Heterogeneity and Aggregate Consumption: An Empirical Assessment

Davide Debortoli Jordi Galí

July 2025

Background

- Recent HANK models:
 - household heterogeneity, in the form of idiosyncratic income shocks
 - incomplete markets
 - borrowing constraints
 - ⇒ wealth and income distributions as state variables
- Is heterogeneity important for understanding aggregate fluctuations? If so, what kind of heterogeneity? Are idiosyncratic income shocks necessary?
- Debortoli-Galí (NBER MA 2024): HANK vs TANK
 - TANK: constant fraction of hand-to-mouth households, no idiosyncratic income shocks
 - \Rightarrow A properly designed TANK model approximates well the aggregate properties of a HANK model

DG-TANK: budget constraint of the hand-to-mouth given by

$$C_t^H = \Xi^H W_t N_t + \Theta^H D_t - \psi Y \ \widehat{R}_t$$

This Paper

- Heterogeneity vs The Aggregate Data: Does the behavior of aggregate consumption reflect the presence of heterogeneity?
- Two dimensions:
 - unconstrained vs hand-to-mouth consumers (Campbell-Mankiw (1989))
 - idiosyncratic income shocks: Do variations in the moments of wealth and income distributions have predictive power for aggregate consumption, beyond that of interest rates and income?
- Granger causality tests
- Estimate Euler equation for aggregate consumption consistent with a general HA model, and evaluate the role of wealth and income distribution moments obtained from micro data.
- Similar exercise using data generated by a calibrated HANK model

This Paper

- Heterogeneity vs The Aggregate Data: Does the behavior of aggregate consumption reflect the presence of heterogeneity?
- Two dimensions:
 - unconstrained vs hand-to-mouth consumers (Campbell-Mankiw (1989))
 - idiosyncratic income shocks: Do variations in the moments of wealth and income distributions have predictive power for aggregate consumption, beyond that of interest rates and income?
- Granger causality tests
- Estimate Euler equation for aggregate consumption consistent with a general HA model, and evaluate the role of wealth and income distribution moments obtained from micro data.
- Similar exercise using data generated by a calibrated HANK model

Main findings

- Strong evidence of a role for hand-to-mouth behavior
- Not much evidence of a quantitatively significant role for idiosyncratic income shocks

Related Literature

- Euler equation-based empirical consumption models: Hall (1988), Campbell and Mankiw (1989),...
- HANK models: Kaplan, Moll and Violante (2018), Auclert, Rognlie, and Straub (2023),...
- TANK models: Galí, López-Salido and Vallés (2007), Bilbiie (2008),...
- Quantitative empirical assessments of role of heterogeneity in fluctuations:
 Auclert, Rognlie, and Straub (2020), Bayer, Born and Lutticke (2024), Bilbiie,
 Primiceri and Tambalotti (2023), Berger, Bocola and Davis (2023), Chan, Chen,
 and Schorfheide (2024)...

Households in a General HA Model

ullet Continuum of infinite-lived households, $j \in [0,1]$, with preferences

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t(j)^{1-\sigma} - 1}{1-\sigma} - V(N_t(j)) \right)$$

Period budget constraint

$$C_t(j) + \frac{B_t(j)}{P_t} = \Xi_t(j)W_tN_t(j) + D_t(j) - T_t(j) + \frac{(1+i_{t-1})B_{t-1}(j)}{P_t}$$

where $\Xi_t(j)$ is an idiosyncratic income shock.

Borrowing constraint

$$\frac{B_t(j)}{P_t} \ge -\Psi_t(j)$$

where $\Psi_t(j) > 0$ is the borrowing limit.

• In any given period, two subsets of households: unconstrained and hand-to-mouth

Unconstrained households

- $\mathcal{U}_t \subset [0,1]$, with measure $1-\lambda_t$ such that $rac{\mathcal{B}_t(j)}{\mathcal{P}_t} > -\Psi_t(j)$
- ullet Individual consumption: for all $j\in\mathcal{U}_t$ and all t

$$1 = \beta(1+i_t)\mathbb{E}_t\{(C_{t+1}(j)/C_t(j))^{-\sigma}(P_t/P_{t+1})\}$$

- Average "unconstrained" consumption: $C_t^U \equiv \frac{1}{1-\lambda_t} \int_{j \in \mathcal{U}_t} C_t(j) dj$
- Approximate Euler equation (in logs):

$$\mathbb{E}_t\{\Delta c_{t+1}^U\} = \gamma + \frac{1}{\sigma}\widehat{r}_t + \frac{\sigma+1}{2}\widehat{v}_t^U + \widehat{h}_t^U \tag{1}$$

where $r_t \equiv i_t - \mathbb{E}_t \{ \pi_{t+1} \}$, γ is trend growth,

$$v_t^U \equiv \frac{1}{1 - \lambda_t} \int_{j \in \mathcal{U}_t} \frac{C_t^U(j)}{C_t^U} v_t(j) dj$$

with
$$v_t(j) \equiv \mathit{var}_t\{c_{t+1}(j)\}$$
 and $h_t^U \equiv \mathbb{E}_t\{c_{t+1}^U - c_{t+1|t}^U\}$

• Idiosyncratic income shocks \Leftrightarrow variations in \widehat{v}_t^U and \widehat{h}_t^U in response to aggregate shocks

Hand-to-mouth households

- ullet $\mathcal{H}_t \subset [0,1]$, with measure λ_t and such that $rac{B_t(j)}{P_t} = -\Psi_t(j)$
- ullet Individual consumption: for all $j \in \mathcal{H}_t$ and all t

$$C_t(j) = Y_t(j) + \Phi_t(j)$$

where $Y_t(j) \equiv \Xi_t(j) W_t N_t(j) + D_t(j) - T_t(j) + \frac{i_{t-1} B_{t-1}(j)}{P_t}$ is disposable income and $\Phi_t(j) \equiv \frac{B_{t-1}(j)}{P_t} + \Psi_t(j)$ is the increase in debt between t-1 and t.

• Average "hand-to-mouth" consumption: $C_t^H \equiv rac{1}{\lambda_t} \int_{j \in \mathcal{H}_t} C_t(j) dj$

$$C_t^H = Y_t^H + \Phi_t^H$$

where $Y_t^H \equiv \frac{1}{\lambda_t} \int_{j \in \mathcal{H}_t} Y_t(j) dj$ and $\Phi_t^H \equiv \frac{1}{\lambda_t} \int_{j \in \mathcal{H}_t} \Phi_t(j) dj$.

• Assuming $\phi_t^H \equiv \Phi_t^H/Y_t^H$ is stationary with mean close to zero we can write

$$\Delta c_t^H = \Delta y_t^H + \Delta \phi_t^H \tag{2}$$

Aggregate consumption

$$C_t = \lambda_t C_t^H + (1 - \lambda_t) C_t^U$$

• Assuming $\Theta_t \equiv C_t^H/C_t$ and λ_t are stationary, we can write:

$$\Delta c_t \simeq \lambda \Theta \Delta c_t^H + (1 - \lambda \Theta) \Delta c_t^U - \delta \Delta \lambda_t \tag{3}$$

where
$$\delta \equiv \frac{C^U - C^H}{C} = \frac{1 - \Theta}{1 - \lambda}$$

ullet Combined with expressions for Δc_t^H and Δc_t^U :

$$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} - \delta \Delta \lambda_t + \Omega_{t-1} + \varepsilon_t$$

where

$$\begin{split} &\Omega_{t-1} \equiv (1 - \lambda \Theta) \left[\frac{\sigma + 1}{2} \hat{\mathbf{v}}_{t-1}^{U} + \hat{h}_{t-1}^{U} \right] \\ &\varepsilon_{t} \equiv \lambda \Theta \Delta \phi_{t}^{H} + (1 - \lambda \Theta) (c_{t}^{U} - \mathbb{E}_{t-1} \{ c_{t}^{U} \}) \end{split}$$

Empirical consumption equation

$$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} - \delta \Delta \lambda_t + \Omega_{t-1} + \varepsilon_t$$

Particular cases

• RA model ($\lambda = \phi_t^H = \widehat{h}_t^U = 0$, $\widehat{v}_t^U \simeq 0$) (Hall 1988)

$$\Delta c_t \simeq \gamma + \frac{1}{\sigma} \widehat{r}_{t-1} + \varepsilon_t$$

• Campbell-Mankiw (1989): $\lambda_t = \lambda$, $\Theta \simeq 1$, $\Delta y_t^H = \Delta y_t$, $\phi_t^H = \hat{h}_t^U = 0$, $\hat{v}_t^U \simeq 0$

$$\Delta c_t \simeq (1 - \lambda)\gamma + \lambda \Delta y_t + \frac{1 - \lambda}{\sigma} \hat{r}_{t-1} + \varepsilon_t$$

• DG-TANK: $\lambda_t = \lambda$, $\widehat{h}_t^U = 0$, $\widehat{v}_t^U \simeq 0$

$$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} + \varepsilon_t$$

Empirical Strategy (I)

- Micro data on wealth and disposable income from Blanchet-Saez-Zucman's database (realtimeinequality.org)
- Sample period: 1976Q1-2019Q4
- Construct time series for first and second moments of the cross-sectional distribution of wealth and disposable income: mean, standard deviation and skewness
- Granger causality tests

$$\Delta c_t \simeq \gamma_0 + \gamma_r r_{t-1} + \gamma_y \Delta y_{t-1} + \gamma_z \mathbf{z}_{t-1} + \varepsilon_t$$

Table 1. Grang	Table 1. Granger Causality for Δc_t								
Predictors (lagged)	p-value	R^2							
$\Delta c, r, \Delta y$		0.142							
$r, \Delta y$	0.012								
Δy $\Delta c, r, \Delta y, \{w\}$ $\{w\}$	0.045 0.335	0.160							
$\begin{array}{c} \Delta c, r, \Delta y, \{y\} \\ \{y\} \end{array}$	0.732	0.149							
$ \Delta c, r, \Delta y, \{w, y\} $ $ \{w, y\} $	0.604	0.166							

Empirical Strategy (II)

- Micro data on wealth and disposable income from Blanchet-Saez-Zucman's database (realtimeinequality.org)
- Sample period: 1976Q1-2019Q4
- Construct time series for first and second moments of the cross-sectional distribution of wealth and disposable income: mean, standard deviation and skewness
- Estimation of Campbell-Mankiw consumption equation (augmented with wealth and/or income moments) using lagged values as instruments

$$\Delta c_t \simeq (1 - \lambda)\gamma + \lambda \Delta y_t + \frac{1 - \lambda}{\sigma} \hat{r}_{t-1} + \theta \mathbf{z}_{t-1} + \varepsilon_t$$

Table 2.	Empirical	Euler	Equations:	Beyond	Campbell-Mankiw
	1		1	•/	

Aggrega	Aggregate disposable income and population-wide distributions						
	Hall	CM	CM+W	CM+Y	CM+All		
r_{t-1}	0.207**	0.170**	0.132	0.264^{***}	0.227^*		
Λ	(0.082)	0.079) $0.484***$	(0.113)	(0.088)	(0.124)		
Δy_t		(0.161)	0.462^{***} (0.159)	$0.425^{**} $ (0.131)	$0.401^{**} \ (0.117)$		
Wealth							
mean			0.002		-0.007		
			(0.007)		(0.008)		
s.d.			-1.713		-1.668		
skewness			$(1.195) \\ 1.124$		0.151		
skewness			(0.719)		(1.120)		
Income							
mean				0.049**	0.055^{*}		
,				(0.021)	(0.031)		
s.d.				$\frac{1.231}{(2.613)}$	$ \begin{array}{c} 2.129 \\ (3.240) \end{array} $		
skewness				0.074	-0.304		
				(0.698)	(1.101)		
p- $value$			0.166	0.017	0.051		
correlation	0.289	1.00	0.972	0.927	0.912		

Table 2.	Empirical	Euler	Equations:	Beyond	Campbell-Mankiw
	1		1	•/	

Aggrega	Aggregate disposable income and population-wide distributions						
	Hall	CM	CM+W	CM+Y	CM+All		
r_{t-1}	0.207**	0.170**	0.132	0.264^{***}	0.227^*		
Λ	(0.082)	0.079) $0.484***$	(0.113)	(0.088)	(0.124)		
Δy_t		(0.161)	0.462^{***} (0.159)	$0.425^{**} $ (0.131)	$0.401^{**} \ (0.117)$		
Wealth							
mean			0.002		-0.007		
			(0.007)		(0.008)		
s.d.			-1.713		-1.668		
skewness			$(1.195) \\ 1.124$		0.151		
skewness			(0.719)		(1.120)		
Income							
mean				0.049**	0.055^{*}		
,				(0.021)	(0.031)		
s.d.				$\frac{1.231}{(2.613)}$	$ \begin{array}{c} 2.129 \\ (3.240) \end{array} $		
skewness				0.074	-0.304		
				(0.698)	(1.101)		
p- $value$			0.166	0.017	0.051		
correlation	0.289	1.00	0.972	0.927	0.912		

Campbell-Mankiw vs Campbell-Mankiw + Wealth Moments

Campbell-Mankiw vs Campbell-Mankiw + Income Moments

Campbell-Mankiw vs Campbell-Mankiw + Wealth and Income Moments

Empirical Strategy (III)

- Micro data on wealth and disposable income from Blanchet-Saez-Zucman's database (realtimeinequality.org)
- Sample period: 1976Q1-2019Q4
- Construct time series for first and second moments of the cross-sectional distribution of wealth and disposable income: mean, standard deviation and skewness
- Approximate Y_t^H as (per capita) disposable income of the fraction λ_t of households satisfying the Aguiar-Bils-Boar (2025) criteria:
 - (a) Total net wealth less than 2 months of disposable income
 - (b) Net liquid wealth less than 1 week of disposable income
- Estimation of the DG-TANK consumption equation (augmented with wealth and/or income moments) using lagged values as instruments.

$$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} - \delta' \lambda_t + \theta \mathbf{z}_{t-1} + \varepsilon_t$$

Empirical Strategy (III)

- Micro data on wealth and disposable income from Blanchet-Saez-Zucman's database (realtimeinequality.org)
- Sample period: 1976Q1-2019Q4
- Construct time series for first and second moments of the cross-sectional distribution of wealth and disposable income: mean, standard deviation and skewness
- Approximate Y_t^H as (per capita) disposable income of the fraction λ_t of households satisfying the Aguiar-Bils-Boar (2025) criteria:
 - (a) Total net wealth less than 2 months of disposable income
 - (b) Net liquid wealth less than 1 week of disposable income
- Estimation of the DG-TANK consumption equation (augmented with wealth and/or income moments) using lagged values as instruments.

$$\Delta c_t \simeq (1 - \lambda \Theta) \gamma + \lambda \Theta \Delta y_t^H + \frac{1 - \lambda \Theta}{\sigma} \hat{r}_{t-1} - \delta' \lambda_t + \theta \mathbf{z}_{t-1} + \varepsilon_t$$

	Table 3. Empirical Euler Equations: Beyond TANK							
	Partition	n of househole	ds based on tot	al wealth criter	ion			
	TANK	$TANK^*$	$TANK^* + W$	$TANK^* + Y$	$TANK^* + All$			
r_{t-1} Δy_t^H $\Delta \lambda_t$	$0.233^{***} \atop (0.087) \atop 0.240^{**} \atop (0.096)$	0.308^{***} (0.093) 0.286^{***} (0.099) -0.794^{***} (0.229)	$0.373^{***} \\ (0.109) \\ 0.290^{***} \\ (0.104) \\ -0.754^{***} \\ (0.232)$	0.349^{***} (0.102) 0.278^{**} (0.117) -0.766^{***} (0.241)	0.416^{***} (0.120) 0.272^{***} (0.101) -0.701^{***} (0.243)			
Wealth $mean$ $s.d.$ $skewness$			$\begin{array}{c} -0.003 \\ \scriptscriptstyle{(0.009)} \\ 0.567 \\ \scriptscriptstyle{(1.905)} \\ 0.873 \\ \scriptscriptstyle{(0.788)} \end{array}$		$\begin{array}{c} -0.004 \\ {\scriptstyle (0.010)} \\ 1.517 \\ {\scriptstyle (2.208)} \\ 0.465 \\ {\scriptstyle (1.560)} \end{array}$			
Income mean s.d. skewness				$\begin{array}{c} -0.009 \\ \scriptscriptstyle (0.022) \\ -0.525 \\ \scriptscriptstyle (2.74) \\ 0.443 \\ \scriptscriptstyle (0.535) \end{array}$	$\begin{array}{c} 0.012 \\ \scriptscriptstyle{(0.031)} \\ 1.109 \\ \scriptscriptstyle{(3.702)} \\ 0.124 \\ \scriptscriptstyle{(0.980)} \end{array}$			
$p ext{-}value$ $correlation$		1.00	0.501 0.932	0.722 0.925	0.787 0.922			

Fitted Aggregate Consumption Growth

DG-TANK vs DG-TANK*

Fitted Aggregate Consumption Growth: Pre-Financial Crisis

	Table 3. Empirical Euler Equations: Beyond TANK							
	Partition	n of househole	ds based on tot	al wealth criter	ion			
	TANK	$TANK^*$	$TANK^* + W$	$TANK^* + Y$	$TANK^* + All$			
r_{t-1} Δy_t^H $\Delta \lambda_t$	$0.233^{***} \atop (0.087) \atop 0.240^{**} \atop (0.096)$	0.308^{***} (0.093) 0.286^{***} (0.099) -0.794^{***} (0.229)	$0.373^{***} \\ (0.109) \\ 0.290^{***} \\ (0.104) \\ -0.754^{***} \\ (0.232)$	0.349^{***} (0.102) 0.278^{**} (0.117) -0.766^{***} (0.241)	0.416^{***} (0.120) 0.272^{***} (0.101) -0.701^{***} (0.243)			
Wealth $mean$ $s.d.$ $skewness$			$\begin{array}{c} -0.003 \\ \scriptscriptstyle{(0.009)} \\ 0.567 \\ \scriptscriptstyle{(1.905)} \\ 0.873 \\ \scriptscriptstyle{(0.788)} \end{array}$		$\begin{array}{c} -0.004 \\ {\scriptstyle (0.010)} \\ 1.517 \\ {\scriptstyle (2.208)} \\ 0.465 \\ {\scriptstyle (1.560)} \end{array}$			
Income mean s.d. skewness				$\begin{array}{c} -0.009 \\ \scriptscriptstyle (0.022) \\ -0.525 \\ \scriptscriptstyle (2.74) \\ 0.443 \\ \scriptscriptstyle (0.535) \end{array}$	$\begin{array}{c} 0.012 \\ \scriptscriptstyle{(0.031)} \\ 1.109 \\ \scriptscriptstyle{(3.702)} \\ 0.124 \\ \scriptscriptstyle{(0.980)} \end{array}$			
$p ext{-}value$ $correlation$		1.00	0.501 0.932	0.722 0.925	0.787 0.922			

Fitted Aggregate Consumption Growth

DG-TANK* vs DG-TANK* + Wealth Moments

Fitted Aggregate Consumption Growth

DG-TANK* vs DG-TANK* + Income Moments

Fitted Aggregate Consumption Growth

			Euler Equation liquid Equation Equation		
	TANK	$\frac{TANK^*}{TANK^*}$	$\frac{TANK^* + W}{TANK^* + W}$	•	$\frac{TANK^* + All}{TANK^* + All}$
r_{t-1}	0.198** (0.079)	$0.190^{**} \atop (0.079)$	$0.304** \\ (0.132)$	$0.253^{***} \atop (0.096)$	$0.431^{**} \ (0.189)$
Δy_t^H	0.225**	0.286^{**} (0.119)	0.360***	$0.251^{**} \ (0.122)$	0.390** (0.168)
$\Delta \lambda_t$		-0.243 (0.251)	-0.591^{*} (0.309)	$-0.308** \ (0.265)$	-0.811^{*} (0.413)
Wealth					
mean			-0.005 (0.007)		-0.010 (0.010)
s.d.			-2.769** (1.282)		-1.684 (1.554)
skewness			1.891^{***} (0.697)		2.057^{**} (0.970)
Income					
mean				$0.003 \atop (0.015)$	$0.038 \atop (0.025)$
s.d.				-2.043	-3.958
skewness				1.256	$(3.288) \\ -0.081$
				(0.723)	(1.000)
$p ext{-}value$			0.022	0.111	0.103
correlation		1.00	0.844	0.871	0.808

Liquid Wealth Criterion

Fitted Aggregate Consumption Growth

DG-TANK vs DG-TANK*

			Euler Equation liquid Equation Equation		
	TANK	$\frac{TANK^*}{TANK^*}$	$\frac{TANK^* + W}{TANK^* + W}$	•	$\frac{TANK^* + All}{TANK^* + All}$
r_{t-1}	0.198** (0.079)	$0.190^{**} \atop (0.079)$	$0.304** \\ (0.132)$	$0.253^{***} \atop (0.096)$	$0.431^{**} \ (0.189)$
Δy_t^H	0.225**	0.286^{**} (0.119)	0.360***	$0.251^{**} \ (0.122)$	0.390** (0.168)
$\Delta \lambda_t$		-0.243 (0.251)	-0.591^{*} (0.309)	$-0.308** \ (0.265)$	-0.811^{*} (0.413)
Wealth					
mean			-0.005 (0.007)		-0.010 (0.010)
s.d.			-2.769** (1.282)		-1.684 (1.554)
skewness			1.891^{***} (0.697)		2.057^{**} (0.970)
Income					
mean				$0.003 \atop (0.015)$	$0.038 \atop (0.025)$
s.d.				-2.043	-3.958
skewness				1.256	$(3.288) \\ -0.081$
				(0.723)	(1.000)
$p ext{-}value$			0.022	0.111	0.103
correlation		1.00	0.844	0.871	0.808

Liquid Wealth Criterion

Fitted Aggregate Consumption Growth

DG-TANK vs DG-TANK + Wealth and Income Moments

	HANK-II Model								
	TANK	$TANK^*$	$TANK^* + W$	$TANK^* + Y$	$TANK^* + All$				
r_{t-1} Δy_t^H $\Delta \lambda_t$	$1.275^{***} \\ (0.249) \\ 0.120^{***} \\ (0.017)$	$1.417^{***} $ (0.253) $0.189^{***} $ (0.060) $-0.233 $ (0.191)	1.431^{***} (0.262) 0.212^{***} (0.068) -0.331 (0.234)	2.455^{***} (0.779) 0.425^{**} (0.174) -0.499^{*} (0.255)	2.336^{***} (0.883) 0.341 (0.249) -0.327 (0.407)				
Wealth $mean$ $s.d.$ $skewness$			$\begin{array}{c} -2.717 \\ (4.124) \\ -0.142 \\ (0.419) \\ 0.620 \\ (0.519) \end{array}$		$\begin{array}{c} -2.490 \\ (4.488) \\ -0.216 \\ (0.538) \\ 0.556 \\ (0.492) \end{array}$				
Income mean s.d. skewness				$\begin{array}{c} -0.141 \\ \scriptscriptstyle (0.206) \\ -0.332 \\ \scriptscriptstyle (0.394) \\ -0.332 \\ \scriptscriptstyle (0.331) \end{array}$	0.064 (0.272) 0.068 (0.585) -0.177 (0.452)				
$p ext{-}value$			0.424	0.101	0.091				
correlation	1.00	0.988	0.972	0.945	0.946				

_

Fitted Aggregate Consumption Growth: Simulated Data

Conclusions

- Does the behavior of aggregate consumption reflect the presence of heterogeneity?
- Two dimensions
 - unconstrained vs hand-to-mouth consumers
 - idiosyncratic income shocks
- Strong evidence of a significant role for hand-to-mouth behavior
- Little evidence of a quantitatively significant role for idiosyncratic income shocks