How Far Can Inclusion Go? The Long-term Impacts of Preferential College Admissions

Michela Carlana¹ Sara Chiuri² Enrico Miglino³ Michela M. Tincani⁴

Harvard Kennedy School, Bocconi University, NBER, LEAP, CEPR
 Bocconi University
 Bank of Italy
 University College London, IFS, LEAP, CESifo, CEPR

NBER Summer Institute July 23rd 2025

Motivation

Funded by the European Union (ERC, SOFIA, 101117537). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect

those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Motivation
• · · · · · · ·

Motivation

The Promises of Preferential Admissions

Motivation

- Disparities in human capital greatly contribute to the socioeconomic gap in higher education attainment (Bailey and Dynarski, 2011; Belley and Lochner, 2007).
- Students from disadvantaged background have fewer learning opportunities in early life (Bohren et al., 2023; Cunha and Heckman, 2007).
- Affirmative action aims at achieving diversity by enhancing admission chances of disadvantaged students.
- Preferential admissions to selective colleges have lasting benefits for well-prepared under-represented students (Black et al. 2023, Bleemer 2022).
- But how far can inclusion go while delivering on its promises?

The Future of College Admission

The New York Times

With End of Affirmative Action, a Push for a New Tool: Adversity Scores

To build a diverse class of students, the medical school at U.C. Davis ranks applicants by the disadvantages they have faced. Can it work nationally?

The Washington Post

Without affirmative action, how will colleges seek racial diversity?

None of the options - from eliminating legacy preferences to reducing slots for athletes - is simple

By Nick Anderson and Susan Svrluga Updated July 5, 2023 at 3:18 p.m. EDT | Published July 1, 2023 at 6:00 a.m. EDT

★ THE TEXAS TRIBUNE

UT-Austin Automatic Admissions Standard for 2017: Top 7 Percent

Texas students who apply to UT-Austin for the fall 2017 semester will need to be in the top 7 percent of their high school class to gain automatic admission, which is tougher than the 2016 threshold.

This paper

Motivation

000000

Research Question

- What are the education and labour market impacts of affirmative action on targeted disadvantaged students further down the academic ability distribution?
 - → Desegregating college sector requires relaxing academic requirements (Chetty, Friedman, Saez, Turner and Yagan, 2020).

This paper: preferential college admission in Chile

We evaluate the impact of preferential college admissions in Chile targeting disadvantaged high schools.

Why Chile?

- Socioeconomic gaps in college attainment similar to other industrialized countries
- A preferential admission policy, PACE, that targets students with much lower pre-college achievement than studied before
- High-quality data

Empirical methodologies:

- RCT: random inclusion of high schools in PACE in 2016
- RDD: sharp within-school cutoffs for preferential admission

Contributions to the literature

Motivation

00000

- Clear benefits for well-prepared targeted disadvantaged students (Black et al., 2023; Bleemer 2022).
 - \rightarrow We focus on the impact on substantially less prepared students.
- Preferential admission and the mismatch hypothesis (Sander 2004; Arcidiacono et al., 2011; Imbens et al., 2012, Badge, et al., 2016).
 - → We provide a direct test of the mismatch hypothesis exploiting long-term outcomes and measures of decision-making frictions.
- RDD away from the cutoff (Angrist and Rokkanen, 2015, Palomba, 2024, Fort, Ichino, Rettore, and Zanella, 2022, Cingano et al., 2024).
 - \rightarrow We provide a unique connection between the RDD and RCT.

Context •000000

Context

Higher Education System in Chile

Higher education institutions are classified as follows:

- Selective colleges, to enroll students have to:
 - take the standardized college entrance exam (PSU)
 - submit an application on the centralized platform
- Non-selective institutions, entrance exam not required:
 - off-platform colleges
 - vocational institutions offering 2-3 year degrees

Graduation rates by type

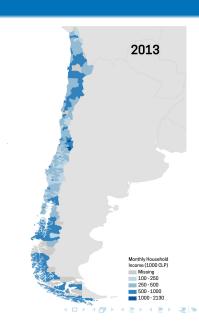
PACE Program

Motivation

Programa de Acompañamiento y Acceso Efectivo a la Educación Superior

- In addition to regular process, guaranteed admissions the following year to selective colleges for students:
 - attending a PACE high school in the last two years
 - taking the college entrance exam
 - having a GPA in the top 15% of their high school
- Orientation sessions on college applications, tuition and financial aid, tips on study techniques
 - offered to all students in PACE high schools
- Optional tutoring in college
 - for students offered a PACE admission to a selective college (limited take-up)

Motivation Context Empirical Framework Targeted Students Linking RCT and RDD Conclusion coccosion coccosi

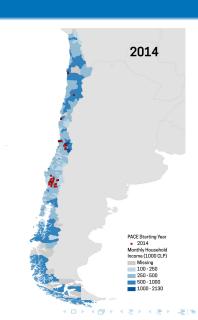

PACE Program expansion

Disadvantaged high schools:

based on a school-level vulnerability index

Expansion:

from 69 high schools in 2014 to 456 high schools in 2016

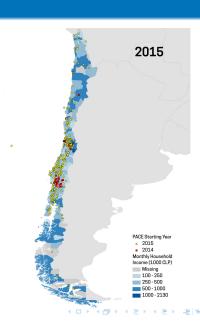

PACE Program expansion

Disadvantaged high schools:

based on a school-level vulnerability index

Expansion:

from 69 high schools in 2014 to 456 high schools in 2016


PACE Program expansion

Disadvantaged high schools:

based on a school-level vulnerability index

Expansion:

from 69 high schools in 2014 to 456 high schools in 2016

PACE Program expansion

Disadvantaged high schools:

based on a school-level vulnerability index

Expansion:

from 69 high schools in 2014 to 456 high schools in 2016

Section 3

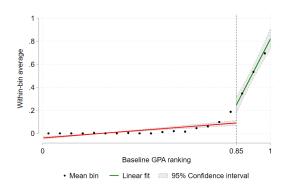
Empirical Framework

Research Design 1: Randomized Controlled Trial

In 2016, the government randomly selected 64 of the 221 newly eligible schools to receive the PACE treatment.

$$Y_{is} = \alpha + \beta PACE_s + \lambda X_i + \varepsilon_{is}$$
 (1)

We study the effect of being in a **PACE school** for top-performing students based on baseline GPA:


 Top 15%: Combined effect of school treatment (orientation session, rank info, changed incentives) and individual treatment for some (college admission).

Motivation

Research Design 1: Randomized Controlled Trial

Preferential college admission offers

54.2% of students in the top 15% of GPA and 2.7% of students in the bottom 85% of GPA get a PACE offer

Research Design 2: Regression Discontinuity Design

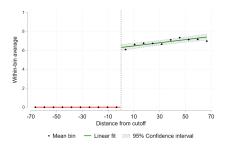
We exploit the top 15% cutoff in schools participating in PACE for the first three cohorts (2014-2016)

$$Y_{is} = \gamma + \delta A_{is} + f(p_{is} - c_s) + \theta X_i + \eta_s + \nu_{is}$$
 (2)

and we instrument A_i using the following first-stage regression:

$$A_{is} = \zeta + \phi I(p_{is} - c_s \ge 0) + g(p_{is} - c_s) + \psi X_i + \xi_s + u_{is}$$
 (3)

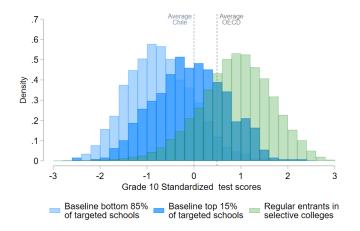
where:


- A_{is} is equal to 1 if student i from school s receives a PACE admission to selective college
- ullet $p_{is}-c_s$ is the difference between the GPA and the cutoff

[→] Local average effect of preferential college admission for marginal students in PACE high schools.

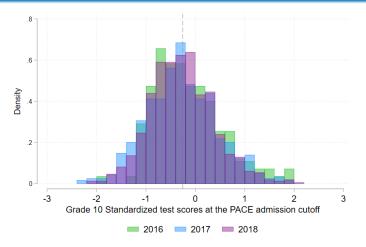
McCrary Test Balance

Research Design 2: RDD


First Stage: College admission offer


Optimal bandwidth (Calonico et al., 2014). S.e. clustered at school level.

RCT: Students' academic preparation


Motivation

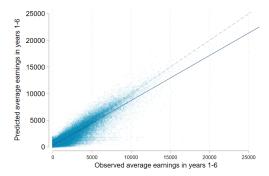
- PACE (Top 15%): 51th percentile nationwide (Grade 10 test scores)
- Texas Top Ten (Low-SES, Top 10%): 86th percentile statewide (Grade 10 test scores, Black et al. 2023)

RDD: Students' academic preparation

- PACE (Marginal Students): 34th percentile nationwide among entrance exam takers
- California ELC (Marginal Students): 72nd percentile nationwide among entrance exam takers (Bleemer, 2022)

Data Sources

Motivation


- **1 Education data:** from MINEDUC, high school information, higher education enrollment, type of institution, study field, graduation.
- 2 Labor market data: unemployment insurance dataset (excluding self-employed and public sector employees).
- **Survey data:** RCT sample of high school students in 2017, including prior beliefs on college attainment.

Study sample: 28,458 students from 606 high schools.

Motivation

We predict long-term effects using a surrogate index

computed from older cohorts in the same schools (Athey, Chetty, Imbens, and Kang, 2019)

 High correlation in year 6 between earnings predicted using the surrogate index and observed earnings

Section 4

Targeted Students

Targeted Students

Conceptual Framework: Effect on Targeted Students

Preferential admissions can affect different margins of choice:

- Intensive: Induce to attend more selective programs instead of less selective ones.
- Extensive: Induce to attend higher education instead of working.

They can have different impacts (Arcidiacono and Lovenheim, 2016):

- Quality effects: large monetary inputs, high-quality professors and peers, networks → Positive
- ullet Match effects: exams hard to pass, demanding, fast pace o Negative (info frictions)

We estimate the causal effect on long-term outcomes

- for those marginally eligible (RD) vs for all eligible (RCT top 15%)
- for those with different subjective expectations

Conceptual Framework: Effect on Targeted Students

Preferential admissions can affect different margins of choice:

- Intensive: Induce to attend more selective programs instead of less selective ones.
- Extensive: Induce to attend higher education instead of working.

They can have different impacts (Arcidiacono and Lovenheim, 2016):

- Quality effects: large monetary inputs, high-quality professors and peers, networks → Positive
- Match effects: exams hard to pass, demanding, fast pace \rightarrow Negative (info frictions)

We estimate the causal effect on long-term outcomes

- for those marginally eligible (RD) vs for all eligible (RCT top 15%)
- for those with different subjective expectations

Conceptual Framework: Effect on Targeted Students

Preferential admissions can affect different margins of choice:

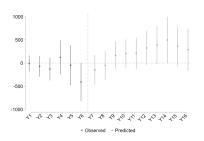
- Intensive: Induce to attend more selective programs instead of less selective ones.
- Extensive: Induce to attend higher education instead of working.

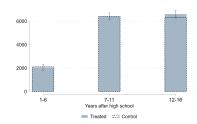
They can have different impacts (Arcidiacono and Lovenheim, 2016):

- Quality effects: large monetary inputs, high-quality professors and peers, networks → Positive
- Match effects: exams hard to pass, demanding, fast pace \rightarrow Negative (info frictions)

We estimate the causal effect on long-term outcomes

- for those marginally eligible (RD) vs for all eligible (RCT top 15%)
- for those with different subjective expectations


RCT: Impact on education for top 15%


	(1)	(2)	(3)	(4)	(5)	(6)	
	Sel	ective College		Any Institution			
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout	
Treatment	0.114*** (0.032)	0.072**	0.035**	0.010 (0.015)	0.006 (0.021)	0.003 (0.018)	
Total obs. Mean	2437 0.423	2437 0.301	2437 0.074	2437 0.860	2437 0.656	2437 0.205	

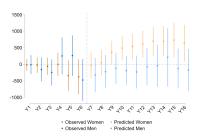
- No extensive margin effect on higher education attendance.
- Increased enrollment in selective colleges (↑ 27%), partly persisting into graduation (↑ 24%).
- Increased dropouts from selective colleges († 47%), but not overall.
- PACE likely had intensive margin effects. Selectivity, ability distance, rank

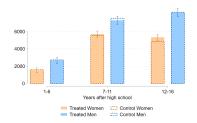
RCT: Impact on earnings for top 15%

(a) Earnings, in a given year

(b) Earnings, average across years

We do not observe short-term effects on earnings (-9.3% loss in year 6, 2.9% insignificant loss in years 1-6), and based on outcomes in years 1-6 we predict an insignificant positive effect on long-term earnings (+2.9% in years 12-16).


RCT: College degree gains for top 15% driven by women


	(1)	(2)	(3)	(4)	(5)	(6)	
	Sel	ective College		Any Institution			
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout	
	Heterogeneity by gender						
Treatment – Women	0.153***	0.120***	0.034**	0.032*	0.032	-0.001	
	(0.034)	(0.033)	(0.016)	(0.017)	(0.025)	(0.020)	
Mean Women	0.437	0.329	0.063	0.879	0.709	0.171	
Total obs.	1369	1369	1369	1369	1369	1369	
Treatment - Men	0.067	0.013	0.037*	-0.015	-0.026	0.011	
	(0.044)	(0.039)	(0.022)	(0.022)	(0.029)	(0.030)	
Mean Men	0.405	0.267	0.087	0.837	0.589	0.247	
Total obs.	1068	1068	1068	1068	1068	1068	

Selectivity ability distance rank

Majors

RCT: Earning gains for top 15% women

(a) Earnings, in a given year

- (b) Earnings, average across years
- For women, we predict a positive effect on long-term earnings (\uparrow 10.4% in years 12-16).
- For men, no evidence of earning impacts.
- Gender gap in long-term earnings reduced by 17%.

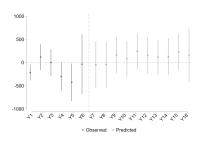
Summary of results for RCT top 15% sample

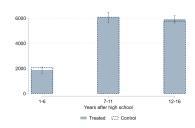
- No extensive margin effect on higher education enrollment.
- Larger number of selective college degrees, that does not come at cost of more dropouts from higher education.
- Null labor market returns in the long term, on average.
- Substantial positive impacts on the long-term earnings of women, who are the students gaining more selective college degrees. No evidence that men take up the college opportunities nor that they benefit in the labor market.
- \rightarrow Earning and education gains for women, not for men.

RDD: Impact on education for marginal students

	(1)	(2)	(3)	(4)	(5)	(6)	
	Sel	ective College		Any Institution			
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout	
Robust	0.182*** (0.030)	0.090*** (0.023)	0.100*** (0.018)	0.062*** (0.020)	-0.025 (0.030)	0.070***	
Bandwidth	36	57	62	60	50	54	
Bandwidth obs. Mean	7355 0.401	11428 0.275	12403 0.071	11946 0.851	9990 0.658	10731 0.195	

- Extensive margin effect on higher education enrollment ($\uparrow 7.3\%$).
- Increased enrollment in selective colleges († 45%), partly persisting into graduation (\uparrow 33%).
- Increased dropouts from selective colleges ($\uparrow 141\%$), and overall ($\uparrow 36\%$).
 - For every additional selective college graduate, ~ 0.8 additional dropouts from higher education.
- PACE likely had intensive and extensive margin effects.




→ Heterogeneous impacts; who benefits?

Motivation

RDD: Impact on earnings for marginal students

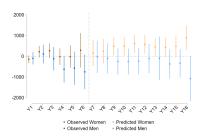
(a) Earnings, in a given year

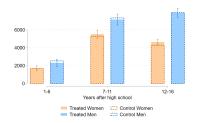
(b) Earnings, 6-year average

We estimate short-term negative impacts ($\downarrow 9.5\%$) on marginal students' earnings, not entirely offset by year 16.

Accompanied by short-term significant reductions (\downarrow 8.6%) in months worked.

RDD: Dropouts from higher education concentrated among men

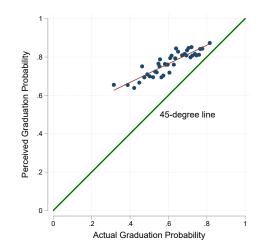

	(1)	(2)	(3)	(4)	(5)	(6)	
	Selective College			Any Institution			
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout	
	Heterogeneity by gender						
Robust - Women	0.180*** (0.040)	0.083*** (0.032)	0.085*** (0.022)	0.066*** (0.025)	-0.001 (0.038)	0.025 (0.029)	
Bandwidth	35	48	57	47	43	61	
Bandwidth obs.	4261	5717	6717	5606	5172	7264	
Mean	0.418	0.284	0.062	0.867	0.690	0.186	
Robust - Men	0.214***	0.074**	0.136***	0.023	-0.059	0.108***	
	(0.035)	(0.036)	(0.031)	(0.032)	(0.046)	(0.042)	
Bandwidth	66	63	55	72	53	52	
Bandwidth obs.	5370	5073	4486	5799	4291	4255	
Mean	0.411	0.280	0.086	0.829	0.610	0.221	
p-value Women=Men	0.549	0.906	0.263	0.289	0.395	0.154	



RDD: Earning losses driven by men; women gain

(a) Earnings, in a given year

- (b) Earnings, 6-year average
- For men, we observe a 9.1% reduction in earnings in the short term, not offset by year 16.
- For women, we do not observe short-term losses, and we predict positive effects on medium-term (\uparrow 4.3%) and long-term earnings (\uparrow 8.1%).



Summary of results for RDD sample

- Extensive margin effect on higher education enrollment.
- Larger number of selective college degrees, that comes at cost of more dropouts from higher education.
- Earning losses in the short term, not entirely offset by year 16.
- The losses are concentrated among men, and could persist among those who drop out. Women experience earning gains in the medium and long terms.
- \rightarrow On average, earning gains for women and losses for men.

Why the losses? Information frictions and mismatch

...and men are around 0.36 sd more overconfident than women.

Motivation

RDD: increased dropouts for most overconfident

	(1)	(2)	(3)	(4)	(5)	(6)
	Sel	ective College		Ar	ny Institution	
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout
		Hete	erogeneity b	y overconfidence		
Robust - High	0.242	-0.321*	0.346***	0.005	-0.292	0.435**
	(0.190)	(0.183)	(0.118)	(0.118)	(0.201)	(0.177)
Bandwidth	64	32	42	64	45	40
Bandwidth obs.	351	188	244	352	255	230
Mean	0.511	0.502	0.056	0.930	0.797	0.075
Robust - Low	0.282	0.329*	-0.014	0.012	0.265	-0.329*
	(0.175)	(0.187)	(0.155)	(0.130)	(0.191)	(0.184)
Bandwidth	89	67	56	97	96	89
Bandwidth obs.	362	264	229	389	384	361
Mean	0.331	0.197	0.104	0.809	0.520	0.303
p-value High=Low	0.847	0.060	0.034	0.854	0.029	0.004

- Dropouts concentrated among students overoptimistic about their graduation chances from selective colleges
- More realistic students faced no negative effects when offered additional opportunities.
- Selectivity, ability distance, rank Earnings
- → Consistent with key tenet of mismatch hypothesis that information frictions are necessary to generate losses.

Section 5

Linking RCT and RDD

Getting away from the cutoff in RDD

Angrist and Rokkanen (2015) exploit additional information contained in explanatory variables other than the score to estimate treatment effects away from the cutoff.

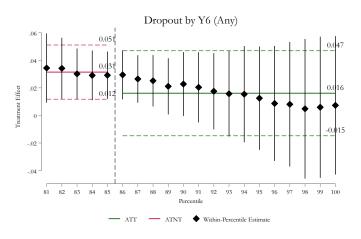
Assumptions:

Motivation

- Conditional independence assumption (i.e., mean independence between potential outcomes and the score variable conditional on a vector of other covariates) Figures
- 2 Common support Figures

In our context, the CIA is satisfied by the vector including: 1) GPA rank (9^{th} and 10^{th} grade) 2) simce 3) GPA 11^{th}

Getting away from the cutoff in RDD

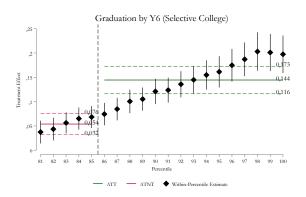

Angrist and Rokkanen (2015) exploit additional information contained in explanatory variables other than the score to estimate treatment effects away from the cutoff.

Assumptions:

- Conditional independence assumption (i.e., mean independence between potential outcomes and the score variable conditional on a vector of other covariates) Figures
- 2 Common support Figures

In our context, the CIA is satisfied by the vector including: 1) GPA rank (9^{th} and 10^{th} grade) 2) simce 3) GPA 11^{th}

Getting away from the cutoff in RDD



How Far Can Inclusion Go? If we want to avoid the unintended consequences of dropout, a top 10% plan would achieve that goal.

Getting away from the cutoff in RDD

However, there are positive average effects on selective college graduation even below the top 15%.

Linking RCT with RDD

Motivation

Consider the potential outcomes Y_{SA} that vary depending on:

- whether you get the PACE school treatment (S=0,1, as in the RCT)
- ullet the eligibility for preferential admission (A=0,1, as in the RDD)

Theorem (Decomposition)

$$\underbrace{\int E[Y_{1*} - Y_{00} \mid X] f(X) \, dX}_{ATE_S \rightarrow \text{ from RCT}} = \underbrace{\frac{\pi}{Fraction \text{ eligible}} \underbrace{\int E[Y_{11} - Y_{10} \mid X, A=1, S=1] f(X \mid A=1, S=1) \, dX}_{ATT_A \rightarrow \text{ from RDD getaway}} \\ + \underbrace{\int E[Y_{10} - Y_{00} \mid X] f(X) \, dX}_{Determined \text{ residually}}$$

Assumption:

Linking RCT with RDD: dropout from any institution

$$\underbrace{\int E[Y_{1*} - Y_{00} \mid X] f(X) \, dX}_{\text{ATE}_S \rightarrow \text{ from RCT}} - \underbrace{\frac{\pi}{\text{Fraction eligible}} \underbrace{\int E[Y_{11} - Y_{10} \mid X, A = 1, S = 1] f(X \mid A = 1, S = 1) \, dX}_{\text{ATT}_A \rightarrow \text{ from RDD getaway}}$$

$$= \underbrace{\int E[Y_{10} - Y_{00} \mid X] f(X) \, dX}_{\text{Determined residually} = -0.00006}$$

Limited effect of the "PACE school treatment" on dropout from any institution.

Motivation

Motivation

Linking RCT with RDD: graduation from selective college

$$\underbrace{\int E[Y_{1*} - Y_{00} \mid X] f(X) \, dX}_{\text{ATE}_S \rightarrow \text{ from RCT}} - \underbrace{\int E[Y_{11} - Y_{10} \mid X, A = 1, S = 1] f(X \mid A = 1, S = 1) \, dX}_{\text{Fraction eligible}}$$

$$= \underbrace{\int E[Y_{10} - Y_{00} \mid X] f(X) \, dX}_{\text{Determined residually}} = 0.0030$$

Limited effect of the "PACE school treatment" on graduation from a selective college.

Section 6

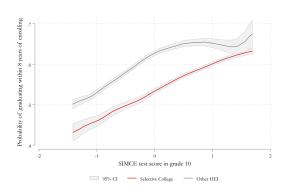
Conclusion

Motivation

Summary of findings

- Large preferential admissions can improve long-term outcomes of targeted students (RCT, average top 15% students).
 - More selective-college degrees and higher long-term earnings for targeted disadvantaged students on average.
 - Earnings gains concentrated among women (higher take-up); men's earnings remain flat (null effects on higher education).
- Mismatch at the margin (RDD, around top 15%).
 - More selective college degrees for some, increased dropouts from higher education for others.
 - Earnings losses and dropouts for men and the most over-confident; women continue to experience long-term gains.
- How far can inclusion go?
 - Up to the **top 10%** cutoff, selective college degrees rise with no change in dropouts from higher education.
 - Beyond 10%, trade off emerges.
 - Top 10% cutoff $\sim 46^{th}$ percentile of grade 10 test scores. ◆□ → ◆□ → ◆ ■ → ◆ ■ □ ◆ ○ ○ ○

Motivation


Policy implications

- Shift attention from *whether* to *when* mismatch in affirmative action occurs.
- Promising policy avenues:
 - Information interventions to avoid mismatch in disadvantage-based affirmative action.
 - Programs aimed at improving the academic preparation and social belonging of targeted students.

Section 7

Appendix

Graduation Rates by Type of HE Institution

Description of target population

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		Top 15%	6		RD		E	3ottom 85	%
	Obs.	Mean	S.D.	Obs.	Mean	S.D.	Obs.	Mean	S.D.
Female	2437	0.56	0.50	13048	0.59	0.49	11916	0.47	0.50
Age	2437	16.32	0.64	13048	16.33	0.65	11916	16.60	0.79
Very low SES	2437	0.59	0.49	13048	0.61	0.49	11916	0.61	0.49
Mother's education	1914	9.68	3.10	8565	9.98	3.15	7754	9.53	3.14
Father's education	1795	9.50	3.15	8090	9.79	3.24	7362	9.32	3.26
Family income	1919	284.05	195.67	8554	310.16	255.54	7782	289.21	214.89
SIMCE	2432	-0.01	0.82	12929	-0.21	0.76	11875	-0.69	0.71
Never failed	2437	0.94	0.24	13048	0.92	0.27	11916	0.81	0.39
Santiago	2437	0.17	0.37	13048	0.22	0.41	11916	0.16	0.37
Rural	2437	0.04	0.19	13048	0.05	0.22	11916	0.03	0.18
Academic track	2437	0.31	0.46	13048	0.37	0.48	11916	0.26	0.44

 Average family income is half that of high school students, and a third that of regular college entrants.

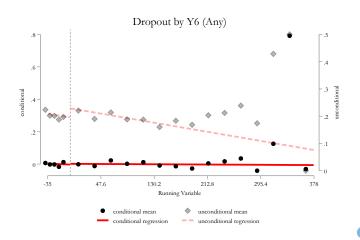
Research Design 1: Randomized Controlled Trial

Covariate Balance Test for Top 15%

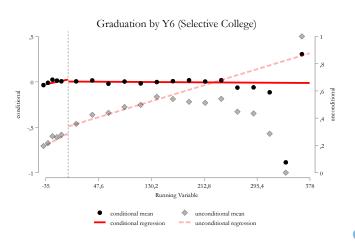
Table: Sample Balance Across Treatment and Control Groups

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	Age	Very Low SES	Mother education	Father education	Family income	SIMCE score	Never failed	Santiago resident	Rural school	Academic track	Female
Treatment	0.049	-0.020	0.129	-0.019	5.756	0.084	-0.014	0.041	-0.013	0.075	0.001
	(0.051)	(0.025)	(0.177)	(0.229)	(12.545)	(0.121)	(0.018)	(0.066)	(0.019)	(0.072)	(0.055)
p-value	0.340	0.418	0.468	0.935	0.647	0.487	0.444	0.533	0.497	0.297	0.979
Mean	16.303	0.596	9.642	9.508	282.134	-0.041	0.941	0.155	0.043	0.281	0.561
S.d.	0.587	0.491	3.132	3.103	198.181	0.805	0.237	0.362	0.203	0.450	0.496
N	2437	2437	1914	1795	1919	2432	2437	2437	2437	2437	2437

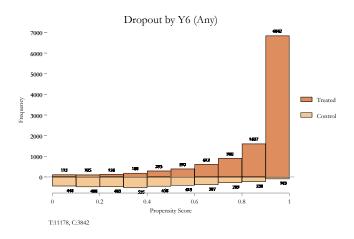
Notes: In this table we regress pre-determined variables on the treatment status of baseline top 15% students. Treatment is the coefficient of each regression. Standard errors clustered at the school level are shown in parentheses. The p-value is the p-value of the test of significance of the treatment coefficient. Mean is the average of the pre-determined variable in the control group. Low-SES student is a student that the Government classified as very socioeconomically vulnerable (Prioritario). SIMCE is a standardized achievement test taken in 10th grade. Age and education are in years. Family income is the monthly family income in 1000 Chilean pesos. *** p<0.01. ** p<0.05. * p<0.10.

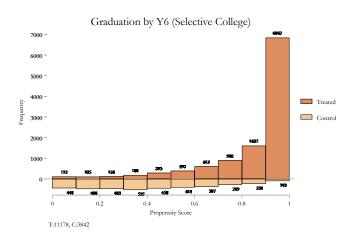

Research Design 2: RDD

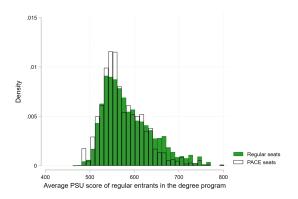
Covariate Balance Test


Table: Tests for discontinuities in pre-determined variables

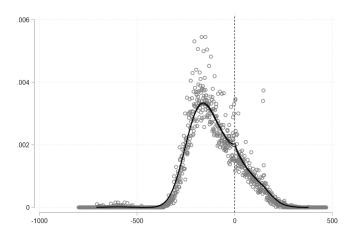
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	Age	Very Low SES	Mother educ.	Father educ.	Family income	SIMCE score	Never failed	Santiago resident	Rural school	Academic track	Over- conf.	Female
Conventional	0.069***	0.007 (0.022)	0.155 (0.158)	0.064	12.000 (14.542)	-0.013 (0.055)	-0.009 (0.010)	0.025	-0.005 (0.016)	-0.028 (0.042)	-0.020 (0.119)	0.005 (0.026)
Robust	0.078***	0.006	0.206	0.021	14.897	-0.023 (0.058)	-0.009 (0.011)	0.036	-0.003 (0.017)	-0.044 (0.043)	-0.059 (0.133)	0.009
Bandwidth	61.498	72.583	69.298	72.238	81.019	74.528	92.260	67.623	83.743	65.930	60.623	66.636
Bandwidth N	12236	14430	9015	8853	10500	14680	18217	13448	16555	13048	580	13264
R-squared	0.005	0.000	0.001	0.001	0.000	0.041	0.008	0.001	0.000	0.005	0.003	0.000
Mean	16.263	0.610	9.990	9.732	305.467	-0.176	0.929	0.209	0.051	0.391	0.110	0.595


Notes: In this table we report the estimate for coefficient ϕ in regression equation (3), using pre-determined variables as the dependent variable. Standard errors clustered at the school level are shown in parentheses. Mean is the mean of the outcome variable just below the cutoff. Robust uses the robust approach with bias-correction suggested by Calonico, Cattaneo, and Titiunik (2014). Optimal bandwidths, a linear polynomial of the ranking score and uniform kernels are used in all the specifications. Low-SES student is a student that the Government classified as very socioeconomically vulnerable (Prioritario). SIMCE is a standardized achievement test taken in 10th grade. Age and education are in years. Family income is the monthly family income in 1000 Chilean pesos. *** p<0.01. ** p<0.05. * p<0.10.


CIA


Common Support

Common Support



Selectivity of regular and PACE college seats

Notes: Nationwide distribution of college seat selectivity (average entrance exam score of regular entrants, 2018).

McCrary test

Surrogate index

Estimate following regression on older student cohorts:

$$Y_{ist} = \beta_{0t} + \beta_{1t}Z_i + \beta_{2t}X_{is} + u_{it}$$

and predict surrogate index \hat{Y}_{ist} for study sample.

Key assumptions:

- Comparability: conditional distribution of long-term outcomes given surrogate index is the same in the prediction and main samples.
- **2** Surrogacy: long-term outcomes independent of treatment conditional on the surrogate index.

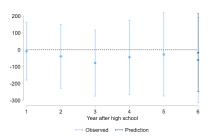
Surrogate index

Using five older cohorts, we use these predictors Z_i for each year from 1 to 6:

- Enrollment in any HEI and in a selective college
- Graduation from any HEI and from a selective college
- Interactions of previous predictors with major area
- Enrollment followed by dropout from any institution and from selective college
- Extensive margin LFP (i.e., working in the private sector, attending higher education, neither or both) and yearly months employed
- LFP*months, LFP*sector, months*sector, LFP*months*sector
- Yearly earnings
- Earnings*sector, LFP*earnings, LFP*earnings*sector
- Z_i interacted with gender

Additional controls X_{is} :

- Individual: Gender, age, indicator for never failed a grade, high school track (academic or vocational), high school GPA
- School: rural, Santiago, tracks offered, cohort size
- Youth unemployment rate (gender-specific) the year after graduating from high school
- X_{is} interacted with gender



RCT: Impact on months worked for top 15%

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			In a giv	en year			Av	erage across	years
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Years 1-6	Years 7-11	Years 12-16
Treatment	-0.157	-0.083	-0.172	0.157	-0.329	-0.493*	-0.127	-0.149	0.052
	(0.182)	(0.221)	(0.200)	(0.245)	(0.293)	(0.260)	(0.191)	(0.118)	(0.069)
Mean	2.052	2.716	3.000	4.233	5.628	6.452	3.799	7.468	5.539
Total obs.	2,007	2,172	2,140	2,095	2,041	1,934	2,384	2,437	2,437

RCT top 15%: validation of earning effect predictions

Figure: Earnings, 6-year average

RCT top 15%: Impact on selectivity of HE program

Table: Lee bounds on selectivity and rank effects in higher-education course (RCT, baseline top 15%)

	(1)	(2)	(3)	(4)	(5)	(6)
	Selec	tivity	Ability	distance	Ra	ank
	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound
Treatment	0.177***	0.235***	0.070*	0.156***	-0.053***	-0.032**
	(0.036)	(0.034)	(0.041)	(0.041)	(0.017)	(0.015)
Total obs.	2437	2437	2437	2437	2437	2437
Selected obs.	2123	2123	2123	2123	2120	2120
Mean	0.029	0.029	0.011	0.011	0.458	0.458

RCT top 15%: Impacts on STEM/Non-STEM

	(1)	(2)	(3)	(4)	(5)	(6)
	Sel	ective College		Ar	ny Institution	
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout
			ST	EM		
Treatment	0.073***	0.037*	0.014	0.045*	0.010	0.012
	(0.025)	(0.021)	(0.009)	(0.025)	(0.023)	(0.013)
Mean	0.232	0.141	0.039	0.461	0.312	0.100
Total obs.	2437	2437	2437	2437	2437	2437
			Non-	STEM		
Treatment	0.047**	0.024	0.019*	-0.023	-0.008	-0.010
	(0.024)	(0.020)	(0.011)	(0.028)	(0.024)	(0.014)
Mean	0.218	0.137	0.039	0.467	0.297	0.116
Total obs.	2437	2437	2437	2437	2437	2437

RCT: Impact on months worked for top 15% by gender

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		In a giv	en year			Av	erage across	years
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Years 1-6	Years 7-11	Years 12-16
-0.188	-0.119	-0.131	0.001	-0.678*	-0.505	-0.188	-0.114	0.080
1.723	2.272	2.332	3.573	5.056	5.794	3.239	7.007	(0.072) 4.660
1,119	1,222	1,205	1,167	1,124	1,039	1,335	1,369	1,369
-0.139	-0.080	-0.256	0.334	0.074	-0.474	-0.067	-0.211	0.006
								(0.114) 6.664
888	950	935	928	917	895	1,049	1,068	1,068 0.554
	Year 1 -0.188 (0.203) 1.723 1,119 -0.139 (0.301) 2.455	Year 1 Year 2 -0.188 -0.119 (0.203) (0.263) 1.723 2.272 1,119 1,222 -0.139 -0.080 (0.301) (0.328) 2.455 3.284 888 950	Year 1 Year 2 In a gh Year 3 Year 3 (0.241) 1.723 (0.263) (0.241) 1.723 (2.272 (2.332) 1.119 (1.222 (1.205) -0.139 -0.080 -0.256 (0.301) (0.328) (0.306) 2.455 (3.284 (3.838) 888 (950 (935)	Year 1 Year 2 In a given year Year 3 Year 4 -0.188 -0.119 -0.131 0.001 (0.203) (0.263) (0.241) (0.273) 1.723 2.272 2.332 3.573 1,119 1,222 1,205 1,167 -0.139 -0.080 -0.256 0.334 (0.301) (0.328) (0.306) (0.355) 2.455 3.284 3.838 5.037 888 950 935 928	Year 1 Year 2 In a given year Year 3 Year 4 Year 5 -0.188 -0.119 -0.131 0.001 -0.678* (0.203) (0.263) (0.241) (0.273) (0.346) 1.723 2.272 2.332 3.573 5.056 1,119 1,222 1,205 1,167 1,124 -0.139 -0.080 -0.256 0.334 0.074 (0.301) (0.328) (0.306) (0.355) (0.366) 2.455 3.284 3.838 5.037 6.306 888 950 935 928 917	Year 1 Year 2 In a given year Year 3 Year 4 Year 5 Year 6 -0.188 -0.119 -0.131 0.001 -0.678* -0.505 (0.203) (0.241) (0.273) (0.346) (0.356) 5.794 1,1723 2.272 2.332 3.573 5.056 5.794 1,119 1,222 1,205 1,167 1,124 1,039 -0.139 -0.080 -0.256 0.334 0.074 -0.474 (0.301) (0.328) (0.306) (0.355) (0.366) (0.346) 2.455 3.284 3.838 5.037 6.306 7.196 888 950 935 928 917 895	Year 1 Year 2 In a given year Year 3 Year 4 Year 5 Year 6 Year 1-6 -0.188 -0.119 -0.131 0.001 -0.678* -0.056 -0.188 (0.203) (0.263) (0.241) (0.273) (0.346) (0.356) (0.217) 1.723 2.272 2.332 3.573 5.056 5.794 3.239 1,119 1,222 1,205 1,167 1,124 1,039 1,339 -0.139 -0.080 -0.256 0.334 0.074 -0.474 -0.067 (0.301) (0.328) (0.306) (0.3355) (0.366) (0.346) (0.264) 2.455 3.284 3.838 5.037 6.306 7.196 4.504 888 950 935 928 917 895 1,049	Year 1 Year 2 In a given year Year 3 Year 4 Year 5 Year 6 Years 1-6 Years 2-11 -0.188 -0.119 -0.131 0.001 -0.678* -0.505 -0.188 -0.114 (0.203) (0.263) (0.241) (0.273) (0.366) (0.217) (0.148) 1.723 2.272 2.332 3.573 5.056 5.794 3.239 7.007 1,119 1,222 1,205 1,167 1,124 1,039 1,335 1,369 -0.139 -0.080 -0.256 0.334 0.074 -0.474 -0.067 -0.211 (0.301) (0.328) (0.306) (0.355) (0.366) (0.346) (0.264) (0.184) 2.455 3.284 3.838 5.037 6.306 7.196 4.504 8.057 888 950 935 928 917 895 1,049 1,068

RCT top 15%: Impact on selectivity of HE program, Ifemales

Table: Lee bounds on selectivity and rank effects in higher-education course (RCT, Top 15 % female students)

	(1)	(2)	(3)	(4)	(5)	(6)
	Selec	tivity	Ability	distance	Ra	ink
	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound
Treatment - Women	0.208*** (0.043)	0.320*** (0.043)	0.089* (0.049)	0.233*** (0.050)	-0.085*** (0.021)	-0.038* (0.020)
Total obs. Selected obs.	1369 1228	1369 1228	1369 1228	1369 1228	1369 1227	1369 1227
Mean	0.021	0.021	-0.001	-0.001	0.468	0.468

Notes: In this table we report the Lee bounds for the estimate of the coefficient β in regression equation (1). Standard errors clustered at the school level are shown in parentheses. Total obs. are the number of observations before the trimming procedure. Selected obs. are the number of observations after the trimming procedure. Selectivity represents the average baseline ability of peers in the first degree program a student enrolls in. Ability distance is the difference between selectivity and own baseline ability (in these regressions we do not control for own baseline ability). Rank denotes a student's relative ability among these peers: 0 if the student is the lowest-ability one and 1 if the student is the highest-ability one. Mean is the mean of the outcome variable just below the cutoff in the untrimmed sample. *** pc:0.01. **pc:0.05. **pc:0.05. **pc:0.01.

RCT top 15%: Impact on selectivity of HE program, males

Table: Lee bounds on selectivity and rank effects in higher-education course (RCT, Top 15 % male students)

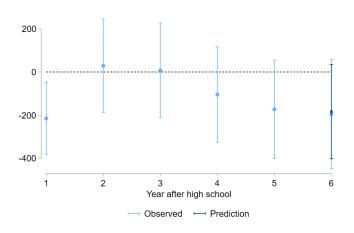
	(1)	(2)	(3)	(4)	(5)	(6)
	Selec	tivity	Ability	distance	Ra	ank
	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound
Treatment - Men	0.117** (0.053)	0.144** (0.064)	0.025 (0.075)	0.069 (0.071)	-0.026 (0.025)	-0.008 (0.027)
Total obs.	1068	1068	1068	1068	1068	1068
Selected obs.	895	895	895	895	893	893
Mean	0.041	0.041	0.028	0.028	0.446	0.446

Notes: In this table we report the Lee bounds for the estimate of the coefficient β in regression equation (1). Standard errors clustered at the school level are shown in parentheses. Total obs. are the number of observations before the trimming procedure. Selected obs. are the number of observations after the trimming procedure. Selectivity represents the average baseline ability of peers in the first degree program a student enrolls in. Ability distance is the difference between selectivity and own baseline ability (in these regressions we do not control for wom baseline ability). Rank denotes a student's relative ability among these peers: 0 if the student is the lowest-ability one and 1 if the student is the highest-ability one. Mean is the mean of the outcome variable just below the cutoff in the untrimmed sample. **** p < 0.01, *** p < 0.05, ** p < 0.10.

RCT top 15%: Impacts on STEM by gender

	(1)	(2)	(3)	(4)	(5)	(6)
	Sel	ective College		Ar	y Institution	
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout
			ST	EM		
Treatment – Women	0.083***	0.052**	0.014	0.067*	0.030	0.017
	(0.026)	(0.026)	(0.009)	(0.035)	(0.031)	(0.015)
Mean Women	0.211	0.136	0.026	0.390	0.287	0.056
Total obs.	1369	1369	1369	1369	1369	1369
Treatment - Men	0.064	0.018	0.017	0.017	-0.017	0.008
	(0.040)	(0.031)	(0.015)	(0.036)	(0.032)	(0.024)
Mean Men	0.260	0.147	0.054	0.552	0.345	0.156
Total obs.	1068	1068	1068	1068	1068	1068
p-value Treat Women=Men	0.645	0.384	0.861	0.323	0.280	0.752

RCT top 15%: Impacts on Non-STEM by gender


	(1)	(2)	(3)	(4)	(5)	(6)
	Sel	ective College		Ar	ny Institution	
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout
			Non-	STEM		
Treatment – Women	0.078** (0.032)	0.054*	0.020	-0.024 (0.037)	-0.003 (0.034)	-0.016 (0.020)
Mean Women	0.253	0.160	0.038	0.558	0.368	0.122
Total obs.	1369	1369	1369	1369	1369	1369
Treatment – Men	0.008	-0.011 (0.022)	0.017 (0.015)	-0.015 (0.038)	-0.011 (0.028)	-0.003 (0.019)
Mean Men	0.173	0.108	0.041	0.351	0.205	0.109
Total obs.	1068	1068	1068	1068	1068	1068
p-value Treat Women=Men	0.097	0.047	0.896	0.850	0.839	0.621

RDD: Impact on months worked

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			In a giv	en year			Av	erage across	years
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Years 1-6	Years 7-11	Years 12-16
Robust	-0.706***	0.074	-0.183	-0.571**	-0.455*	0.091	-0.317*	0.015	-0.029
	(0.161)	(0.255)	(0.232)	(0.239)	(0.250)	(0.340)	(0.184)	(0.163)	(0.068)
Bandwidth	81.835	44.874	67.821	72.052	79.248	49.223	62.062	43.766	69.614
Bandwidth obs.	13,353	8,118	11,697	12,126	12,994	7,758	12,125	8,853	13,838
Mean	2.203	2.896	3.150	4.125	5.063	6.307	3.702	7.267	5.172

RDD: validation of earning effect predictions

Figure: Earnings, 6-year average

RDD: Impact on selectivity of HE program

Table: Bounds on selectivity and rank effects in higher education course (RD, all students)

	(1)	(2)	(3)	(4)	(5)	(6)	
	Selec	tivity	Ability	distance	Rank		
	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound	
Robust	0.129*** (0.037)	0.263*** (0.035)	0.034 (0.050)	0.346*** (0.047)	-0.125*** (0.019)	-0.026 (0.022)	
Bandwidth	58	58	59	59	59	59	
Observations	9812	9813	9755	9756	9755	9756	
Mean	-0.059	-0.059	0.055	0.055	0.444	0.444	

Notes: In this table we report the bounds on the estimate for coefficient δ in regression equation (2). Panel A shows the estimates for all students who belong to the RD sample of students. Panel B displays the estimates for the same sample divided by gender. Standard errors clustered at the school level are shown in parentheses. Robust uses the robust approach with bias-correction suggested by 7. Optimal bandwidths, a linear polynomial of the ranking score and uniform kernels are used in all the specifications. Selectivity is average baseline ability of student peers in the same degree program. Ability distance is the difference between selectivity and own baseline ability. Rank is the position in the baseline-ability ranking from 0 to 1 in the same degree program. Mean is the mean of the outcome variable just below the cutoff in the untrimmed sample.

RDD: Impacts on STEM/Non-STEM

	(1)	(2)	(3)	(4)	(5)	(6)		
	Sel	ective College		Aı	Any Institution			
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout		
			ST	EM				
Robust	0.034	-0.002	0.022*	-0.019	-0.014	0.004		
Bandwidth	(0.029)	(0.018) 55	(0.013) 66	(0.034) 41	(0.026) 56	(0.017) 67		
Bandwidth obs	6869	11003	13048	41 8383	11099	13349		
Mean Mean	0.213	0.123	0.040	0.433	0.283	0.106		
			Non-S	БТЕМ				
Robust	0.175*** (0.027)	0.056**	0.079***	0.078*** (0.025)	-0.025 (0.030)	0.079***		
Bandwidth	58	58	43	72	(0.030)	39		
Bandwidth obs	11518	11640	8783	14328	10731	8009		
Mean	0.217	0.137	0.033	0.483	0.343	0.097		

RDD: Impact on months worked by gender

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			In a giv	en year			Av	erage across	years
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Years 1-6	Years 7-11	Years 12-16
Robust - Women	-0.627***	-0.136	-0.103	-0.691**	-0.645*	0.109	-0.380	-0.007	-0.013
	(0.204)	(0.297)	(0.321)	(0.323)	(0.352)	(0.466)	(0.231)	(0.206)	(0.077)
Bandwidth	71.373	56.587	54.100	53.915	61.432	46.574	53.088	42.545	70.788
Bandwidth obs.	6,726	5,938	5,566	5,303	5,872	4,255	6,186	5,172	8,294
Mean	2.104	2.680	2.837	3.755	4.804	5.782	3.485	6.948	4.365
Robust - Men	-0.623**	-0.025	-0.236	-0.770*	0.140	0.294	-0.114	0.231	0.160
	(0.292)	(0.373)	(0.436)	(0.460)	(0.424)	(0.434)	(0.296)	(0.219)	(0.225)
Bandwidth	60.329	66.482	54.469	49.067	62.426	61.712	66.428	50.552	46.410
Bandwidth obs.	4,220	4,850	3,894	3,490	4,350	4,122	5,227	4,152	3,789
Mean	2.413	3.137	3.675	4.651	5.448	6.559	4.119	7.681	6.372
p-value Women=Men	0.974	0.911	0.804	0.934	0.244	0.864	0.611	0.527	0.682

RDD: Impact on selectivity of HE program, females

Table: Bounds on selectivity and rank effects in higher education course (RD, female students)

	(1)	(2)	(3)	(4)	(5)	(6)
	Selec	tivity	Ability	distance	Ra	ank
	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound
Robust - Women	0.111** (0.050)	0.270*** (0.047)	0.008 (0.067)	0.330*** (0.064)	-0.119*** (0.026)	-0.008 (0.029)
Bandwidth	` 50 ´	50	49	49	49	` 49 ´
Observations	5133	5134	4938	4939	4938	4939
Mean	-0.096	-0.096	0.071	0.071	0.443	0.443

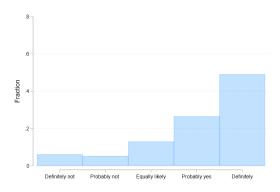
Notes: In this table we report the bounds on the estimate for coefficient δ in regression equation (2). Panel A shows the estimates for all students who belong to the RD sample of students. Panel B displays the estimates for the same sample divided by gender. Standard errors clustered at the school level are shown in parentheses. Robust uses the robust approach with bias-correction suggested by Calonico et al., 2014. Optimal bandwidths, a linear polynomial of the ranking score and uniform kernels are used in all the specifications. Selectivity is average basien ability of student peers in the same degree program. Ability distance is the difference between selectivity and own baseline ability. Rank is the position in the baseline-ability ranking from 0 to 1 in the same degree program. Mean is the mean of the outcome variable just below the cutoff in the untrimmed sample.

RDD: Impact on selectivity of HE program, males

Table: Bounds on selectivity and rank effects in higher education course (RD, male students)

	(1)	(2)	(3)	(4)	(5)	(6)
	Selec	tivity	Ability	distance	Ra	nk
	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound
Robust - Men	0.138** (0.055)	0.183*** (0.054)	0.064 (0.070)	0.274*** (0.063)	-0.117*** (0.026)	-0.049 (0.030)
Bandwidth	71	71	78	78	78	78
Observations	4824	4825	5123	5124	5123	5124
Mean	0.008	0.008	0.027	0.027	0.446	0.446

Notes: In this table we report the bounds on the estimate for coefficient & in regression equation (2). Panel A shows the estimates for all students who belong to the RD sample of students. Panel B displays the estimates for the same sample divided by gender. Standard errors clustered at the school level are shown in parentheses. Robust uses the robust approach with bias-correction suggested by Calonico et al., 2014. Optimal bandwidths, a linear polynomial of the ranking score and uniform kernels are used in all the specifications. Selectivity is average baseline ability of student peers in the same degree program. Ability distance is the difference between selectivity and own baseline ability. Rank is the position in the baseline-ability ranking from 0 to 1 in the same degree program. Mean is the mean of the outcome variable just below the cutoff in the untrimmed sample.


RDD: Impacts on STEM by gender

	(1)	(2)	(3)	(4)	(5)	(6)		
	Sel	ective College		Ar	Any Institution			
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout		
			ST	EM				
Robust - Women	0.010 (0.036)	-0.008 (0.028)	0.002 (0.013)	-0.001 (0.042)	0.010 (0.038)	-0.015 (0.019)		
Bandwidth	` 36 ´	41	62	43	` 43 ´	56		
Bandwidth obs.	4452	4959	7362	5172	5233	6579		
Mean	0.197	0.117	0.034	0.354	0.246	0.077		
Robust - Men	0.013	-0.013	0.069***	-0.086	-0.087**	0.032		
	(0.044)	(0.034)	(0.023)	(0.054)	(0.038)	(0.030)		
Bandwidth	` 39 ´	44	` 60 ´	44	61	75		
Bandwidth obs.	3177	3628	4856	3628	4972	6051		
Mean	0.234	0.132	0.052	0.534	0.322	0.144		
p-value Women=Men	0.190	0.991	0.021	0.195	0.082	0.146		

RDD: Impacts on Non-STEM by gender

	(1)	(2)	(3)	(4)	(5)	(6)		
	Sel	ective College		Aı	Any Institution			
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout		
			Non-	STEM				
Robust - Women	0.198*** (0.032)	0.071**	0.089***	0.078** (0.039)	-0.019 (0.035)	0.081***		
Bandwidth	62	52	55	49	57	40		
Bandwidth obs.	7362	6155	6517	5815	6777	4845		
Mean	0.230	0.144	0.029	0.540	0.389	0.105		
Robust - Men	0.167***	0.021	0.074***	0.070*	-0.005	0.076**		
Bandwidth	(0.037) 64	(0.037) 43	(0.023) 46	(0.041) 67	(0.044) 55	(0.033) 40		
Bandwidth obs	5199	3509	3789	5409	4451	3258		
Mean	0.196	0.124	0.043	0.382	0.253	0.092		
p-value Women=Men	0.190	0.124	0.043	0.362	0.255	0.092		
p-value vvomen=ivien	0.055	0.435	0.300	0.795	0.475	0.902		

Perceived graduation probability

Raw survey answers, perceived graduation chances

Survey Answer	Actual % Graduates (1)
Chances of Graduating <= 50%	56.49
Will Probably Graduate	64.40
Will Certainly Graduate	69.47
Any Survey Answer	66.93

Notes: The table uses the sample of students who enrolled in a selective college during the six years after high school and who were surveyed on their beliefs regarding selective college graduation conditional on enrolling. Beliefs were collected through a survey in the last high school year (2017). Information on actual college performance comes from linked administrative records for the same students six years after leaving high school (2023). Each row restricts the sample according to students' survey answers, and shows among the students who gave each answer what percentage have graduated or are on track to graduate from a selective college six years later.

Gender gap in overconfidence

-	(1)	(2)
	Overconfidence	Overconfidence
Female	-0.306***	-0.296***
	(0.031)	(0.032)
Controls	NO	YES
Obs.	5770	5770
Mean	0.141	0.141

Notes: In this table we regress overconfidence on the gender dummy, in the sample of survey respondents. Overconfidence is the difference between the perceived and the actual likelihood of graduating from a selective college (see Appendix ??), standardized to have mean zero and variance one. Standard errors clustered at the school level are shown in parentheses. Mean refers to average overconfidence among male students. The regression in column (2) includes the following controls: age, indicator for very-low-SES student, baseline SIMCE test score, never failed a grade, and high school track (academic or vocational). *** p<0.01. ** p<0.01. **, p<0.01.

RDD: Impact of selectivity of HE program, most overconfident

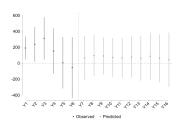
Table: Bounds on selectivity and rank effects in higher education course (RD) by overconfidence

(1)	(2)	(3)	(4)	(5)	(6)
Selec	tivity	Ability	distance	Ra	ink
Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound
0.090 (0.272)	0.203 (0.267)	0.980** (0.456)	1.277*** (0.435)	-0.242 (0.167)	-0.193 (0.161)
65	65	65	65	65	65
309	308	309	308	309	308 0.426
	Select Lower bound 0.090 (0.272) 65 309	Selectivity Lower bound Upper bound 0.090 0.203 (0.272) (0.267) 65 65 309 308	Selectivity Ability Lower bound Upper bound Lower bound 0.090 0.203 0.980** (0.272) (0.267) (0.456) 65 65 65	Selectivity Ability distance Lower bound Upper bound Upper bound 0.090 0.203 0.980** 1.277*** (0.272) (0.267) (0.456) (0.435) 65 65 65 65 309 308 309 308	Selectivity Ability distance Rs Lower bound Upper bound Lower bound Lower bound 0.090 0.203 0.980** 1.277*** -0.242 (0.272) (0.267) (0.456) (0.435) (0.167) 65 65 65 65 65 309 308 309 308 309

Notes: In this table we report the bounds on the estimate for coefficient δ in regression equation (2). Standard errors clustered at the school level are shown in parentheses. Robust uses the robust approach with bias-correction suggested by Calonico, Cattaneo, and Titiunik (2014). Optimal bandwidths, a linear polynomial of the ranking score and uniform kernels are used in all the specifications. Selectivity is average baseline ability of student peers in the same degree program. Ability distance is the difference between selectivity and own baseline ability. Rank is the position in the baseline-ability ranking from 0 to 1 in the same degree program. Mean is the mean of the outcome variable just below the cutoff in the untrimmed sample.

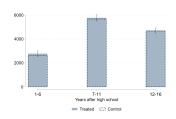
RDD: Impact of selectivity of HE program, least overconfident

Table: Bounds on selectivity and rank effects in higher education course (RD) by overconfidence


	(1)	(2)	(3)	(4)	(5)	(6)	
	Selec	Selectivity		Ability distance		Rank	
	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound	
Robust - Low	0.311 (0.289)	0.413 (0.274)	-0.230 (0.306)	0.219 (0.342)	-0.079 (0.122)	0.091 (0.126)	
Bandwidth	97	97	97	97	97	97	
Observations Mean	311 -0.098	312 -0.098	311 -0.021	312 -0.021	311 0.485	312 0.485	

Notes: In this table we report the bounds on the estimate for coefficient δ in regression equation (2). Standard errors clustered at the school level are shown in parentheses. Robust uses the robust approach with bias-correction suggested by Calonico, Cattaneo, and Titiunik (2014). Optimal bandwidths, a linear polynomial of the ranking score and uniform kernels are used in all the specifications. Selectivity is average baseline ability of student peers in the same degree program. Ability distance is the difference between selectivity and own baseline ability. Rank is the position in the baseline-ability ranking from 0 to 1 in the same degree program. Mean is the mean of the outcome variable just below the cutoff in the untrimmed sample.

RDD: Earning effects by overconfidence


	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	In a given year					Average across years			
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Years 1-6	Years 7-11	Years 12-16
Robust - High	-52.555	-76.956	830.815	1606.291	109.469	-4.709	103.083	-236.323	-1090.371
Bandwidth	(425.721) 41.529	(832.804) 39.529	(1682.171) 41.269	(2394.818) 36.190	(1382.605) 40.020	(1554.168) 52.611	(1160.737) 36.428	(1023.102) 68.298	(1105.424) 36.576
Bandwidth obs.	192	208	215	185	204	250	208	373	217
Mean	662.012	496.777	944.577	2,138.712	2,918.167	4,066.827	1,806.012	6,125.628	6,430.049
Robust - Low	-1516.938**	-874.235	-1156.478	-308.721	-2540.748*	-4563.825**	-1651.310**	-1908.334*	-266.315
	(713.175)	(892.652)	(946.603)	(1187.595)	(1426.411)	(2009.059)	(802.285)	(1115.746)	(1025.777)
Bandwidth	53.128	55.483	70.363	97.239	75.937	80.805	69.747	60.563	67.685
Bandwidth obs.	180	188	241	337	252	243	269	243	265
Mean	1,590.028	1,594.653	1,677.043	2,992.074	4,203.526	5,017.841	2,490.686	5,828.689	4,898.594
p-value High=Low	0.025	0.211	0.271	0.436	0.152	0.073	0.140	0.298	0.727

RCT bottom 85%: Earnings

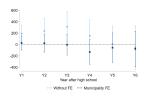
- (a) Earnings, in a given year
 - No gender differences.

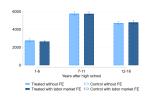
Presentation

(b) Earnings, 6-year average

Mechanism/1: No impacts on educational attainment

	(1)	(2)	(3)	(4)	(5)	(6)	
	Sel	ective College		Any Institution			
	Ever enrolled	Graduation	Dropout	Ever enrolled	Graduation	Dropout	
Treatment	0.021 (0.017)	0.010 (0.012)	0.007 (0.007)	-0.009 (0.017)	-0.002 (0.019)	-0.007 (0.013)	
Total obs.	11916	11916	11916	11916	11916	11916	
Mean	0.138	0.089	0.034	0.672	0.414	0.258	

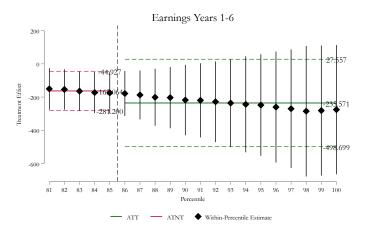

• No evidence of peer effects on education outcomes.


Mechanism/2: No disengagement from college sector

	(1)	(2)	(3)	(4)	(5)	(6)
	PSU	PSU	PSU	PSU	PSU	PSU
	2018	2019	2020	2021	2022	2023
Treatment	-0.017	-0.002	0.001	0.000	0.001	0.001
	(0.027)	(0.012)	(0.005)	(0.003)	(0.002)	(0.002)
Total obs.	11916	11916	11916	11916	11916	11916
Mean	0.764	0.096	0.034	0.017	0.012	0.010

 No discouragement from taking college entrance exam, in current or future rounds

Mechanism/3: Spillover effects in local labor markets



- (a) Earnings, in a given year
- (b) Earnings, average until a given year
- Positive effects vanish when comparing students in treated schools to students in control schools in the same labor market (municipality, robust to other definitions)
- Consistent with less competition from top 15% students while entering local labor markets
- → Preferential admissions can affect untargeted disadvantaged students through equilibrium effects in local labor markets.

Getting away from the cutoff in RDD

How Far Can Inclusion Go? If we want to avoid the unintended consequences on earnings, an around top 10% plan would achieve that goal. Presentation

Assumptions

Assumption (Conditional balance of potential outcomes)

Conditional mean independence of the PACE school assignment:

$$E[Y_{00}|X] = E[Y_{00}|X, S = 1] = E[Y_{00}|X, S = 0],$$

$$E[Y_{10}|X] = E[Y_{10}|X, S = 1] = E[Y_{10}|X, S = 0],$$

$$E[Y_{11}|X] = E[Y_{11}|X, S = 1] = E[Y_{11}|X, S = 0].$$

Potential admission eligibility likelihood:
$$Pr(a = 1|X) = Pr(a = 1|X, S)$$
,

$$S = 0, 1.$$

Assumption (Conditional balance across eligibility status)

$$E[Y_{00}|X, S = 1] = E[Y_{00}|X, S = 1, A = 1] = E[Y_{00}|X, S = 1, A = 0]$$

Assumption (Covariate balance)

$$f(X) = f(X|S = 1) = f(X|S = 0) \ \forall X \in \mathcal{X}.$$

Linking RCT with RDD: earnings

$$\underbrace{\int E[Y_{1*} - Y_{00} \mid X] f(X) \, dX}_{\text{ATE}_S \rightarrow \text{ from RCT}} - \underbrace{\frac{\pi}{\text{Fraction eligible}} \underbrace{\int E[Y_{11} - Y_{10} \mid X, A = 1, S = 1] f(X \mid A = 1, S = 1) \, dX}_{\text{ATT}_A \rightarrow \text{ from RDD getaway}}$$

$$= \underbrace{\int E[Y_{10} - Y_{00} \mid X] f(X) \, dX}_{\text{Determined residually}} = \underbrace{\sum E[Y_{10} - Y_{00} \mid X] f(X) \, dX}_{\text{Determined residually}}$$

Limited effect of the "PACE school treatment" on yearly earnings.