) is unrelated to shifts in the investor’s demand curve such as changes in their preferences

or their views about the assets: Zi is orthogonal to the shift in demand ϵi, conditional on the

observables Xi. In other words, our assumptions about the structure of demand are sufficient

to address the challenge of cross-asset spillovers in estimation of relative elasticity highlighted

in Fuchs et al. (2025).

Estimating substitution. Our other identification result is that, under our assumptions, sub-

stitution can be completely estimated with exogenous variation in the price of portfolios based

on each observable and an aggregate portfolio. Combined with relative elasticity from the

cross-section, these estimates achieve identification of the entire matrix E .
We first show a general decomposition result that holds if demand satisfies homogeneous

substitution conditional on observables. In this case, after adjusting for relative elasticity,

there is no need to track substitution for each pair of assets. Instead it is enough to only

consider substitution across the observables.6 Concretely, how will the pension fund adjust its

tilts towards green bonds or long-duration bonds and its total holdings of bonds if the price

of green bonds increases relative to brown bonds (more precisely, if the price of a greenness-

weighted long-short portfolio increases)? When researchers answer this question, as well as

measure adjustments in response to changes in the price of a duration-weighted portfolio

and of an aggregate bond portfolio fully, they have characterized substitution entirely. The

flip side of this result is that answering questions at the meso (along observables) or macro

(the aggregate) levels cannot be done with the cross-sectional estimates and requires fully

estimating substitution.

Once the researcher is down to these few portfolios, they can simply consider them as

distinct synthetic assets — even if they have overlapping holdings — and analyze demand

for them. With only a few portfolios (three in our example) and no additional structure on

their substitution, only exogenous time series variation in all of their prices allows estimation.

This must be done jointly across the portfolios. Say the researcher is interested in the fund’s

6Gabaix and Koijen (2021) derive a case without observables.
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macro elasticity, that is, how the pension fund’s overall demand for bonds responds to the

aggregate price of bonds. A simple approach would regress total demand on the aggregate

price instrumented by a shock orthogonal to shifts in the fund’s demand curve. In a framework

with observables this is not enough: the researcher must incorporate additional instruments

for the prices of the greenness- and duration-sorted portfolios as well.7

Using the framework. Homogeneous substitution conditional on observables accommodates

a large variety of portfolio demands. This versatility allows the framework to fit different

types of natural experiments.

A simple version of this approach without including observables is particularly suitable to

settings where the natural experiment only touches a few assets. Then the researcher must

argue that demand for each of these assets would respond in the same way to the price of

every other asset, including outside of the sample. This concern can guide the design of the

estimation sample: the researcher can restrict themself to assets that are as similar as possible

(in the same industry, with the same size, etc.). To substantiate their choice, and because

risk often drives substitution, the researcher could present evidence of similar covariances of

treated and control with various portfolios of assets, that is evidence of balance in betas.

Using observables to capture heterogeneous substitution opens up the possibility of larger

samples with more heterogeneity. One could have multiple groups of assets, where elasticities

between assets in each group are symmetric, but elasticities across groups differ. Then, the

observables are group fixed effects (Chaudhary et al., 2022). Often though, substitution is

driven by continuous variables that cannot be delimited by a group. This occurs when the

investor is managing aggregate statistics of the portfolio, and each asset contributes to these

statistics with its own loadings. For example, in standard risk-based portfolio optimization,

the investor manages the portfolio’s betas on various factors.8 This implies that observables

should include the betas (directly or through characteristics proxying for them) of each

asset with respect to these factors (Koijen and Yogo, 2019). Heterogeneous substitution

can also be driven by other motives than risk. An investor might balance their portfolio’s

carbon emissions (e.g. our pension fund facing pressure from its stakeholders) or target

some regulatory constraint, and hence substitute across assets based on the corresponding

characteristic for each asset; incorporating such characteristics is crucial as well.

Relation to structural models. This framework also helps revisit results of the literature using

structural models for demand estimation. Koijen and Yogo (2019) and Koijen et al. (2023)

introduce a model of portfolio demand in the logit form. While they prove existence of factor

7Simply controlling for the price of these portfolios could lead to a bad control (Angrist and Pischke, 2009)
situation which introduces endogeneity.

8This occurs, for example, in a mean-variance model with constant volatility and expected returns that
depend linearly on the price. Then, elasticity is proportional to the covariance matrix.
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models that yield asset demand in a logit form as the outcome of log-utility maximization,

logit demand cannot capture the rich substitution patterns of generic factor models.9 To see

why, simply go back to our pension fund reacting to an increase in the price of a single green

bond, assuming that the fund’s portfolio is otherwise equally composed of brown and green

bonds. With logit demand, the fund would replace the shocked green bond equally by green

and brown bonds. Meanwhile, with log utility and a simple factor model, they would tilt

how much they replace it between the two categories depending on risk factors such as the

risk of the green-minus-brown portfolio.10 This implies that the two models generically lead

to different responses of the pension fund’s demand to changes in prices, and that they would

imply different portfolios and equilibrium prices in counterfactual exercises. Our framework

encompasses logit and all factor models (and many others). Because both models satisfy

homogeneous substitution conditional on observables, the process for estimating relative

elasticity within each of them is the same. In logit, the strong structure of demand implies

that substitution can be inferred from relative elasticity; generally, estimating substitution

requires additional sources of variations.

Related Literature. A long tradition in finance uses plausibly exogenous sources of vari-

ation to understand portfolio decisions and the price impact of shifts in demand. Promi-

nent examples include the effect of index inclusion (Shleifer, 1986; Harris and Gurel, 1986;

Chang et al., 2014; Pavlova and Sikorskaya, 2022; Greenwood and Sammon, 2024), institu-

tional ownership and fund flows (Gompers and Metrick, 2001; Coval and Stafford, 2007; Lou,

2012; Ben-David et al., 2022; Hartzmark and Solomon, 2022), central bank asset purchases

(Krishnamurthy and Vissing-Jorgensen, 2011; Selgrad, 2023; Haddad et al., 2021, 2025), or

financial constraints (Du et al., 2018; Greenwood and Vissing-Jorgensen, 2018; Haddad and

Muir, 2021; Chen et al., 2023). This work often incorporates thorough analysis of exogeneity,

in particular in the wake of the “credibility revolution” (e.g., Angrist and Pischke, 2009).

However, this literature is often more scant in considering a central feature of asset pric-

ing theory, substitution across assets, and whether it affects the validity of inference and

the interpretation of estimates. Our framework provides a simple bridge between classical

discussions of causal inference and the role of substitution.

Another approach fully specifies and estimates models of portfolio demand and their

equilibrium implications. In a seminal article, Koijen and Yogo (2019) derive and estimate

a logit model of portfolio choice in the stock market. Subsequent work uses this model

either structurally, or as a semi-structural simplification to introduce other mechanisms (e.g.

9Appendix D reproduces their result and establishes formally this distinction.
10Furthermore, the substitution portfolio would be different if the initially shocked bond was a brown bond.
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Haddad et al. (2024)). Applications include quantifying the impact of the rise of passive

investing, preferences for sustainable assets (Koijen et al., 2023; Van der Beck, 2021), or the

transmission of monetary policy (Lu and Wu, 2023), and have found echo in other settings:

the stock market overall Gabaix and Koijen (2021), corporate bonds (Bretscher et al., 2022),

treasuries (Jansen et al., 2024; Fang, 2023; Fang and Xiao, 2024), or exchange rates (Koijen

and Yogo, 2024; Jiang et al., 2024).

As we discuss in the text, we build on some of the insights from estimation inside of these

models. Some important ideas are controlling for common exposures (Koijen and Yogo,

2019), the distinction between micro and macro elasticity (Gabaix and Koijen, 2021; Li and

Lin, 2022), heterogeneous substitution (Chaudhary et al., 2022; Aghaee, 2024), substitution

along factors (An et al., 2024; An and Huber, 2025; Peng and Wang, 2023), and accounting

flexibly for spillovers (Fuchs et al., 2025). Naturally, our simple conditions cannot cover every

model; we leave aside considerations of strategic responses (Haddad et al., 2024), dynamics

(Greenwood et al., 2018; Gabaix and Koijen, 2021; Huebner, 2024; He et al., 2025), state-

contingent demand shocks (Haddad et al., 2025), intermediary distress (He et al., 2022), or

bidding in auctions (Allen et al., 2018). In this context, the contribution of our framework

is twofold: it not only provides a unifying formalism to discuss identification across models

but also allows discussion of what can be learned from the data before espousing a specific

model.

Finally, the role of spillovers is not limited to asset pricing and has been recognized in

many other contexts. The industrial organization literature often relaxes the assumption of

independence of irrelevant alternative (IIA) and includes heterogeneous substitution in dis-

crete choice models, such as Berry et al. (1995). While without observables, our assumptions

would be closely related to IIA, including the observables entertains heterogeneous substitu-

tion. Our setting of portfolio choice in line with finance theory does so without introducing

nonlinearities, lending itself to using linear regressions. Berg et al. (2021) discuss spillovers

in corporate finance. In macroeconomics, a key concern is the missing intercept problem due

to general equilibrium effects, with some recent contributions such as Chodorow-Reich et al.

(2021), Guren et al. (2021), Huber (2023), and Wolf (2023).

1 The Challenge of Causal Inference in Asset Pricing

We set up the basic regression framework for estimating the demand for assets using canonical

causal inference. We contrast this setting with how standard asset pricing theory works. The

key distinction is the emphasis on strong patterns of substitution across assets.
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1.1 The causal inference framework

We focus on a generic setting for identifying the demand for financial assets. Section 3

considers the related problem of price impact from demand shocks. Intuitively, we want to

understand how an investor’s demand for an asset responds to the price of this asset. We

consider the following experiment: a shock exogenous to demand happens and affects the

price Pi of various assets indexed by i, with intensity Zi.

Inspired by standard causal inference, running an instrumental variable estimation on

a sample S of assets is natural in this setting. In this model, one regresses the change in

demand for each asset ∆Di on the change in the price of this asset ∆Pi, using Zi as an

instrument for the price change. This corresponds to the two-stage least square specification:

∆Di “ pE∆Pi ` θ1Xi ` ϵi, (4)

∆Pi “ λZi ` η1Xi ` ui, (5)

where X is a set of observables for each asset to be specified. For example, Xi could include

the maturity of a bond or the industry of a firm. These observables allow narrowing the

identification to comparable assets. For simplicity of notation, we always assume that X

contains a constant and is of small enough dimension that there is enough variation to run

the regression.

The two standard conditions for this regression model to be identified are the relevance

and exclusion restrictions. Exclusion is the idea that the instrument does not affect demand

through other channels than the price: Zi K ϵi|Xi. In other words, the instrument is not

correlated with unobservable shifts in the demand curve in the cross-section of assets. For

example, even if the experiment leads to general equilibrium effects such as changing the

risk-free rate, the exclusion restriction can still be satisfied if the impact of these effects

across assets does not correlate with which asset is treated. Relevance is the idea that the

instrument Zi creates variation in prices: λ ‰ 0. In practice, it is not enough for the first

stage to be significant at standard confidence levels; it must be strong to avoid issues related

to the weak-instrument problem (Stock and Yogo, 2005; Olea and Pflueger, 2013).

One can imagine running this specification in levels or logs depending on the model of

demand. For example, models like CARA preferences are better behaved in levels, while

logit demand aligns with logs. In practice, the choice of units should be driven by regularity

in the data and the type of model the researcher believes best match this regularity. We

abuse the language of demand estimation slightly and call coefficients in such regressions

demand elasticities irrespective of log or levels. Section 2.4.1 reviews the appropriate units

for standard models. Also, while we focus on writing specifications in changes to match the
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standard difference-in-difference framework, similar arguments apply without changes.

A simpler benchmark To better understand the behavior of this regression, it is useful

to study a simplified version. There is no shift in the demand curve, but simply a shock that

triggered movements in prices, with the movement in the price of asset 1 larger than in the

price of asset 2. There are still many other assets (3, . . . , N) that might also experience price

changes. For example, the shock could be a surprise increase in the supply of asset 1 but not

asset 2. In this case, the counterpart to the IV estimator is the relative change in demand

for assets 1 and 2 divided by the relative change in price:

pE “
∆D1 ´ ∆D2

∆P1 ´ ∆P2

. (6)

To see this result, note that the sample is just the two assets S “ t1, 2u, the instrument

representing the experiment is Z1 “ 1 and Z2 “ 0, and there are no controls or error terms.11

1.2 Standard asset pricing structure

The setting of equation (4) differs sharply from how standard asset pricing theory specifies

the demand for assets. A key insight going back to Markowitz (1952) is that assets are

not distinct goods but instead alternative means of saving with different risk and reward.

Investors choose portfolios optimally combining these assets. This substitutability implies

that the demand for one asset depends not only on its own price but also on the price of

other assets. How many shares of Apple you purchase depends on the price of Apple and

also on the price of Nvidia.

The most standard example of this approach is mean-variance optimization: an investor

chooses their portfolio to maximize EpW q ´
γ
2
varpW q where W is their future wealth, and γ

measures their absolute risk aversion. If assets have constant mean payoffs M and covariance

matrix Σ, the vector of demand is:

D “
1

γ
Σ´1

pM ´ P q. (7)

Absent demand shocks, this implies that changes in demand can be written as

∆D “ E∆P ðñ ∆Di “
ÿ

j

Eij∆Pj, (8)

11The first stage regresses ∆Pi on the dummy, so λ “ ∆P1 ´ ∆P2. The second stage regresses the change
in demand on the predicted value from the first stage, p∆P1 ´ ∆P2q1ti“1u, leading to equation (6).
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with the matrix of elasticity E determined by risk aversion and the covariance between assets:

E “ ´γ´1Σ´1.12 When assets are correlated with each other, they become close substitutes,

and their demands respond to each other’s prices.

In addition to these elasticities, there can also be shifts in demand, for example, due

to changing beliefs about expected payoffs. Hereafter, we represent these movements by a

component ϵi.

Modern finance research acknowledges many deviations from this simple setting: investors

have different beliefs and various cognitive limitations, institutions face many regulations and

constraints that influence their portfolio decisions. Still the basic idea of portfolio choice as

opposed to asset choice remains. Generally, any model of asset demand will imply its own

matrix of elasticities E . The diagonal elements of E measure the own-price elasticities, while

the off-diagonal elements capture cross-price elasticities. If the model is not linear (or log-

linear) in prices, we focus on a local approximation of demand; Appendix D discusses the

nonlinear case. Such an unrestricted elasticity matrix is reminiscent of the almost-ideal

demand system of Deaton and Muellbauer (1980).

1.3 The challenge

The distinction between the two approaches is clearly visible: causal inference focuses on a

univariate relation between price and demand — the coefficient pE — while standard asset

pricing emphasizes a multivariate relation — the matrix E .13 This univariate focus is a

key element of standard causal inference; under the stable unit treatment value assumption

(SUTVA), treatment on one unit (for us, an asset) does not affect other units.

This feature implies that, in general, the estimation equation (4) is misspecified. Con-

cretely, the presence of cross-elasticities implies that the prices of all other assets are omitted

variables in equation (4). When we have non-zero elasticity of substitutions between assets,

the change in the price of other assets affects the demand for the original asset. In changes,

the demand system of equation (8) gives:

∆Di “ Eii∆Pi `
ÿ

j‰i

Eij∆Pj ` ϵi. (9)

A standard natural experiment focuses on a situation where the instrument is orthogonal to

shifts in demand, so Zi K ϵi. However, other prices naturally respond to the treatment so

12If M and Σ respond to changes in prices, the elasticity formula would be different. Koijen and Yogo
(2019) characterize demand curves in such a setting. Koijen et al. (2023) add hedging demands.

13While we focus on a static setting, the elasticity matrix also arises in dynamic settings; see, e.g., Gabaix
and Koijen (2021).
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the other terms in the sum create an omitted variable bias. Fuchs et al. (2025) discuss at

length the theoretical foundations of this challenge.

As an example, go back to the deterministic case comparing two assets 1 and 2, and

consider the effect of the change in the price of a third asset, say asset 3. This change results

in a contribution pE13 ´ E23q∆P3 to the numerator of (6). If the two cross-elasticities differ

from each other, this leads to a bias away from the own-price elasticity. This is the standard

problem of demand estimation with multiple goods.

In the face of this challenge, one can deem causal inference hopeless for asset pricing and

throw their hands in the air. However, there is a more constructive approach: acknowledge

that additional assumptions about the nature of spillovers are necessary and that the coeffi-

cient pE will only reveal a specific dimension of the matrix E . After all, this is the second part

of Markowitz’ argument: basic economics can inform us about the structure of substitution

across assets. In the rest of the paper, we follow this path and put forward simple, flexible

conditions guided by these economic principles.

An alternative, followed for example in Koijen and Yogo (2019), is to fully specify a struc-

tural model. The modern empirical industrial organization literature does so as well, albeit

with different foundations. We show later how our results intersect with these approaches.

Another alternative would be to include all prices in the demand estimation regression. This

is often not possible in practice because it would require exogenous sources of variation for

each one of the individual prices.

2 Making Causal Inference Work with Asset Pricing

We provide a framework for using cross-sectional causal inference regressions in asset pricing.

We give two natural conditions on the structure of substitution that are sufficient for these

regressions to identify a meaningful quantity. In the context of risk-based models, the two

conditions have a simple interpretation in terms of the statistical structure of asset returns.

However, applying these conditions does not require espousing the view that risk is the only

driver of investment decisions. We show how they lend themselves to settings with other

considerations, such as regulatory constraints or even non-pecuniary objectives.

2.1 Conditions for valid estimation

We state the two conditions leading to valid estimation. First, we put some structure on

substitution between assets.
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Assumption A1 (Homogeneous substitution conditional on observables) Any pair

of assets in the estimation sample S with the same observables shares the same cross-price

elasticity with respect to each third asset, within or outside of the estimation sample:

Eil “ Ejl, for all i, j P S such that Xi “ Xj, and l ‰ i, j, (10)

where Xi is the Kˆ1 vector of observables for asset i. These cross-elasticities are parametrized

by a bilinear form Ecross: Eil “ EcrosspXi, Xlq “ X 1
iEXXl, where EX is a K ˆ K matrix.

Assumption A1 states that for two assets comparable along observables, if the price of any

third asset, either within or outside the estimation sample, moves, then substitution between

the third asset and the two comparable assets is the same. That is, for the pair of comparable

companies Ford and General Motors, if the price of Netflix moves, the response of the demand

for Ford will be the same as the response of the demand for General Motors. This assumption

is crucial to deal with the omitted variable problem coming from the substitution effect when

prices of other assets change. When the condition holds without observables, substitution

effects are constant in the sample, so they are absorbed in the constant of the cross-sectional

regression. With observables, substitution responses are equal across assets conditional on

Xi and thus absorbed into regression coefficients on the observables.

Importantly, assuming that the investor substitutes in the same way with Ford and Gen-

eral Motors is not the same as assuming that the two bonds are identical. Features specific

to each of the bonds are still allowed to affect how much the investor demands of them, as

materialized by the residual ϵi in equation (9). For example, in risk-based models, two assets

with the same observables can have the same comovement with other assets, which drives

substitution, but each of them has a distinct idiosyncratic component to their returns; see

Section 2.3.3 below.

Analytically, homogeneous substitution implies that cross-price elasticities are a function

of the observables, which we write as EcrosspXi, Xlq. To make the model tractable, we fur-

ther parametrize this function as a bilinear form in observables, EcrosspXi, Xlq “ X 1
iEXXl.

The substitution matrix EX may not necessarily be symmetric. This simple specification en-

compasses a large space of potential substitution patterns because observables could already

include nonlinear transformations of more primitive variables or dummies for their levels. We

demonstrate this versatility and practicality in Section 2.3.

The second assumption ensures that there is a single number to estimate. In the language

of causal inference methods, this corresponds to assuming a homogeneous treatment effect.

Section 2.3.5 extends the framework to consider situations where the relative elasticity is not

constant and either depends on observable or unobservable sources of variations.

12



Assumption A2 (Constant relative elasticity) Assets in the estimation sample have

the same value of relative elasticity Erelative with respect to other assets with the same char-

acteristics:

Eii ´ Eji “ Erelative, for all i, j P S such that Xi “ Xj. (11)

Assumption A2 ensures a form of symmetry in how the investor responds to the price

of assets with the same observables in the sample. It focuses on a specific dimension: the

difference between the own-price and cross-price elasticity. We call this difference the relative

elasticity. It represents how the demand for one asset relative to another shifts when the price

of the asset changes relative to the other. The next section explains why this quantity is the

natural target of cross-sectional regressions.14

As we will show shortly in Section 2.3, these assumptions are valid in a wide variety of

contexts. For example, mean-variance optimizing investors who face assets with a covariance

matrix satisfying a factor structure and constant idiosyncratic risk have such a demand

function. This situation arises in the classic model of Vayanos and Vila (2021) with constant

idiosyncratic risk for each bond, where arbitrageurs solve an optimal portfolio problem when

absorbing the supply shocks from habitat investors.

The next proposition gives the mathematical structure of the elasticity matrix E once

we combine assumptions A1 and A2, with proof provided in Appendix A.2. Clearly, if the

elasticity satisfies the assumptions for a set of observables X, then it also does so for a linear

transformation—such as demeaning or standardizing—of these observables.

Proposition 1 Assumptions A1 and A2 are equivalent to an elasticity matrix E with the

following representation

E “ ErelativeI ` XEXX 1. (12)

Assumptions A1 and A2 can be viewed as guidance for the econometrician to choose

their sample and their observables appropriately. For example, one might choose to focus on

a narrow set of highly comparable assets, making the assumptions plausible. If they want

to consider a much larger asset space, the econometrician has to confront more substantial

heterogeneity, for example, in risk and how the assets comove with one another. They will

have to judiciously choose observables such that the assumptions are credible conditional on

those observables. Similarly, the choice of units to define elasticities — demand vs. portfolio

shares, change in price vs. return — also affects whether the assumptions hold; Section 2.4.1

14If an asset i does not have a “twin” j with identical observables. This often occurs when the observables
are continuous variables, such as the sales of a firm. In this situation, we replace Assumption A2 with its
natural extension: Eii ´ EcrosspXi, Xiq “ Erelative.
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shows how in the context of standard models. In practice, the econometrician should focus

on units that make assets more comparable. We discuss empirical design in light of the two

assumptions in Section 2.3.

2.2 What does it estimate?

We are now ready to state our main proposition.

Proposition 2 Under assumptions A1 and A2, as well as the standard relevance and exclu-

sion restrictions, the two-stage least square estimation of equations (4) and (5) identifies the

relative elasticity:

pE “ Erelative. (13)

When the IV estimation is well specified, it identifies the relative elasticity: the difference

between the own-price elasticity and the cross-price elasticity for two assets in the sample

with the same observables. While this result stands in contrast to the intuition of measuring

“how demand for each asset responds to its own price,” it is natural. A cross-sectional

regression is a comparison across assets in the sample. Even if only the price of the treated

asset is shocked, the regression coefficient will still be driven by the response of demand

for this asset relative to that for the comparable control asset—hence the relative intensity

of the own- and cross-elasticity conditional on observables. In other words, pE answers the

question: how does the demand for one asset relative to another comparable asset respond

to the relative price of these assets?

Proof for the simple case. Appendix A.1 proves Proposition 2. To understand the

mechanics of this result, let us go back to the deterministic case comparing 2 assets (say

Ford and General Motors) with the same observables. The changes in demands are:

∆D1 “ E11∆P1 ` E12∆P2 `
ÿ

ką2

E1k∆Pk; (14)

∆D2 “ E22∆P2 ` E21∆P1 `
ÿ

ką2

E2k∆Pk. (15)

Assumption A1 implies that the cross-elasticities with respect to other assets (k ą 2) are

identical:

ÿ

ką2

E1k∆Pk “
ÿ

ką2

E2k∆Pk. (16)
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When computing the difference ∆D1 ´ ∆D2, this response to other prices disappears, effec-

tively removing the omitted variable problem due to other assets:

∆D1 ´ ∆D2 “ pE11 ´ E21q∆P1 ´ pE22 ´ E12q∆P2. (17)

Assumption A2 implies that the coefficients on each of the prices are the relative elasticity:

E11 ´ E21 “ E22 ´ E12 “ Erelative (18)

Both the response of demand to the own price (measured by E11) and the response to the

price of the other asset asset (measured by E21) shape this comparison. Hence, the regression

coefficient is the relative elasticity:

pE “
∆D1 ´ ∆D2

∆P1 ´ ∆P2

“ Erelative. (19)

The role of observables. In the richer case with observables, it is important to control for

the asset’s own observablesXi if they vary in the sample. When the assets in the sample differ,

they potentially respond differently to the price of other assets. However, assumption A1

ensures that these responses only depend on each asset’s observables Xi:

∆Di “ Eii∆Pi `
ÿ

j‰i

X 1
iEXXj∆Pj ` ϵi (20)

“ pEii ´ X 1
iEXXiq∆Pi `

ÿ

j

X 1
iEXXj∆Pj ` ϵi (21)

“ pEii ´ X 1
iEXXiq

loooooooomoooooooon

pE,relative elasticity

∆Pi ` X 1
i

ÿ

j

EXXj∆Pj

loooooomoooooon

constant across assets

` ϵi. (22)

The second term in this expression highlights that substitution, while depending on all other

prices, is proportional toXi. This implies that controlling forXi in a cross-sectional regression

absorbs the effects of substitution.15 Furthermore, the first term in (22) shows that the

regression (after controlling for Xi) is equivalent to making pairwise comparisons of assets

that have the same observables. Hence, following the same reasoning as in the simple case,

the estimate pE recovers the relative elasticity.

At this stage, it might be tempting to conclude that the demand curve of equation (9) in

which all prices matter for all demands is equivalent to a demand curve that only depends on

15This reasoning shows that a weaker form of assumption A1 is necessary for Proposition 2 to hold:
Eil “ Ecross,lpXiq “ X 1

iYl for arbitrary vectors Yl. In other words, the dependence to other assets for a given
Xi can be arbitrary and does not need to be parametrized by observable characteristics Xl.
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the own price and characteristics, as in the regression equation (4). This would be incorrect:

the equivalent representation only holds when fixing a specific vector of prices. In other

words, while equilibrium quantities demanded satisfy equation (4), the demand curve does

not. This distinction is transparent when examining what determines the coefficients θ on

the observables Xi in the cross-sectional regression. Equation (22) highlights that these

coefficients depend on realized changes in prices ∆Pk, and would therefore differ for another

realization of prices, such as in a counterfactual exercise.16

Robustness to deviations in the assumptions. In practice, assumptions A1 and A2

are approximations of reality. In Appendix B.1, we assess whether the result of Proposition 2

is robust to small deviations. We show that, as long as the first stage is strong, the two-stage

least square estimator recovers the relative elasticity up to a bias that is proportional to

the distance to the assumptions; small deviations, small bias. An economically meaningful

situation that leads to weak instruments is when assets are perfect substitutes, for example

if they satisfy a no-arbitrage relation.17 In this case, there is no change in relative prices that

can lead to identification. Fuchs et al. (2025) highlight how this case creates challenges for

demand estimation.

The potential for this weak-instrument issue in the first stage highlights a key considera-

tion when selecting an appropriate control group for a given treated asset. While a control

asset should be similar enough to the treated to satisfy Assumptions A1 and A2, it should

not be identical, ensuring that the law of one price does not hold between these two groups.

As discussed later in Sections 2.3.3 and 2.3.4, this difference may arise due to idiosyncratic

risk or other non-risk considerations (e.g., regulatory constraints), preventing the market as

a whole from pricing them identically in equilibrium.

2.3 Using the identification result

Assumptions A1 and A2 provide general conditions for the causal cross-sectional regression

to identify the relative elasticity. To use this result, the econometrician must take a stand

on what is the appropriate estimation sample and which are the relevant observables. We

discuss a few different approaches to do so, with choices that are intuitive, close to common

empirical practice, and line up with standard finance theory.

16The coefficients θ are also be driven by the covariance of the demand residual ϵi with Xi.
17Here, what is the important is that these assets are perfect substitutes at the aggregate level (so that

their equilibrium prices are tied together), not so much that the investor whose demand is estimated treats
them as such.

16



2.3.1 Homogeneous estimation sample

A common scenario: you want to assess the effects of a local experiment on a few highly

comparable assets. In this case, it is not necessary to introduce observables to differentiate

the assets. The only control needed in the regression is a cross-sectional constant. For

example, firms in a narrowly defined industry might have similar risk and similar relation

with stocks in other industries. Another example could be multiple corporate bonds from

the same issuer with similar maturity (see Coppola (2025)). The simplest manifestation

of this example is the case of two assets: a treated and a control. There, the regression is

equivalent to examining the spread in return between treated and control, a common practice

of empirical asset pricing.

In this case, assumption A1 implies that the cross-price elasticity is the same for all

assets in the estimation sample, while assumption A2 additionally implies that the own-price

elasticity is the same for all assets in the estimation sample:

Eii “ Eown, for all i P S, and Eij “ Ecross, for all i, j P S. (23)

Moving on to outside assets, which could be a vast set, the substitution between them and

the assets in the estimation sample is generally not constant. Still, assumption A1 implies

that, for each outside asset, all assets in the estimation sample have the same cross-elasticity.

In other words, the demand for any asset in the sample responds in the same way to a change

in the prices of each outside assets. Figure 1 illustrates such an elasticity matrix. This setting

corresponds to a situation in which observables are constant within the estimation sample,

while they can vary arbitrarily across assets outside the estimation sample.

In simple risk-based models like in Section 1.2, in which elasticities are proportional

to the inverse of the covariance matrix, this means that all assets in the sample have the

same variance and covariance with each other. It also corresponds to assuming that for any

outside asset k, the covariance of its return with that of any asset in the sample is constant:

covpRi, Rkq “ covpRj, Rkq. In practice, outside assets are plentiful and this condition cannot

be fully assessed. Still, one should present some corroborating evidence. For example, one can

compute the covariances, or betas, with a set of broad portfolios for assets in the sample. This

can take the form of a table of “balance on covariances,” reporting these average covariances

for treated and control assets, or high and low values of the instrument Z.

2.3.2 Groups of assets

Sometimes homogeneous substitution is not plausible across the whole sample, for example

when the treatment affects an heterogeneous set of assets. Yet one might be able to delineate
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Figure 1: Elasticity matrix satisfying assumptions A1 and A2 for a local experiment.

groups of assets such that homogeneous substitution is plausible within each group. For

example, homogeneity might hold for a set of firms in a narrow industry but not across

these industries. In this case, it is possible to get estimates by pooling all groups while

including group fixed effects to focus on within-group variation. Within the general setting

of Assumption A1, this is the special case where the observables Xi are group dummies. The

two-stage least squares regressions takes the form:

∆Di “ pE∆Pi ` θgpiq ` ϵi, (24)

∆Pi “ λZi ` ηgpiq ` ui. (25)

Here, gpiq denotes the group of assets (industries in our example) which contains asset i; θg

and ηg are group fixed effects. Since this fits our framework, this regression with group fixed

effects correctly identifies the relative elasticity. A special case of this situation arises in the

nested logit model, but with stronger restrictions: in this model, substitution is completely

symmetric across groups, while we allow arbitrary asymmetry through the matrix EX .
Chaudhary et al. (2022) explain how omitting group fixed effects in such a situation leads

to biased inference. They document the relevance of this bias when measuring the effect of

fund flows on corporate bond prices.
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2.3.3 Heterogeneous risk exposures

When the investor cares about risk, the exposures of assets to different risks affects how

they substitute. For example, in a downturn, when many asset prices fall, the demand for

a more cyclical asset might change differently from that of a less cyclical asset. Empirical

asset pricing often highlights many such sources of heterogeneity with risk factors. Even if

we focus on a specific industry, different assets might have a different response to inflation

or duration. These factors naturally affect patterns of substitutability, because they affect

the covariance matrix of returns. In this case, an important continuous observable is the

exposure or beta of the asset return to the factor.

To understand the mapping between factor models and our assumptions, assume there is

a set of common factors Ft with loadings β, and constant idiosyncratic risk:

Ri,t “ β1
iFt ` νi,t, νi K νj, varpνiq “ σ2

idio. (26)

The corresponding covariance matrix is Σ “ σ2
idioI`βΣFβ

1. In the mean-variance framework,

the elasticity matrix will have the same structure:

E “ γ´1Σ´1
“ pEI ` βΨβ1, (27)

where pE “ 1{pγσ2
idioq, β “

“

1, βpf1q, βpf2q, . . . , βpfK´1q
‰

is the set of factor loadings, and Ψ a

K ˆ K symmetric matrix.

The type of elasticity matrix in (27) satisfies assumptions A1 and A2. Intuitively, the

relative elasticity for two assets with the same factor exposure depends only the amount of

idiosyncratic risk and the investor’s risk aversion. This is because the idiosyncratic compo-

nent is the only risk taken when “arbitraging” between two assets that have the same risk

profile. The factor structure matters for how investors respond to prices, but substitution is

homogeneous for comparable assets. In practice, one might be reluctant to assume constant

idiosyncratic volatility to ensure that assumption A2 is satisfied; Section 2.3.5 shows how to

relax this condition.

Proposition 2 applies here, in that a regression controlling for β’s, which are the factor

loadings, recovers the relative elasticity. Alternatively, under the assumption that the betas

are a function of characteristics, it is enough to control for the characteristics (Koijen and

Yogo, 2019).

Synthetic controls. A variation of this approach particularly well-suited for event-study

settings is to construct synthetic controls in the style of hedging portfolios. If one has a
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set of treated assets, one can construct portfolios of other assets as the control group for a

difference-in-difference study. There are two requirements for this approach to be valid. First,

the factor exposures of the control portfolio must be the same as that of the treated asset.

Second, each asset in the control portfolio (as opposed to the combined portfolio returns)

must have the same residual volatility as the treated asset.

2.3.4 Non-risk drivers of substitution

In practice, portfolio decisions respond to many other drivers than risk and return. Some

investors care about non-pecuniary aspects of the stocks they hold, such as their carbon

emissions or ESG characteristics. Mutual funds, pension funds, and endowments often oper-

ate under mandates that require a specific mix of assets, while others are guided by broader

objectives outlined in their prospectus. When hedge funds take on leveraged positions, hair-

cuts apply and they have to post margins. Banks and insurance companies must ensure that

their portfolios satisfy various regulatory targets such as capital adequacy ratios, leverage

requirements, or liquidity requirements.

All these dimensions affect which assets these investors choose in the first place, but

also how they rebalance their portfolio when prices move. For example, if one of your more

environmentally friendly stocks appears overpriced, you might shed this position and replace

it with another similarly green position. Hence, these motives can play an important role in

the elasticity matrix and must be taken into account when evaluating our assumptions.

To understand how, consider a generic representation of such a motive, by adding a

quadratic cost and a linear constraint to the mean-variance optimization problem:

max
D

D1
pM ´ P q ´

γ

2
D1ΣD ´

κ

2

`

D1Xp1q
˘2

(28)

such that D1Xp2q
ď Θ. (29)

The quadratic cost κ{2
`

D1Xp1q
˘2

captures smooth investment priorities: the more carbon-

emitting stocks an investor holds, the less willing she is to hold additional carbon-emitting

stocks. The variable Xp1q measures the relative contribution of each asset to this total cost —

e.g. its carbon emissions — while κ measures the overall willingness to hold carbon emitting

stocks. The linear constraint represents hard targets, such as the liquidity ratio that a bank

must hold. There, Xp2q measures the contribution of each position to the constraint—e.g. its

liquidity weight—and Θ is the maximum value capturing the regulatory requirement.

When prices move, such an investor will balance risk-return with reaching these other

non-risk objectives. Hence, all these dimensions will shape substitution patterns. Clearly,

to be able to use our results, the covariance matrix Σ has to satisfy the assumptions with
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respect to a set of observables Xp3q.18 We show in Appendix C that the elasticity matrix for

this investor satisfies assumptions A1 and A2 with respect to the stacked set of observables

X “ rXp1q, Xp2q, Xp3qs.

Concretely, this result implies that the econometrician should first take a stand on the

motives behind the investor’s demand. Then, they should find the relevant observables that

capture how each asset contributes to these motives; for example, the carbon emissions of

a firm for a fund that has an ESG mandate. Finally, they should include these variables

as controls in the instrumental variable regressions in order to recover the relative elasticity.

The substitution driven by these motives is also interesting for its own sake, and Section 4

shows how to estimate it.

2.3.5 Entertaining more heterogeneity in elasticities

For some situations, the assumptions of constant relative elasticity or of homogeneous sub-

stitution might appear too restrictive. We provide two variations of the basic framework to

accommodate these situations.

Observed heterogeneity in relative elasticity. First, we tackle the case of hetero-

geneity in relative elasticity. Just like Assumption A1 allows cross-elasticities to depend on

observables, one can relax Assumption A2 to let the relative elasticity depend on observables.

This corresponds to replacing the condition (11) by:

Eii ´ EcrosspXi, Xiq “ ErelativepXiq “ E 1
rXi, (30)

with Er a vector of dimension K. For example, if the observable captures the size of a

company, this relation allows big stocks to have a different relative elasticity than small stocks,

an approach taken, for example, in Haddad et al. (2024). Another useful application is in the

context of the factor models of Section 2.3.3. There, we have seen that idiosyncratic volatility

controls the relative elasticity. Therefore, one could include the idiosyncratic volatility of each

asset as an observable, or variables that proxy for this idiosyncratic volatility.

Intuitively, the setting with heterogeneous relative elasticity implies that relative demand

responds not only to price changes but also to price changes interacted with the observables,

all encoded in Er. As such, one must include in the regression and identify coefficients on

all these components and provide instruments for each of them. Starting from an instru-

ment Zi for the change in price ∆Pi, one can construct instruments ZiXi for its interaction

18Specifically, Σ has to be such that the elasticity matrix of the mean-variance problem without constraint
and cost function satisfies assumptions A1 and A2.
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with the observables ∆PiXi. Then, under the exclusion restriction ZiXi K ϵi|Xi and the rele-

vance conditions, the corresponding two-stage least square regression estimates Er. Appendix
Section A.3 proves this result and provides all details on implementation.

Unobserved heterogeneity. A more complicated situation arises when there is unob-

served variation in own- and cross-price elasticities across assets. Handling this case requires

taking a stronger stance on variation in the instruments to maintain meaningful identifica-

tion. Nothing comes for free: accommodating a more flexible elasticity matrix E is at the cost

of stronger assumptions on the sources of variations needed for estimation. Specifically, one

needs to assume independence of the instrument with respect to all unobserved sources of

heterogeneity — a stronger condition than orthogonality with respect to the demand residual.

Unobserved heterogeneity in elasticities becomes relevant if one believes there is an

amount of noise around Assumptions A1 and A2. It is possible that, even in a narrowly

defined group like in Section 2.3.1, all assets are slightly different, with small variations in

elasticities that have no apparent connection to the experiment at hand. Another case where

unobserved heterogeneity is relevant is when the experiment uses pairs of assets that are

different on many dimensions, but in a plausibly random way. An example of this case is

index inclusions: the included and excluded assets from the index are closely related in size

but might be in different industries or have different characteristics.

By formalizing the conditions necessary to handle unobserved heterogeneity, the next

proposition pinpoints what the causal inference regression identifies in this case. For a formal

proof, see Appendix A.6.

Proposition 3 Assume that the data-generating process of the first stage follows:

∆Pi “ λiZi ` ui, with Zi independent of pui, λiq, (31)

and that the instrument is independent of own- and cross-price elasticities as well as the

demand residual

pEii, Eij, ϵiq|Zi „ pEii, Eij, ϵiq. (32)

Then, the two-stage least square estimation of equations (4) and (5) without observables

identifies the local average of the relative elasticity:

pE “
Ei tλipEii ´ EjpEjiqqu

Eipλiq
. (33)
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The two conditions state that the realization of the instrument is not only independent of

variation in how the instrument transmits to prices (λi) but also how elasticities vary across

assets. The proposition highlights that these assumptions lead to estimating an average value

of relative elasticity, a form of local average treatment effect. With an added monotonicity

condition that the instrument always affects prices in the same direction — all λi sharing

the same sign — the estimate pE will fall within the range of estimates in the sample. If one

expects little variation in elasticity, this result indicates that heterogeneity will not create

a large deviation from a situation with exactly constant elasticity. With a wider range of

variation in relative elasticity, it becomes interesting to inspect the weights in the average

formula. For assets in which the instrument has a greater impact on prices (large λi), their

relative elasticities are given greater weights. For example, if more illiquid assets have both

a higher impact of the instrument λi and investors trade them more inelastically (lower Eii),
estimates of relative elasticity will be lower than the unweighted average relative elasticity,

and overstate how inelastic the typical asset is.

2.4 Estimating elasticity in theoretical models

We take a brief detour through theoretical models. We first show how commonly used

models, once considered in appropriate units, relate to our identification assumptions. Then,

we provide an example explaining why simple equilibrium considerations do not affect our

identification results.

2.4.1 Standard models of asset demand

We discuss how standard models of asset demand relate with the identification assumptions.

For each model, we derive the appropriate units and parameter restrictions under which the

demand regression is well specified.19 Table 1 summarizes the results.

Constant absolute risk aversion. In the mean-variance model (CARA) described above,

we have seen the direct mapping between covariance matrix and the elasticity matrix when

considering a relation between the level of demand the level of prices: E “ BD{BP “ γ´1Σ´1.

Section 2.3.3 show that Assumptions A1 and A2 are satisfied if the covariance matrix has a

factor structure with factor loadings which depend on the observables.

19Petajisto (2009), Davis et al. (2025), and Davis (2024) quantify elasticities in these models.
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CARA CRRA Logit

Regression units “demand” LHS demand portfolio shares log portfolio shares
Di PiDi{W logpPiDi{W q

Regression units “price” RHS price log price log price
Pi logPi logPi

Own Price Elasticity Eii Rf

γ
rΣ´1sii

1
γ

rΣ´1sii αp1 ´ ωiq

Cross price Elasticity Eij Rf

γ
rΣ´1sij

1
γ

rΣ´1sij ´αωj

Relative Elasticity pE “ Eii ´ Eji Rf

γ
prΣ´1sii ´ rΣ´1sjiq

1
γ

prΣ´1sii ´ rΣ´1sjiq α

Table 1: Three standard models of asset demands.

Constant relative risk aversion. Preferences with constant relative risk aversion (CRRA)

are the workhorse model of macro-finance. Utility in this case is given by upCq “ C1´γ{p1´γq,

with now γ being the constant relative risk-aversion. Assume that the risk-free rate is rf

and that there are N assets with payoffs X “ tXiui at time 1, with prices tPiu. Hence, asset

returns are Ri “ Xi{Pi.

To solve for the optimal demands, we assume that the payoffs follow a lognormal distri-

bution: logX „ N pM,Σq and log-linearize portfolio returns following Campbell and Viceira

(2002).20 For an investor with wealth W , the optimal demand is:

Di “
1

γ

W

Pi

„

Σ´1

ˆ

M ´ logP ´ rf `
1

2
diagpΣq

˙ȷ

i

(35)

This implies that when considering the relation between portfolio weights, ωi “ PiDi{W ,

and log prices, the elasticity matrix is (this relation is exact in continuous time; see Duffie,

2010; He et al., 2025):

E “
Bω

B logP
“ ´

1

γ
Σ´1. (36)

This is the same elasticity as the CARA case, albeit with different units: portfolio weights

on log prices. Therefore, our earlier discussion relating properties of the covariance matrix

(here of log returns) and the identification assumptions apply to this case as well.

20We log-linearize the return of portfolio ω, rp “ logRp as:

rp ´ rf “ log
`

ω1 exp pr ´ rf q
˘

» ω1pr ´ rf q `
1

2
ω1 diagpΣq ´

1

2
ω1Σω. (34)
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Logit. Koijen and Yogo (2019) introduce a model of portfolio demand of the logit form.

They show existence of factor models giving rise to this demand for an investor with log

utility. Unlike the model we just studied, these factor models feature a covariance matrix

and expected returns that depend nonlinearly on prices, and hence have a different elasticity

matrix; Appendix D details this distinction. The logit model is also commonly used in

industrial organization, as well as in many fields in economics including trade and spatial

equilibrium models. There, it is most often motivated by aggregation of a consumer discrete

choice model, but can also apply to an individual’s choice of consumption basket.21

For an investor with initial wealth W , the expenditure shares or portfolio weights are:22

ωi “
PiDi

W
“

exp p´αpi ` θ1Xi ` ϵiq

1 `
ř

l exp p´αpl ` θ1Xl ` ϵlq
, (38)

where pi is the log of the price of asset i, Xi observable demand shifters, and ϵi the unobserved

component of demand.

When considering the relation between log portfolio weights and log prices, the elasticity

matrix is:

E “
B logω

B logP
“ ´α pI ´ 1ω1

q , (39)

where ω is the vector of portfolio weights given in (38). Note that E in general is not

symmetric in this case. The coefficient α is the only demand parameter that determines the

matrix of demand elasticity, as opposed to the whole covariance matrix in the CARA and

CRRA cases. Further, this matrix always satisfies assumptions A1 (Ejk “ Eik “ αωk) and

A2 (Eii ´ Eji “ α), with α being the relative elasticity of demand.

Same relative elasticity vs. same elasticity matrix. Note that the fact that the simple

risk-based models and the logit model can both satisfy the two assumptions only implies that

they lead to the same estimation of the relative elasticity. Even when these models have the

same value of relative elasticity, they exhibit different elasticity matrices. Figure 2 illustrates

this nuance, with three distinct elasticity matrices that share the same relative elasticity.

21Anderson et al. (1988) derives the utility that leads to logit shares as optimal demand.
22If there is not outside asset, the model of expenditure shares becomes:

ωi “
PiDi

W
“

exp p´αpi ` θ1Xi ` ϵiq
ř

l exp p´αpl ` θ1Xl ` ϵlq
. (37)
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(b) Symmetric matrix.

»

—

—

—

—

—

—

–

p1 ´ ω1q pE ´ω2
pE ´ωN

pE
´ω1

pE p1 ´ ω2q pE

´ωN
pE

´ω1
pE ´ωN´1

pE p1 ´ ωNq pE

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(c) Logit-style matrix.

Figure 2: Different elasticity matrices with the same relative elasticity pE

2.4.2 What about equilibrium spillovers?

The reader might be surprised that, so far, we have not discussed the concept of equilibrium,

which is usually central in asset pricing. This is not because we assume that the world is not in

equilibrium: equation (9) is a change in demand in equilibrium. Instead, we can do so because

identifying specific sources of variation in prices — the instrument Zi — and assuming that

an investor’s demand satisfies Assumptions A1 and A2 is enough to estimate this investor’s

demand elasticity without understanding the entire structure of the equilibrium.

In this section, we work out a simple equilibrium model to illustrate this insight. The

setting is inspired by Fuchs et al. (2025) who point out that endogenous cross-asset spillovers

can imply a low measured own-price elasticity even if the true own price elasticity is near

infinite. This result considers a different regression from the causal inference framework of

this paper. We show that the issue arises because the omitted variable bias that we have

pointed out in Section 1.3 is present. We also explain that, because the example satisfies our

assumptions A1 and A2, a standard difference-in-difference regression is unbiased, once we

recognize that it recovers the relative elasticity.

Setting. The economy is populated by a representative agent with log utility. There are

three assets with different payoffs in three possible states of the world, with payoffs as follows:
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1 ` ϵ 1 ´ ϵ 0 w.p. 1/4

Green Pg 1 ´ ϵ Red Pr 1 ` ϵ Other Po “ 1 0 w.p. 1/4

0 0 1 w.p. 1/2

The “other” asset acts as a numéraire, whose price is normalized to 1. Denote the prices

of the green and red assets Pg and Pr. These two assets become closer substitutes as ϵ goes

towards 0. Indeed, in the limit, any price difference between Pg and Pr represents an arbitrage

opportunity. The representative agent has endowments Eg, Er, and Eo, which implies that

their wealth is W “ PgEg ` PrEr ` Eo.

Demand and equilibrium. We can first derive the demand function, that is, the optimal

portfolio share as a function of prices:

ωg pPg, Prq “
Pg

2

ϵ2pPr ` Pgq ` pPr ´ Pgq

ϵ2pPr ` Pgq2 ´ pPr ´ Pgq2
, ωr pPg, Prq “

Pr

2

ϵ2pPr ` Pgq ` pPg ´ Prq

ϵ2pPr ` Pgq2 ´ pPr ´ Pgq2
.

(40)

Market-clearing for the two assets, ωgW “ PgEg and ωrW “ PrEr lead to equilibrium prices

as functions of the endowments:

Pg pEo, Eg, Erq “ Eo
ϵ2 pEg ´ Erq ´ pEg ` Erq

ϵ2 pEg ´ Erq
2

´ pEg ` Erq
2 , Pr pEo, Eg, Erq “ Eo

ϵ2 pEr ´ Egq ´ pEg ` Erq

ϵ2 pEg ´ Erq
2

´ pEg ` Erq
2 .

(41)

As an initial equilibrium, we assume that the endowments are Eg “ Er “ 1{2 and Eo “ 1.

It is then immediate that Pr “ Pg “ 1.

Demand elasticities. We can compute the demand elasticities: how individual demand

would respond to a change in prices. Because utility is CRRA, we measure the sensitivity of

portfolio shares to log prices (in line with Section 2.4.1) around the initial equilibrium values

of prices:

Eown “
Bωg

B logPg

“
1

8
´

1

8ϵ2
; (42)

Ecross “
Bωg

B logPr

“ ´
1

8
`

1

8ϵ2
. (43)

The expressions for ωr are identical. The relative elasticity is Eown ´ Ecross “ 1{4 ´ 1{p4ϵ2q.

These measures show that when the two assets are near-identical, ϵ Ñ 0, any deviation
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from parity would lead to a near-infinite increase in demand for the cheaper asset, and

near-infinite decrease in demand for the more expensive one. This is the standard arbitrage

argument.

Running regressions. We are interested in whether various regressions around a supply

shock for one of the assets can identify these elasticities. A shift in supply of the green asset

leads to the price changes

B logPg

BEg

“ ´
`

1 ` ε2
˘

,
B logPr

BEg

“ ´
`

1 ´ ε2
˘

, (44)

around the equilibrium.

Fuchs et al. (2025) correctly point out that regressing the demand for the green asset on

the change in its price using such a supply shock does not recover the own price elasticity.

This regression corresponds to taking the ratio of the change in portfolio to the change in

price across equilibria:

dωg{dEg

d logPg{dEg

“ ´
1

4

1 ´ ε2

1 ` ε2
‰ Eown. (45)

In particular, when ε Ñ 0, the regression coefficient on the left-hand-side converges to ´1{4,

while the own-price elasticity goes to infinity. Unpacking the total derivative explains the

source of the bias:

dωg{dEg

d logPg{dEg

“

Bωg

B logPg

B logPg

BEg
`

Bωg

B logPr

B logPr

BEg

d logPg

dEg

“ Eown ` Ecross
B logPr{BEg

B logPg{BEg

(46)

The change in demand for the green asset is not driven only by the change in its own

price but also by the change in price of its substitute the red asset, because Ecross ‰ 0. In the

language of regressions, the price of the red asset is acting as a correlated omitted variable.

Intuitively, the induced price drop of the green asset would lead to a large increase of its

demand if the price of the red asset remained high. However, in equilibrium the price of the

red asset drops too, resulting in only a moderate change in the demand for the green asset.

However, the canonical causal inference framework corresponds to a standard difference-

in-difference regression in this setting with two assets. The regression coefficient is the ratio

of the difference of change in portfolio weight to the difference of change in price, as in

equation (6):
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dωg{dEg ´ dωr{dEg

d logPg{dEg ´ d logPr{dEg

“
1

4
´

1

4ε2
“ Eown ´ Ecross. (47)

The difference-in-difference coefficient correctly identifies the relative elasticity. Indeed, this

setting satisfies Assumptions A1 and A2: because the elasticity matrix is symmetric, substi-

tution is homogeneous and the relative elasticity is constant. Also, because the endowment

shock does not have a direct effect on log investors’ choice of portfolio shares, the standard

exogeneity condition is satisfied. Note that the identified relative elasticity is unbounded

when ϵ converges to 0, in line with the economic intuition that the relative demand for near

arbitrage assets should react strongly to a change in their relative price. The estimator leads

to this limit because the relative change in portfolio remains finite, while the relative change

in price goes to zero in this limit due to arbitrage.

This example highlights an important conceptual point: Demand elasticities are well

defined regardless of the source of the change in prices. Precisely, the demand curve maps

the price vector to the quantity vector through any source of change in price that are not

accompanied by changes in other drivers of demand. As a result, it is not surprising that

equilibrium spillovers are not a problem for the identification of demand elasticities per se.

Instead, the econometrician has to be careful that prices of other assets might introduce

omitted variable bias. Assumptions A1 and A2 ensure that this is not the case for a standard

difference-in-difference estimator, which is then an unbiased estimator of relative elasticity.

3 Price Impact

The other natural application for causal inference in asset pricing is the estimation of price

impact or multipliers. After setting up the corresponding regression framework, we show how

our identification results apply to this situation. We then relate demand elasticity estimates

and price impact estimates.

3.1 Price impact regression

Simple causal inference of price impact. Price impact measures how much prices

change in response to an exogenous shift in demand. Because in equilibrium, aggregate

demand does not change if assets are in fixed supply, the empirical setup differs from that

of demand estimation. To understand the basic intuition, start with one asset to put aside

issues of substitution. While equilibrium demand is fixed, it is possible for demand curves to

shift; and we are interested in measuring the impact of such a shift. An idealized example
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Q

P

∆D

∆P

Figure 3: Equilibrium Effect of an Upward Shift in Demand Curve

would be an investor waking up in the morning and deciding to buy one share of Apple for

no specific reason. Then, the aggregate demand curve for the asset shifts to the right by

one unit. In equilibrium, the price must adjust upwards to satisfy market clearing. Figure 3

illustrates this process. Similarly supply shocks can be viewed as the negative of a demand

shock and be treated likewise.

In practice, the econometrician starts from a shift of the demand curve Zi (measured as

the actual amount); examples of such shocks from the literature include asset purchases by

central banks or rebalancing due to flows in and out of mutual funds (Lou, 2012). Armed

with this shift in demand, we run the regression:

∆Pi “ yMZi ` ϵi, (48)

Zi K ϵi. (49)

Of course, the shock Zi is not the only source of variations in prices. Hence, there is still a

stringent exclusion restriction in (49). In words, the change in demand under consideration

must be orthogonal to any other demand shifts in the economy. For example, if a group of

investors systematically mimicks the Fed’s asset purchases, exogeneity is violated and the

regression will be biased; the measured shock undercounts the actual change in demand, and

overestimates the price impact.

There is no first stage because Zi directly measures the magnitude of the shift in the

demand curve. This shift does not materialize in equilibrium quantity demanded: prices

adjust so that the total quantity demanded stays equal to the fixed supply. Equivalently,

this identification condition corresponds to assuming that, if one could measure quantities
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before prices adjust — the out-of-equilibrium square in Figure 3 — the first-stage coefficient

would be one.23

Handling substitution. The same issue as for the estimation of demand elasticity arises:

all prices are determined together in equilibrium. All of the considerations discussed in

Section 1 also apply. There is no such thing as the multiplier but instead a matrix M of

own-demand and cross-demand multipliers such that ∆P “ M∆D. This implies that in

response to a vector of shocks Z, price changes will be:

∆P “ MZ ` ϵ, (50)

where ϵ captures the impact of all other demand shocks. The following proposition highlights

how assumptions A1 and A2 applied to the matrix M allow us to reach a valid estimation.

Proposition 4 If the matrix M satisfies assumptions A1 and A2, and the demand shocks

Z satisfy the exclusion restriction Zi K ϵi|Xi, the regression

∆Pi “ yMZi ` θ1Xi ` ui (51)

identifies the relative multiplier:

yM “ Mrelative. (52)

The relative multiplier measures how the price of one asset relative to another comparable

one changes if the relative demand for these assets shifts. How much does the price of Ford

change relative to the price of General Motors if the demand for Ford changes relative to the

demand for General Motors? To apply Proposition 4, the econometrician should argue that

assumptions A1 and A2 are plausible for their experiment. In the next section we show that

much of the intuition on the validity of the assumptions for elasticities translates directly to

multipliers.

3.2 Link with elasticity estimation

Beyond the symmetry between the price impact regression and the demand elasticity regres-

sion, the two problems are intimately connected economically. Let us write the aggregate

23If the researcher is willing to make stronger assumptions on how or which investors are affected by
the demand shock, they can run a first-stage converting an instrument into a demand shock for that group.
However, the stronger assumptions correspond to assuming that the demand shock for the subgroup coincides
with the aggregate demand shock, what we refer to as assuming a first-stage coefficient of 1.
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demand curve DpP q, the sum of the demand curves of all agents in the economy. The cor-

responding elasticity matrix is E “ BD{BP . In equilibrium, prices have to be such that

aggregate demand equals the aggregate supply S, such that DpP q “ S. If demand curves

shift by an amount ∆D, the new equilibrium price P `∆P satisfies DpP `∆P q `∆D “ S.

Using the implicit function theorem we obtain

M “ ´

ˆ

BD

BP

˙´1

“ ´E´1; (53)

that is, the multiplier matrix is the inverse of the elasticity matrix.24

The next proposition connects estimation in the world of elasticities to the world of

multipliers.

Proposition 5 If the elasticity matrix E satisfies assumptions A1 and A2, then the multiplier

matrix M “ ´E´1 satisfies them as well. Furthermore, the relative elasticity and relative

multiplier (both being scalars) are the inverse of each other:

yM “ ´ pE´1. (57)

The proposition has two parts, each proved in Appendix A.1. First, it states equivalence

of assumptions A1 and A2 for M and for E . This implies that the arguments of Section 2.3

for their validity also apply to the estimation of multipliers.25

Second, under these conditions the relative multiplier coincides with the inverse of the

relative elasticity.26 The two types of regression reveal the same information about demand.

This conjunction occurs despite neither own-price and the cross-price elasticities being sta-

ble by inversion (Mij ‰ ´1{Eij); inverting a matrix is different from inverting each of its

elements.

24As we describe in Section 2.4.1, it is sometimes more suitable to estimate demand elasticities in different
units (logarithms, portfolio shares instead of quantities, ...). The inversion result of Proposition 5 applies to
these different cases but with slightly adjusted formulas:

MtlogP,logQu “ ´E´1
tlogQ,logP u

, (54)

MtlogP,logQu “ ´
“

Etlogω,logP u ´
`

I ´ 1ω1
˘‰´1

, (55)

MtlogP,logQu “ ´
“

diagpωq´1Etω,logP u ´
`

I ´ 1ω1
˘‰´1

. (56)

For example in the case of logit where demand elasticity is measured by regressing the log portfolio share on
log price, equation (55) gives us the multiplier in log units: by how many percents do prices move in response
to a one percent change in aggregate demand. Similarly, equation (56) is useful for the case of CRRA.

25Appendix A.2.4 shows that if the assumptions apply to each individual demand curve, it applies to the
aggregate demand curve as well.

26Gabaix and Koijen (2021) derive this inversion result for a setting without observables shaping substitu-
tion.
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3.3 Example: Relative multipliers in corporate bonds

To make things concrete, we consider a practical application. The goal is not to convince the

reader that the assumptions hold perfectly. Instead, we sketch out the discussions one must

go through at each step when conducting causal inference:

1. choose a source of variation,

2. assess exogeneity,

3. assess assumptions A1 and A2 and select observables,

4. implement the regression analysis.

Consider the market for investment-grade corporate bonds, broadly following Chaudhary

et al. (2022). We obtain data on returns from the WRDS Bond Returns database between

2010 and 2022. To estimate the price impact of demand shocks, we need an exogenous source

of variation in demand. One such source of variation is flow-induced trading from mutual

funds as in Lou (2012). Flow-induced trading is the predicted demand shock from mutual

funds’ mechanical scaling of positions in response to flows:

Zit “
ÿ

k

Ak,t´1wi,k,t´1

Pi,t´1Si,t´1

fkt, (58)

where Ak,t´1wi,k,t´1 are the holdings fund k has of bond i at time t´1 (in dollars), the product

of the fund’s assets under management Ak,t´1 and portfolio weight wi,k,t´1, fkt denotes relative

flows into fund k at time t, and Pi,t´1Si,t´1 is the total bond supply for corporate bond i at

t´1, the product of the bond’s price and quantity outstanding. The instrument is constructed

from mutual fund bond holdings and flows from the CRSP Survivor-Bias-Free US Mutual

Fund Database.

The basic idea behind this instrument is that flows in and out of mutual funds are not

related to the underlying details of the holdings of the fund. Aggregating these flows across

all funds for a specific bond creates variation in demand for this bond. Weighting the flows

by past portfolio shares removes the potential endogeneity due to selective trading by mutual

funds. Furthermore, for the exclusion restriction to be respected, the flows into mutual funds

should not be coming from investors who were already buying similar assets. If households are

replacing portfolios held directly by similar portfolios inside mutual funds, there is actually

no net shift in demand. Finally, the measured demand shocks should not be related to

unobserved demand shocks. For example, the exclusion restriction would be violated if

another type of institution, say insurance companies, would direct their investments to similar

strategies as mutual fund investors.27 To support the exogeneity condition of Proposition 4,

27Chaudhry (2025) shows that fund flows correlate with fund characteristics like growth, size, and income,
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the empiricist should present empirical evidence and argue that these concerns are not in

their data.

The next step is to gauge assumptions A1 and A2. Of course, these assumptions must

be made jointly with a choice of observables.28 Consider Assumption A1 first. It is clear

that homogeneous substitution across bonds is unlikely to hold unconditionally; if demand for

many long-term bonds rises, this will likely affect the price of other long-term bonds differently

from the price of short-term bonds. As discussed in Section 2.3.1, a simple diagnostic for

the plausibility of assumption A1 is a test of balance on covariances. One can ask: do the

treated bonds comove in the same way with broad portfolios as control bonds?

Figure 4 suggests that this is not the case. For a given date, we form a long-short portfolio

based on whether Zit is above or below median on that date and compute the beta of this

portfolio on a series of broad indices in a 2-year range around the date of the sort — the blue

dot for that date. Each panel corresponds to a different index: a broad bond index, long-short

portfolios based on credit ratings and maturity, and a broad stock index. Bonds with a high

instrumented inflow appear to differ systematically from their low-inflow counterparts: they

comove more strongly with the credit-rating-sorted portfolio and more weakly with the broad

bond index and the duration-sorted portfolio. Such behavior is not surprising if investors

choose their fund flows based on these dimensions. However, there is no meaningful difference

in terms of exposure to the stock index.

Once we control for duration and credit rating as observables, covariances are much better

balanced. Specifically, we construct a conditional instrument Zidio,it by residualizing Zit with

respect to duration and credit rating for each time period before sorting portfolios. This

corresponds to the orange dots in Figure 4, which are much closer to 0. While this evidence

bolsters Assumption A1, the empiricist should ask themselves whether other variables are

likely to drive substitution across bonds before moving on. Relatedly, they should also ensure

that treated and control bonds have similar properties, such as their idiosyncratic variance,

to support Assumption A2.29

Provided the empiricist is convinced that the exclusion restriction and assumptions A1

and A2 hold, they can move on to the estimation of the relative multiplier. When facing

repeated cross-sections, as in this setting, it is important to include time fixed effects in order

to focus on cross-sectional variation. As such, column 2 of Table 2 estimates the relative

which suggests violation of the exclusion restriction. He also shows how to adjust the identification strategy
to avoid this source of endogeneity.

28Note that while we have not emphasized it in the discussion above, the exclusion restriction is also
conditional on observables.

29Appendix Figure 7 shows a similar picture for idiosyncratic volatilities as for the balance-on-covariance
tests; without controlling for duration and credit rating, treated and control bonds have different idiosyncratic
volatilities, but with controlling, they are close to identical.
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A. Corporate Bond Index B. High´Low Credit Rating

C. Long´Short Term Bonds D. Stock Index

Figure 4: Balance on covariances: exposure of long-short portfolios sorted on
demand shocks to various factors. Figure 4 reports regression coefficients from balance-on-

covariance regressions based on both the raw demand shock Zit (blue) and the demand shock Zidio,it (orange)

that is cross-sectionally orthogonalized to duration and S&P credit ratings at each point in time. At each

date, we form long–short equal-weighted portfolios based on whether Zit (or Zidio,it) is above or below the

median. We compute the returns of these portfolios over two years centered around t, excluding t, and regress

these returns on four aggregate factors. Panel A shows the time-series of coefficients for regressions on an

aggregate investment-grade corporate bond factor, the ICE BofA US Corporate Index Total Return. Panel B

uses the difference between aggregate high-yield and investment-grade corporate bond factors, the ICE BofA

US High Yield Index Total Return and the ICE BofA US Corporate Index Total Return. Panel C uses the

difference between the ICE BofA 15+ Year US Corporate Index Total Return and the ICE BofA 1-3 Year US

Corporate Index Total Return. Panel D uses the Fama and French (1993) excess stock market return. The

data for factors in panels A to C is from FRED, while the data for the excess market return in Panel D is

from the Kenneth French data library. We exclude the bottom-quintile smallest bonds based on outstanding

bond supply. The time series is from 2011:04 to 2021:09.

multiplier under the (implausible) assumptions of homogeneous substitution and constant

relative elasticity without any observables. In column 3, we include controls for duration
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Table 2: Relative multiplier yM in corporate bonds

Return ∆Pit{Pi,t´1

(1) (2) (3) (4) (5)

Demand shock:
Zit 1.541* -0.254 0.019

(0.637) (0.229) (0.065)
Zidio,it 0.019 0.019

(0.065) (0.065)

Date Fixed Effects Yes Yes Yes Yes
Duration ˆ Date Fixed Effects Yes Yes
Credit Rating ˆ Date Fixed Effects Yes Yes

N 646,335 646,335 646,335 646,335 646,335
R2 0.010 0.415 0.632 0.632 0.415

Table 2 reports the results of relative multiplier regressions of bond returns ∆Pit{Pi,t´1 on demand shocks Zit

and Zidio,it for U.S. investment-grade corporate bonds. Specifications p1q–p3q use the flow-induced trading
demand shock Zit defined in Equation (58). Specification p1q includes a common intercept, specification
p2q uses date fixed effects, and specification p3q adds controls for a continuous duration variable and S&P
credit rating dummies for each date. Specifications p4q–p5q use the demand shock Zidio,it orthogonalized to
duration and credit rating each period, with and without controlling for duration and credit rating in the
regression. We exclude the bottom-quintile smallest bonds based on outstanding bond supply. The sample
period is 2010:04 to 2022:09. Standard errors are clustered by date and bond.

and credit-risk interacted with a time dummy; here again the idea is to control for these

variables within each cross-section. In this specific case, the inclusion of these controls lead

to a positive but insignificant price impact, unlike in the previous specifications. Concretely,

the point estimate of 0.019 suggests that if the demand for one bond relative to another

one with same credit rating and duration increases by 1%, this bond’s price increases by

1.9bps relative to the other one. Columns 4 and 5 regress directly the change in price on the

residualized instrument Zidio,it, with and without controls for the characteristics. This leads

to the exact same estimate of relative elasticity, a mathematical property independent of the

specific dataset. This observation highlights that the source of variation for the estimates is

variation in the residual component of the instrument Zidio,it.

Again, the point of this section is not that these values constitute the best possible

estimates in this setting, but merely to illustrate the process of using causal inference.
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4 Beyond the Relative Elasticity

Standard cross-sectional causal inference can estimate the relative elasticity, a useful moment

for answering micro questions comparing individual assets. There are many other interesting

questions concerning more aggregated levels; here, aggregation is across assets. For instance,

how do investors rebalance when the price of all small stocks changes relative to all big stocks,

or when the price of long-duration bonds changes relative to short-duration ones? At the

most aggregated level, what is the price impact of a demand shock for all assets at the same

time?

This section aims to address these questions. Doing so hinges on estimating cross multi-

pliers separately of the own multipliers. Estimating these dimensions of the multiplier matrix

must rely on sources of variation in the time series, one for each characteristic driving sub-

stitution plus one for the overall aggregate. We focus on price impact estimation in the text;

similar ideas apply to elasticity estimation.

4.1 A simple case of micro vs. macro

Consider the simple case of a symmetric multiplier matrix (as in Section 2.3.1): a constant

own-price elasticity Mown and cross-price elasticity Mcross. This simple configuration follows

closely the analysis in Gabaix and Koijen (2021) to illustrate the basic principles behind

answering aggregate questions before we can move on to a discussion of richer substitution

with observables in the next subsection.

We first show that in this situation, the response of prices to demand can be decomposed

into two distinct components: a composition effect and an aggregate effect. The composi-

tion effect corresponds to the relative comparisons obtained with standard cross-sectional

inference. In contrast the aggregate effect is a component we have not explored yet.

Proposition 6 (Multiplier decomposition in symmetric case) Take a multiplier ma-

trix M with constant own-multiplier Mown and cross-multiplier Mcross. Consider a generic

change in demand and price connected by this matrix, so that ∆P “ M∆D. Define the

aggregate and idiosyncratic components of the changes in price and demand:

∆Pagg “
1

N

ÿ

i

∆Pi, ∆Dagg “
1

N

ÿ

i

∆Di, (59)

∆Pidio,i “ ∆Pi ´ ∆Pagg, ∆Didio,i “ ∆Di ´ ∆Dagg. (60)
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The response of prices to a change in demand can be decomposed into univariate components:

Micro: ∆Pidio,i “ yM ∆Didio,i, (61)

Macro: ∆Pagg “ ĚM ∆Dagg, (62)

where yM “ Mown ´Mcross is the relative multiplier and ĚM “ Mown ` pN ´ 1qMcross is the

aggregate multiplier.

Aggregate and composition effects. Equation (61) captures the relative comparison

between assets. If an asset experiences a higher demand shock relative to the average, its

price increases relative to the average. The magnitude of this response is determined by the

relative multiplier yM. In contrast, equation (62) captures the change in aggregate price,

which only depends on the change in aggregate demand. There, the strength of the response

is captured by the aggregate multiplier ĚM. Interestingly, those two components are separate.

The composition of the demand shock has no bearing on the aggregate price. Conversely,

the aggregate shift in demand affects the price of all assets equally.

This setting is consistent with the common approach used in macroeconomics to focus

only on relations between aggregates. For example, Gabaix and Koijen (2021) present a

model of the aggregate multiplier where the only asset is “the stock market” without track-

ing individual stocks. Proposition 6 shows that such a model generalizes to an arbitrary

composition of demand shocks to individual stocks under the symmetry assumption of this

section.

Separating different multipliers. The second takeaway from Proposition 6 is that the

aggregate multiplier ĚM cannot be calculated from the relative multiplier yM. It is not only

that the two multipliers have different magnitudes, but also that one cannot be recovered

from the other one. It is immediate to see this result in such a simple setting: the two

multipliers represent different linear combinations of own- and cross-multipliers Mown and

Mcross. We will show this distinction remains in richer settings.

Estimating the aggregate multiplier. This distinction also has important implications

for estimation. We have already shown that the cross-section allows to recover yM. Equa-

tions (61) and (62) show that it is impossible to recover anything else than yM from the

cross-section alone. The aggregate component ĎM is only contained in the intercept of the

regression, which cannot be guaranteed to be exogenous. This is the classic missing intercept

problem. Because relative and aggregate multiplier are transformations of own- and cross-

multipliers, this observation also implies that one cannot separate own- and cross-multipliers
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from the cross-section alone.

Then, how can we estimate ĚM ? The only way is to have a series of observations over

time, and then use exogenous variation in demand in the time series. Concretely, one needs a

variable Zt such that other demand shifters are orthogonal to this instrument: Zt K pDagg,t ´

Ztq.
30 Then a time series regression of Pt on Zt correctly recovers ĚM:

∆Pagg,t “ ĚM Zt ` vt (63)

with Zt such that ∆Dagg,t “ Zt ` ϵt, with ϵt K Zt. (64)

Equation (62) highlights that not only is a single time-series necessary for this regression but

also that no additional information comes from observing the entire panel. Arguments about

exogeneity of the source of variation must be about time-series variation.

4.2 Decomposition into micro, meso, and macro levels

In practice, substitution across assets is unlikely to be symmetric. For example when in-

vestors substitute across bonds, they care about the maturity profile of their portfolio. The

observables in our framework (the variables X in assumptions A1 and A2) capture this

dimension of heterogeneity beyond the relative elasticity. In this case, there is still a decom-

position between micro and aggregated multipliers, with one important distinction: there are

multiple aggregated multipliers corresponding to each source of substitution and the overall

aggregate.

To make this point concrete, consider a single observable X which is standardized. The

following proposition gives the decomposition at micro, meso, and macro levels; we discuss

the general case later in Section 4.4.

Proposition 7 (Multiplier decomposition with observables) Take a multiplier matrix

M satisfying Assumptions A1 and A2 with an observable X which has mean zero and unit

variance in the cross-section. Consider a generic change in demand and price connected by

this matrix: ∆P “ M∆D. Define the aggregate, idiosyncratic, and X-based components of

30For example Gabaix and Koijen (2021) construct such shifters using granular instruments (Gabaix and
Koijen, 2024) across investors.
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the changes in price and demand:

∆Pagg “
1

N

ÿ

i

∆Pi, ∆Dagg “
1

N

ÿ

i

∆Di, (65)

∆PX “
1

N

ÿ

i

Xi∆Pi, ∆DX “
1

N

ÿ

i

Xi∆Di, (66)

∆Pidio,i “ ∆Pi ´ ∆Pagg ´ Xi∆PX , ∆Didio,i “ ∆Di ´ ∆Dagg ´ Xi∆DX . (67)

The response of prices to a change in demand can be decomposed into three univariate com-

ponents:

Micro: ∆Pidio,i “ yM∆Didio,i (68)

Meso: ∆PX “ ĄMagg∆Dagg ` ĄMX∆DX , (69)

Macro: ∆Pagg “ ĚMagg∆Dagg ` ĚMX∆DX , (70)

where the scalar coefficients yM,ĄMagg,ĄMX ,ĚMagg, and ĚMX map one-to-one to the matrix

M.

Proposition 7 shows that the presence of the observable X breaks down the dichotomy

between a micro- and macro-multiplier explaining all the impact of the price. It adds an

intermediate “meso” layer, with a distinct role for fluctuations along this variable. This is

captured by the aggregates ∆PX and ∆DX . These quantities measure how the price and the

demand for assets with larger values of X change relative to those with lower values. Indeed,

because we assume the observable has mean zero in the cross-section, ∆PX is the change in

price of a long-short portfolio sorted on this characteristic.

However, this is in general not just a third, intermediate, layer. Idiosyncratic asset-level

changes in prices and demand remain autonomous — equation (68). In contrast, meso and

macro price impacts — equations (69) and (70) — are linked together. The shift in demand

along X, ∆DX , affects the aggregate price ∆Pagg. Conversely, the aggregate shift in demand

∆Dagg affects the relative price of assets along X, ∆PX . This connection yields additional

challenges for estimation and interpretation of multipliers. We first discuss the implications

for estimation of the macro multiplier, then turn to the meso multiplier.

4.3 Estimating the macro multiplier

Defining the macro multiplier. The first observation is that a more precise definition of

the macro multiplier is required in this setting. Equation (70) highlights that the aggregate

change in demand ∆Dagg is not the only determinant of changes in the aggregate price.
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The composition of this shift matters as well. This is the second term, proportional to ∆DX .

Going back to the example of bonds of different maturity, a shift in the supply of all Treasuries

might have a different effect on the total value of government debt than a disproportionate

shift in the supply of long-term treasuries.

There is still a natural definition of the macro multiplier, the coefficient ĚMagg. This

number represents the price impact of a parallel shift in demand for all bonds. More generally,

it represents the price impact of a shift in demand with composition orthogonal to the

observable X. Another version of this result is that one can focus only on aggregate price

and demand if they assume that all shocks are proportional across assets.

Conditions for identification of the macro multiplier. The impact of composition

effects creates a potential additional omitted variable in the estimation of the macro multiplier

relative to the simple case of Section 4.1. Therefore, an additional condition is required for

identification. A candidate shock Zt must be orthogonal to both other aggregate demand

shocks and all composition-based shocks. This corresponds to the regression specification:

∆Pagg,t “ ĚMaggZt ` vt, (71)

with Zt such that

$

&

%

∆Dagg,t “ Zt ` ϵt, with ϵt K Zt;

Zt K ∆DX,t.
(72)

Verifying the identification conditions. In practice, how can we ensure this additional

condition is satisfied? Instruments for aggregate demand often come from specific investors

or groups of investors, for which we know the reason behind their trading. This feature

makes it plausible that any shift in the demand curve of other investors is orthogonal to the

instrument. Without composition effects, this property is only needed for the demand of

other investors for the aggregate portfolio. In our current setting with composition effects,

it also needs to apply to their demand for the long-short portfolio based on X.

However, this is not enough. It is also necessary that the shock to the initial investors’

aggregate demand is orthogonal to their own shock of demand for the long-short portfolio.

Concretely, the econometrician should look at their shock and evaluate whether it only creates

a parallel shift in portfolios. For example, a central bank can suddenly decide to intervene

and purchase corporate bonds, like the Federal Reserve in 2020 (Haddad et al. (2021)). If

the purchase policy is tilted towards a certain category of bonds, such as investment grade,

the shock also creates variation in the demand along that characteristic, ∆DX ‰ 0. More

broadly, one should always ask whether the composition of aggregate shocks is related to

important observables.
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If the econometrician cannot confirm the condition that Zt is orthogonal to ∆DX,t, the

alternative way to make progress is to find two separate sources of variations with known

impact on aggregate demand and on the demand along X:

∆Dagg,t “ Z
p1q

t ` λZ
p2q

t ` ϵagg,t, (73)

∆DX,t “ µZ
p1q

t ` Z
p2q

t ` ϵX,t, (74)

with pZ
p1q

t , Z
p2q

t q K pϵagg,t, ϵX,tq, (75)

where the cross-impact of the shocks, λ and µ, are known and λ ‰ µ´1 so that there is

independent variation between ∆Dagg and ∆DX .

It is tempting to follow the traditional asset pricing approach and simply control for the

factor return based on the characteristic X. For example, when estimating the aggregate

multiplier for the stock market, one could control for the returns on the factors of Fama and

French (1993) say HML and SMB. Unfortunately this path is flawed because factor returns

might also respond to aggregate demand shocks, as shown in equation (69).

4.4 Estimating meso multipliers

The direct meso multiplier. Variation along the observables is also interesting for its

own sake. How does a change in demand for green stocks relative to brown stocks affects the

relative price of these two groups of assets? Answering this question corresponds to estimating
ĄMX for X being a variable measuring the greenness of a firm. How does a quantitative

easing operation purchasing long-term bonds by issuing short-term reserves lowers the term

premium? Again, this is the coefficient ĄMX , this time for X measuring duration.

Proposition 7 demonstrates clearly that the answer to these meso questions are not pro-

vided by the micro multiplier yM or macro multiplier ĚMagg, nor by combining them. Instead,

it reflects how investors substitute across assets precisely along the characteristic of interest.

The symmetry between the meso and aggregate multipliers— equations (69) and (70)—

implies that all the discussion above for the macro multiplier applies to the estimation of
ĂMX . One must first find a shock in the time series that shifts the demand for high-X assets

relative to low-X assets. This shock must be orthogonal to other demand shifts along this

characteristic and the shift in aggregate demand:

∆PX,t “ ĄMXZX,t ` vX,t (76)

with ZX,t such that

$

&

%

∆DX,t “ ZX,t ` ϵX,t, with ϵX,t K ZX,t

ZX,t K ∆Dagg,t.
(77)

42



For example a shock that increases the demand for long-term bonds and reduces the demand

for short-term bond by the same amount could be a valid ZX,t, because it results in no shift

in aggregate demand. In contrast, a shock to the demand for long-term bonds only would

both create a shift along the observable and a shift in overall demand, violating the exclusion

restriction.

By measuring the impact of changes in prices along the observables, the meso multi-

plier ĄMX captures the substitution that was missing in the cross-sectional regression, as

we discussed in Section 2.2. The limitation of the cross-sectional regression is immediate

in the context of the identification conditions we just developed: within one period in the

cross-section, there is no variation in the demand ∆DX,t. Analogous to the fact that the

constant in the regression does not reveal the macro multiplier (Gabaix and Koijen, 2021),

this issue is an incarnation of the well-known missing intercept problem for cross-sectional

identification.31

Cross-multipliers. The connection between the meso and macro level also implies the

existence of interesting cross-multipliers. The coefficient ĄMagg captures how an aggregate

shock to demand affects the relative price of assets with different values of the observable

X. Conversely, the coefficient ĚMX measures the aggregate effect of relative demand shock

along the characteristic X. For example, it measures how an “operation twist” affects the

total valuation of all debt.

The estimation of these cross-terms requires having two separate demand shocks that hit

the two dimensions, as in equations (73)–(75). By including both shocks in the macro and

meso price impact regressions, one can separate the direct effect of each type of shocks from

their cross-effects.

With multiple observables. In Appendix A.4, we generalize Proposition 7 to the case of

an arbitrary set of observables. In this case, one must track a greater set of aggregate price

and demand indices: an overall aggregate price, and an index along each dimension of the

observables. These indices appear as the coefficient of a regression of prices and demands on

the observables. For the demand indices, this corresponds to defining

∆Di “ ∆Dagg `

K
ÿ

k“2

X
pkq

i ∆DX,k ` ∆Didio, (78)

with ∆DX “ pX 1Xq
´1X 1∆D, (79)

31See for example Wolf (2023) in the context of macroeconomics.
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and the first component of ∆DX is ∆Dagg.

Then, the decomposition result is that each of the price indices responds to all of the

demand indices: ∆PX “ }M∆DX , where }M is a K ˆ K matrix. All of the discussion above

regarding identification for the single observable case generalize immediately. For example,

to completely identify the matrix }M, one needs a set of K demand shocks in the time series.

Using demeaned observables leads to easier interpretation. In this case, the aggregate in-

dex is the average change in demand ∆Dagg “ N´1
ř

i ∆Di.
32 The coefficient }M11 represents

a well-defined notion of macro multiplier: the response of the overall level of prices to a par-

allel shift in demand. For the observables, the other components ∆PX,k represent the change

in price of a long-short portfolio formed along the k-th characteristic with no tilt along the

other characteristics. This is analogous to the coefficient in a Fama and MacBeth (1973) re-

gression. The diagonal term }Mkk measures the direct meso multiplier: how this relative price

responds to a shift in demand along this characteristic only. The off-diagonal components

measure spillovers between the various meso components and the aggregate component.

An alternative approach: assuming symmetric groups. A simple way to make assets

comparable at the individual level is to classify them in disjoint groups, as in Section 2.3.2.

This approach corresponds to the observables X being dummy variables for each group —

in this case, the superfluous constant should be removed. The price and demand aggregates

of equation (79) are the averages for each group. This is equivalent to working directly with

data that is aggregated at the group-level, and estimating a multiplier matrix }M of size

K ˆ K, with K the number of groups.

To fully estimate }M requires an instrument for each group. Instead of estimating the

matrix of multipliers with one source of time-series variation for each group, one can go

back to causal inference as in Section 2, by making assumptions A1 and A2 about }M.

Specifically, one can assume homogeneous substitution and constant relative elasticity across

groups. Then, a single source of exogenous variation in the cross-section of groups allows to

estimate the relative multiplier across groups }Mrelative. A special case of such structure is

the nested logit model, used for example in Fang (2023) and Koijen and Yogo (2024).

Importantly, making assumptions A1 and A2 in the context of more aggregated data

is more restrictive than at the micro level. Consider for instance a setting where investors

manage the duration of their portfolio, hence duration affects substitution across bonds. In

this context, if one groups bonds by duration, assumptions A1 and A2 hold at the asset level

(with the group dummies as observables) but not at the group level.

32This occurs because the constant in a regression on mean zero variables (equation (79)) is simply the
average of the dependent variable.
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Table 3: Macro- and meso multipliers in corporate bonds

Return ∆Pagg,t{Pagg,t´1 Return ∆PX,t{PX,t´1 Return ∆Pit{Pi,t´1

(1) (2) (3) (4) (5)

Zagg,t 14.231*** 12.347** 7.294** 12.347** 12.347**
(3.643) (3.985) (2.423) (3.959) (3.958)

ZX,t -6.170 0.817 -6.170 -6.170
(7.810) (4.591) (7.757) (7.757)

Zagg,t ˆ Xit 7.294**
(2.407)

ZX,t ˆ Xit 0.817
(4.558)

Zidio,it 0.090 0.090
(0.055) (0.054)

Duration Xit 0.001 -0.001
(0.001) (0.001)

N 150 150 150 646,335 646,335
R2 0.242 0.250 0.135 0.101 0.125

Table 3 reports the results of macro- and meso multiplier regressions of bond returns on demand shocks
for U.S. investment-grade corporate bonds. Specification p1q follows equation (63) in estimating the macro
multiplier by regressing aggregate bond returns ∆Pagg,t{Pagg,t´1 on the aggregated instrument Zagg,t in the
time series. Specification p2q jointly estimates the macro multiplier ĚMagg and a cross-multiplier ĚMX from
equation (70) by adding the aggregated duration-tilted shock ZX,t. Conversely, specification p3q jointly

estimates the meso multiplier ĄMX and cross-multiplier ĄMagg from equation (69). Specifications p4q and p5q

estimate the mechanically identical macro- and meso-level multipliers as in specifications p2q and p3q using

disaggregated, repeated cross-sectional regressions, while adding the relative multiplier yM. We exclude the
bottom-quintile smallest bonds based on outstanding bond supply. The sample period is 2010:04 to 2022:09.
Robust standard errors are used for specifications p1q to p3q. For specifications p4q and p5q, standard errors
are clustered by date and bond, and regressions are weighted such that each date receives equal weight.

4.5 Example: Duration-based multipliers in corporate bonds

To illustrate concretely the process for estimating the aggregated multipliers, we return to the

setting of Section 3.3 where we have focused on price impact in investment-grade corporate

bonds, using flow-induced trading from mutual funds as the instrument Zi,t.

We start by considering the macro multiplier. In the simple approach of Section 4.1,

Proposition 6 decomposes the multiplier matrix into only two distinct components: a micro

and macro multiplier. The macro multiplier ĚM measures the response of aggregate prices

to a change in aggregate demand. Thus, to estimate ĚM one needs a source of variation in

aggregate demand which can only come from the time series. If one would like to parallel the

micro estimation, they would use aggregate flows from mutual funds. This corresponds to
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aggregating the micro-level instrument: Zagg,t “ N´1
ř

i Zit. While this aggregate instrument

is based off the micro-level one, the exclusion restriction is different. To satisfy this condition,

the aggregate mutual fund flow must not be driven by a response to prices, and cannot be

related to shifts in the demand curves of other investors such as banks. Supporting the

exclusion restriction would be a tall order for this shock. Column 1 of Table 3 estimates the

macro multiplier by regressing changes in aggregate price on this shock to aggregate demand.

The estimate suggests that a 1% increase in demand leads to a 14% increase in bond prices.33

A potential concern for this estimation of the macro multiplier is that meso-level demand

shocks also affect aggregate prices, and that these shocks are correlated with the aggregate

instrument. For the sake of simplicity we narrow the analysis down to shocks along one

observable, duration, and abstract from variation in credit risk. The concern is that the

instrument for aggregate demand, Zagg,t, is correlated with shocks to the demand for long-

term bonds relative to short-term bonds. If you have already argued that the instrument

is independent of changes in the aggregate demand of other investors, then it is natural

to assume that the instrument is also uncorrelated with their demand for long-term bonds

relative to short-term bonds. But aggregate flows from mutual funds themselves are in general

not uniform across bonds; instead they tilt towards either short- or long-term bonds. In fact,

constructing the demand shock along duration, ZX,t “ N´1
ř

i Xi,tDi,t, with Xi,t being each

bond’s duration demeaned and standardized for each time period, we find a correlation of

´0.59 between Zagg,t and ZX,t in the data.

In light of this substantial relation, it is necessary for researchers to account for the role

of the meso-level shock as in equations (73) to (75). Of course, doing so raises the bar on

exogeneity because ZX,t must also be unrelated to other demand shocks, and a defense of

this assumption along the same lines as for Zagg,t must be provided. Column (2) presents

the result of the estimation accounting for both meso and macro demand shocks. In this

case, the estimate of the macro multiplier does not change much, because meso-level shocks

appear to not have a strong effect on aggregate prices.

The response of the price of long-term bonds relative to short-term bonds, ∆PX,t, to shifts

in aggregate demand ∆Dagg,t and demand along durations ∆DX,t is interesting in its own

right. We regress ∆PX,t on the two demand shocks Zagg,t and ZX,t in column (3) of Table 3.

The identification condition is the same as for the previous regression. Across bonds of

different durations, a 1% increase in the aggregate demand for bonds leads to a 7.3% higher

return for each standard deviation. A shift in demand away from short-term bonds towards

long-term bonds of 1% leads to a positive but insignificant increase in the relative price of

33This estimate for the macro multiplier in corporate bonds is unusually large compared to the litera-
ture studying these multipliers carefully and find values between 2.3 and 6 (e.g., Bouveret and Yu, 2021;
Chaudhary et al., 2022; Darmouni et al., 2023); see Haddad et al. (2025) for a review.
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A. Response to Aggregate Shock ∆Dagg B. Response to Duration-Based Shock ∆DX

Figure 5: Macro- and meso multipliers across durations. Figure 5 reports the response

of portfolios of corporate bonds to aggregate demand shocks ∆Dagg (Panel A) and shocks along duration

∆DX (Panel B). Bonds are grouped in seven buckets based on duration: ă1 year, 1–3 years, 3–5 years, 5–7

years, 7–10 years, 10–15 years, and 15` years. The blue lines correspond to the estimates from column (4)

of Table 3, which assume identical responses. The red lines are based on column (5), which includes linear

interaction terms with duration Xit. The green line estimates these multipliers separately each duration-

based portfolio in a pooled panel regression. The sample period is 2010:04 to 2022:09.

long-term bonds.

Columns (4) and (5) illustrate that the panel does not provide additional information

about the macro and meso-multipliers relative to the time-series regression. These specifica-

tions correspond to panel regressions of individual bond returns on the idiosyncratic shock,

Zidio,it, the macro and meso demand shocks, Zagg,t and ZX,t, as well as their interaction with

duration Xit (for column (5)), and a control for Xit. Mechanically, the coefficient on Zagg,t

and ZX,t coincide with the estimates of column (2); the coefficients on their interaction with

Xit coincide with those of column (4).34

Stepping outside of our framework, one can support the linear specification for the role

of duration by examining the impact of the meso and macro shocks on portfolios sorted on

duration. Each time period, we form bond portfolios based on seven buckets of duration.35

The blue lines in Figure 5 correspond to the response of each portfolio to macro (Panel A) and

meso (Panel B) shocks predicted by the estimates of column (4) of Table 3 which assume that

all bonds have the same response. The red lines entertain responses that depend on duration

in a linear way as in column (5). Instead, the green lines estimate the coefficients on meso

34The number of corporate bonds present in the data varies across dates, creating an unbalanced panel. In
such a situation, the coefficients in columns (4)-(5) mechanically coincide with those in columns (2)-(3) only
if the repeated cross-sectional regressions in (4)-(5) are weighted so that each date receives equal weight.

35We follow the classification of the ICE BofA US Corporate indices: ă1 year, 1–3 years, 3–5 years, 5–7
years, 7–10 years, 10–15 years, and 15` years.
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and macro shocks for each bucket separately. In this case, the estimate based on portfolio

sorts suggest that heterogeneity is necessary. While this heterogeneity is well captured by a

linear specification for the response to aggregate demand shocks (Panel A), it appears that

the response to meso shocks (Panel B) is more subtle.36

5 Concluding Remarks

This paper provides a framework for using causal inference with asset prices and quantities.

Specifically, we provide conditions for valid estimation in presence of the natural spillovers

that exist between assets when making portfolio choices. The two conditions are constant rel-

ative elasticity and homogeneous substitution conditional on observables. The latter implies

that two assets with the same observables are comparable if the demand for them responds

in the same way to the price of every other asset. We show that the two conditions map

naturally to restrictions often imposed in standard asset pricing models, and also provide

guidelines to design experiments satisfying these conditions and assess their plausibility in

the data.

When these conditions hold, the standard cross-sectional difference-in-difference or instru-

mental variable approach identifies the relative elasticity between comparable assets—that

is, the difference between their own-price and cross-price elasticity. Other dimensions of

substitutions such as separating own-price and cross-price elasticity, the macro elasticity, or

responses to shocks across broad categories of assets, must be jointly estimated by a set of

time series regressions. These simple tools and principles offer a straightforward package for

researchers wanting to use natural experiments to better understand investment decisions

and their equilibrium impact.

Because our conditions are flexible, they can guide empirical design without having to take

a strong stance on a specific structural model. Still, these causal estimates should only be

a first step towards a deeper understanding of how investors and institutions make portfolio

decisions, and how those decisions shape equilibrium prices.

36Appendix E revisits the estimation focusing on changes in yields instead of returns, and finds more
regularity in the estimates.
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A Proofs and Derivations

A.1 Identifying the relative elasticity – Proposition 2

Start from the general demand equation with demand shocks:

∆Di “ Eii∆Pi `
ÿ

j‰i

Eij∆Pj ` ∆D̄i. (80)

We recall the two assumptions necessary for identification:

• Assumption A1. Xi “ Xj ñ Eil “ Ejl “ EcrosspXi, Xlq “ X 1
iEXXl, @i, j P S, l ‰ i, j,

where Xi is a K ˆ 1 vector of observables, and EX is a K ˆ K matrix.

• Assumption A2. Eii ´ EcrosspXi, Xiq “ Ejj ´ EcrosspXj, Xjq “ pE , @i, j P S

Proposition 2 shows that under assumptions A1 and A2 and the exogeneity condition,
the IV estimator, conditioning on Xi, identifies coefficient pE .
Proof. Starting from equation (80), we can rewrite the demand equation as a cross-sectional
regression:

∆Di “ Eii∆Pi `
ÿ

j‰i

Eij∆Pj ` ∆D̄i (81)

“ Eii∆Pi `
ÿ

j‰i

EcrosspXi, Xjq∆Pj ` ∆D̄i (82)

“ pEii ´ EcrosspXi, Xiqq∆Pi `
ÿ

j

EcrosspXi, Xjq∆Pj ` ∆D̄i (83)

“ pE∆Pi `
ÿ

j

EcrosspXi, Xjq∆Pj ` ∆D̄i (84)

“ pE∆Pi `
ÿ

j

X 1
iEXXj∆Pj ` ∆D̄i (85)

“ pE∆Pi ` X 1
i

˜

ÿ

j

EXXj∆Pj

¸

looooooooomooooooooon

θ

`∆D̄i (86)

“ pE∆Pi ` θ1Xi ` ∆D̄i (87)

Equation (83) adds and subtracts EcrosspXi, Xiq∆Pi. Equations (84) and (85) use assump-
tions 2 and 1, respectively. Equation (86) pulls out X 1

i from the sum. The remaining part
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of the sum gets absorbed into θ, a K ˆ 1 vector of cross-sectional constants. These θ are K
regression coefficients on the K observables, Xik.

Given the exclusion restriction that Zi K ∆D̄i|Xi and the relevance condition that

covp∆Pi, Zi|Xiq ‰ 0, this is the standard IV setting, and the regression estimates pE .

A.2 Properties of elasticity under assumptions A1 and A2

A.2.1 A matrix representation.

First, we derive a simple matrix representation for an elasticity matrix under our two as-
sumptions.

Lemma 8 Let E be an elasticity matrix that satisfies assumptions A1 and A2. Then it can
be written as:

E “ pEI ` XEXX 1, (88)

where pE is a scalar equal to the relative elasticity and EX is a K ˆ K matrix.

Proof. Write out the elasticity matrix E :

E “

¨

˚

˚

˚

˝

E11 E12 . . . E1N
E21 E22 . . . E2N
...

...
. . .

...
EN1 EN2 . . . ENN

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

pE ` X 1
1EXX1 X 1

1EXX2 . . . X 1
1EXXN

X 1
2EXX1

pE ` X 1
2EXX2 . . . X 1

2EXXN
...

...
. . .

...

X 1
NEXX1 X 1

NEXX2 . . . pE ` X 1
NEXXN

˛

‹

‹

‹

‚

(89)

The pi, jq element of matrix E is rEsij “ X 1
iEXXj “ Ecross pXi, Xjq, as defined by Assump-

tion 1, for i ‰ j. The diagonal elements are rEsii “ pE ` X 1
iEXXi “ pE ` Ecross pXi, Xiq, as in

Assumption 2. Since each element in E directly corresponds to the respective Eij defined by
assumptions A1 and A2, the assumptions are equivalent to the elasticity matrix in (88).

A.2.2 Transforming the observables.

The following lemma shows that observables can be recombined in a linear way. In particular
they could be demeaned, standardized, or orthogonalized.

Lemma 9 Let E be an elasticity matrix that satisfies assumptions A1 and A2 with respect
to a set of observables X. If A is a K ˆK invertible matrix, E satisfies assumptions A1 and
A2 with respect to the recombined observables X̃ “ XA.

Proof. Insert AA´1 judiciously into the decomposition of Lemma 8.

M “ yMI ` XAA´1MXpA1
q

´1A1X 1
“ yMI ` X̃MX̃X̃

1, (90)

with MX̃ “ A´1MXpA1
q

´1. (91)
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For example, if the first observable is a constant and the other ones have mean X̄1, . . . , X̄K´1,
the following matrix demeans them:

Ademean “ IK ´

¨

˚

˚

˚

˝

0 X̄1 ¨ ¨ ¨ X̄K´1

0 0 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‚

. (92)

Importantly, note that there is no reason that orthogonalizing the characteristics makes
the substitution matrix MX̃ diagonal.

A.2.3 Stability by inversion — Proposition 5.

Proposition 5 shows that under assumptions 1 and 2, the multiplier matrix M “ ´E´1 also
satisfies assumptions 1 and 2, with yM “ ´1{ pE .
Proof. Start from equation (88), and apply the Woodbury matrix identity:

´E´1
“ ´

´

pEI ` XEXX 1
¯´1

(93)

“ ´ pE´1I ` X
´

pE2E´1
X ` pEX 1X

¯´1

X 1 (94)

“ yMI ` XMXX
1. (95)

This corresponds exactly to assumptions A1 and A2 applied to M with yM “ ´1{ pE .

A.2.4 Stability by aggregation

We show that that assumptions A1 and A2 are stable by aggregation across investors.

Lemma 10 Let E1 and E2 be two elasticity matrices that satisfy assumptions A1 and A2,
and pλ1, λ2q two scalars. Then the matrix λ1E1 ` λ2E2 satisfies assumptions A1 and A2.

Proof. From lemma 8 we decompose both elasticities which leads to:

λ1E1 ` λ2E2 “

´

λ1
pE1 ` λ2

pE2
¯

I ` X pλ1EX,1 ` λ2EX,2qX 1 (96)

The decomposition and the equivalence from lemma 8 concludes the proof.
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A.3 Heterogeneous relative elasticities based on observables

We maintain assumption A1. We relax assumption A2 by allowing the relative elasticity to
depend linearly on observables:

Eii ´ EcrosspXi, Xiq “ ErelativepXiq “ E 1
rXi. (97)

From section A.1 and the proof of Proposition 2 we obtain:

∆Di “ Eii∆Pi `
ÿ

j‰i

Eij∆Pj ` ϵi (98)

“ Eii∆Pi `
ÿ

j‰i

EcrosspXi, Xjq∆Pj ` ϵi (99)

“ pEii ´ EcrosspXi, Xiqq∆Pi `
ÿ

j

EcrosspXi, Xjq∆Pj ` ϵi (100)

“ ErelativepXiq∆Pi `
ÿ

j

X 1
iEXXj∆Pj ` ϵi (101)

“ ErelativepXiq
looooomooooon

E 1
rXi

∆Pi ` X 1
i

˜

ÿ

j

EXXj∆Pj

¸

looooooooomooooooooon

θ

`ϵi (102)

“ E 1
rXi∆Pi ` θ1Xi ` ϵi (103)

In this case we want to identify the vector Er which characterizes the relative elasticity
with respect to observables. Identification must rely on a vector of instruments. It is natural
to construct those instruments from a single instrument Zi for the price interacted with the
observables. The set of identification conditions is:

ZiXi K ϵi|Xi (104)

Under these conditions the two-stage least squares regression proceeds as follows. First,
regress each component of Xi∆Pi on the vector of instruments XiZi and the observables Xi.
The relevance condition is that the matrix of coefficients on the instruments is full-rank. This
leads to predicted values of the change in price interacted with observables {Xi∆Pi. Second,
regress the change in demand on these predicted values and the observables. The coefficients
on the predicted values recovers Er. Finally, the relative elasticity for each asset is simply
ErelativepXiq “ E 1

rXi.
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A.4 Identification beyond the relative elasticity.

We consider aggregation for the generic case of a multiplier matrix M that satisfies assump-
tions A1 and A2 for an arbitrary set of observables X. Remember that the first observable
is the constant in most cases.

Using Lemma 8, we can represent M as

M “ yMI ` XMXX
1. (105)

To define price and quantity aggregates along the various dimensions of the observables, we
regress these vectors on X. We will see that this the natural generalization of the aggregation
presented in Proposition 7.

Proposition 11 (Multiplier decomposition with observables in the general case)
Take a multiplier matrix M satisfying assumptions A1 and A2. Consider generic changes
in demand and price connected by this matrix: ∆P “ M∆D. Define the change in demand
and price aggregated along observables and the idiosyncratic component:

∆PX “ pX 1Xq
´1X 1∆P ∆DX “ pX 1Xq

´1X 1∆D. (106)

∆Pidio,i “ ∆Pi ´ X 1
i∆PX ∆Didio,i “ ∆Di ´ X 1

i∆DX . (107)

The response of prices to a change in demand can be decomposed into two sets of components:

Micro: ∆Pidio,i “ yM∆Didio,i (108)

Meso-Macro: ∆PX “ }M∆DX , (109)

where }M “ yMIK ` MXX
1X.

Proof. Using the relation ∆P “ M∆D and the decomposition of M under the two as-
sumptions, we obtain

pX 1Xq
´1X 1∆P “

´

yMpX 1Xq
´1X 1IN ` pX 1Xq

´1X 1XMXX
1
¯

∆D (110)

“

´

yMpX 1Xq
´1

` MX

¯

X 1∆D (111)

“

´

yMIK ` MXpX 1Xq

¯

pX 1Xq
´1X 1∆D (112)

∆PX “

´

yMIK ` MXpX 1Xq

¯

∆DX (113)

This implies that ∆PX can be expressed as a linear combination of the K elements of ∆DX ,
as opposed to the whole N components of the changes in demand ∆D.
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From the definition of the idiosyncratic change in demand:

∆Pidio “ ∆P ´ X∆PX (114)

“ yM∆D ` XMXX
1∆D ´

´

XyM ` XMXX
1X

¯

pX 1Xq
´1X 1∆D (115)

“ yM p∆D ´ X∆DXq ` XMXX
1∆D ´ XMXpX 1XqpX 1Xq

´1X 1∆D (116)

“ yM∆Didio. (117)

Because yM is scalar, the idiosyncratic component is determined asset by asset, which con-
cludes the proof.

Simple case with no characteristic. We can recover the simpler cases studied in the
paper. Proposition 6 corresponds to a single variable X which is constant equal to one. In
this case ∆PX has only one component equal to ∆Pagg “ N´1

ř

i ∆Pi, and }M “ yM`NMX

is a scalar equal to the macro multiplier.

With one normalized characteristic. Proposition 7 corresponds to observables that
include a constant and a single standardized characteristic that we call X in a slight abuse
of notation. There, the regression gives two aggregate prices and quantities: the aggregate
component ∆Pagg defined as before (the constant of the regression); the meso component

∆PX “ N´1
ř

i Xi∆Pi. Then the matrix }M is 2 ˆ 2 and equal to

}M “

˜

yM ` NpMXq11 NpMXq12

NpMXq21 yM ` NpMXq22

¸

“

ˆ

ĚMagg
ĚMX

ĄMagg
ĄMX

˙

. (118)

When observables are group dummies. Consider the case when the observables are
dummy variables expressing the belonging to disjoint groups. In this situation, there is no
need for a constant. The aggregate price and demand indices have a simple interpretation:
they measure the average change in price and demand for each group k:

∆DX,k “
1

Nk

ÿ

iPk

∆Di (119)

This implies that price impact has a nested structure. First, there is a relative multiplier
within each group yM capturing the impact of changes in relative demand within a group.
Then individual assets can be replaced by the aggregate portfolio of each group, and there
is a multiplier matrix across these aggregate portfolios, }M.

A.5 Lack of identification of substitution from the cross-section

We show that without additional restrictions, substitution cannot be identified from a single
cross section. Start with the structural relation: ∆D “ E∆P`ϵ, and impose our assumptions:
E “ ÊI ` XEXX 1.
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Recall that the demand shift ϵ measures all demand changes that are not caused by a
price change. In particular, it can have a relation with the observables X (e.g., if beliefs
about relative payoffs of assets with different values of X change) and a non-zero mean (e.g.,
if the investor demands more assets overall). We can separate ϵ across those components:

ϵX “ pX 1Xq
´1X 1ϵ (120)

ϵidio,i “ ϵi ´ X 1
iϵX , (121)

with all components of ϵX potentially different from 0 even in the limit of many assets (large
N) and imposing no constraints on all other model quantities.

Plugging into demand, we obtain:

∆Di “ Ê∆Pi ` X 1
iEXX 1∆P ` X 1

iϵX ` ϵidio,i (122)

“ Ê∆Pi ` ϵidio,i ` X 1
i pEXX 1∆P ` ϵXq
looooooooomooooooooon

Kˆ1

(123)

Proposition 12 No free parameter of the matrix EX can be identified from a single cross
section, even under the restriction that some of coefficients of EX are 0.

Proof. Denote E true
X and ϵtrueX the true values of EX and ϵX . For any other guess Efalse

X , the
model with EX “ Efalse

X and ϵX “ ϵtrueX ` pE true
X ´ Efalse

X qX 1∆P is observationally equivalent
to the true model. As long as such guesses exist, that is, as long as EX has at least one free
parameter, this concludes the proof of no identification.

Simplest case: only a constant. Consider the simplest possible case, where X is a
constant. Writing cross-sectional means at date t with a bar, and noting that EX is a scalar
in this case, we have:

∆Di,t “ Ê∆Pi,t ` EX Ě∆P t ` sϵt ` ϵidio,i,t (124)

“ pEX Ě∆P t ` sϵtq ` Ê∆Pi,t ` ϵidio,i,t (125)

Both substitution EX Ě∆P t and the aggregate demand shift sϵt contribute to the constant of
a cross-sectional regression, and there is no way to separate them. This is a version of the
missing intercept problem.

Obtaining partial identification with symmetry across observables. One way to
obtain some partial identification of substitution is to impose that the same parameter drives
substitution across many observables. Then, if one also assumes that the number of observ-
ables grows as the number of assets increases in the cross section, one can identify part of
the substitution matrix.

We illustrate this approach when the observables are dummy variables belonging to a
given group. A priori, substitution across groups could follow any matrix EX . But one might
want to assume that all groups substitute symmetrically, that is, EX “ Eown´gI ` Ecross´g11

1,
with Eown´g an own-group elasticity and Ecross´g a cross-group elasticity. In this case, we
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have:

∆Di “ Ê∆Pi ` Eown´gNg∆Pg ` Ecross´gN Ě∆P if i P g (126)

A cross-sectional regression with an instrument for∆Pg across groups allow to recover Eown´g.
Notice that Ecross´g remains unidentified. This approach corresponds to repeating the relative
elasticity estimation at a higher level of aggregation: the matrix EX (in contrast to E) satisfies
assumptions A1 and A2 with only a constant as observable.

The key assumption here is not that the observables correspond to disjoint groups, but
instead that there is a common substitution parameter that affects each of the observables
separately. Its plausibility depends on context: for example in a simple mean variance setting,
it does not apply if the groups are based on levels of factor loadings.

The nested logit model assumes such a symmetry across groups (the “nests”) and addi-
tionally imposes that the missing intercept Ecross´g is pinned down by the other parameters.

A.6 Estimating a LATE — Proposition 3

The data-generating process under heterogeneous treatment effects is:

∆Di “ Eii∆Pi `
ÿ

j‰i

Eij∆Pj ` ϵi (127)

∆Pi “ λiZi ` ui (128)

The instrument Zi, with constant variance varpZiq “ varpZq, @i, is randomly assigned
and independent of everything else:

Zi KK Zj @i ‰ j (129)

Zi KK Ekl @i, k, l (130)

Zi KK λj @i, j (131)

Zi KK uj @i, j (132)

Zi KK ϵj @i, j (133)

After substituting (128) into (127), we derive the estimate from the demand equation

∆Di “ EiiλiZi `
ÿ

j‰i

EijλjZj ` Eiiui `
ÿ

j‰i

Eijuj ` ϵi (134)

Definitions and preliminaries. Without loss of generality, define a centered instrument
Z̃i as

Z̃i ” Zi ´
1

N

ÿ

j

Zj, (135)

such that we have the following properties:
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ÿ

j‰i

Z̃j “ ´Z̃i (136)

covpZ̃i, Z̃jq “ covpZi, Zjq
looooomooooon

“0

´
1

N

ÿ

k

covpZk, Zjq

looooooomooooooon

“varpZq

´
1

N

ÿ

l

covpZi, Zlq

looooooomooooooon

“varpZq

`
1

N2
covp

ÿ

k

Zk,
ÿ

l

Zlq

looooooooomooooooooon

“N varpZq

(137)

“ ´
1

N
varpZq (138)

Next, define λ̄ and λ̃i such that:

λi “ λ̄ ` λ̃i (139)
ÿ

j

λj “ Nλ̄ (140)

ÿ

j‰i

λ̃j “ ´λ̃i (141)

Finally, define Ei,cross as the λj weighted average of Eij:

Ei,cross “

ř

j‰i λjEij
ř

j‰i λj

(142)

Proof. Based on the definitions above, rewrite
ř

j‰i EijλjZ̃j from equation (134) as:

ÿ

j‰i

EijλjZ̃j “ Ei,cross
ÿ

j‰i

λjZ̃j `
ÿ

j‰i

pEij ´ Ei,crossqλjZ̃j (143)

“ Ei,crossλ̄
ÿ

j‰i

Z̃j

loomoon

“´Z̃i

`Ei,cross
ÿ

j‰i

λ̃jZ̃j `
ÿ

j‰i

pEij ´ Ei,crossqλjZ̃j (144)

“ ´Ei,crossλ̄Z̃i ` Ei,cross
ÿ

j‰i

λ̃jZ̃j `
ÿ

j‰i

pEij ´ Ei,crossqλjZ̃j (145)

Plugging into equation (134):

∆Di “
`

Eiiλi ´ Ei,crossλ̄
˘

Z̃i ` Ei,cross
ÿ

j‰i

λ̃jZ̃j `
ÿ

j‰i

pEij ´ Ei,crossqλjZ̃j ` Eiiui `
ÿ

j‰i

Eijuj ` ϵi

(146)

We are interested in covp∆Di, Z̃iq and covp∆Pi, Z̃iq. Since Z̃i is mean-zero, by the law of
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iterated expectations we have:

covp∆Di, Z̃iq “ E
”

∆DiZ̃i

ı

“ E
”

E
”

∆DiZ̃i|Θ
ıı

, (147)

where Θ is a set that contains all Eij and λi.
We have:

E
”

`

Eiiλi ´ Ei,crossλ̄
˘

Z̃2
i |Θ

ı

“
`

Eiiλi ´ Ei,crossλ̄
˘

varpZ̃q (148)

E

«

Ei,cross
ÿ

j‰i

λ̃jZ̃iZ̃j|Θ

ff

“ Ei,cross
ÿ

j‰i

λ̃jE
”

Z̃i, Z̃j

ı

(149)

“ ´
varpZq

N
Ei,cross

ÿ

j‰i

λ̃j (150)

“
varpZq

N
Ei,crossλ̃i (151)

“
NvarpZ̃q

pN ´ 1q2
Ei,crossλ̃i (152)

E

«

ÿ

j‰i

pEij ´ Ei,crossqλjZ̃iZ̃j|Θ

ff

“
ÿ

j‰i

pEij ´ Ei,crossqλjE
”

Z̃i, Z̃j

ı

(153)

“ ´
varpZq

N

ÿ

j‰i

pEij ´ Ei,crossqλj (154)

“ ´
varpZq

N

˜

ř

j‰i λjEij
ř

j‰i λj

ÿ

j‰i

λj ´ Ei,cross
ÿ

j‰i

λj

¸

(155)

“ ´
varpZq

N

˜

Ei,cross
ÿ

j‰i

λj ´ Ei,cross
ÿ

j‰i

λj

¸

(156)

“ 0 (157)

E

«

EiiZ̃iui `
ÿ

j‰i

EijZ̃iuj ` Z̃iϵi|Θ

ff

“ 0 (158)

E
”

∆PiZ̃i|Θ
ı

“ λivarpZ̃q (159)

Then:
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cov
´

∆Pi, Z̃i

¯

“ E
”

E
”

∆PiZ̃i|Θ
ıı

“ E
”

λivarpZ̃q

ı

“ varpZ̃qE rλis (160)

cov
´

∆Di, Z̃i

¯

“ E
”

E
”

∆DiZ̃i|Θ
ıı

(161)

“ varpZ̃q

ˆ

E rEiiλis ´ E rλisE rEi,crosss `
1

pN ´ 1q2
E

”

Ei,crossλ̃i

ı

˙

(162)

The instrumental variable regression with heterogenous treatment effects identifies:

pE “

cov
´

∆Di, Z̃i

¯

cov
´

∆Pi, Z̃i

¯ (163)

“
E rλiEiis
E rλis

´ E rEi,crosss `
N

pN ´ 1q2
E

„ˆ

λi

E rλis
´ 1

˙

Ei,cross
ȷ

(164)

We can rewrite the middle term of equation (164) as:

Ei rEi,crosss “ Ei

„

Ej‰i rλjEijs
Ej‰i rλjs

ȷ

(165)

“ Ej‰i

„

Ei rλjEijs
Ej‰i rλjs

ȷ

(166)

“ Ej

„

λj

Ej rλjs
Ei‰j

„

Ej rλjs

Ej‰i rλjs
Eij

ȷȷ

(167)

“ Ej

„

λj

Ej rλjs
Ē.j

ȷ

(168)

The term Ē.j resembles an equal-weighted average over rows of Eij excluding the diagonal
element.

The right term of equation (164) is a small-sample term that goes to zero when N Ñ `8:

plim
NÑ`8

pE “ E
“

ωi

`

Eii ´ Ē.i
˘‰

, (169)

with ωi “
λi

E rλis
. (170)

The limit is an average of the own- and cross elasticities weighted by λi.
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B Robustness

B.1 Robustness to the assumptions

We assess the robustness of the identification result of Proposition 2 with respect to deviations
from the assumptions. For simplicity, we focus on a case with two assets and deviations from
Assumption A2. The argument generalizes to other types of deviations.

We first show that the conclusions are robust when the first stage is strong. Then we
illustrate potential issues in presence of weak instruments in the context of a model.

B.1.1 Robustness to deviations from Assumption A2

Consider a setting with two assets and an arbitrary elasticity matrix. In response to an
exogenous shock, the relative change in demand is:

∆D1 ´ ∆D2 “ E11∆P1 ` E12∆P2 ´ E22∆P2 ´ E21∆P1 (171)

“ pE11 ´ E21q∆P1 ` pE22 ´ E12q∆P2 (172)

We denote the relative elasticities by Erel,1 “ E11 ´ E21 and Erel,2 “ E22 ´ E12. Rearranging
the terms leads to

∆D1 ´ ∆D2 “
Erel,1 ` Erel,2

2
p∆P1 ´ ∆P2q `

Erel,1 ´ Erel,2
2

p∆P1 ` ∆P2q { (173)

Dividing by the relative change in price in response to the shock, we obtain the estimator:

∆D1 ´ ∆D2

∆P1 ´ ∆P2

“
Erel,1 ` Erel,2

2
`

Erel,1 ´ Erel,2
2

∆P1 ` ∆P2

∆P1 ´ ∆P2

(174)

The first term is the average relative elasticity. The second term is the potential bias: the
heterogeneity of relative elasticities times the ratio of sum of changes in prices to their
difference. The denominator ∆P1 ´∆P2 is the first stage of the regression, and the relevance
condition is ∆P1 ´ ∆P2 ‰ 0.

It is straightforward to see that if the relevance condition is satisfied, the identification
result of relative elasticity is robust to small deviations from assumption A2. Formally,
consider a family of experiments (or models) indexed by a variable x, such that the experiment
for x “ 0 satisfies assumption A2 but it does not otherwise. If elasticities and changes in prices
are continuous in x, then the IV estimator is also continous in x as long as ∆P1 ´ ∆P2 ‰ 0.

In presence of a weak instrument, when the relevance condition is not satisfied, the last
term of equation (174) becomes infinite. The bias becomes large relative to the actual
coefficient. We show so in a model example next. Of course, in practice, one can simply assess
the first stage empirically and should not proceed anyways without a strong instrument.

B.1.2 An example with discontinuous estimates and a weak first stage

Setting. We consider a variation from the model of Section 2.4.2, where the probability
of the different states is asymmetric. Furthermore, we measure elasticities in the “wrong”
units, portfolio share on price rather than portfolio share on log price. These two features
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create deviations from the Assumption A2. The experiment is a shock to the endowment of
the green asset Eg.

The setting is the same as before except for a change in the probability of the states:

1 ` ϵ 1 ´ ϵ 0 w.p. ρ{2

Green Pg 1 ´ ϵ Red Pr 1 ` ϵ Other Po “ 1 0 w.p. p1 ´ ρq{2

0 0 1 w.p. 1{2

The optimal portfolio shares are:

ωg pPg, Prq “
Pg ppϵ2 ´ 1qPg ` Pr p4ρϵ ` pϵ ´ 1q2qq

4 pϵ2 ` 1qPgPr ` 2 pϵ2 ´ 1qP 2
g ` 2 pϵ2 ´ 1qP 2

r

(175)

ωr pPg, Prq “
Pr pPg ppϵ ` 1q2 ´ 4ρϵq ` pϵ2 ´ 1qPrq

4 pϵ2 ` 1qPgPr ` 2 pϵ2 ´ 1qP 2
g ` 2 pϵ2 ´ 1qP 2

r

(176)

Equilibrium and elasticities. Assume that the endowments are Eg “ Er “ 1{2 and
Eo “ 1. Then equilibrium prices are

Pg “ 1 ´ ϵp1 ´ 2ρq, Pr “ 1 ` ϵp1 ´ 2ρq. (177)

At this equilibrium, the elasticity matrix of the portfolio shares with respect to the level
of prices for the green and red asset is:

Egg “
Bωg

BPg

“
pϵ2 ´ 1q pp2ρ ´ 1qϵ ´ 1q

32pρ ´ 1qρϵ2
, (178)

Err “
Bωr

BPr

“ ´
pϵ2 ´ 1q pp2ρ ´ 1qϵ ` 1q

32pρ ´ 1qρϵ2
, (179)

Egr “
Bωg

BPr

“
pϵ2 ´ 1q pp2ρ ´ 1qϵ ` 1q

32pρ ´ 1qρϵ2
, (180)

Erg “
Bωr

BPg

“ ´
pϵ2 ´ 1q pp2ρ ´ 1qϵ ´ 1q

32pρ ´ 1qρϵ2
. (181)

This leads to the two relative elasticities:

Erel,g “ Egg ´ Erg “
pϵ2 ´ 1q pp2ρ ´ 1qϵ ´ 1q

16pρ ´ 1qρϵ2
, (182)

Erel,r “ Err ´ Egr “
pϵ2 ´ 1q p´p2ρ ´ 1qϵ ´ 1q

16pρ ´ 1qρϵ2
(183)
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Then the terms from the difference-in-difference estimator are:

Erel,g ` Erel,r
2

“
1 ´ ϵ2

16pρ ´ 1qρϵ2
(184)

Erel,g ´ Erel,r
2

“
pϵ2 ´ 1qp2ρ ´ 1q

16pρ ´ 1qρϵ2
(185)

Note that constant relative elasticity, assumption A2, holds only if ρ “ 1
2
. We work in a

neighborhood of assumption A2, where ρ „ 1
2
. To weaken the first stage and make the assets

perfect substitute, we take ϵ to zero. These expressions become approximately

Erel,g ` Erel,r
2

«
´1

4ϵ2
(186)

Erel,g ´ Erel,r
2

«
2ρ ´ 1

4ϵ2
(187)

Equilibrium prices as a function of the endowments are

Pg pEo, Eg, Erq “
Eo ppϵ2 ´ 1qEg ´ Er p4ρϵ ` pϵ ´ 1q2qq

´2 pϵ2 ` 1qEgEr ` pϵ2 ´ 1qE2
g ` pϵ2 ´ 1qE2

r

(188)

Pr pEo, Eg, Erq “
Eo ppϵ2 ´ 1qEr ´ Eg ppϵ ` 1q2 ´ 4ρϵqq

´2 pϵ2 ` 1qEgEr ` pϵ2 ´ 1qE2
g ` pϵ2 ´ 1qE2

r

. (189)

Around the initial equilibrium, the changes in prices are:

∆Pg “
BPg

BEg

“ ´4ϵρ ´ pϵ ´ 1q
2 (190)

∆Pr “
BPg

BEg

“ ϵ2 ´ 1 (191)

The term controlling the bias is:

∆Pg ` ∆Pr

∆Pg ´ ∆Pr

“
2ϵρ ´ ϵ ` 1

ϵp2ρ ` ϵ ´ 1q
(192)

Putting it all together. We will study what happens around ρ “ 1{2, so, echoing our
general setup, we call x “ 2ρ´1. When x “ 0, assumption A2 is satisfied, and the estimator
is unbiased.

We plug all the expressions above in equation (174):

∆D1 ´ ∆D2

∆P1 ´ ∆P2

“
Erel,1 ` Erel,2

2
`

Erel,1 ´ Erel,2
2

∆P1 ` ∆P2

∆P1 ´ ∆P2

(193)

«
´1

4ϵ2
`

x

4ϵ2
1

ϵpx ` ϵq
(194)

Both the average relative elasticity and the difference in relative elasticity go to infinity at
the same pace (1{ϵ2). However, the weak first stage amplifies the bias by another order of
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magnitude. To visualize this issue, it is more natural to compute the relative bias of the
estimator:

∆D1´∆D2

∆P1´∆P2
´

Erel,1`Erel,2
2

Erel,1`Erel,2
2

« ´
x

ϵpx ` ϵq
(195)

The bias term present when x ‰ 0 is an order of magnitude large than the correct estimate
in the limit of a weak instrument.

C Demand beyond risk-based motives for substitution

Consider the problem of investors combining risk-based mean-variance demand where the
covariance matrix Σ is characterized by a set of characteristics Xp3q with a cost of holding
assets that is quadratic in another set of characteristics Xp1q and a portfolio constraint linear
in yet another set characteristics Xp2q. Section 2.3.4 is a special case of this that assumes
that Xp1q and Xp2q each only contain one observable: carbon intensity and a bank’s liquidity
ratio. The proposition below generalizes this.

Proposition 13 (Mean-variance demand with quadratic cost and linear constraint)
Assume that investors choose their demand according to the problem

max
D

D1
pM ´ P q ´

γ

2
D1ΣD ´

κ

2
D1Xp1qXp1q1D (196)

such that D1Xp2q
ď Θ, (197)

where D, M , and P are the N ˆ1 vectors of investor demand, expected payoffs, and prices, γ
is risk aversion, Σ the N ˆN covariance matrix, κ controls the quadratic cost function, Xp1q

and Xp2q are the N ˆ K1 and N ˆ K2 matrices of stock characteristics, and Θ is a 1 ˆ K2

vector that controls the linear constraint.
Further assume that the risk-based component of investor demand satisfies assumptions A1

and A2, i.e.,

´
1

γ
Σ´1

“ pE p3qI ` Xp3qEXp3qXp3q1, (198)

where Xp3q is another N ˆ K3 matrix of stock characteristics, and EXp3q the K3 ˆ K3 matrix
of substitution between observables.

Then the resulting demand curve satisfies assumptions A1 and A2 conditional on the
stacked observables X “ rXp1q, Xp2q, Xp3qs.

Proof. By Lemma 8, to proof the proposition, we need to show that the elasticity matrix E
can be expressed as

E “ pEI ` XEXX1. (199)

69



Start by putting together equations (196) and (197) in the Lagrangian

LpD,λq “ D1
pM ´ P q ´

γ

2
D1ΣD ´

κ

2
D1Xp1qXp1q1D ´ λpD1Xp2q

´ Θq, (200)

where λ is the K2 ˆ 1 Lagrange multiplier on the linear constraint.
Setting the first-order condition with respect to D to zero, and solving for D, yields

D “

¨

˝γΣ ` κXp1qXp1q1
looooooooomooooooooon

”Ω

˛

‚

´1

`

M ´ P ´ Xp2qλ
˘

(201)

“ Ω´1
`

M ´ P ´ Xp2qλ
˘

, (202)

where

Ω “ γΣ ` κXp1qXp1q1. (203)

Plugging into the linear constraint to solve for λ:

`

M ´ P ´ Xp2qλ
˘1
Ω´1Xp2q

“ Θ (204)

ùñ pM ´ P q
1 Ω´1Xp2q

´ λ1Xp2q1Ω´1Xp2q
“ Θ (205)

ùñ λ “
“

Xp2q1Ω´1Xp2q
‰´1 “

Xp2q1Ω´1
pM ´ P q ´ Θ1

‰`
(206)

Plugging the Lagrange multipliers back into optimal investor demand gives:

D “ Ω´1
pM ´ P q ´ Ω´1Xp2q

“

Xp2q1Ω´1Xp2q
‰´1 “

Xp2q1Ω´1
pM ´ P q ´ Θ1

‰`
(207)

The elasticity matrix therefore is:

dD

dP
“ ´Ω´1

` Ω´1Xp2qSb

“

S 1
bX

p2q1Ω´1Xp2qSb

‰´1
S 1
bX

p2q1Ω´1 (208)

Here, Sb is the binding constraint selection matrix, which for the first-order condition
selects the columns of Xp2q for which constraints are binding.

Start now with the part for when the inequality constraints are all non-binding:
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´Ω´1
“ pE p3qI ` Xp3qEXp3qXp3q1 (209)

`

´

pE p3qI ` Xp3qEXp3qXp3q1
¯

Xp1q

„

1

κ
I ´ Xp1q1

pγΣq
´1Xp1q

ȷ´1

looooooooooooooooomooooooooooooooooon

”H

Xp1q1
´

pE p3qI ` Xp3qEXp3qXp3q1
¯

(210)

“ pE p3qI ` Xp3qEXp3qXp3q1
`

´

pE p3q
¯2

Xp1qHXp1q1
` pE p3qXp1qHXp1q1Xp3qEXp3qXp3q1 (211)

` pE p3qXp3qEXp3qXp3q1Xp1qHXp1q1
` Xp3qEXp3qXp3q1Xp1qHXp1q1Xp3qEXp3qXp3q1 (212)

“ pE p3qI ` rXp1q, Xp3q
s

looooomooooon

”Xp1,3q

« ´

pE p3q

¯2

H pE p3qHXp1q1Xp3qEXp3q

pE p3qEXp3qXp3q1Xp1qH EXp3q ` EXp3qXp3q1Xp1qHXp1q1Xp3qEXp3q

ff

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

”F

rXp1q, Xp3q
s

1

(213)

“ pE p3qI ` Xp1,3qFXp1,3q1 (214)

When the linear constraints are not binding, the elasticity matrix satisfies assumptions A1
and A2 conditional on the stacked observables rXp1q, Xp3qs.

For the case that some constraints are not binding, define:

G ” Sb

“

S 1
bX

p2q1Ω´1Xp2qSb

‰´1
S 1
b (215)

The elasticity matrix is

dD

dP
“ pE p3qI ` Xp1,3qFXp1,3q1

`

´

pE p3qI ` Xp1,3qFXp1,3q1
¯

Xp2qGXp2q1
´

pE p3qI ` Xp1,3qFXp1,3q1
¯

(216)

“ pEI ` XEXX1, (217)

where

pE “ pE p3q (218)

X “
“

Xp1q, Xp3q, Xp2q
‰

(219)

EX “

«

F ` FXp1,3q1Xp2qGXp2q1Xp1,3qF pE p3qFXp1,3q1Xp2qG
pE p3qGXp2q1Xp1,3qF

´

pE p3q

¯2

G

ff

. (220)

The elasticity matrix satisfies assumptions A1 and A2 conditional on the stacked observ-
ables X.
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D A non-linear framework

We derive properties for a family of non-linear demand functions which satisfy locally our
assumption of homogeneous substitution conditional on observables. Doing so provides more
general intuition behind our results in linear structures.

Because the non-linear structural models considered in Koijen and Yogo (2019) also belong
to this family of demand functions, this framework also allows us to better understand the
connection of our results with properties of those models. In particular, we explain the
restrictions imposed by the logit form relative to arbitrary factor models, simple factor models
(with constant variance and expected payoffs), and more general demand functions.

D.1 Basic concepts

We consider a setting with an investor, N assets indexed by i, and K observables for each
asset. We start with a general demand function defined as a mapping from the vector of
(log) prices p and the N ˆ K matrix of observables x to a vector of positions D (portfolio
shares in our applications):

Dpp,xq :RN
ˆ RNˆK

Ñ RN

It will be helpful to define the following property.

Definition 14 (HCO functions) A function F : RN ˆ RNˆK Ñ RN is homogenous-
conditional-on-observables (HCO) if @i, rF pp,xqsi “ fppi, xi;p,xq for a function f : pR ˆ

RKq ˆ pRN ˆ RNˆKq Ñ R for each i.

That is, for a fixed overall price and observables vector, the value for each element is
given by the same (scalar-valued) function of its own price and observables.

Then, in the spirit of the discussion of properties of factor models of Koijen and Yogo
(2019), we can restrict attention to a subset of general demand functions as follows.

Definition 15 (HCO demand) A demand function is a homogenous-conditional-on-observables
demand if it is a HCO function.

With HCO demand functions, individual positions can be written as:

rD pp,xqsi “ d ppi, xi;p,xq .

This notation emphasizes the dual role of prices and observables. On the one hand, the
same function dp¨, ¨;p,xq describes how the demand of each asset depends on its own price
and own observables only. On the other hand, this mapping varies with the vector pp,xq.
Thinking of this vector as the state of the economy, a HCO demand describes a mapping
which is possibly state-dependent, but identical across assets.

Naturally, the choice of observables is what gives meaningful restrictions to this definition.
For example, if the observables x includes each asset’s “name”, i, then all demand functions
are also HCO demand.
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An example of HCO demand is logit:

rDlogit
pp,xqsi “

exp p´αpi ` β1xiq

1 `
řN

j“1 exp p´αpj ` β1xjq
,

because the numerator is a function of pi and xi only, while the denominator is a fixed
function (i.e. that does not depend on i) of p and x.

D.2 Relative elasticity vs. substitution and identification.

HCO demand leads to a natural decomposition of the elasticity matrix between a relative
elasticity and a substitution matrices. HCO demand implies an elasticity matrix:

E “
BD

Bp
“ diag

ˆ

Bd

Bpi
ppi, xi;p,xq

˙

loooooooooooooomoooooooooooooon

relative elasticity, NˆN

`

»

—

—

—

—

—

–

Bd
Bp

pp1, x1;p,xq
1

...
Bd

Bp
ppN , xN ;p,xq

1

looooooooomooooooooon

1ˆN

fi

ffi

ffi

ffi

ffi

ffi

fl

looooooooooooomooooooooooooon

substitution, NˆN

where the derivative in the second term is with respect to the third argument of d, not a
total derivative. We call the first term relative elasticity and the second one substitution.
To understand why the first one is a relative elasticity, notice that if two assets have the
same price and observables, this term is equal to the difference between their own-price and
cross-price elasticity:

Eii ´ Eji “

ˆ

Bd

Bpi
ppi, xi;p,xq `

„

Bd

Bp
ppi, xi;p,xq

ȷ

i

˙

looooooooooooooooooooooooomooooooooooooooooooooooooon

Eii

´

„

Bd

Bp
ppj, xj;p,xq

ȷ

i
loooooooooomoooooooooon

Eji

“
Bd

Bpi
ppi, xi;p,xq if ppi, xiq “ ppj, xjq

The substitution matrix captures how investor reallocate between assets when their price
change. Any HCO demand satisfies homogeneous substitution conditional on all observables
and the price:

Eil “ Ejl “

„

Bd

Bp
ppi, xi,p,xq

ȷ

l

if ppi, xiq “ ppj, xjq

Indeed, this corresponds to assumption A1 in the text when the observables x are variables
that the econometrician can measure.

Identification. The cross-section can allow to identify relative elasticity by comparing
demand for two assets with the same observables but nearby prices. However, because pp,xq

are fixed in a given cross-section, identification of substitution is generally impossible with
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the cross-section.
This limitation of the cross-section can be overcome by imposing additional restrictions.

For example, when there is no substitution, that is the demand function does not depend on
the price vector per se (its third argument), we have: d ppi, xi,p,xq “ dppi, xi;xq. Elasticity
is relative elasticity, and hence can be estimated from the cross-section alone.

Another case is logit. Even though this model has non-zero substitution, it can be esti-
mated from the cross-section because parameters determining substitution can be identified
by measuring relative elasticity. Specifically the relative elasticity vector is ´αω and the
substitution matrix is αωω1 where ω “ Dpp,xq is the realized vector of portfolio weights.
This calculation also highlights that the structure of substitution is very restricted in logit:
the substitution matrix of rank 1, and the effects must be proportional to portfolio weights.
To better understand how limiting these restrictions are, we compare logit to other demand
models in the following section.

D.3 Logit, log utility and factor models

Our main interest in this section is to what extent the demand of an investor with a stan-
dard utility function and particular views on the dynamics of expected returns might be
represented with logit demand.

For this purpose, we consider the demand of a log investor with log-normal returns (like
in Section 2.4.1) as the simplest example of a standard utility.

Dlog
pp,xq “ Σpp,xq

´1µpp,xq

where µpp,xq is the expected return vector and Σpp,xq is the return covariance matrix.
For the representation of views of the investor on the structure of asset returns, we define

first a class of factor models where factor loadings might be state-dependent.

Definition 16 (General factor models) A general M-factor model is defined by functions
µpp,xq : RN ˆ RNˆK Ñ RN and Σpp,xq : RN ˆ RNˆK Ñ RNˆN describing the expected
return vector and covariance matrix respectively such that

Σpp,xq “ diagpσ2
ϵ pp,xq

looomooon

Nˆ1

q ` βpp,xq
loomoon

NˆM

ΣF
loomoon

MˆM

βpp,xq
1

, where µpp,xq, σ2
ϵ pp,xq and each column of βpp,xq are HCO functions and ΣF is a covari-

ance matrix.

A general M-factor model lets the functions mapping prices and observables to expected
payoffs, to factor loadings and to idosyncratic risk for each asset to freely vary with the
state of the economy pp,xq. As we show below, this is a rich enough set that for any HCO
demand DHCOpp,xq one can always find a particular factor model that the log investor’s
demand exactly corresponds to the choosen HCO demand: DHCOpp,xq “ Dlogpp,xq. This
is a generalized version of Corrollary 1 of Koijen and Yogo (2019) who specialize the function
DHCOpp,xq to be the logit demand.
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Proposition 17 Fix two functions σ2
ϵ pp,xq and an N ˆ 1 βpp,xq which are HCO. For

any HCO demand DHCOpp,xq, there exists a general 1-factor model with the corresponding
covariance matrix Σpp,xq “ diagpσ2

ϵ pp,xqq`σ2
F βpp,xq

loomoon

Nˆ1

βpp,xq1, such that log utility demand

with this factor model yields the same demand function.

Proof. Choose µ pp,xq “ Σpp,xqDHCOpp,xq then clearly Dlogpp,xq “ DHCOpp,xq. There-
fore, we have to show only that µ pp,xq is HCO. For this, note that

“

Σpp,xqDHCO
pp,xq

‰

i
“

“

σ2
ϵ pp,xq

‰

i
dHCO

ppi,xi;p,xq `

»

–βpp,xq β1
pp,xqDHCO

pp,xq
looooooooooomooooooooooon

scalar

fi

fl

i

which, given that βpp,xq is HCO gives the proof.
This result shows that for any HCO demand, and a fortiori for logit demand, there exist

factor models that microfound it. However, the reverse is clearly not true: an arbitrary factor
model does not give rise to logit demand. To move closer to common finance intuition, we
consider a restricted class of models often used to think about portfolio choice with stable
variance and expected payoffs.

Definition 18 (Stable factor model) A stable M-factor model (based on observables) is
a factor model where expected payoff idiosyncratic risk and factor loadings depend on observ-
ables only: µpp,xq “ Mpxq ´ p, σ2

ϵ pp,xq “ σ2
ϵ pxq , and βpp,xq “ βpxq where Mpxq and

σ2
ϵ pxq and the columns of βpxq are all HCO.

One might wonder if there are stable factor models that the demand of a log investor can
be represented with the logit form. This cannot hold overall due to different functional forms:
the stable factor model is linear in log prices. To make the comparison more meaningful we
ask if such an equivalence holds locally. To do so, we define first-order equivalence.

Definition 19 Two demand functions D1pp,xq and D2pp,xq are first-order equivalent around
a point pp0,x0q if they have same value and Jacobian with respect to the price matrix at that
point:

D1
pp0,x0q “ D2

pp0,x0q

BD1

Bp
pp0,x0q

loooooomoooooon

NˆN

“
BD2

Bp
pp0,x0q

We obtain that in general the answer is negative.

Proposition 20 Out of the set of all stable M-factor models, there is only one under which a
logit demand model with α ą 0 can be first-order equivalent to the demand of the log investor.
This specific model has 1 factor with identical factor loadings and idiosyncratic variance
inversely proportional to demand. Under any other stable factor model, logit demand is not
a valid approximation of the demand of log investor.

75



Proof. For a stable factor model, we have Dlogpp,xq “ Σpxq´1 pMpxq ´ pq, so BDlog{Bp “

´Σpxq´1. For logit we have: BDlogit{Bp “ ´αdiagpωq pI ´ 1ω1q “ ´αdiagpωq ` αωω1, where
ω is the investor’s portfolio share vector. We can invert it with the Sherman-Morrison formula
and identify with Σ:

´
`

BDlogit
{Bp

˘´1
“ α´1

pI ´ 1ω1
q

´1
diagpωq

´1

“ α´1

ˆ

I `
1

1 ´ ω11
1ω1

˙

diagpωq
´1

Σ “ α´1diagpωq
´1

looooooomooooooon

idiosyncratic risk

`α´1 1

1 ´ ω11
111

loooooooomoooooooon

single factor

Comparing this to the covariance matrix under a generic stable factor model,

Σpp,xq “ diagpσ2
ϵ pxq

loomoon

Nˆ1

q ` βpxq
loomoon

NˆM

ΣF
loomoon

MˆM

βpxq
1,

concludes the statement.
The proof also illustrates immediately that logit can never be the approximation of a

stable multi-factor model that cannot be reduced to a single factor. In such a model, the
substitution matrix is of rank equal to the number of factors. Intuitively investors substitute
along portfolios corresponding to the various risk factors, differently for assets with different
loading on those factors. More broadly, HCO demands include models where, following a
price increase for a given position, the investor would substitute disproportionately with
assets with similar observables.

A two-asset example. We illustrate that this limitation arises even in the simplest pos-
sible 2 ˆ 2 example with the same variance. Fix the vectors p and dppi;pq “ ωi that we
are looking for first-order equivalence around. Such position could come from a factor model
with covariance matrix for any correlation ρ and variance σ2:

Σ “ σ2

ˆ

1 ρ
ρ 1

˙

If we have a valid approximating logit model, it would feature:

´
`

BDlogit
{Bp

˘´1
“ α´1

ˆ

ω´1
1 ` 1

1´ω1´ω2

1
1´ω1´ω2

1
1´ω1´ω2

ω´1
2 ` 1

1´ω1´ω2

˙

Clearly the two matrix can never be identical if ω1 ‰ ω2 because the diagonal terms must
be equal. Even if we assume that our point of approximation has a given value ω1 “ ω2 “ ω̄,
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the models are identical only if it matches both on-diagonal and off-diagonal elements:

σ2
“ α´1

ˆ

ω̄´1
`

1

1 ´ 2ω̄

˙

σ2ρ “ α´1 1

1 ´ 2ω̄

We can already see the issue: there is only one degree of freedom in logit (α) but two
degrees of freedom for the covariance matrix (σ2 and ρ). Let us construct the corresponding
contradiction. Subtracting the second equation from the first one gives:

σ2
p1 ´ ρq ω̄ “ α´1

Plugging this expression for α´1 in the second equation leads to:

σ2ρ “ σ2
p1 ´ ρq

ω̄

1 ´ 2ω̄
ρ

1 ´ ρ
“

ω̄

1 ´ 2ω̄

The right-hand-side is fixed, this is our point of approximation. The left-hand-side could
take any value as ρ is a free parameter.

E Appendix Tables and Figures
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A. Corporate Bond Index (Zit) B. Bond Index (Zidio,it)

C. High´Low Credit Rating (Zit) D. High´Low Credit Rating (Zidio,it)

E. Long´Short Term Bonds (Zit) F. Long´Short Term Bonds (Zidio,it)

G. Stock Index (Zit) H. Stock Index (Zidio,it)

Figure 6: Balance on covariances: exposure of portfolios sorted on demand shocks
to various factors. Figure 6 follows the exact definitions from Figure 4, but instead of showing the

exposure of long-short portfolios to various factors, it shows the exposure for the long (orange) and short

(blue) legs separately, sorted based on Zit in the left panels and Zidio,it in the right panels.
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A. Idiosyncratic Volatility (Zit) B. Idiosyncratic Volatility (Zidio,it)

Figure 7: Balance on variances: average idiosyncratic volatility sorted on demand
shocks. Figure 7 reports average idiosyncratic volatilities per group sorted on both the raw demand shock

Zit (blue) and the demand shock Zidio,it (orange) that is cross-sectionally orthogonalized to duration and S&P

credit ratings at each point in time. At each date, we compute idiosyncratic volatilities for each corporate

bond over a two-year window centered around t, excluding t, with respect to four factors: the ICE BofA

US Corporate Index Total Return, the difference between the ICE BofA US High Yield Index Total Return

and the ICE BofA US Corporate Index Total Return, the difference between the ICE BofA 15+ Year US

Corporate Index Total Return and the ICE BofA 1-3 Year US Corporate Index Total Return, and the Fama

and French (1993) excess stock market return. We present the equal-weighted average idiosyncratic volatility

among bonds with above or below median demand shock Zit (or Zidio,it). The data for factors is from FRED

and the Kenneth French data library. We exclude the bottom-quintile smallest bonds based on outstanding

bond supply. The time series is from 2011:04 to 2021:09.
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A. Corporate Bond Index B. High´Low Credit Rating

C. Long´Short Term Bonds D. Stock Index

Figure 8: Balance on covariances: exposure of long-short portfolios sorted on
demand shocks to various factors. Figure 8 reports regression coefficients from balance-on-

covariance regressions based on both the raw demand shock Zit (blue) and the demand shock Zidio,it (orange)

that is cross-sectionally orthogonalized to duration and S&P credit ratings at each point in time. At each date,

we form long–short equal-weighted portfolios based on whether Zit (or Zidio,it) is above or below the median.

We compute the yield changes of these portfolios over two years centered around t, excluding t, and regress

these yield changes on four aggregate factors. Panel A shows the time-series of coefficients for regressions

on an aggregate investment-grade corporate bond factor, the ICE BofA US Corporate Index Total Return.

Panel B uses the difference between aggregate high-yield and investment-grade corporate bond factors, the

ICE BofA US High Yield Index Total Return and the ICE BofA US Corporate Index Total Return. Panel

C uses the difference between the ICE BofA 15+ Year US Corporate Index Total Return and the ICE BofA

1-3 Year US Corporate Index Total Return. Panel D uses the Fama and French (1993) excess stock market

return. The data for factors in panels A to C is from FRED, while the data for the excess market return in

Panel D is from the Kenneth French data library. We exclude the bottom-quintile smallest bonds based on

outstanding bond supply. The time series is from 2011:04 to 2021:09.
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Table 4: Relative multiplier yM in corporate bonds

Yield change ∆Yit

(1) (2) (3) (4) (5)

Demand shock:

Zit -0.384* -0.104* -0.072**
(0.166) (0.047) (0.027)

Zidio,it -0.072** -0.072**
(0.027) (0.027)

Date Fixed Effects Yes Yes Yes Yes
Duration ˆ Date Fixed Effects Yes Yes
Credit Rating ˆ Date Fixed Effects Yes Yes

N 630,255 630,255 630,255 630,255 630,255
R2 0.004 0.071 0.089 0.089 0.070

Table 4 reports the results of relative multiplier regressions of yield changes ∆Yit on demand shocks Zit

and Zidio,it for U.S. investment-grade corporate bonds. Specifications p1q–p3q use the flow-induced trading
demand shock Zit defined in Equation (58). Specification p1q includes a common intercept, specification
p2q uses date fixed effects, and specification p3q adds controls for a continuous duration variable and S&P
credit rating dummies for each date. Specifications p4q–p5q use the demand shock Zidio,it orthogonalized to
duration and credit rating each period, with and without controlling for duration and credit rating in the
regression. We exclude the bottom-quintile smallest bonds based on outstanding bond supply. The sample
period is 2010:04 to 2022:09. Standard errors are clustered by date and bond.
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Table 5: Macro- and meso multipliers in corporate bonds

Yield Change ∆Yagg,t Yield Change ∆YX,t Yield Change ∆Yit

(1) (2) (3) (4) (5)

Zagg,t -2.343*** -1.828** 0.137 -1.828** -1.828**
(0.627) (0.621) (0.105) (0.616) (0.616)

ZX,t 1.683 -0.966** 1.683 1.683
(1.295) (0.364) (1.286) (1.286)

Zagg,t ˆ Xit 0.137
(0.105)

ZX,t ˆ Xit -0.966**
(0.362)

Zidio,it -0.069* -0.069*
(0.030) (0.030)

Duration Xit -0.000*** -0.000***
(0.000) (0.000)

N 149 149 149 630,255 630,255
R2 0.278 0.304 0.202 0.021 0.022

Table 3 reports the results of macro- and meso multiplier regressions of yield changes on demand shocks
for U.S. investment-grade corporate bonds. Specification p1q follows equation (63) in estimating the macro
multiplier by regressing aggregate yield changes ∆Yagg,t on the aggregated instrument Zagg,t in the time
series. Specification p2q jointly estimates the macro multiplier ĎMagg and a cross-multiplier ĎMX from equation
(70) by adding the aggregated duration-tilted shock ZX,t. Conversely, specification p3q jointly estimates the

meso multiplier ĂMX and cross-multiplier ĂMagg from equation (69). Specifications p4q and p5q estimate the
mechanically identical macro- and meso-level multipliers as in specifications p2q and p3q using disaggregated,

repeated cross-sectional regressions, while adding the relative multiplier yM. We exclude the bottom-quintile
smallest bonds based on outstanding bond supply. The sample period is 2010:04 to 2022:09. Robust standard
errors are used for specifications p1q to p3q. For specifications p4q and p5q, standard errors are clustered by
date and bond, and regressions are weighted such that each date receives equal weight.
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A. Response to Aggregate Shock ∆Dagg B. Response to Duration-Based Shock ∆DX

Figure 9: Macro- and meso multipliers across durations. Figure 9 reports the response

of portfolios of corporate bonds to aggregate demand shocks ∆Dagg (Panel A) and shocks along duration

∆DX (Panel B). Bonds are grouped in seven buckets based on duration: ă1 year, 1–3 years, 3–5 years, 5–7

years, 7–10 years, 10–15 years, and 15` years. The blue lines correspond to the estimates from column (4)

of Table 5, which assume identical responses. The red lines are based on column (5), which includes linear

interaction terms with duration Xit. The green line estimates these multipliers separately each duration-

based portfolio in a pooled panel regression. The sample period is 2010:04 to 2022:09.
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