Heterogeneity and Aggregate Consumption: An Empirical Assessment Davide Debortoli Jordi Galí July 2025 #### Background - Recent HANK models: - household heterogeneity, in the form of idiosyncratic income shocks - incomplete markets - borrowing constraints - ⇒ wealth and income distributions as state variables - Is heterogeneity important for understanding aggregate fluctuations? If so, what kind of heterogeneity? Are idiosyncratic income shocks necessary? - Debortoli-Galí (NBER MA 2024): HANK vs TANK - TANK: constant fraction of hand-to-mouth households, no idiosyncratic income shocks - \Rightarrow A properly designed TANK model approximates well the aggregate properties of a HANK model DG-TANK: budget constraint of the hand-to-mouth given by $$C_t^H = \Xi^H W_t N_t + \Theta^H D_t - \psi Y \ \widehat{R}_t$$ #### This Paper - Heterogeneity vs The Aggregate Data: Does the behavior of aggregate consumption reflect the presence of heterogeneity? - Two dimensions: - unconstrained vs hand-to-mouth consumers (Campbell-Mankiw (1989)) - idiosyncratic income shocks: Do variations in the moments of wealth and income distributions have predictive power for aggregate consumption, beyond that of interest rates and income? - Granger causality tests - Estimate Euler equation for aggregate consumption consistent with a general HA model, and evaluate the role of wealth and income distribution moments obtained from micro data. - Similar exercise using data generated by a calibrated HANK model #### This Paper - Heterogeneity vs The Aggregate Data: Does the behavior of aggregate consumption reflect the presence of heterogeneity? - Two dimensions: - unconstrained vs hand-to-mouth consumers (Campbell-Mankiw (1989)) - idiosyncratic income shocks: Do variations in the moments of wealth and income distributions have predictive power for aggregate consumption, beyond that of interest rates and income? - Granger causality tests - Estimate Euler equation for aggregate consumption consistent with a general HA model, and evaluate the role of wealth and income distribution moments obtained from micro data. - Similar exercise using data generated by a calibrated HANK model #### Main findings - Strong evidence of a role for hand-to-mouth behavior - Not much evidence of a quantitatively significant role for idiosyncratic income shocks #### Related Literature - Euler equation-based empirical consumption models: Hall (1988), Campbell and Mankiw (1989),... - HANK models: Kaplan, Moll and Violante (2018), Auclert, Rognlie, and Straub (2023),... - TANK models: Galí, López-Salido and Vallés (2007), Bilbiie (2008),... - Quantitative empirical assessments of role of heterogeneity in fluctuations: Auclert, Rognlie, and Straub (2020), Bayer, Born and Lutticke (2024), Bilbiie, Primiceri and Tambalotti (2023), Berger, Bocola and Davis (2023), Chan, Chen, and Schorfheide (2024)... #### Households in a General HA Model ullet Continuum of infinite-lived households, $j \in [0,1]$, with preferences $$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t(j)^{1-\sigma} - 1}{1-\sigma} - V(N_t(j)) \right)$$ Period budget constraint $$C_t(j) + \frac{B_t(j)}{P_t} = \Xi_t(j)W_tN_t(j) + D_t(j) - T_t(j) + \frac{(1+i_{t-1})B_{t-1}(j)}{P_t}$$ where $\Xi_t(j)$ is an idiosyncratic income shock. Borrowing constraint $$\frac{B_t(j)}{P_t} \ge -\Psi_t(j)$$ where $\Psi_t(j) > 0$ is the borrowing limit. • In any given period, two subsets of households: unconstrained and hand-to-mouth #### Unconstrained households - $\mathcal{U}_t \subset [0,1]$, with measure $1-\lambda_t$ such that $rac{\mathcal{B}_t(j)}{\mathcal{P}_t} > -\Psi_t(j)$ - ullet Individual consumption: for all $j\in\mathcal{U}_t$ and all t $$1 = \beta(1+i_t)\mathbb{E}_t\{(C_{t+1}(j)/C_t(j))^{-\sigma}(P_t/P_{t+1})\}$$ - Average "unconstrained" consumption: $C_t^U \equiv \frac{1}{1-\lambda_t} \int_{j \in \mathcal{U}_t} C_t(j) dj$ - Approximate Euler equation (in logs): $$\mathbb{E}_t\{\Delta c_{t+1}^U\} = \gamma + \frac{1}{\sigma}\widehat{r}_t + \frac{\sigma+1}{2}\widehat{v}_t^U + \widehat{h}_t^U \tag{1}$$ where $r_t \equiv i_t - \mathbb{E}_t \{ \pi_{t+1} \}$, γ is trend growth, $$v_t^U \equiv \frac{1}{1 - \lambda_t} \int_{j \in \mathcal{U}_t} \frac{C_t^U(j)}{C_t^U} v_t(j) dj$$ with $$v_t(j) \equiv \mathit{var}_t\{c_{t+1}(j)\}$$ and $h_t^U \equiv \mathbb{E}_t\{c_{t+1}^U - c_{t+1|t}^U\}$ • Idiosyncratic income shocks \Leftrightarrow variations in \widehat{v}_t^U and \widehat{h}_t^U in response to aggregate shocks #### Hand-to-mouth households - ullet $\mathcal{H}_t \subset [0,1]$, with measure λ_t and such that $rac{B_t(j)}{P_t} = -\Psi_t(j)$ - ullet Individual consumption: for all $j \in \mathcal{H}_t$ and all t $$C_t(j) = Y_t(j) + \Phi_t(j)$$ where $Y_t(j) \equiv \Xi_t(j) W_t N_t(j) + D_t(j) - T_t(j) + \frac{i_{t-1} B_{t-1}(j)}{P_t}$ is disposable income and $\Phi_t(j) \equiv \frac{B_{t-1}(j)}{P_t} + \Psi_t(j)$ is the increase in debt between t-1 and t. • Average "hand-to-mouth" consumption: $C_t^H \equiv rac{1}{\lambda_t} \int_{j \in \mathcal{H}_t} C_t(j) dj$ $$C_t^H = Y_t^H + \Phi_t^H$$ where $Y_t^H \equiv \frac{1}{\lambda_t} \int_{j \in \mathcal{H}_t} Y_t(j) dj$ and $\Phi_t^H \equiv \frac{1}{\lambda_t} \int_{j \in \mathcal{H}_t} \Phi_t(j) dj$. • Assuming $\phi_t^H \equiv \Phi_t^H/Y_t^H$ is stationary with mean close to zero we can write $$\Delta c_t^H = \Delta y_t^H + \Delta \phi_t^H \tag{2}$$ #### Aggregate consumption $$C_t = \lambda_t C_t^H + (1 - \lambda_t) C_t^U$$ • Assuming $\Theta_t \equiv C_t^H/C_t$ and λ_t are stationary, we can write: $$\Delta c_t \simeq \lambda \Theta \Delta c_t^H + (1 - \lambda \Theta) \Delta c_t^U - \delta \Delta \lambda_t \tag{3}$$ where $$\delta \equiv \frac{C^U - C^H}{C} = \frac{1 - \Theta}{1 - \lambda}$$ ullet Combined with expressions for Δc_t^H and Δc_t^U : $$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} - \delta \Delta \lambda_t + \Omega_{t-1} + \varepsilon_t$$ where $$\begin{split} &\Omega_{t-1} \equiv (1 - \lambda \Theta) \left[\frac{\sigma + 1}{2} \hat{\mathbf{v}}_{t-1}^{U} + \hat{h}_{t-1}^{U} \right] \\ &\varepsilon_{t} \equiv \lambda \Theta \Delta \phi_{t}^{H} + (1 - \lambda \Theta) (c_{t}^{U} - \mathbb{E}_{t-1} \{ c_{t}^{U} \}) \end{split}$$ #### **Empirical consumption equation** $$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} - \delta \Delta \lambda_t + \Omega_{t-1} + \varepsilon_t$$ #### Particular cases • RA model ($\lambda = \phi_t^H = \widehat{h}_t^U = 0$, $\widehat{v}_t^U \simeq 0$) (Hall 1988) $$\Delta c_t \simeq \gamma + \frac{1}{\sigma} \widehat{r}_{t-1} + \varepsilon_t$$ • Campbell-Mankiw (1989): $\lambda_t = \lambda$, $\Theta \simeq 1$, $\Delta y_t^H = \Delta y_t$, $\phi_t^H = \hat{h}_t^U = 0$, $\hat{v}_t^U \simeq 0$ $$\Delta c_t \simeq (1 - \lambda)\gamma + \lambda \Delta y_t + \frac{1 - \lambda}{\sigma} \hat{r}_{t-1} + \varepsilon_t$$ • DG-TANK: $\lambda_t = \lambda$, $\widehat{h}_t^U = 0$, $\widehat{v}_t^U \simeq 0$ $$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} + \varepsilon_t$$ ### Empirical Strategy (I) - Micro data on wealth and disposable income from Blanchet-Saez-Zucman's database (realtimeinequality.org) - Sample period: 1976Q1-2019Q4 - Construct time series for first and second moments of the cross-sectional distribution of wealth and disposable income: mean, standard deviation and skewness - Granger causality tests $$\Delta c_t \simeq \gamma_0 + \gamma_r r_{t-1} + \gamma_y \Delta y_{t-1} + \gamma_z \mathbf{z}_{t-1} + \varepsilon_t$$ | Table 1. Grang | Table 1. Granger Causality for Δc_t | | | | | | | | | |--|---|-------|--|--|--|--|--|--|--| | Predictors (lagged) | p-value | R^2 | | | | | | | | | $\Delta c, r, \Delta y$ | | 0.142 | | | | | | | | | $r, \Delta y$ | 0.012 | | | | | | | | | | Δy $\Delta c, r, \Delta y, \{w\}$ $\{w\}$ | 0.045 0.335 | 0.160 | | | | | | | | | $\begin{array}{c} \Delta c, r, \Delta y, \{y\} \\ \{y\} \end{array}$ | 0.732 | 0.149 | | | | | | | | | $ \Delta c, r, \Delta y, \{w, y\} $ $ \{w, y\} $ | 0.604 | 0.166 | | | | | | | | ### Empirical Strategy (II) - Micro data on wealth and disposable income from Blanchet-Saez-Zucman's database (realtimeinequality.org) - Sample period: 1976Q1-2019Q4 - Construct time series for first and second moments of the cross-sectional distribution of wealth and disposable income: mean, standard deviation and skewness - Estimation of Campbell-Mankiw consumption equation (augmented with wealth and/or income moments) using lagged values as instruments $$\Delta c_t \simeq (1 - \lambda)\gamma + \lambda \Delta y_t + \frac{1 - \lambda}{\sigma} \hat{r}_{t-1} + \theta \mathbf{z}_{t-1} + \varepsilon_t$$ | Table 2. | Empirical | Euler | Equations: | Beyond | Campbell-Mankiw | |----------|-----------|-------|------------|--------|-----------------| | | 1 | | 1 | •/ | | | Aggrega | Aggregate disposable income and population-wide distributions | | | | | | | |--------------|---|-------------------|-------------------------|-------------------------|---|--|--| | | Hall | CM | CM+W | CM+Y | CM+All | | | | | | | | | | | | | r_{t-1} | 0.207** | 0.170** | 0.132 | 0.264^{***} | 0.227^* | | | | Λ | (0.082) | 0.079) $0.484***$ | (0.113) | (0.088) | (0.124) | | | | Δy_t | | (0.161) | 0.462^{***} (0.159) | $0.425^{**} $ (0.131) | $0.401^{**} \ (0.117)$ | | | | | | | | | | | | | Wealth | | | | | | | | | mean | | | 0.002 | | -0.007 | | | | | | | (0.007) | | (0.008) | | | | s.d. | | | -1.713 | | -1.668 | | | | skewness | | | $(1.195) \\ 1.124$ | | 0.151 | | | | skewness | | | (0.719) | | (1.120) | | | | | | | | | | | | | Income | | | | | | | | | mean | | | | 0.049** | 0.055^{*} | | | | , | | | | (0.021) | (0.031) | | | | s.d. | | | | $\frac{1.231}{(2.613)}$ | $ \begin{array}{c} 2.129 \\ (3.240) \end{array} $ | | | | skewness | | | | 0.074 | -0.304 | | | | | | | | (0.698) | (1.101) | | | | | | | | | | | | | p- $value$ | | | 0.166 | 0.017 | 0.051 | | | | | | | | | | | | | correlation | 0.289 | 1.00 | 0.972 | 0.927 | 0.912 | | | | Table 2. | Empirical | Euler | Equations: | Beyond | Campbell-Mankiw | |----------|-----------|-------|------------|--------|-----------------| | | 1 | | 1 | •/ | | | Aggrega | Aggregate disposable income and population-wide distributions | | | | | | | |--------------|---|-------------------|-------------------------|-------------------------|---|--|--| | | Hall | CM | CM+W | CM+Y | CM+All | | | | | | | | | | | | | r_{t-1} | 0.207** | 0.170** | 0.132 | 0.264^{***} | 0.227^* | | | | Λ | (0.082) | 0.079) $0.484***$ | (0.113) | (0.088) | (0.124) | | | | Δy_t | | (0.161) | 0.462^{***} (0.159) | $0.425^{**} $ (0.131) | $0.401^{**} \ (0.117)$ | | | | | | | | | | | | | Wealth | | | | | | | | | mean | | | 0.002 | | -0.007 | | | | | | | (0.007) | | (0.008) | | | | s.d. | | | -1.713 | | -1.668 | | | | skewness | | | $(1.195) \\ 1.124$ | | 0.151 | | | | skewness | | | (0.719) | | (1.120) | | | | | | | | | | | | | Income | | | | | | | | | mean | | | | 0.049** | 0.055^{*} | | | | , | | | | (0.021) | (0.031) | | | | s.d. | | | | $\frac{1.231}{(2.613)}$ | $ \begin{array}{c} 2.129 \\ (3.240) \end{array} $ | | | | skewness | | | | 0.074 | -0.304 | | | | | | | | (0.698) | (1.101) | | | | | | | | | | | | | p- $value$ | | | 0.166 | 0.017 | 0.051 | | | | | | | | | | | | | correlation | 0.289 | 1.00 | 0.972 | 0.927 | 0.912 | | | Campbell-Mankiw vs Campbell-Mankiw + Wealth Moments Campbell-Mankiw vs Campbell-Mankiw + Income Moments Campbell-Mankiw vs Campbell-Mankiw + Wealth and Income Moments ### Empirical Strategy (III) - Micro data on wealth and disposable income from Blanchet-Saez-Zucman's database (realtimeinequality.org) - Sample period: 1976Q1-2019Q4 - Construct time series for first and second moments of the cross-sectional distribution of wealth and disposable income: mean, standard deviation and skewness - Approximate Y_t^H as (per capita) disposable income of the fraction λ_t of households satisfying the Aguiar-Bils-Boar (2025) criteria: - (a) Total net wealth less than 2 months of disposable income - (b) Net liquid wealth less than 1 week of disposable income - Estimation of the DG-TANK consumption equation (augmented with wealth and/or income moments) using lagged values as instruments. $$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} - \delta' \lambda_t + \theta \mathbf{z}_{t-1} + \varepsilon_t$$ ### Empirical Strategy (III) - Micro data on wealth and disposable income from Blanchet-Saez-Zucman's database (realtimeinequality.org) - Sample period: 1976Q1-2019Q4 - Construct time series for first and second moments of the cross-sectional distribution of wealth and disposable income: mean, standard deviation and skewness - Approximate Y_t^H as (per capita) disposable income of the fraction λ_t of households satisfying the Aguiar-Bils-Boar (2025) criteria: - (a) Total net wealth less than 2 months of disposable income - (b) Net liquid wealth less than 1 week of disposable income - Estimation of the DG-TANK consumption equation (augmented with wealth and/or income moments) using lagged values as instruments. $$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} - \delta' \lambda_t + \theta \mathbf{z}_{t-1} + \varepsilon_t$$ | | Table 3. Empirical Euler Equations: Beyond TANK | | | | | | | | |---|--|--|--|---|---|--|--|--| | | Partition | n of househole | ds based on tot | al wealth criter | ion | | | | | | TANK | $TANK^*$ | $TANK^* + W$ | $TANK^* + Y$ | $TANK^* + All$ | | | | | r_{t-1} Δy_t^H $\Delta \lambda_t$ | $0.233^{***} \atop (0.087) \atop 0.240^{**} \atop (0.096)$ | 0.308^{***} (0.093) 0.286^{***} (0.099) -0.794^{***} (0.229) | $0.373^{***} \\ (0.109) \\ 0.290^{***} \\ (0.104) \\ -0.754^{***} \\ (0.232)$ | 0.349^{***} (0.102) 0.278^{**} (0.117) -0.766^{***} (0.241) | 0.416^{***} (0.120) 0.272^{***} (0.101) -0.701^{***} (0.243) | | | | | Wealth $mean$ $s.d.$ $skewness$ | | | $\begin{array}{c} -0.003 \\ \scriptscriptstyle{(0.009)} \\ 0.567 \\ \scriptscriptstyle{(1.905)} \\ 0.873 \\ \scriptscriptstyle{(0.788)} \end{array}$ | | $\begin{array}{c} -0.004 \\ {\scriptstyle (0.010)} \\ 1.517 \\ {\scriptstyle (2.208)} \\ 0.465 \\ {\scriptstyle (1.560)} \end{array}$ | | | | | Income mean s.d. skewness | | | | $\begin{array}{c} -0.009 \\ \scriptscriptstyle (0.022) \\ -0.525 \\ \scriptscriptstyle (2.74) \\ 0.443 \\ \scriptscriptstyle (0.535) \end{array}$ | $\begin{array}{c} 0.012 \\ \scriptscriptstyle{(0.031)} \\ 1.109 \\ \scriptscriptstyle{(3.702)} \\ 0.124 \\ \scriptscriptstyle{(0.980)} \end{array}$ | | | | | $p ext{-}value$ $correlation$ | | 1.00 | 0.501
0.932 | 0.722 0.925 | 0.787
0.922 | | | | # **Fitted Aggregate Consumption Growth** DG-TANK vs DG-TANK* # Fitted Aggregate Consumption Growth: Pre-Financial Crisis | | Table 3. Empirical Euler Equations: Beyond TANK | | | | | | | | |---|--|--|--|---|---|--|--|--| | | Partition | n of househole | ds based on tot | al wealth criter | ion | | | | | | TANK | $TANK^*$ | $TANK^* + W$ | $TANK^* + Y$ | $TANK^* + All$ | | | | | r_{t-1} Δy_t^H $\Delta \lambda_t$ | $0.233^{***} \atop (0.087) \atop 0.240^{**} \atop (0.096)$ | 0.308^{***} (0.093) 0.286^{***} (0.099) -0.794^{***} (0.229) | $0.373^{***} \\ (0.109) \\ 0.290^{***} \\ (0.104) \\ -0.754^{***} \\ (0.232)$ | 0.349^{***} (0.102) 0.278^{**} (0.117) -0.766^{***} (0.241) | 0.416^{***} (0.120) 0.272^{***} (0.101) -0.701^{***} (0.243) | | | | | Wealth $mean$ $s.d.$ $skewness$ | | | $\begin{array}{c} -0.003 \\ \scriptscriptstyle{(0.009)} \\ 0.567 \\ \scriptscriptstyle{(1.905)} \\ 0.873 \\ \scriptscriptstyle{(0.788)} \end{array}$ | | $\begin{array}{c} -0.004 \\ {\scriptstyle (0.010)} \\ 1.517 \\ {\scriptstyle (2.208)} \\ 0.465 \\ {\scriptstyle (1.560)} \end{array}$ | | | | | Income mean s.d. skewness | | | | $\begin{array}{c} -0.009 \\ \scriptscriptstyle (0.022) \\ -0.525 \\ \scriptscriptstyle (2.74) \\ 0.443 \\ \scriptscriptstyle (0.535) \end{array}$ | $\begin{array}{c} 0.012 \\ \scriptscriptstyle{(0.031)} \\ 1.109 \\ \scriptscriptstyle{(3.702)} \\ 0.124 \\ \scriptscriptstyle{(0.980)} \end{array}$ | | | | | $p ext{-}value$ $correlation$ | | 1.00 | 0.501
0.932 | 0.722 0.925 | 0.787
0.922 | | | | ## **Fitted Aggregate Consumption Growth** DG-TANK* vs DG-TANK* + Wealth Moments ## **Fitted Aggregate Consumption Growth** DG-TANK* vs DG-TANK* + Income Moments ## **Fitted Aggregate Consumption Growth** | | | | Euler Equation liquid Equation Equation | | | |--------------------|--------------------|----------------------------|---|-----------------------------|-------------------------------------| | | TANK | $\frac{TANK^*}{TANK^*}$ | $\frac{TANK^* + W}{TANK^* + W}$ | • | $\frac{TANK^* + All}{TANK^* + All}$ | | | | | | | | | r_{t-1} | 0.198**
(0.079) | $0.190^{**} \atop (0.079)$ | $0.304** \\ (0.132)$ | $0.253^{***} \atop (0.096)$ | $0.431^{**} \ (0.189)$ | | Δy_t^H | 0.225** | 0.286^{**} (0.119) | 0.360*** | $0.251^{**} \ (0.122)$ | 0.390**
(0.168) | | $\Delta \lambda_t$ | | -0.243 (0.251) | -0.591^{*} (0.309) | $-0.308** \ (0.265)$ | -0.811^{*} (0.413) | | Wealth | | | | | | | mean | | | -0.005 (0.007) | | -0.010 (0.010) | | s.d. | | | -2.769** (1.282) | | -1.684 (1.554) | | skewness | | | 1.891^{***} (0.697) | | 2.057^{**} (0.970) | | Income | | | | | | | mean | | | | $0.003 \atop (0.015)$ | $0.038 \atop (0.025)$ | | s.d. | | | | -2.043 | -3.958 | | skewness | | | | 1.256 | $(3.288) \\ -0.081$ | | | | | | (0.723) | (1.000) | | $p ext{-}value$ | | | 0.022 | 0.111 | 0.103 | | correlation | | 1.00 | 0.844 | 0.871 | 0.808 | # Liquid Wealth Criterion ## **Fitted Aggregate Consumption Growth** **DG-TANK vs DG-TANK*** | | | | Euler Equation liquid Equation Equation | | | |--------------------|--------------------|----------------------------|---|-----------------------------|-------------------------------------| | | TANK | $\frac{TANK^*}{TANK^*}$ | $\frac{TANK^* + W}{TANK^* + W}$ | • | $\frac{TANK^* + All}{TANK^* + All}$ | | | | | | | | | r_{t-1} | 0.198**
(0.079) | $0.190^{**} \atop (0.079)$ | $0.304** \\ (0.132)$ | $0.253^{***} \atop (0.096)$ | $0.431^{**} \ (0.189)$ | | Δy_t^H | 0.225** | 0.286^{**} (0.119) | 0.360*** | $0.251^{**} \ (0.122)$ | 0.390**
(0.168) | | $\Delta \lambda_t$ | | -0.243 (0.251) | -0.591^{*} (0.309) | $-0.308** \ (0.265)$ | -0.811^{*} (0.413) | | Wealth | | | | | | | mean | | | -0.005 (0.007) | | -0.010 (0.010) | | s.d. | | | -2.769** (1.282) | | -1.684 (1.554) | | skewness | | | 1.891^{***} (0.697) | | 2.057^{**} (0.970) | | Income | | | | | | | mean | | | | $0.003 \atop (0.015)$ | $0.038 \atop (0.025)$ | | s.d. | | | | -2.043 | -3.958 | | skewness | | | | 1.256 | $(3.288) \\ -0.081$ | | | | | | (0.723) | (1.000) | | $p ext{-}value$ | | | 0.022 | 0.111 | 0.103 | | correlation | | 1.00 | 0.844 | 0.871 | 0.808 | # Liquid Wealth Criterion ## **Fitted Aggregate Consumption Growth** DG-TANK vs DG-TANK + Wealth and Income Moments | | HANK-II Model | | | | | | | | | |---|--|---|---|---|---|--|--|--|--| | | TANK | $TANK^*$ | $TANK^* + W$ | $TANK^* + Y$ | $TANK^* + All$ | | | | | | r_{t-1} Δy_t^H $\Delta \lambda_t$ | $1.275^{***} \\ (0.249) \\ 0.120^{***} \\ (0.017)$ | $1.417^{***} $ (0.253) $0.189^{***} $ (0.060) $-0.233 $ (0.191) | 1.431^{***} (0.262) 0.212^{***} (0.068) -0.331 (0.234) | 2.455^{***} (0.779) 0.425^{**} (0.174) -0.499^{*} (0.255) | 2.336^{***} (0.883) 0.341 (0.249) -0.327 (0.407) | | | | | | Wealth $mean$ $s.d.$ $skewness$ | | | $\begin{array}{c} -2.717 \\ (4.124) \\ -0.142 \\ (0.419) \\ 0.620 \\ (0.519) \end{array}$ | | $\begin{array}{c} -2.490 \\ (4.488) \\ -0.216 \\ (0.538) \\ 0.556 \\ (0.492) \end{array}$ | | | | | | Income mean s.d. skewness | | | | $\begin{array}{c} -0.141 \\ \scriptscriptstyle (0.206) \\ -0.332 \\ \scriptscriptstyle (0.394) \\ -0.332 \\ \scriptscriptstyle (0.331) \end{array}$ | 0.064 (0.272) 0.068 (0.585) -0.177 (0.452) | | | | | | $p ext{-}value$ | | | 0.424 | 0.101 | 0.091 | | | | | | correlation | 1.00 | 0.988 | 0.972 | 0.945 | 0.946 | | | | | _ # Fitted Aggregate Consumption Growth: Simulated Data #### Conclusions - Does the behavior of aggregate consumption reflect the presence of heterogeneity? - Two dimensions - unconstrained vs hand-to-mouth consumers - idiosyncratic income shocks - Strong evidence of a significant role for hand-to-mouth behavior - Little evidence of a quantitatively significant role for idiosyncratic income shocks