Testing Weak Factors in Asset Pricing

Soohun Kim Valentina Raponi Paolo Zaffaroni

NBER

11 July 2025

KAIST

IESE

Imperial College London and Sapienza Rome

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Empirical Asset Pricing

• One of the most famous equations in AP is

$$\mu(\text{rewards}) = B(\text{risk exposures}) \times \gamma(\text{rewards per unit risk})$$

Empirical Asset Pricing

• One of the most famous equations in AP is

$$\mu(\text{rewards}) = B(\text{risk exposures}) \times \gamma(\text{rewards per unit risk})$$

- Seemingly benign but captivating
 - Standard empirical approach is the Two-Pass CSR method
 - Once you decide to take it seriously, lots of complexity arises in empirical application

Empirical Asset Pricing

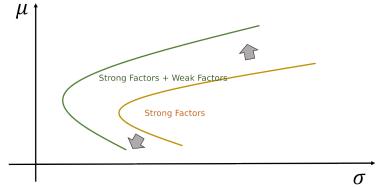
• One of the most famous equations in AP is

$$\mu(\text{rewards}) = B(\text{risk exposures}) \times \gamma(\text{rewards per unit risk})$$

- Seemingly benign but captivating
 - Standard empirical approach is the Two-Pass CSR method
 - Once you decide to take it seriously, lots of complexity arises in empirical application
- This paper considers the issue of weak factors
 - When risk exposures are close to zero for most assets
 - PCA will confound them with noise

Weak Factors and Investment

• Mean-Variance



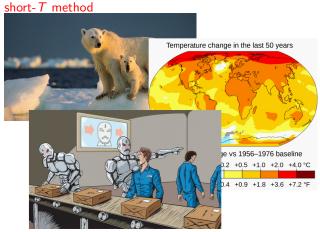
 Hence, as an investor, she will have a strong incentive to search for the weak factors!

Weak Factors and Asset Pricing Test

- When some factors are weak, lots of distortion may happen
 - weak factors without premia may appear to be important
 - strong factors with significant premium may appear insignificant
- Especially, when the literature proposes hundreds of factors, we need some criteria

Furthermore, Rapidly Changing Economic Landscape

- We need to discern which factors are strong or weak
 - in a rapidly changing economic environment
- For example, paradigm shifts such as climate changes, new assets (cryptos and bitcoins), job destruction due to AI, all beg for a



Origins of Weak Factors

Weak factors may emerge...

- ...when constructing factors based on anomalies or when considering macroeconomic factors, as they are typically exposed to a smaller subset of the test assets under examination.
- ...under market incompleteness, as not all sources of risk are adequately spanned across all assets.
- ...when constructing a portfolio (call it alpha or SA portfolio) that is neutral to systematic risk but instead only exposed to unsystematic risk (see DelloPreite, Raponi, and Zaffaroni 2025).

Key Insights of Paper

• Back to the famous equation,

$$\mu(\text{rewards}) = B(\text{risk exposures}) \times \gamma(\text{rewards per unit risk})$$

• We do not know B but estimate $\widehat{B} = B + er$ (er=estimation error)

Key Insights of Paper

Back to the famous equation,

$$\mu(\text{rewards}) = B(\text{risk exposures}) \times \gamma(\text{rewards per unit risk})$$

- We do not know B but estimate $\widehat{B} = B + er$ (er=estimation error)
- Taxonomy of empirical asset pricing econometrics

	Small T	Large T
Strong Factors	$B_{strong} \sim er$	$B_{strong}\gg er$
Weak Factors	$B_{weak} \ll er$	$B_{weak} \sim er$

Key Insights of Paper

Back to the famous equation,

$$\mu(\text{rewards}) = B(\text{risk exposures}) \times \gamma(\text{rewards per unit risk})$$

- We do not know B but estimate $\widehat{B} = B + er$ (er=estimation error)
- Taxonomy of empirical asset pricing econometrics

$$\begin{array}{cccc} & \text{Small } T & \text{Large } T \\ & \text{Strong Factors} & B_{\textit{strong}} \sim \textit{er} & B_{\textit{strong}} \gg \textit{er} \\ & \text{Weak Factors} & B_{\textit{weak}} \ll \textit{er} & B_{\textit{weak}} \sim \textit{er} \end{array}$$

- Traditionally, estimation errors in estimated beta are source of trouble
- We flip it as a blessing to reveal whether a given factor is weak or not:
- 3. Key insight I: distinguish between behaviour of (sum of) B^2 from (sum of) |B|
- Key insight II: power of test from estimating zero-beta rate (intercept) instead of risk premia (slope).

ullet The literature has focused on the issue of weak factors under large ${\cal T}$ setup

- The literature has focused on the issue of weak factors under large T setup
 - How to overcome very Weak (Spurious) Factors in testing Strong Factors
 - Jagannathan and Wang (1998), Kan and Zhang (1999), Kleibergen (2009), Gospodinov et al. (2014), Bryzgalova (2016)

- The literature has focused on the issue of weak factors under large T setup
 - How to overcome very Weak (Spurious) Factors in testing Strong Factors
 - Jagannathan and Wang (1998), Kan and Zhang (1999), Kleibergen (2009), Gospodinov et al. (2014), Bryzgalova (2016)
 - · How to identify Price of Risk in Weak Factors
 - Giglio, Xiu and Zhang (2021), Lettau and Pelger (2020), Anatolyev and Mikusheva (2022), Kleibergen and Zhan (2023)

- The literature has focused on the issue of weak factors under large T setup
 - How to overcome very Weak (Spurious) Factors in testing Strong Factors
 - Jagannathan and Wang (1998), Kan and Zhang (1999), Kleibergen (2009), Gospodinov et al. (2014), Bryzgalova (2016)
 - · How to identify Price of Risk in Weak Factors
 - Giglio, Xiu and Zhang (2021), Lettau and Pelger (2020), Anatolyev and Mikusheva (2022), Kleibergen and Zhan (2023)
 - How to test whether a factor of interest is Weak/Semi-strong
 - Pesaran (2012), Pesaran and Smith (2021), Connor and Korajczyk (2022)

- The literature has focused on the issue of weak factors under large T setup
 - How to overcome very Weak (Spurious) Factors in testing Strong Factors
 - Jagannathan and Wang (1998), Kan and Zhang (1999), Kleibergen (2009), Gospodinov et al. (2014), Bryzgalova (2016)
 - · How to identify Price of Risk in Weak Factors
 - Giglio, Xiu and Zhang (2021), Lettau and Pelger (2020), Anatolyev and Mikusheva (2022), Kleibergen and Zhan (2023)
 - How to test whether a factor of interest is Weak/Semi-strong
 - Pesaran (2012), Pesaran and Smith (2021), Connor and Korajczyk (2022)

Our Contribution

- We propose a novel test for weak factors under fixed T and large N setup that:
 - builds on the two-pass methodology simple and intuitive.
 - handles conditional asset pricing models but robust to
 - misspecified conditional dynamics (semi-parametric)
 - omitted risk factors (PCA)
 - detect whether observed risk factors are (locally) weak or not

Big Picture: Cross-Sectional Asset Pricing - Large N

- Research agenda on estimating/testing/using AP models when using an unbalanced panel of returns/characteristics data for many (N) assets and limited (T) periods.
- Large N Fixed T: APT, conditional asset pricing, robustness to misspecification, local risk factor, single stocks.
- Testing Beta Pricing Models using Large Cross-Sections (RFS, 2020).
- Factor Models for Conditional Asset Pricing (JPE forthcoming)
- Cross-Sectional Asset Pricing with Unsystematic Risk (under revision).
- Dissecting Anomalies for Conditional Asset Pricing (under revision).
- Statistical Arbitrage without Arbitrage.
-

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Model

• Conditional factor structure for asset $i=1,\cdots,N$ at $t=1,\cdots,T$:

$$R_{it} = \alpha_{it-1} + \underbrace{\beta'_{fit-1}f_t}_{\text{strong}} + \underbrace{\beta'_{git-1}g_t}_{\text{weak}} + e_{it},$$

where

$$\beta_{fit-1} = (\beta_{f_1it-1}, \dots, \beta_{f_Kit-1})', \ \mathbf{f}_t = (f_{1t}, \dots, f_{Kt})$$
$$\beta_{git-1} = (\beta_{g_1it-1}, \dots, \beta_{g_Lit-1})', \ \mathbf{g}_t = (g_{1t}, \dots, g_{Lt})$$

RGP+APT+Local Smoothness

 We use the conditional AP model as a locally unconditional AP model (smoothness assumption):

$$\mathbf{R}_{t} = \gamma_{zt-1} \mathbf{1}_{N} + \mathbf{B}_{f} \delta_{ft} + \mathbf{B}_{g} \delta_{gt} + \epsilon_{t},$$

where δ_{ft} and δ_{gt} are expost risk premia:

$$\delta_{\mathit{ft}} = \gamma_{\mathit{ft}-1} + \mathit{f}_{t} - \mathit{E}\left[\mathit{f}_{t}|\mathcal{I}_{t-1}\right], \delta_{\mathit{gt}} = \gamma_{\mathit{gt}-1} + \mathit{g}_{t} - \mathit{E}\left[\mathit{g}_{t}|\mathcal{I}_{t-1}\right]$$

and γ_{zt-1} zero-beta rate.

ullet For some $0 \le \rho \le 1$, the matrix \mathbf{B}_g satisfies

$$\|\mathbf{B}_{g}\|^{2} \asymp O\left(N^{\rho}\right), \ \|\mathbf{B}_{g}^{\prime}\mathbf{1}_{N}\| \asymp o\left(N^{\frac{\rho+1}{2}}\right)$$

• For some $0 \le \rho \le 1$, the matrix \mathbf{B}_g satisfies

$$\|\boldsymbol{\mathsf{B}}_{g}\|^{2} \asymp \textit{O}\left(\textit{N}^{\rho}\right), \ \|\boldsymbol{\mathsf{B}}_{g}'\boldsymbol{1}_{\textit{N}}\| \asymp \textit{o}\left(\textit{N}^{\frac{\rho+1}{2}}\right)$$

• When ho=1, $\frac{\mathbf{B}_{g}^{\prime}\mathbf{B}_{g}}{N}symp O(1)$, or $oldsymbol{g}_{t}$ is strong

• For some $0 \le \rho \le 1$, the matrix \mathbf{B}_g satisfies

$$\|\mathbf{B}_{g}\|^{2} \asymp O\left(N^{
ho}\right), \ \|\mathbf{B}_{g}^{\prime}1_{N}\| \asymp o\left(N^{rac{
ho+1}{2}}\right)$$

- When $\rho=1$, $\frac{\mathsf{B}_g^\prime\mathsf{B}_g}{N} \asymp O(1)$, or \mathbf{g}_t is strong
- When $\rho = 0$, $\mathbf{B}_g' \mathbf{B}_g \times O(1)$, as \mathbf{g}_t is weak but $\|\mathbf{B}_g' \mathbf{1}_N\| \times o\left(N^{\frac{1}{2}}\right)$ (diverges).

• For some $0 \le \rho \le 1$, the matrix \mathbf{B}_g satisfies

$$\|\mathbf{B}_{\mathsf{g}}\|^2 symp O\left(\mathsf{N}^
ho
ight), \ \|\mathbf{B}_{\mathsf{g}}' \mathbf{1}_{\mathsf{N}}\| symp o\left(\mathsf{N}^{rac{
ho+1}{2}}
ight)$$

- When $\rho=1$, $\frac{\mathsf{B}_g'\mathsf{B}_g}{N} \asymp O(1)$, or g_t is strong
- When $\rho = 0$, $\mathbf{B}_g' \mathbf{B}_g \times O(1)$, as \mathbf{g}_t is weak but $\|\mathbf{B}_g' \mathbf{1}_N\| \times o\left(N^{\frac{1}{2}}\right)$ (diverges).
- \bullet The difference in the convergence speed plays a key role to learn ρ
 - \bullet Analogy to well-spread portfolio $\textbf{\textit{w}},~\textbf{\textit{w}}'\textbf{1}_{\textit{N}}=1$ and $\textbf{\textit{w}}'\textbf{\textit{w}}\rightarrow 0$
- Our methodology works regardless of the form of weakness (sparse or uniform).

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Target Equation

- \bullet First, we consider the case that there is no factor f:
 - RGP

$$\mathbf{R}_t = \mathbf{\alpha}_{t-1} + \mathbf{B}_g \mathbf{g}_t + \mathbf{\epsilon}_t$$

Target Equation

- First, we consider the case that there is no factor f:
 - RGP

$$\mathsf{R}_t = lpha_{t-1} + \mathsf{B}_g \mathsf{g}_t + \epsilon_t$$

 \bullet Along with the pricing, $\mu = {\it B} \times \gamma$

$$\mathsf{R}_t = \gamma_{\mathit{zt}-1} \mathbf{1}_{\mathit{N}} + \mathsf{B}_{\mathit{g}} \delta_{\mathit{gt}} + \epsilon_t,$$

which gives the target equation:

$$\overline{\mathbf{R}} = \overline{\gamma}_z \mathbf{1}_N + \mathbf{B}_g \overline{\delta}_g + \overline{\epsilon}$$

 Note that we are interested in whether g is weak or not...not in estimating risk premia!

FamaMcBeth Two-Pass

• First-pass time-series OLS gives

$$\begin{split} \widehat{\boldsymbol{B}}_{g0} &= \boldsymbol{B}_g + \epsilon \mathcal{P}_g, \end{split}$$
 where $\boldsymbol{R} = \left(\boldsymbol{R}_1, \cdots, \boldsymbol{R}_T\right)', \ \boldsymbol{\mathcal{G}} = \left(\boldsymbol{g}_1, \cdots, \boldsymbol{g}_T\right)', \ \boldsymbol{\mathcal{J}}_T = \boldsymbol{I}_T - \frac{1}{T} \boldsymbol{1}_T \boldsymbol{1}_T', \mathcal{P}_g = \mathcal{J}_T \boldsymbol{\mathcal{G}} \left(\boldsymbol{\mathcal{G}}' \mathcal{J}_T \boldsymbol{\mathcal{G}}\right)^{-1} \end{split}$

FamaMcBeth Two-Pass

• First-pass time-series OLS gives

$$\begin{split} \widehat{\mathbf{B}}_{g0} &= \mathbf{B}_g + \epsilon \mathcal{P}_g, \end{split}$$
 where $\mathbf{R} = (\mathbf{R}_1, \cdots, \mathbf{R}_T)', \ \ \mathcal{G} = (\mathbf{g}_1, \cdots, \mathbf{g}_T)', \ \ \mathcal{J}_T = I_T - \frac{1}{\tau} \mathbf{1}_T \mathbf{1}_T', \mathcal{P}_g = \mathcal{J}_T \mathcal{G} \left(\mathcal{G}' \mathcal{J}_T \mathcal{G} \right)^{-1} \end{split}$

• Second-pass cross-sectional OLS gives:

$$\begin{split} \widehat{\boldsymbol{\Gamma}}_{g0} &= \left[\begin{array}{c} \widehat{\gamma}_{0g0} \\ \widehat{\boldsymbol{\delta}}_{g0} \end{array} \right] = \left(\widehat{\boldsymbol{X}}_{g0}' \widehat{\boldsymbol{X}}_{g0} \right)^{-1} \widehat{\boldsymbol{X}}_{g0}' \overline{\boldsymbol{R}} \\ & \asymp \left[\begin{array}{c} \overline{\boldsymbol{\gamma}}_{z} \\ \boldsymbol{0}_{L} \end{array} \right] + \left[\begin{array}{c} O\left(\frac{\mathbf{B}_{g}' \mathbf{1}_{N}}{N}\right) \\ O\left(\frac{\mathbf{B}_{g}' \mathbf{B}_{g}}{N}\right) \end{array} \right] + O_{p}\left(\frac{1}{\sqrt{N}} \right), \end{split}$$

where

$$\widehat{\boldsymbol{X}}_{g0} = \left[\boldsymbol{1}_{\textit{N}} \ \hat{\boldsymbol{B}}_{g0} \right]$$

Fama-McBeth Two-Pass

• First-pass time-series OLS gives:

$$\begin{split} \widehat{\mathbf{B}}_{g0} &= \mathbf{B}_g + \epsilon \mathcal{P}_g, \end{split}$$
 where $\mathbf{R} = (\mathbf{R}_1, \cdots, \mathbf{R}_T)', \ \mathcal{G} = (\mathbf{g}_1, \cdots, \mathbf{g}_T)', \ \mathcal{J}_T = I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T', \mathcal{P}_g = \mathcal{J}_T \mathcal{G} \left(\mathcal{G}' \mathcal{J}_T \mathcal{G} \right)^{-1} \end{split}$

• Second-pass cross-sectional OLS gives:

$$\begin{split} \widehat{\boldsymbol{\Gamma}}_{g0} &= \left[\begin{array}{c} \widehat{\gamma}_{z0} \\ \widehat{\boldsymbol{\delta}}_{g0} \end{array} \right] = \left(\widehat{\boldsymbol{X}}_{g0}' \widehat{\boldsymbol{X}}_{g0} \right)^{-1} \widehat{\boldsymbol{X}}_{g0}' \overline{\boldsymbol{R}} \\ & \asymp \left[\begin{array}{c} \overline{\gamma}_{0} \\ 0_L \end{array} \right] + \left[\begin{array}{c} O\left(\frac{\mathbf{B}_{g}' \mathbf{1}_{N}}{N}\right) \\ O\left(\frac{\mathbf{B}_{g}' \mathbf{B}_{g}}{N}\right) \end{array} \right] + O_{p}\left(\frac{1}{\sqrt{N}} \right), \end{split}$$

where

$$\widehat{\boldsymbol{X}}_{g0} = \left[\boldsymbol{1}_{\textit{N}} \ \hat{\boldsymbol{B}}_{g0} \right]$$

Properties of FMB 1 - Risk Premia (Slope)

Theorem 1. Under some Assumptions, the two-pass estimator $\widehat{\delta}_{g0}$ in $\widehat{\Gamma}_{g0} = \left[\widehat{\gamma}_{z0}\ \widehat{\delta}'_{g0}\right]'$ behaves as follows:

$$\begin{array}{c|cccc}
 & \widehat{\delta}_{g0} \rightarrow_{p} & \sqrt{N}\widehat{\delta}_{g0} \rightarrow_{d} \\
\hline
\rho < \frac{1}{2} & \mathcal{N}\left(\mathbf{0}_{L}, \frac{\kappa_{4} + T s_{4}}{T^{2} s_{2}^{2}} G' \mathcal{J}_{T} G\right) \\
\rho = \frac{1}{2} & \mathbf{0}_{L} & \mathcal{N}\left(\mathbf{0}_{L}, \frac{\kappa_{4} + T s_{4}}{T^{2} s_{2}^{2}} G' \mathcal{J}_{T} G\right) + O_{p}\left(1\right) \\
\frac{1}{2} < \rho < 1 & \widehat{\delta}_{g0} \nrightarrow_{p} \overline{\delta}_{g} & \pm \infty
\end{array}$$

where
$$s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2$$
, $\kappa_4 = \left(\lim_N \frac{1}{N} \sum_i \epsilon_{it}^4 - 3s_4\right)$ and $s_4 = \lim_N \frac{1}{N} \sum_i E\left[\epsilon_{it}^2\right]^2$

Asymptotically valid SE can be constructed.

Relationship to Standard OLS

Theorem 2. Under the assumption that residuals are normal i.i.d, the OLS statistics R_{g0}^2 and t-stats and F-stat on $\hat{\delta}_{g0}$ behaves as follows:

	$R_{\mathrm{g0}}^{2}\rightarrow_{p}$	$t_{g0,k} \mathop{\rightarrow}_{p}$	$F_{g0} ightarrow_p$
$\rho < \frac{1}{2}$		$\mathcal{N}\left(0,1 ight)$	$\frac{\chi_L^2}{L}$
$ \rho = \frac{1}{2} $	0	$\mathcal{N}\left(0,1 ight)+\mathcal{O}_{p}\left(1 ight)$	$\frac{\chi_L^2}{L} + O_p\left(1\right)$
$\frac{1}{2} < \rho < 1$ $\rho = 1$	(0,1)	$\pm\infty$	∞

Properties of FMB 2 - Zero-Beta Rate (Intercept)

Theorem 3. Under some Assumptions, the two-pass estimator $\widehat{\gamma}_{z0}$ in $\widehat{\Gamma}_{g0} = \left[\widehat{\gamma}_{z0} \ \widehat{\delta}'_{g0}\right]'$ behaves as follows:

$$\begin{array}{c|cccc} & \widehat{\gamma}_{zo} \rightarrow_{\rho} & \sqrt{N} \left(\widehat{\gamma}_{0go} - \overline{\gamma}_{0} \right) \rightarrow_{d} \\ \hline \rho = 0 & & \mathcal{N} \left(0, \frac{s_{2}}{7} \right) \\ 0 < \rho < 1 & & \widehat{\gamma}_{z} \\ \rho = 1 & \widehat{\gamma}_{zo} \rightarrow_{\rho} \overline{\gamma}_{z} & \pm \infty \end{array}$$

where
$$s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2$$

Properties of FMB 2 - Zero-Beta Rate (Intercept)

Theorem 3. Under some Assumptions, the two-pass estimator $\widehat{\gamma}_{z0}$ in $\widehat{\Gamma}_{g0} = \left[\widehat{\gamma}_{z0} \ \widehat{\delta}'_{g0}\right]'$ behaves as follows:

$$\begin{array}{c|c} & \widehat{\gamma}_{zo} \rightarrow_{\rho} & \sqrt{N} \left(\widehat{\gamma}_{0go} - \overline{\gamma}_{0} \right) \rightarrow_{d} \\ \hline \rho = 0 & \overline{\gamma}_{z} & \mathcal{N} \left(0, \frac{5}{7} \right) \\ 0 < \rho < 1 & \overline{\gamma}_{z} & \pm \infty \\ \rho = 1 & \widehat{\gamma}_{zo} \nrightarrow_{\rho} \overline{\gamma}_{z} \end{array}$$

where
$$s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2$$

- Given that we do not observe $\overline{\gamma}_z$ (except R is an excess return), the asymptotic distribution is not directly useful
- ullet Hence, we propose a new test using $\sqrt{N} rac{1_N' \widehat{\mathbf{B}}_{go}}{N} \overline{\delta}_g$
- No need for this when working with excess returns.
- Asymptotically valid SE can be constructed.

Properties of FMB 2: Feasible Version

Theorem 4. Under some Assumptions, $\sqrt{N} \frac{\mathbf{1}_N' \widehat{\mathbf{B}}_{go}}{N} \overline{\delta}_g$ behaves as follows:

$$\begin{array}{c|c} & \sqrt{N} \frac{\mathbf{1}'_{N} \widehat{\mathbf{B}}_{go}}{N} \overline{\boldsymbol{\delta}}_{g} \rightarrow_{d} \\ \hline \rho = 0 & \mathcal{N} \left(0, s_{2} \overline{\boldsymbol{\delta}}'_{g} \left(G' \mathcal{J}_{T} G \right)^{-1} \overline{\boldsymbol{\delta}}_{g} \right) \\ 0 < \rho < 1 & \pm \infty \end{array}$$

• Furthermore, we observe all the elements for the asymptotic variance except $s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2 !$

Asymptotically valid SE can be constructed.

Summary of Our Tests of Factors Strength

 We propose two tests: (i) coefficients on the noisy betas (risk premia) and (ii) zero-beta rate

	$\sqrt{N}\widehat{\delta}_{\mathrm{g0}}$	$\sqrt{N} \widehat{\gamma}_{0 exttt{g0}}$
ho = 0	null	null
$0< ho<rac{1}{2}$	liuli	Alternative
$ \rho \ge \frac{1}{2} $	Alternative	Aitemative

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Modified FMB Two-Pass with Observed Strong Factors

• First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_f = \mathbf{B}_f + \epsilon \mathcal{P}_f, \widehat{\mathbf{B}}_g = \mathbf{B}_g + \epsilon \mathcal{P}_{g_\perp},$$
 where $\mathcal{P}_f = \mathcal{J}_T F \left(F' \mathcal{J}_T F\right)^{-1}, \ \mathcal{P}_{g_\perp} = \mathcal{J}_T \mathcal{G}_\perp \left(\mathcal{G}_\perp' \mathcal{J}_T \mathcal{G}_\perp\right)^{-1}$

Modified FMB Two-Pass with Observed Strong Factors

• First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_f = \mathbf{B}_f + \epsilon \mathcal{P}_f, \widehat{\mathbf{B}}_g = \mathbf{B}_g + \epsilon \mathcal{P}_{g_{\perp}},$$

where
$$\mathcal{P}_f = \mathcal{J}_T F \left(F' \mathcal{J}_T F \right)^{-1}, \ \mathcal{P}_{g \perp} = \mathcal{J}_T G_{\perp} \left(G'_{\perp} \mathcal{J}_T G_{\perp} \right)^{-1}$$

Second-pass cross-sectional OLS gives:

$$\widehat{\boldsymbol{\Gamma}}_{g} = \left[\begin{array}{c} \widehat{\gamma}_{z} \\ \widehat{\delta}_{g} \end{array}\right] = \left(\widehat{\mathbf{X}}_{g}' \widehat{\mathbf{X}}_{g}\right)^{-1} \widehat{\mathbf{X}}_{g}' \left(\overline{\mathbf{R}} - \widehat{\mathbf{B}}_{f} \overline{\delta}_{f}\right),$$

where

$$\widehat{\mathbf{X}}_{g} = \left[\mathbf{1}_{N} \ \widehat{\mathbf{B}}_{g} \right]$$

Modified FMB Two-Pass with Observed Strong Factors

First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_f = \mathbf{B}_f + \epsilon \mathcal{P}_f, \widehat{\mathbf{B}}_g = \mathbf{B}_g + \epsilon \mathcal{P}_{g_{\perp}},$$

where
$$\mathcal{P}_f = \mathcal{J}_T F \left(F' \mathcal{J}_T F \right)^{-1}, \ \mathcal{P}_{g\perp} = \mathcal{J}_T G_{\perp} \left(G'_{\perp} \mathcal{J}_T G_{\perp} \right)^{-1}$$

• Second-pass cross-sectional OLS gives:

$$\widehat{\boldsymbol{\Gamma}}_{g} = \left[\begin{array}{c} \widehat{\gamma}_{z} \\ \widehat{\delta}_{g} \end{array}\right] = \left(\widehat{\mathbf{X}}_{g}' \widehat{\mathbf{X}}_{g}\right)^{-1} \widehat{\mathbf{X}}_{g}' \left(\overline{\mathbf{R}} - \widehat{\mathbf{B}}_{f} \overline{\delta}_{f}\right),$$

where

$$\widehat{\mathbf{X}}_g = \left[\mathbf{1}_N \ \widehat{\mathbf{B}}_g \right]$$

- If we include $\widehat{\mathbf{B}}_f$ in the second pass regressor
 - It is well known that the estimator is biased due to estimation error
 - The bias-correction such as Shanken (1992) does not work

Slight Modification of Tests

Two tests have similar properties

	$\sqrt{N}\widehat{\delta}_{g} ightarrow_{d}$	$rac{1_N'\widehat{\mathbf{B}}_g}{\sqrt{N}}\overline{oldsymbol{\delta}}_g ightarrow_d$
$ \rho = 0 \\ \rho < \frac{1}{2} $	$\mathcal{N}\left(0_{L},V_{1} ight)$	$\mathcal{N}\left(0,V_{2}\right)$
$\rho = \frac{1}{2}$	$\mathcal{N}\left(0_{L},V_{1} ight)+O_{p}\left(1 ight)$	$\pm\infty$
$\frac{1}{2} < \rho \le 1$	$\pm\infty$	

where

$$\begin{split} V_1 &= \frac{s_4}{s_2^2} \mathbf{I}' \mathbf{I} G_\perp' G_\perp + \frac{\kappa_4}{s_2^2} G_\perp' \mathrm{diag} \left(\mathbf{I} \odot \mathbf{I} \right) G_\perp \\ \mathbf{I} &= \frac{1_T}{T} - \mathcal{P}_f \overline{\delta}_f \\ V_2 &= s_2 \overline{\delta}_g' \left(G_\perp' G_\perp \right)^{-1} \overline{\delta}_g \end{split}$$

 Furthermore, we can make the tests feasible using consistent estimators for components in the asymptotic variance

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

PCA (Most Useful Setting)

- We borrow the idea of Giglio and Xiu (2021) and span the (strong) factors' space by PCA.
- Following the local PCA methodology of Zaffaroni (2025), we obtain the systematic factors up to rotation (when T fixed and $N \to \infty$)

$$F_* - F\tilde{H} \rightarrow_p 0_{T \times K}$$

Modified FMB Two-Pass with PCA Factors

• First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_{f_*} = \mathbf{B}_{f_*} + \epsilon_* \mathcal{P}_{f_*},$$

$$\widehat{\mathbf{B}}_{g_*} = \mathbf{B}_{g_*} + \epsilon_* \mathcal{P}_{g_{*\perp}},$$

where $\mathcal{P}_{f_*} = \mathcal{J}_T F_* (F'_* \mathcal{J}_T F_*)^{-1}, \ \mathcal{P}_{g_* \perp} = \mathcal{J}_T G_{* \perp} (G'_{* \perp} \mathcal{J}_T G_{* \perp})^{-1}$

Modified FMB Two-Pass with PCA Factors

• First-pass time-series OLS gives

$$\begin{split} \widehat{\mathbf{B}}_{f_*} &= \mathbf{B}_{f_*} + \epsilon_* \mathcal{P}_{f_*}, \\ \widehat{\mathbf{B}}_{g_*} &= \mathbf{B}_{g_*} + \epsilon_* \mathcal{P}_{g_{*\perp}}, \end{split}$$

where
$$\mathcal{P}_{f_*} = \mathcal{J}_T F_* \left(F_*' \mathcal{J}_T F_*\right)^{-1}, \ \mathcal{P}_{g_* \perp} = \mathcal{J}_T G_{* \perp} \left(G_{* \perp}' \mathcal{J}_T G_{* \perp}\right)^{-1}$$

• Second-pass cross-sectional OLS gives:

$$\widehat{\Gamma}_{g_*} = \left[egin{array}{c} \widehat{m{\gamma}}_{z_*} \ \widehat{m{\delta}}_{g_*} \end{array}
ight] = \left(\widehat{m{X}}_{g_*}' \widehat{m{X}}_{g_*}
ight)^{-1} \widehat{m{X}}_{g_*}' \left(\overline{m{R}} - \widehat{m{B}}_{f_*} \overline{m{\delta}}_{f_*}
ight),$$

where

$$\widehat{\mathbf{X}}_{g_*} = \left[\mathbf{1}_{N} \ \widehat{\mathbf{B}}_{g_*} \right]$$

Slight Modification of Tests

Two tests have similar properties

$$\begin{array}{c|c} & \sqrt{N}\widehat{\delta}_{g_*} \rightarrow_d & \sqrt{N}\widehat{\gamma}_{g0_*} \rightarrow_d \\ \hline \rho = 0 & \mathcal{N}\left(\mathbf{0}_L, V_{1*}\right) & \mathcal{N}\left(0, V_{2*}\right) \\ \rho < \frac{1}{2} & \rho = \frac{1}{2} & \mathcal{N}\left(\mathbf{0}_L, V_{1*}\right) + O_p\left(1\right) & \pm \infty \\ \frac{1}{2} < \rho \le 1 & \pm \infty \end{array}$$

where

$$\begin{split} V_{1*} &= \frac{s_4}{s_2^2} \mathbf{I}' \mathbf{I} G_\perp' G_\perp + \frac{\kappa_4}{s_2^2} G_\perp' \mathsf{diag} \left(\mathbf{I} \odot \mathbf{I} \right) G_\perp \\ V_{2*} &= c_* + s_2 \overline{\delta}_g' \left(G_\perp' G_\perp \right)^{-1} \overline{\delta}_g \end{split}$$

 Furthermore, we can make the tests feasible using consistent estimator of the corresponding asymptotic variances

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Simulation Design I (Conventional MC)

1. Calibration: MacKinlay and Pastor (2000)

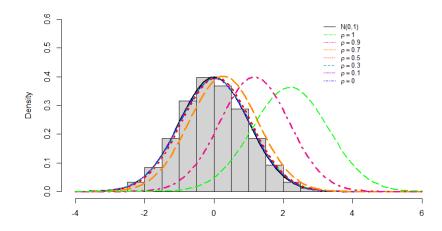
$$R_{it} = 0 + \boldsymbol{\beta}_{fi} \boldsymbol{f}_t + \boldsymbol{\beta}_{gi} \boldsymbol{g}_t + e_{it}$$

2. We consider a single strong factor and a single weak factor, $N=3000,\ T=24$

3. We focus on the distribution of the following two tests

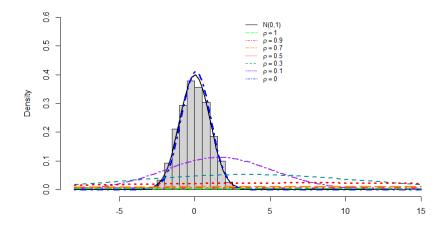
Test 1: under the null $\rho < \frac{1}{2} + \text{DGP}$ with $\rho \in [0, 1]$

• 3000 repetitions



Test 2: under the null $\rho = 0 + \mathsf{DGP}$ with $\rho \in [0,1]$

• 3000 repetitions



Simulation Design II (Cool MC - SPCA)

- Giglio, Xiu, and Zhang (2024) introduced the Supervised PCA (SPCA) to estimate the risk premia of observed weak (semi-strong) factors.
- Their two-step methodology:(i) identify the subset of assets where candidate risk factor is strong; (ii) two-pass estimation of risk premia over the subset of assets.
- We demonstrate how our methodology (KRZ) can be used sequentially with SPCA:
 - 1. Use KRZ to test whether a given candidate risk factor g_t is weak, semi-strong, or strong.
 - 2. Use PCA (Giglio and Xiu 2020) or SPCA (Giglio, Xiu, and Zhang 2024) to estimate g_t risk premia.

KRZ and SPCA in the presence of a WEAK factor

Panel A: $s_0 = 1, T = 12$

		KRZ PCA test	SPCA -	+ KRZ I	PCA test	KRZ on Non Selected
N	Scenario	% Reject	% Reject	N_{SPCA}	% (mode)	% Reject
	G orth F	3.2	96.8	20	64.6	1.8
200, N ₀ =20	G = F + z	11.0	80.0	20	59.8	1.0
	$\text{G} \sim \text{F (cor} = 0.99)$	1.6	1.8	70	30.8	9.0
	G orth F	8.8	96.2	50	90.8	1.5
500, N ₀ =50	G = F + z	7.4	88.8	50	32.4	1.4
	$G \sim F \; (cor = 0.99)$	1.2	1.8	400	16.2	10.3
	G orth F	11.2	100.0	100	87.2	0.8
1000, N ₀ =100	G = F + z	9.4	98.8	100	17.4	0.4
	$G \sim F \; (cor = 0.99)$	0.8	5.6	150	15.8	2.4

Panel B	$: s_0 =$	0.5, T	= 1
---------	-----------	--------	-----

		KRZ PCA test	SPCA -	+ KRZ I	PCA test	KRZ on Non Selected
N	Scenario	% Reject	% Reject	N _{SPCA}	% (mode)	% Reject
	G orth F	1.2	84.0	70	35.8	2.6
200, N ₀ =20	G = F + z	0.0	86.6	20	48.0	0.4
	$\text{G} \sim \text{F (cor} = 0.99)$	1.2	0.6	120	32.8	9.8
	G orth F	1.6	81.0	50	35.6	0.7
500, $N_0 = 50$	G = F + z	0.8	97.2	100	42.8	0.4
	$\text{G} \sim \text{F (cor} = 0.99)$	2.0	2.4	150	17.0	8.4
	G orth F	1.8	99.0	100	31.8	1.0
1000, N ₀ =100	G = F + z	0.4	100.0	150	32.2	7.4
	$G \sim F \; (cor = 0.99)$	0.0	10.8	150	14.6	19.4

KRZ and SPCA in the presence of a STRONG Factor

Panel A: s = 1, T = 12

		KRZ PCA test	SPCA -	+ KRZ I	PCA test	KRZ on Non Selected
N	Scenario	% Reject	% Reject	N _{SPCA}	% (mode)	% Reject
	G orth F	95.2	86.0	20	63.6	1.4
200	G = F + v	100.0	50.2	70	48.8	6.6
	$\text{G} \sim \text{F (cor} = 0.99)$	1.0	1.6	70	37.0	5.8
	G orth F	99.6	94.2	50	66.8	1.0
500, N ₀ =50	G = F + v	100.0	85.8	100	34.2	1.0
	$\text{G} \sim \text{F (cor} = 0.99)$	2.0	4.8	100	22.6	3.6
	G orth F	99.2	97.8	150	26.2	0.6
1000, N ₀ =100	G = F + v	100.0	98.4	150	36.8	3.2
	$G \sim F (cor = 0.99)$	10.6	7.6	150	27.8	7.2

Panel B: $s = 0.5, T = 1$	1												l				1																																				1	1																																																		•			j)			ĺ	۱	١			=					
		1	1	1	1	1	1	1	1	1	1	1	1																																																																								= 1	= 1	= 1	= 1	= 1	= 1	=	=	=	=	$\bar{z} = 0$	$\Gamma = 1$	$\Gamma = 1$	T = 1	T = 1	T = 1	T = 1	T = 1	T = 0	T = 1	T = 0	T = 0	T = 0	5, T = 1	.5, T = 1	.5, T = 1	1.5, T = 1	0.5, T = 1	= 0.5, T = 1	= 0.5, T = 1	= 0.5, T = 1	= 0.5, T = 1	= 0.5, T = 1									
		1	1	1	1	1	1	1	1	1	1	1	1																																																																								=	=	=	=	=	=	=	=	=	_	=	$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T = 0	5, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T =	0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =						
		1	1	1	1	1	1	1	1	1	1	1	1																																																																								=	=	=	=	=	=	=	=	=	_	=	$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T = 0	5, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T =	0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =						
		1	1	1	1	1	1	1	1	1	1	1]	1	1	1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																	=	=	=	=	=	=	=	=	=	_	=	$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T = 0	5, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T =	0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =						
		1	1	1	1	1	1	1	1	1	1	1]	1	1	1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																		=	=	=	=	=	=	=	=	_		$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T = 0	5, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T = 1	0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =						
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																		=	=	=	=	=	=	=	=	_		$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T = 0	5, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T = 1	0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =						
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																	=	=	=	=	=	=	=	=	=	_		$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	T =	T = 0	5, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T = 1	0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =						
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																	=	=	=	=	=	=	=	=	=	_		$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T =	S, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T =	0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =	= 0.5, T =							
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																	=	=	=	=	_	=	=	=	=	_	=	$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T =	i, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T =	0.5, T =	= 0.5, <i>T</i> =	= 0.5, T =	= 0.5, T =	= 0.5, T =							
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1																																		=	=	_	_	=	=	=	=	_	-	$\Gamma =$	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T =	5, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	1.5, T =	0.5, T =	= 0.5, <i>T</i> =	= 0.5, T =	= 0.5, T =	= 0.5, T =							
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1										=	=	_	_	=	=	=	=	=	-	Γ =	$\Gamma =$	T =	T =	T =	T =	T =	T =	T =	T =	, T =	T =	5, T =	5, T =	5, T =	5, T =	.5, T =	.5, T =	0.5, T =	= 0.5, <i>T</i> =	= 0.5, T =	= 0.5, <i>T</i> =	= 0.5, T =								

		KRZ PCA test	SPCA -	+ KRZ I	PCA test	KRZ on Non Selected
N	Scenario	% Reject	% Reject	N_{SPCA}	% (mode)	% Reject
	G orth F	66.6	97.4	20	53.8	0.8
200	G = F + v	49.2	57.0	70	44.2	9.1
	$\text{G} \sim \text{F (cor} = 0.99)$	0.2	1.2	70	33.8	8.0
	G orth F	78.6	99.4	50	86.6	2.2
500, $N_0 = 50$	G = F + v	100.0	90.4	50	31.4	15.6
	$\text{G} \sim \text{F (cor} = 0.99)$	4.4	1.8	400	21.8	10.8
	G orth F	44.4	100.0	100	65.6	0.4
1000, $N_0 = 100$	G = F + v	97.2	99.0	150	20.4	11.0
	$G \sim F \; (cor = 0.99)$	0.4	4.6	150	17.0	2.8

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

- \bullet We focus on the test 2 (zero-beta rate) on the null $\rho=0$ over 1968-2022
 - \bullet Similar message from the test 1 (risk premia) on the null $\rho < \frac{1}{2}$

- • We focus on the test 2 (zero-beta rate) on the null $\rho=0$ over 1968-2022
 - \bullet Similar message from the test 1 (risk premia) on the null $\rho < \frac{1}{2}$
- Several Questions:
- Q1 Are there any weak factors in FF5?
 - We test whether a factor in FF5 is (locally) weak or not
 - Whether strong/weak depends on industry

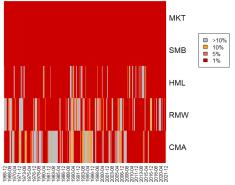
- We focus on the test 2 (zero-beta rate) on the null $\rho=0$ over 1968-2022
 - ullet Similar message from the test 1 (risk premia) on the null $ho < {1\over 2}$
- Several Questions:
- Q1 Are there any weak factors in FF5?
 - We test whether a factor in FF5 is (locally) weak or not
 - Whether strong/weak depends on industry
- Q2 Are there any weak factors in the factors zoo?
 - Factor zoo
 - 150 factors from Feng, Giglio and Xiu (2020)
 - Likelihood of being weak on recession/post-publication

- We focus on the test 2 (zero-beta rate) on the null $\rho=0$ over 1968-2022
 - ullet Similar message from the test 1 (risk premia) on the null $ho < {1\over 2}$
- Several Questions:
- Q1 Are there any weak factors in FF5?
 - We test whether a factor in FF5 is (locally) weak or not
 - Whether strong/weak depends on industry
- Q2 Are there any weak factors in the factors zoo?
 - Factor zoo
 - 150 factors from Feng, Giglio and Xiu (2020)
 - Likelihood of being weak on recession/post-publication
- Q3 What is the economic significance of weak factors?
 - Harvesting risk premia of locally strong factor.

- We focus on the test 2 (zero-beta rate) on the null $\rho=0$ over 1968-2022
 - ullet Similar message from the test 1 (risk premia) on the null $ho < {1\over 2}$
- Several Questions:
- Q1 Are there any weak factors in FF5?
 - We test whether a factor in FF5 is (locally) weak or not
 - Whether strong/weak depends on industry
- Q2 Are there any weak factors in the factors zoo?
 - Factor zoo
 - 150 factors from Feng, Giglio and Xiu (2020)
 - Likelihood of being weak on recession/post-publication
- Q3 What is the economic significance of weak factors?
 - Harvesting risk premia of locally strong factor.
- Q4

Any Strong Factors in FF5?

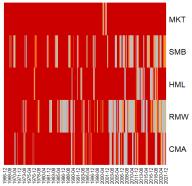
• HeatMap (Strong Red - ... - Weak Grey)



Null on F and G
 F
 G
 No Strong Factor
 MKT
 SMB, HML
 FF3
 RMW, CMA

Stong-Weak of FF5 in Utility Industry

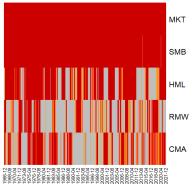
• HeatMap (Strong Red - ... - Weak Grey)



- SMB tends to be weaker in the Utility industry
 - 20% of tests in Uitlity vs 0% of tests in CRSP

Stong-Weak of FF5 in Consumer Nondurables

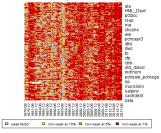
• HeatMap (Strong Red - ... - Weak Grey)



- HML tends to be weaker in the Consumer Nondurables industry
 - 27% of tests in Consumer Non-durables vs 10% of tests in CRSP

Factor Zoo with Strong (Subset of) FF5

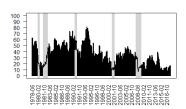
• FF5 as Strong Factors for each period



Business Cycle and Weakness of Factors

Business Cycle and % of Weak factors in factor zoo

% of weak factors =
$$a - \underbrace{10.6}_{t=19.69} * NBER recession dummy + e$$



Post-Publication Effect

- What happens to the weakness of a given factor post publication
 - ullet We regress [the dummy on |t|>1.96 from our test] on [the post-publication dummy]

Strong Dummy using our test =
$$a + \underbrace{0.19}_{t=45.92}$$
 *Post Publication dummy+ e

- Nice contrast with the results that the average returns tend to be lower post publication (McLean and Pontiff, 2016)
 - Public information => Pervasive & Fair price

Locally Strong - Weak Factors

- Literature suggests novel methods for how to handle (unconditional) weak factors, where weak factors are defined over a large *T*.
- Our local method (small T) can provide novel insights on
 - existence of local weakness
 - economic significance of weakness

Economic Significance of Weak Factors

- Data: Chen-Zimmerman (2022)'s 768 portfolios from 1963:07 to 2023:12
 - Large T PCA risk premia

PC	mean	std	annual SR
1	0.20	1.55	0.46
2	0.03	0.28	0.36
3	0.03	0.23	0.41
4	0.05	0.13	1.25
5	0.03	0.10	1.10
6	0.01	0.10	0.26
7	0.01	0.09	0.21

- We consider the fourth/fifth long-term PCs as weak factors
- Our design
 - Set first three (unconditional) PCs as F
 - Test whether fourth/fifth (unconditional) PCs **G** are locally weak

Economic Significance of Weak Factors

• Sorting on the t-stat of the slope (risk premium), one gets

PCA	Quintile	$oldsymbol{\delta_{g}}$	g_{t+1}
	low t-stat	0.035	0.037
		0.042	0.053
4		0.048	0.054
		0.053	0.036
	high t-stat	0.065	0.060
	low t-stat	0.026	0.011
		0.024	0.032
5		0.025	0.023
		0.039	0.048
	high t-stat	0.050	0.047

- Unconditionally-weak factors are priced higher when they are locally-strong, i.e., when rejecting the null of locally weak.
- Unconditionally-weak factors offer higher return next period when they are locally-strong, i.e., when rejecting the null of locally weak.

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Conclusion

- Novel methodology to test (local) weakness of factors
- Suitable for conditional asset pricing and robust to misspecified dynamics and risk factors.
 - Asymptotic theory (large N fixed T)
 - Simulation evidence I and II (complementarity to SPCA)
- Empirical findings
 - unconditionally weak factors tend to be stronger during recession and post publication
 - unconditionally weak factors tend to have economic significance (risk premium) when locally strong