
Gender Divergence in Sectors of Work

Titan Alon
UC San Diego

Sena Coskun
U Nuremberg, IAB, CEPR

Jane Olmstead-Rumsey
LSE

NBER SI Gender in the Economy 2025



Motivation

New fact: gender divergence in sectors of work

I Over time in the U.S., across European countries

I Entirely driven by married women

Research questions:

1. What drives rising gender segregation by sector in the U.S.? Is it changing...

Discrimination?

Technology (wages, returns to education,...)

2. Can this divergence explain the persistence of the gender earnings gap?

No. Changing preferences reduce the earnings gap.
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Gender Segregation by Sector: U.S.

Sgc =

∑
i|pigc − pimc|

2

I pigc: share of workers of group g in sector i in cohort c

I 0 if no segregation, 1 if fully segregated

I “Naturally weighted”: larger sectors contribute more

Measurement:

I CPS: employment, hours, earnings, gender, marital status, age

I Focus on 5 cohorts ages 25-34, 1975-2019

I 11 sectors
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Increasing Gender Segregation by Sector in the U.S.
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...Is Driven by Married Women
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Which Sectors?
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Empirical Decompositions

1. Rise of services?

Fix sector employment shares at 1980s

Structural change explains 40%

2. Domestic outsourcing?

Fix occupation shares within sectors at 1980s

Does not affect measured segregation
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Europe: More Gender Equal Countries Are More Segregated
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Model Overview: Hsieh et al. (2019) applied to sectors

One-time sector choice to maximize lifetime utility

Heterogeneity:

I Individuals: sector specific talent

I Cohort-groups (men, single women, married women): sector-specific
discrimination and preferences

I Sectors: pay and returns to schooling

How we use the model:

1. Estimate prefs and discrim for each cohort-group

2. Perform counterfactuals for sector shares and the gender earnings gap
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Choice Over Sectors i ∈ I (Including Home): Utility

max
i∈I

β
c+2∑
t=c

logCig(c, t) + log zig(c) + log[1− si(c)]

I Cig(c, t): consumption at time t of an individual in sector i, group g, cohort c

I zig(c): cohort-group preference for sector i

I si(c): time spent in education if choosing sector i



Unpacking Sector i Consumption

Cig(c, t) = [1− τwig(t)]wi(t)εhig(c, t)− eig(c, t)[1 + τhig(c)]

I τwig(t), τ
h
ig(c): labor market and human capital barriers (discrimination)

I wi(t): sector efficiency wage (technology)

I ε: individual’s idiosyncratic ability in sector i, F (ε1, ..., εI) = exp
(
−
∑I

i=1 ε
−θ
i

)
I hig(c, t) = h̄igγ(t− c)si(c)φi(c)eig(c, t)η: human capital

h̄ig: group-specific innate human capital in sector i
γ(t− c) returns to experience
φi(c): return to schooling time in sector i for cohort c (technology)
eig(c, t): educational expenditure
η: elasticity of human capital wrt to educational expenditure
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Estimating Preferences and Discrimination Normalizations and parameter values

1. Composite discrimination τigc =
(1+τhigc)

η

1−τwigc
is identified using:

earningsigc

earningsimc
=

(
τigc
τimc

)− 1
1−η

×
(
pigc
pimc

)− 1
θ(1−η)

(1)

2. Women’s relative preferences z̃igc = z
1−η
3β

igc are identified using:

pigt
pimt

=

(
1− LFPgc

1− LFPmc

)
×
(
τigc
τimc

)−θ
×
(
zigc
zimc

)− θ(1−η)
3β

(2)
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Intuition for the Estimation

I We assume men face no discrimination, innate human capital is the same across
groups, and the home sector is undistorted for all as in Hsieh et al. (2019)

I Earnings gaps (eq. 1) are increasing in relative sectoral shares
pigc
pimc

because of a
selection effect: marginal worker is of lower quality than average

I Given discrimination, relative sectoral shares (eq. 2) pin down relative
preferences: group’s preference for a sector is reflected in sectoral shares



Estimated Sectoral Discrimination and Preferences

I Discrimination declines across all sectors, dispersion across sectors declines

I Married women face higher discrimination than single women on average

I Married women’s relative preferences
zigc
zimc

:

Autocorrelation over time: 84%

Correlation with same cohort single women’s prefs zisc
zimc

: 68%
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Model Counterfactuals

Fix each of these to 1980s and let the others vary as in the data:

1. Preferences z̃

2. Discrimination τ

3. Technology wi, φi

⇒ yield counterfactual paths for sector shares p̃igc and ˜earningsigc
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Decomposition of Aggregate Changes in Segregation

Decomposition of Channels
Actual Model Prefs. (z) Disc. (τ) Tech. (w, φ)

Segregation
Married 0.049 0.049 0.029 0.006 0.008
Single -0.006 -0.006 -0.015 -0.032 0.016

Difference between observed and counterfactual St is role of each channel. 1976 to 2019.

I Changes in prefs account for 0.029
0.049

= 59% of rise in married women’s segregation
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Decomposition of Aggregate Changes in Gender Earnings Gap

Decomposition of Channels
Actual Model Prefs. (z) Disc. (τ) Tech. (w, φ)

Segregation
Married 0.049 0.049 0.029 0.006 0.008
Single -0.006 -0.006 -0.015 -0.032 0.016

Gender Earnings Gap
Married -0.347 -0.347 -0.080 -0.214 -0.077
Single -0.097 -0.097 -0.023 -0.004 -0.060

Difference between observed and counterfactual gapt is role of each channel. 1976 to 2019.
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Sources of Changing Preferences for Sectors

Must be:

1. Changes in way married women value fixed sector characteristics

2. Changes in sector characteristics over time

3. Changes in the “composition” of married women/selection into marriage

Types of sectoral amenities we measure in CPS:

I Hours flexibility/greedy jobs/childcare compatibility

I Homophily: female share

I Risk: correlation with partner’s income/GDP

I These are pretty persistent over time at sector level
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Regressing Estimated Preferences on Amenities
Married Single Men

Part time share 0.111 0.080 0.080
[0.000] [0.000] [0.000]

Hours 0.032 -0.044 -0.028
[0.055] [0.014] [0.004]

Num. children 0.019 0.001 -0.005
[0.002] [0.875] [0.390]

Female share -0.015 -0.023 -0.005
[0.236] [0.135] [0.511]

Business cycle risk 0.002 -0.014 -0.008
[0.748] [0.108] [0.159]

R2 0.834 0.802 0.848
Observations 55 55 55

Group Preferences For Sectoral Amenities

Note: Correlation of preferences zigt with sector-level amenities, weighted by group employment
shares. Row variables normalized by their standard deviation. p-values reported in parentheses.
Source: IPUMS-CPS and model output.



Conclusion

I 17% rise in gender segregation of married women

I Divergence despite convergence on many other dimensions

I Married women’s preferences drive rising segregation (59%)

I Increasingly prefer high paying sectors ⇒ 23% of decline in gender earnings gap
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Labor Force Participation Rates by Group
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Segregation by the Existence of Kids
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Segregation Levels
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Segregation by Gender Shares
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Segregation by Gender Shares
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Changes in Education and Hours by Group
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Segregation in Europe
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Parameterization and Normalizations (Hsieh et al. (2019))

Param. Meaning Value/Norm.
θ Dispersion of idiosyncratic ability 2
η Elasticity of human capital w.r.t education spending 0.106
β Utility weight on pre-working life 0.231

τi,men Composite discrim. in all sectors for men 0
τhome,g Composite discrim. in home sector, all groups 0
z̃home,g Pref. for home sector, all groups 1
h̄ig Innate human capital, all groups, all sectors 1

Hsieh et al. (2019) estimate θ using dispersion of residuals from wage regressions on age,
group, and education. η is estimated using education expenditure as a share of GDP. β
estimated using Mincerian returns to schooling.

Back.



Decomposition of Changes in Segregation

Log point change decomposition not promising:

log

(
(

∑
i|pif,2020 − pim,2020|

2

)
− log

(
(

∑
i|pif,1980 − pim,1980|

2

)
(Note: can separate sectors into two groups, male and female dominated)



Decomposing Segregation

|pig − pi,men| =

∣∣∣∣∣w̃θigmg

−
w̃θi,men
mmen

∣∣∣∣∣
= (wi(s

φi
i (1− si)

1−η
3β ))θ

∣∣∣∣∣
(

z̃ig
mgτig

)θ
−
(
z̃i,men
mmen

)θ∣∣∣∣∣
Note these are relative employment shares



Segregation and Wages: Female Dom. Sector: pig − pim ≥ 0

w̃θig∑M
i=1 w̃

θ
ig

−
w̃θi,men∑M
i=1 w̃

θ
im

≥ 0

1

1 + w̃−θig
∑M

j 6=i w̃
θ
jg

− 1

1 + w̃−θim
∑M

j 6=i w̃
θ
jm

≥ 0

w̃−θim

M∑
j 6=i

w̃θjm ≥ w̃−θig

M∑
j 6=i

w̃θjg if 1+ these are positive

Then the change in segregation when wi increases is ambiguous:

∂(pig − pim)

∂wi
= θw−1i

(
w̃−θig

∑M
j 6=i w̃

θ
jg

(1 + w̃−θig
∑M

j 6=i w̃
θ
jg)

2
−

w̃−θim
∑M

j 6=i w̃
θ
jm

(1 + w̃−θim
∑M

j 6=i w̃
θ
jm)2

)
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