Sustainable Social Security

Sergio Cappellini (Navarra) Francesco Lancia (Venice, CEPR) Alessia Russo (Padua, CEPR) Tim Worrall (Edinburgh)

NBER-SI, Macro Public Finance, July 2025

Motivation

Sustainability of Social Security is challenging due to:

- 1. Demographic changes:
 - Rising dependency ratio (65+/working-age) driven by increasing longevity and declining fertility
 - Demographic projections by government actuaries are highly uncertain
 ⇒ exposure to macro longevity risk

Motivation

Sustainability of Social Security is challenging due to:

- 1. Demographic changes:
 - Rising dependency ratio (65+/working-age) driven by increasing longevity and declining fertility
 - Demographic projections by government actuaries are highly uncertain
 ⇒ exposure to macro longevity risk
- 2. Limited enforcement arising from intergenerational conflicts:
 - Retirees (Old) demand preservation of promised entitlements
 - Workers (Young) oppose higher fiscal burdens

Research Question

How should a Sustainable Social Security rule be structured in the presence of demographic changes (macro longevity risk) and limited enforcement?

Pure (no public reserves) vs Partially Funded (with public reserves) Paygo systems

Research Question

How should a Sustainable Social Security rule be structured in the presence of demographic changes (macro longevity risk) and limited enforcement?

Pure (no public reserves) vs Partially Funded (with public reserves) Paygo systems

Preview of Result

The sustainable rule is **non-linear** and **history-dependent**.

Research Question

How should a Sustainable Social Security rule be structured in the presence of demographic changes (macro longevity risk) and limited enforcement?

Pure (no public reserves) vs Partially Funded (with public reserves) Paygo systems

Preview of Result

The sustainable rule is **non-linear** and **history-dependent**.

Previous Literature

Optimal parametric rules Nishiyama & Smetters (2007) Huggett & Parra (2010) Golosov et al. (2013) Full enforcement or info frictions Conesa & Garriga (2008) Hosseini & Shourideh (2019) Berriel & da Costa (2025) Dynamic voting (inefficient)
Cooley & Soares (1999)
Bassetto (2008)
Gonzalez-Eiras & Niepelt
(2008)

Framework

- Discrete-time OLG model, two-period-lived agents: Young (N_t^y) and Old (N_t^o)
- Growth rate of Young is constant $\frac{N_{t}^{y}}{N_{t+1}^{y}}=1$
- Stochastic survival probability: $\phi_t = \frac{N_t^o}{N_{t-1}^y} \in \{\phi_L, \phi_H\}$, with $\phi_L < \phi_H$ and π_{ij} the probability of transiting from ϕ_i to ϕ_j
- Young with w and Old endowed with $\alpha < w$
- Young pay contributions τ_t to finance pensions p_t to the Old
- Preferences: time-separable utility $u(\cdot)$, with discount factor $\beta \in (0,1]$

$$u(w \cdot (1 - \tau_t)) + \beta \cdot \mathbb{E}_t \left[\phi_{t+1} u(\alpha + p_{t+1}) \right]$$

Social Planner Problem

A benevolent planner maximizes the sum of expected discounted utility of all generations, weighting future generations by $\delta \in (0,1)$, subject to a balanced budget (pure Paygo) each period:

$$\tau_t \cdot w \cdot N_t^y = p_t \cdot N_t^o \quad \Rightarrow \quad p_t = \frac{w}{\phi_t} \cdot \tau_t$$

Social Planner Problem

A benevolent planner maximizes the sum of expected discounted utility of all generations, weighting future generations by $\delta \in (0,1)$, subject to a balanced budget (pure Paygo) each period:

$$\tau_t \cdot w \cdot N_t^y = p_t \cdot N_t^o \quad \Rightarrow \quad p_t = \frac{w}{\phi_t} \cdot \tau_t$$

- The optimal policy may depend on the history of shocks, but recursive structure means current p_t summarizes relevant past information
- Given current state (p, ϕ_i) , planner chooses:

$$\tau(p,\phi_i)$$
 \Leftarrow current contribution
 $p_i(p,\phi_i)$ \Leftarrow next-period contingent pension

Full Enforcement

For $i \in \{L, H\}$, the Intergenerational Pareto Frontier is

$$V_i(p) = \max_{\tau,\,(p_j)_{j \in \{L,H\}}} \left\{ \underbrace{\frac{\beta}{\delta} \cdot \phi_i}_{\text{Old's weight}} \cdot \underbrace{u\left(\alpha + \frac{w}{\phi_i} \cdot \tau\right)}_{\text{Old's payoff}} + \underbrace{\underbrace{u\left(w \cdot (1-\tau)\right)}_{\text{Young's payoff}} + \delta}_{\text{Expected future value}} \underbrace{\sum_{j \in \{L,H\}} \pi_{ij} \cdot V_j(p_j)}_{\text{Expected future value}} \right\}$$

s.t. the Promise-Keeping (PK) Constraint:

$$u\left(\alpha + \frac{w}{\phi_i} \cdot \tau\right) \ge u(\alpha + p) \qquad \underbrace{\left(\frac{\beta}{\delta} \cdot \phi_i \cdot \lambda\right)}_{\text{Multiplier}}$$

Full Enforcement (PK does not bind)

Constant ratio of marginal utilities:

$$\frac{u'(w-\phi_i\cdot p)}{u'(\alpha+p)}=\frac{\beta}{\delta}$$

First-best policy features:

$$p_H^* < p_L^*$$
 and $au_H^* > au_L^*$

⇒ Perfect, history-independent risk sharing

Full Enforcement (PK binds)

There is a wedge that distorts the ratio of marginal utilities above (β/δ) :

$$\frac{u'(w-\phi_i\cdot p)}{u'(\alpha+p)} = \frac{\beta}{\delta}\cdot (1+\frac{\lambda}{\lambda}(p,\phi_i))$$

This distortion is temporary: lasts at most one period

$$V_j'(p_j(p,\phi_i)) = 0 \Rightarrow p_j^* = \sup\left\{p \,\middle|\, V_j'(p) = 0\right\}$$
 (FOC w.r.t. p_j)
$$V_i'(p) = -\frac{\beta}{\delta} \cdot \phi_i \cdot u'(\alpha + p) \cdot \lambda(p,\phi_i)$$
 (Envelope w.r.t. p)
$$\Rightarrow \lambda(p_j(p,\phi_i),\phi_j) = 0 \quad \forall j$$

Limited Enforcement

The planner is subject to the Limited Enforcement (Participation) Constraint:

$$u(w \cdot (1-\tau)) - u(w) + \beta \cdot \sum_{j \in \{L,H\}} \pi_{ij} \cdot \phi_j \cdot \left[u(\alpha + p_j) - u(\alpha) \right] \ge 0 \quad \Rightarrow \underbrace{(\mu)}_{\text{Multiplie}}$$

- Deviation is deterred by the threat of autarky (worst payoff) to sustain the best allocation ⇒ it can be relaxed
- A non-trivial sustainable (i.e., satisfying participation) social security system exists, improving upon autarky iff:

$$-u'(w) + \beta \cdot u'(\alpha) > 0 \Rightarrow \text{dynamic inefficiency}$$

Limited Enforcement

An additional wedge distorts the marginal utility ratio downward:

$$\frac{u'(w-\phi_i\cdot p)}{u'(\alpha+p)} = \frac{\beta}{\delta}\cdot\frac{(1+\frac{\lambda}{\lambda}(p,\phi_i))}{(1+\mu(p,\phi_i))}$$

If first-best is unsustainable, i.e., some participation constraint is violated, the distortion is permanent: it persists even in the long-run

$$\begin{split} V_j'(p_j(p,\phi_i)) &= -\frac{\beta}{\delta} \cdot \phi_j \cdot u'(\alpha + p_j(p,\phi_i)) \cdot \mu(p,\phi_i) & \text{(FOC w.r.t. } p_j) \\ V_i'(p) &= -\frac{\beta}{\delta} \cdot \phi_i \cdot u'(\alpha + p) \cdot \lambda(p,\phi_i) & \text{(Envelope w.r.t. } p) \\ &\Rightarrow \underbrace{\lambda\left(p_j(p,\phi_i),\phi_j\right) = \mu\left(p,\phi_i\right)}_{\text{Updating Rule}} \quad \forall i,j \end{split}$$

Limited Enforcement

Illustrative Case:

- Young are constrained when ϕ_H for any relevant p
- Young are unconstrained when ϕ_L for any relevant p

Dynamics Implications:

- If ϕ_L : the planner sets future pensions equal to

$$p_j^0 = \sup\left\{p \,\middle|\, V_j'(p) = 0
ight\} \leq p_j^* \quad \text{with} \quad p_L^0 = p_L^* \quad \text{and} \quad p_H^0 < p_H^*$$

- If ϕ_H : the planner promises $p_i > p_i^0$ to relax participation constraints
- But a higher p_j increases contributions from next-period Young \Rightarrow if ϕ_H persists, their participation constraint tightens over time

⇒ intertemporal efficiency–incentive trade-off

Social Security Rule

The optimal rule $p_j = h_j(\tau, \phi_i)$ is non-linear and history-dependent

With **iid** shocks,
$$p_i = h_i(\tau)$$
:

i. If $\tau \leq \tau^c$: $h_j(\tau)$ is constant in τ \Rightarrow Minimum guaranteed benefits

ii. If $\tau > \tau^c$: $h_j(\tau)$ increases in τ \Rightarrow Contribution-based component

iii. $h_j(au)$ decreases in ϕ_j

⇒ Longevity risk adjustment

Public Reserve Funds

- With public reserve funds $a \ge 0$, the planner can partially fund pensions subject to the budget constraint:

$$\tau w - \phi_i p = S \equiv q a_+ - a$$
 with $a_+ \ge 0$

where $q \ge \delta$ is the fixed exogenous price of a risk-free asset

- The surplus S can be: S>0 (reserve accumulation); S<0 (reserve drawdown)
- Given current state (a, p, ϕ_i) , the planner chooses:

$$au(a,p,\phi_i)$$
 \Leftarrow current contribution $p_j(a,p,\phi_i)$ \Leftarrow next-period contingent pension $a_+(a,p,\phi_i)$ \Leftarrow next-period risk-free asset

Public Reserve Funds

Marginal utility wedge: Affected by asset accumulation:

$$\frac{u'(w(1-\tau(a,p,\phi_i)))}{u'(\alpha+p)} = \frac{\beta}{\delta} \cdot \frac{1+\lambda(a,p,\phi_i)}{1+\mu(a,p,\phi_i)}$$

Euler condition:

$$u'(w(1-\tau(a,p,\phi_i))) \geq \frac{\beta}{q} \sum_{j \in \{L,H\}} u'(\alpha+p_j(a,p,\phi_i)) \quad \text{and} \quad a_+ \geq 0$$

with complementary slackness

Double feedback effect: Participation constraints ⇔ public reserve funds

- i. Participation constraint ⇒ additional precautionary saving motive
- ii. Public reserve funds affects MU wedge and pension-contribution link

Takeaway

We develop a simple theory of optimal social security under limited enforcement and demographic risk

- √ The pension system exhibits history dependence
- ✓ Pension benefits must be linked to contributions when enforcement is limited
- √ Reserve funds weaken the benefit-contribution link and full depletion can be optimal

Appendix

Dependency Ratio and Pension Share

Dependency Ratio and Pension Share

Dependency Ratio and Pension Share

Life Expectancy Projections

United Kingdom - Male

Public Reserve Funds (2023)

Country	Name of the fund or institution	Established in	USD billions	% GDP
Korea	National Pension Fund	1988	803	46.3
Japan	Government Pension Investment Fund	2006	1,595	38.3
Sweden	National Pension Funds (AP1–AP4, AP6)	2000	194	31.4
Canada	Canadian Pension Plan (CPPIB/CPP)	1965	537	24.6
New Zealand	Superannuation Fund	2001	44	16.9
Portugal	Financial Stabilisation Fund	1989	33	11.2
United States	Social Security Trust Fund	1940	2,641	9.7
France	Pension Reserve Fund	1999	218	7.0
Norway	Govt Pension Fund - Norway	2006	35	6.9
Australia	Future Fund	2006	145	7.8
United Kingdom	National Insurance Fund	1948	98	3.1
Chile	Pension Reserve Fund	2006	9	2.7
Poland	Demographic Reserve Fund	2002	16	1.9
Spain	Social Security Reserve Fund	1997	6	0.4
Mexico	IMSS Reserve	n.d.	8	0.4

Political Constraint

$$\Psi\left(\overline{u(w(1-\tau))} + \beta \sum_{j \in \{L,H\}} \pi_{ij}\phi_j \, u(\alpha+p_j)\right) + (1-\Psi) \, \overline{u\left(\alpha + \frac{1}{\phi_i}w\tau\right)}$$

$$\geq \underline{\Psi(u(w) + \beta \bar{\phi}_i u(\alpha)) + (1-\Psi)u(\alpha)}$$
Outside Option

with Ψ equal to the **relative political weight** of Young versus Old as in **probabilistic voting** (Lindbeck and Weibull, 1987; Dovis, Golosov and Shourideh, 2024)

Sustainable Social Security

Definition (Sustainability)

A **Sustainable Social Security** is a policy that solves the planner's recursive problem and respects all incentive and feasibility constraints over time.

Proposition (Existence)

There exists a non-trivial sustainable social security system that improves upon autarky iff:

$$1 > \hat{r}$$
, with $\hat{r} := \frac{1}{\hat{m}}$ and $\hat{m} := \beta \cdot \frac{u'(\alpha)}{u'(w)}$

This condition corresponds to **dynamic inefficiency** à la Samuelson.

Full Enforcement (PK does not bind)

If CRRA utility with risk aversion coefficient γ :

$$p^*(\phi) = \frac{w - \alpha \left(\frac{\delta}{\beta}\right)^{\frac{1}{\gamma}}}{\phi + \left(\frac{\delta}{\beta}\right)^{\frac{1}{\gamma}}} \quad \text{and} \quad \tau^*(\phi) = \frac{\phi \left(w - \alpha \left(\frac{\delta}{\beta}\right)^{\frac{1}{\gamma}}\right)}{w \left(\phi + \left(\frac{\delta}{\beta}\right)^{\frac{1}{\gamma}}\right)}$$

- \Rightarrow An increase in ϕ reduces $p^*(\phi)$ and raises $au^*(\phi)$
- ⇒ Pension promises do not depend on the contributions paid

When
$$\beta=\delta$$
, $c^{o*}(\phi)=c^{y*}(\phi)=rac{w+\alpha\phi}{1+\phi}$ for any ϕ

When
$$\phi_i < \phi_j$$
, $c_i^{y*} > c_i^{y*}$ and $c_i^{o*} > c_i^{o*}$

Start from $\phi_0 = \phi_{L} < \phi_{H}$ and $p_0 > p_{L}^*$

For any $t \geq 1$, pension benefits oscillate between p_L^* and p_H^* $lue{}$

Start from $\phi_0 = \phi_L$ and $p_0 > p_L^0$

If $\phi_1 = \phi_H$, promised pensions must be larger than p_i^0 to relax participation

If $\phi_2 = \phi_H$, promised pensions must be raised further

If $\phi_3 = \phi_L$, promised pensions can be reset to p_j^0 Go Back

Long-Run Distribution

Proposition

Under limited enforcement, the optimal sustainable social security rule is history dependent, and the economy converges to a unique invariant distribution over an ergodic set with (possibly countably infinite) states (ϕ, p) .

⇒ Proving strong convergence requires a resetting property

Positive Demographic Shock

Effect on average policies after a one-period unexpected increase in n_t (+15%)

Negative Demographic Shock

Effect on average policies after a one-period unexpected decrease in n_t (-15%)

Approximations

- Approximated Rule: Piecewise Linear

$$h_j^{AR}(\tau) = \begin{cases} p^0(j) & \text{if } \tau \le \tau^c \\ p^0(j) + \rho^{AR}(j) \cdot (\tau - \tau^c) & \text{if } \tau > \tau^c \end{cases}$$

Approximations

- Approximated Rule: Piecewise Linear

$$h_j^{AR}(\tau) = \begin{cases} p^0(j) & \text{if } \tau \le \tau^c \\ p^0(j) + \rho^{AR}(j) \cdot (\tau - \tau^c) & \text{if } \tau > \tau^c \end{cases}$$

- Policy Alternatives with Longevity Risk Adjustment
 - i. Defined-Benefit Rule:

$$h_j^{DB}(\tau) = \rho^{DB}(j)$$
 for all τ

ii. Defined-Contribution Rule:

$$h_j^{DC}(au) =
ho_0^{DC}(j) +
ho_1^{DC}(j) \cdot au$$
 for all au

Valuation of Pensions

- Define states $x:=(\tau,\phi_i)$ and $x':=\left(\frac{h_j(\tau)\phi_j}{w},\phi_j\right)$. The **stochastic discount factor** (SDF) is:

$$m(x, x') = \varrho \cdot \frac{\psi(x)}{\psi(x')}$$

- From the **Ross Recovery Theorem**, ϱ is the Perron root of the state-price matrix and ψ the associated eigenvector:

$$\varrho = \delta$$
 and $\psi(x) = \frac{1}{\phi(i)u'(w(1-\tau))(1+\mu(x))}$

Valuation of Pensions

- Define states $x:=(\tau,\phi_i)$ and $x':=\left(\frac{h_j(\tau)\phi_j}{w},\phi_j\right)$. The **stochastic discount factor** (SDF) is:

$$m(x, x') = \varrho \cdot \frac{\psi(x)}{\psi(x')}$$

- From the **Ross Recovery Theorem**, ϱ is the Perron root of the state-price matrix and ψ the associated eigenvector:

$$\varrho = \delta$$
 and $\psi(x) = \frac{1}{\phi(i)u'(w(1-\tau))(1+\mu(x))}$

- The SDF can be used to compute the insurance premium.
- The discounted present value of the pension claim is:

$$D^{p}(x) := \mathbb{E}\left[m(x, x') \cdot h_{j}(\tau)\phi_{j} \mid x\right]$$

Expected Return and Risk Premium

- The **conditional return** on pensions and its expected value:

$$R^p(x,x') := \frac{h_j(\tau)\phi_j}{D^p(x)}, \quad \bar{R}^p(x) := \mathbb{E}\left[R^p(x,x') \mid x\right]$$

- The conditional risk-free rate is:

$$R^f(x) := \frac{1}{\mathbb{E}\left[m(x, x') \mid x\right]}$$

The multiplicative risk premium (MRP) is:

$$MRP(x) := \frac{\overline{R}^p(x) - R^f(x)}{R^f(x)} = -\text{cov}\left[m(x, x') \cdot R^p(x, x') \mid x\right]$$

Multiplicative Risk Premium

- Since cov > 0, the risk premium is negative:
 - ⇒ This implies a positive **insurance value** of the social security system.

Sample Path: Asset Accumulation

Sample Path: Marginal Utility Ratio

Sample Path: Pensions and Contributions

