Planning Against Disasters in Dynamic Production Networks

Vasco M. Carvalho, Matias Covarrubias, Galo Nuño

NBER SI, EFCE, July 2025

OK Boomer

Consensus on RBC circa early 90s:

- Poor amplification:
 - requires large & mysterious aggregate technology shocks in data

- Log-linearized solutions are accurate:
 - endogenous quantities and prices are quite linear in state variables

• Small welfare cost of business cycles

OK Zoomer?

Consensus on RBC circa early 90s:

• Poor amplification

Consensus on Production Networks now:

- Powerful amplification:
 - i.i.d micro-shocks cascade via supply chains generate large aggregate fluctuations

• Log-linearized solutions as accurate

- Non-linearities galore:
 - complementarities generate endogenous disasters and negative skewness in aggregates.

- Small welfare cost of business cycles
- Welfare cost of business cycles maybe large?

Intro

Consensus on RBC circa early 90s:

• Poor amplification

• Log-linearized solutions as accurate

- **Consensus on Production Networks now:**
 - Powerful amplification:
 - i.i.d micro-shocks cascade via supply chains generate large aggregate fluctuations
 - Non-linearities galore:
 - complementarities generate endogenous disasters and negative skewness in aggregates.

- Small welfare cost of business cycles
- Welfare cost of business cycles maybe large?

Revisit (multisector) stochastic growth model with nonlinear networks

This Paper

1) Analytically in a simple two-period/two-sector model:

- optimal capital allocation across sectors under uncertainty => excess investment (relative to DSS) in upstream sectors.
 - planner manipulates capital allocation in order to minimize nonlinear cascades and consumption disasters.
- efficient strategy averts disasters but reduces the average level of consumption
 - potential for high welfare costs of business cycles in stochastic growth model via level effects

2) Quantitatively: deep-learning technique on large-scale, dynamic, nonlinear production networks.

- ergodic distribution features higher mean capital levels in key upstream sectors.
- lower (than DSS) mean levels of macro aggregates.
- welfare cost of business cycles: 1%.

2) Quantitatively: deep-learning technique on large scale, dynamic, nonlinear production networks.

- ergodic distribution features higher mean capital levels in key upstream sectors.
- lower (than DSS) mean levels of macro aggregates.
- welfare cost of business cycles: 1%.

TLDR: Planner avoids disasters through strategic capital allocation.

 \rightarrow The stochastic growth model does features high welfare cost of business cycles, but it hits through low average consumption, not volatility.

1. Simple Analytics

- Capital allocation under uncertainty in 2-sector/2-period nonlinear environment
- Pre-allocation, aggregate consumption and welfare cost of business cyle
- 2. Quantitative Environment
- 3. Quantitative Results

The Simplest 2 x 2 x 2 Economy: Structure

• Structure: 2 x 2 x 2

- 2 sectors: Upstream and Downstream
- 2 inputs:
 - Capital
 - Intermediate Input
- 2 periods

The Simplest 2 x 2 x 2 Economy: Second period

$$U \qquad Q_1 = A_1 K_1$$

$$D \qquad Q_2 = A_2 \left[(1 - \gamma_q) Q_1^{\frac{\sigma_q - 1}{\sigma_q}} + \gamma_q K_2^{\frac{\sigma_q - 1}{\sigma_q}} \right]^{\frac{\sigma_q}{\sigma_q - 1}}$$

$$HH \qquad U(C = Q_2) = \frac{C^{1 - \epsilon_c^{-1}}}{1 - \epsilon_c^{-1}}$$

• Period 2: Given a (K₁, K₂) allocation:

- TFP shocks realize, production and consumption take place.
- symmetric shocks: high (A_H) or low (A_L) .
- Upstream: Q_1 CRS with capital, K_1 , s.t. A_1 .
- Downstream: Q₁: CRS-CES combination of capital K₂ and upstream good Q₁, s.t. A₂.
- HH: CRRA over downstream good.

$$U \qquad Q_{1} = A_{1}K_{1} \qquad K_{1} + K_{2} = 1$$

$$D \qquad Q_{2} = A_{2} \left[(1 - \gamma_{q})Q_{1}^{\frac{\alpha_{q}-1}{\sigma_{q}}} + \gamma_{q}K_{2}^{\frac{\alpha_{q}-1}{\sigma_{q}}} \right]^{\frac{\sigma_{q}}{\sigma_{q}-1}}$$

$$HH \qquad E \left[U(C = Q_{2}) \right] = E \left[\frac{C^{1-\epsilon_{c}^{-1}}}{1-\epsilon_{c}^{-1}} \right]$$

• Period 2: Production + Consumption, given capital allocation & shocks.

• Period 1: Planner picks (K_1, K_2) allocation

• to maximize expected utility in period 2

s.t. $K_1 + K_2 = 1$.

The Simplest 2 x 2 x 2 Economy: Question

- U $Q_1 = A_1 K_1$ $K_1 + K_2 = 1$ Period 1: Planner picks (K_1, K_2) allocation. D $Q_2 = A_2 \left[(1 \gamma_q) Q_1^{\frac{\sigma_q 1}{\sigma_q}} + \gamma_q K_2^{\frac{\sigma_q 1}{\sigma_q 1}} \right]^{\frac{\sigma_q}{\sigma_q 1}}$ Question: Does the planner deviate from deterministic K-allocation? HH $E[U(C = Q_2)] = E\left[\frac{C^{1-\epsilon_c^{-1}}}{1-\epsilon_c^{-1}} \right]$ Insurance benefit: Allocating more K upstream
- Period 2: Production + Consumption, given capital allocation & shocks.

- Insurance cost: Allocating more K upstream generates lower expected consumption.

Insurance Benefits in Nonlinear Economies

Consumption levels vs elasticity of substitution

- Symmetric shocks upstream ⇒ asymmetric aggregate fluctuations
 - also, for given negative shock upstream, aggregate contraction nonlinear in σ_q
 - Possible consumption disasters near Leontieff
- Q: what happens if we allocate more capital to the upstream sector?

Insurance Benefits in Nonlinear Economies

Consumption levels vs elasticity of substitution

- Symmetric shocks upstream ⇒ asymmetric aggregate fluctuations
 - also, for given negative shock upstream, aggregate contraction nonlinear in σ_q
 - Possible consumption disasters near Leontieff

• Lemma 1:

If inputs are complements, excess capital allocation to upstream (relative to K_{ss}) \implies lower impact of negative upstream shocks on log(C)

Insurance Costs in Nonlinear Economies

Consumption levels vs elasticity of substitution

- Insuring upstream cascades is costly
 - reallocating capital to a relatively unproductive use (low productivity upstream) and away from more productive (high productivity downstream)
- Q: What is the result of a reallocation of capital to the upstream sector?

Insurance Costs in Nonlinear Economies

Consumption levels vs elasticity of substitution

- Insuring upstream cascades is costly
 - reallocating capital to a relatively unproductive use (low productivity upstream) and away from more productive (high productivity downstream)

• Lemma 2:

If inputs are complements and upstream sector is not too small, excess capital allocation to upstream \implies expected consumption lower than deterministic C_{ss}

Theorem

If inputs are complements ($\sigma_q < 1$), the planner preallocates capital to the upstream sector (that is, $K_1^* > K_1^{determ}$) whenever risk aversion is large enough (and always if > 1). Furthermore, preallocation is larger if shocks are more volatile.

- Risk aversion > 1 resolves the tradeoff between insurance benefits vs. costs.
 - (1) planner coping with uncertainty deliberately over-invests in upstream resilience to avert final demand disasters
 - (2) this comes at a 'level' cost in terms of average consumption due to capital misallocation

Theorem

If inputs are complements ($\sigma_q < 1$), the planner preallocates capital to the upstream sector (that is, $K_1^* > K_1^{determ}$) whenever risk aversion is large enough (and always if > 1). Furthermore, preallocation is larger if shocks are more volatile.

- Risk aversion > 1 resolves the tradeoff between insurance benefits vs. costs.
- Welfare cost implications:
 - not from consumption disasters (planner avoids them!)
 - not from fluctuations around deterministic steady state (cf Lucas)
 - via permanently lower average consumption?

1. Simple(st) Analytics

2. Quantitative Environment

- Multi-sector stochastic growth model: CES nests everywhere & I-O linkages for intermediate and investment goods
- Standard calibration & Deep Learning solution method
- 3. Quantitative Results

- ∞ -lived HH with GHH preferences over consumption and labor bundles: (model)
 - CES aggregator over j = 1, .., N sector goods, elasticity σ_c
 - Time invariant preferences for each good, ξ_j
 - CES aggregator over hours worked in each N sector: σ_1 controls degree of labor reallocation across sectors.
- Representative firm in sector j, produces gross output Q_{jt} with CRS technology:
 - CES aggregator over primary and intermediate inputs: elasticity σ_c
 - Primary input is CES bundle of capital and labor, σ_y
 - Intermediate input bundle M_{jt} is CES nest of sector j = 1, ..., N goods; elasticity σ_m ⇒ "Intermediate Input Network"
 - Value-added TFP shocks A_{jt} : AR(1) with sector specific AR and VCOV unrestricted

- Firms accumulate capital via industry-specific investment good *l_{jt}*
 - investment subject to quadratic capital adjustment costs (I/K) with sector-specific depreciation rates
 - Each sector's investment good is produced via CES bundle of investment goods in other industries; elasticity *σ*₁
 - \implies "Investment Network"
- Resource Constraint
 - Gross output of each sector satisfies final demand consumption by HH, intermediate input demand, and investment good demand by other sectors

Calibration

- 1. Calibrated to match US data (37 sectors, 1948-2008).
 - Intensity shares (ξ_j, μ_j, α_j) and networks (Γ^m, Γ') .
 - TFP process (ρ_j, Σ_A) .
 - Capital adjustment (ϕ) and labor reallocation (σ_l) costs.
- 2. Elasticities of substitution.
 - Set based on estimates: $\sigma_m = 0.1$, an $\sigma_y = 0.8$.
 - Set to intermediate levels (0.5): σ_c , σ_I , and σ_q .
- 3. Standard parameters in the literature
 - Intertemporal elast. of subs. (ϵ_c), Frisch elasticity (ϵ_l), discount factor (β).

Untargeted Moments: Volatility of Aggregate Consumption and GDP.

Deep Learning solution method for production networks: motivation

- Classic problem: minimize loss of a system of equations with expectation terms.
- \bullet Until recently: feasible up to \sim 6 state vars. But we have 74 state vars!
 - And we are interested in nonlinearities and effect of uncertainty.
- Classic solutions that allow for nonlinearities:
 - 1. Higher order perturbation around deterministic SS.
 - Problem: no stochastic SS, and unstable/unfeasible with high dimensionality.
 - 2. Perfect foresight solution.
 - Problem: no stochastic SS, and no impact of uncertainty.

Deep Learning solution method for production networks: explanation

- Our approach: policy function iteration but with **neural net function approximation**, adapted from DEQN (Azimovic et al 2022).
- DEQN: at each optimization step, use policy function to:
 - 1. Simulate forward and get sample points of state space. Then, at each point:
 - 2. solve future policies for all possible realization shocks \rightarrow recover expectations.
 - 3. Construct loss, and differentiate with respect to parameters of policy function.
- Our contribution:
 - many continuous shocks → montecarlo simulation to get expectation → clever parallelization scheme on GPUs.
 - One of the rare cases in which a high dimensional model solved using NNs exhibits strong nonlinearities.

- 1. Simple(st) Analytics
- 2. Quantitative Environment
- 3. Quantitative Results

Negative shocks: dampened in global solution vs. local/perfect foresight

- IRF of C to a -20% shock to Mining, Oil, and Gas.
- perfect foresight vs loglinear: amplification.
- loglinear vs fully nonlinear: attenuation.
- Attenuation is stronger when shocks are more volatile.

IRF of Agg. C to shock to Mining, Oil, and Gas

Sectoral reallocation: more capital for key upstream sectors in stochastic SS

- Sectoral allocation of capital in stochastic SS as log deviations from deterministic SS.
- Volatility of shocks modify stochastic SS.
- Higher volatility → more preallocation to key upstream sectors. All sectors

Capital Allocation in Stochastic SS vs Determ SS

Ergodic distribution: lower mean consumption than DSS but no disasters

- Ergodic distribution of *C* under three different policies.
- Simulations: same shocks, but policies solved under different shock volatilities.
- Mean consumption decreases, no negative skew.

Ergodic distribution for Aggregate Consumption

Stochastic steady state: deviations with respect to the deterministic steady state

Policy	Consumption (%)	Labor (%)	GDP (%)	Investment (%)	Intermediates (%)	Capital (%)
Low Volatility	-0.43	-0.16	-0.28	-0.37	-0.43	-0.45
Baseline	-1.56	-0.58	-1.02	-1.32	-1.50	-1.48
High Volatility	-1.89	-0.62	-1.07	-1.14	-1.47	-1.21

Note: The stochastic steady state is calculated by sampling 1000 points from the full simulation, and simulating forward but setting shocks to zero.

- Stochastic SS features depress aggregate consumption.
- As volatility increases, aggregate consumption decreases.

Welfare cost of business cycle

Policy	Full Nonlinear (%)	Loglinear (%)	C fixed at DSS (%)	L fixed at DSS (%)	Mean at DSS (%)
Low Volatility	-0.46	-0.05	0.16	-0.63	-0.03
Baseline	-1.05	-0.11	0.41	-1.51	-0.06
High Volatility	-1.50	-0.19	0.57	-2.18	-0.10

Note: All values are expressed as percentage changes in consumption equivalent terms.

- Large welfare cost of business cycle ($\sim 1\%$).
- An order of magnitude larger than in the loglinear model.
- Cost manifest as lower average consumption.

- In the quantitative model, we have many sources of sectoral heterogeneity affecting capital preallocation across sectors.
 - If only IO matrix heterogeneity, IO upstreamness \rightarrow more capital (\sim 43% correlation).
 - If only Inv. matrix heterogeneity, Inv upstreamness \rightarrow more capital. ($\sim 60\%$ correlation)
- IO matrix is key to get nonlinearities and welfare cost of business cycles.
 - With an identity IO matrix, nonlinearities are reduced (welfare cost \sim 0.4%).
 - With uncorrelated and homogeneous sectoral shocks, you still get nonlinearities (welfare cost \sim 1.5%).

- Simple theory of capital allocation in production networks.
- Solve globally a large-scale nonlinear RBC model with production networks.
- In both theory and quantitative exercise, we find that:
 - Efficient solution preallocate capital across sectors to avoid consumption disasters.
 - This comes at the cost of lower average consumption.
 - Higher volatility \rightarrow more preallocation.
- Business cycles do not generate large variance in aggregate consumption, but instead reduce mean → high welfare cost despite low consumption volatility.

Households

- ξ_j : time-invariant preference for good j, $\sum_{j=1}^{N} \xi_j = 1$.
- σ_c : elasticity of substitution across goods.
- σ_l : degree of labor reallocation between sectors.

The representative firm on industry j produces gross output Q_{jt} using the technology:

$$Q_{jt} = \left[(\mu_j)^{\sigma_q^{-1}} (Y_{jt})^{1-\sigma_q^{-1}} + (1-\mu_j)^{\frac{1}{\sigma_q}} (M_{jt})^{1-\sigma_q^{-1}} \right]^{\frac{1}{1-\sigma_q^{-1}}}$$

- Y_{jt}: value-added production.
- μ_j : the value-added share.
- σ_q : elasticity of substitution between value-added and materials

Value-added production is given by:

$$Y_{jt} = A_{jt} \left[(\alpha_j)^{\sigma_y^{-1}} (K_{jt})^{1 - \sigma_y^{-1}} + (1 - \alpha_j)^{\sigma_y^{-1}} (L_{jt})^{1 - \sigma_y^{-1}} \right]^{\frac{1}{1 - \sigma_y^{-1}}}$$

- σ_{y} : elasticity of substitution between labor and capital.
- A_{jt}: industry-specific shock to value-added productivity:
 - It follows the AR(1) process: $\log A_{jt+1} = \rho_j \log A_{jt} + \varepsilon_{jt+1}^A$

Capital dynamics

Firms can accumulate capital by producing an industry-specific investment good I_{jt} :

$$K_{jt+1} = (1 - \delta_j)K_{jt} + I_{jt} - \Phi_{jt}$$

Capital Adjustment Costs

Firms are subject to capital adjustment costs:

$$\Phi_{jt} = \frac{\phi}{2} \left(\frac{I_{jt}}{K_{jt}} - \delta_j \right)^2 K_{jt}$$

- δ_j : industry-specific depreciation rate.
- ϕ : parametrizes capital adjustment costs.

The investment good is produced by bundling goods produced by other industries:

$$I_{jt} = \left(\sum_{i=1}^{N} \left(\gamma_{ij}^{l}\right)^{\sigma_{l}^{-1}} (I_{ijt})^{1-\sigma_{l}^{-1-1}}\right)^{\frac{1}{1-\sigma_{l}^{-1-1}}} \quad \text{where} \quad \sum_{i=1}^{N} \gamma_{ij}^{l} = 1$$

- γ_{ij}^{l} : use of good *i* in the production of the investment good for sector *j*.
- σ_I : elasticity of substitution between inputs of the investment bundle.

The intermediate input is produced using the bundle:

$$M_{jt} = \left(\sum_{i=1}^{N} \left(\gamma_{ij}^{m}\right)^{\sigma_{m}^{-1}} \left(M_{ijt}\right)^{1-\sigma_{m}^{-1}}\right)^{\frac{1}{1-\sigma_{m}^{-1}}} \quad \text{where} \quad \sum_{i=1}^{N} \gamma_{ij}^{m} = 1$$

- γ_{ii}^m : use of good *i* in the production of the final good for sector *j*.
- σ_m : elasticity of substitution between intermediate goods.

Aggregate resource Constraints

$$Q_{jt} = C_{jt} + \sum_{i=1}^{N} \left(M_{jit} + I_{jit}
ight)$$

Planner Problem

- The model satisfies the 1st Welfare Theorem.
- Then, it can be formulated as a planning problem in which the planner maximizes households' welfare subject to technological constraints.

Capital Allocation is Stochastic SS for all Sectors

