Uncovering the Costs of High Inflation

Ken Miyahara (r) Alberto Cavallo (r) Francesco Lippi

University of Chicago Harvard Business School LUISS & EIEF

NBER Summer Institute, July 10, 2025

Motivation for Geeks :-)

let $x \equiv \log(p/p^*)$ be price gap, μ be inflation

In NK models cost of inflation shows up in: $\chi \propto \text{Var}(x)$; study $\frac{\partial \log \chi}{\partial \log \mu}$

Economist observes distribution Δx but not of x; need a model to connect the two

Motivation for Geeks :-)

let $x \equiv \log(p/p^*)$ be price gap, μ be inflation

In NK models cost of inflation shows up in: $\chi \propto \text{Var}(x)$; study $\frac{\partial \log \chi}{\partial \log \mu}$

Economist observes distribution Δx but not of x; need a model to connect the two

Cost of inflation varies a lot across models (examples)

Calvo model Sheshinsky-Weiss Golosov-Lucas
$$\sigma^2/\mu \to 0 \qquad \qquad \sigma^2/\mu \to \infty$$

$$\frac{\partial \log \chi(\mu)}{\partial \log \mu} \approx \qquad \qquad 2 \qquad \qquad 2/3 \qquad \approx 0 \quad \text{at small } \mu$$

Match with data selects model with "reasonable" σ^2/μ

This paper: welfare costs of inflation from a NK perspective

Costs: "inefficient price dispersion" and wasteful "price setting activities"

- ► Today: add an information friction to a canonical sticky price model
 - firms engage in info-collection (research) and price adjustment activities
- In the model higher inflation leads firms to
 - pay less attention to own idiosyncratic info (wider inaction region, a "SW effect")
 - choose more dispersed markups (new channel for price dispersion)
- Calibrate model using granular data from Turkey (moderate to high inflation)
 - analyze an episode where inflation tripled
 - costs of inflation not so elusive, steep inflation gradient

Related NK literature

- empirical: Nakamura et al (QJE18) "Elusive cost of inflation", ongoing work by Adam-Alexandrov-Weber
- modeling sticky price w. inattention
 Mackoviack-Wiederholt (AER09), Alvarez-Lippi-Paciello (QJE11)
- ► Inverse inference problem: recovering distr. x from ∆x Alvarez-Lippi-Oskolkov (QJE 22), Bailey-Blanco (RES 23)
- menu cost model for high inflation countries
 Gagnon (QJE09), Alvarez-Beraja-Neumeyer et al (QJE19)
- "rockets and feathers" w asymmetric profit function
 Fernandez-Villaverde et al (AER15), Cavallo-Lippi-Miyahara (AER124)

Simple Model of Demand and Production

- lacktriangle Monopolistic competition with CES demand $A_i c_i = \left(rac{
 ho_i/A_i}{
 ho}
 ight)^{\eta} C$
- ▶ Production: CRS in labor $y_i = h_i/Z_i$ where $Z_i = \exp(\underbrace{z_i}_{STD \sigma})$
- ▶ Definition: **Price gap** $x_i \equiv \log p_i \log \underbrace{\frac{\eta}{\eta 1} Z_i W}_{\equiv p_i^*}$
- ightharpoonup constant money growth μ and $A_i = Z_i$ keeps math simple
- ▶ gap's law of motion: $dx = -\mu dt + \sigma dZ_i$
- ▶ No complementarities between firms' decisions & steady state analysis

The Firm's price setting problem

- Firm knows inflation μ but does not know marginal costs Z_i
 Price-setting requires costly communication with production plant
- ▶ Info discoveries (about Z_i) arrive at chosen hazard: ω
- lacktriangle Price adjustment opportunities arrive at chosen hazard: lpha
- uncontrolled evolution of expected gap $\bar{x}(t) \equiv \mathbb{E}(x(t))$, for firm with t_0 info

$$\bar{\mathbf{x}}(t) = \mathbf{x}(t_0) - \mu \cdot (t - t_0)$$
 , $\tau(t) \equiv t - t_0$, $\mathbf{x}(t) \sim \mathcal{N}(\bar{\mathbf{x}}(t), \sigma^2 \tau(t))$

▶ The firm's state: $\{\bar{x}, \tau\}$ is the *predicted gap* and the *information age*

The Firm's problem

- Flow cost F(x): forgone profits (w. CES demand system) due to $x \neq 0$
- Firm's value function solves.

$$\begin{aligned} v(\bar{\boldsymbol{x}}(\tau),\tau) &= \min_{\alpha,\omega} \mathbb{E}\Big(\int_0^{\min \left\{\tau^a,\tau^r\right\}} e^{-\rho s} \left[F(\boldsymbol{x}(\tau+s)) + \kappa_a \alpha(s)^2 + \kappa_r \omega(s)^2\right] ds \\ &+ \mathbf{1}^a \cdot e^{-\rho \tau^a} \min_{\boldsymbol{x}^*} v(\boldsymbol{x}^*,\tau+\tau^a) \\ &+ (1-\mathbf{1}^a) \cdot e^{-\rho \tau^r} v(\boldsymbol{x}(\tau+\tau^r),0) \mid \bar{\boldsymbol{x}}(\tau),\tau\Big) \end{aligned}$$

▶ indicator function 1^a equals 0 if new info arrives before adjustment

The Firm's problem (in recursive form)

Firm's value function v solves HJB: appdx: derivation from sequence prob

$$\rho \, v(\bar{x}, \tau) = \mathbb{E} \left[F(x) | \bar{x}, \tau \right] - \mu \partial_{\bar{x}} v(\bar{x}, \tau) + \partial_{\tau} v(\bar{x}, \tau)$$

$$+ \min_{\alpha \geq 0, \bar{x}^*} \left\{ \alpha \cdot \left[v(\bar{x}^*, \tau) - v(\bar{x}, \tau) \right] + \kappa_a \alpha^2 \right\}$$

$$+ \min_{\omega \geq 0} \left\{ \omega \cdot \left[\mathbb{E} \left[v(x, 0) | \bar{x}, \tau \right] - v(\bar{x}, \tau) \right] + \kappa_r \omega^2 \right\}$$

- ightharpoonup ightharpoonup with respect to $\mathcal{N}(\bar{x}, \sigma^2 \tau)$, where $\bar{x}(t) = x(t_0) \mu \cdot (t t_0)$, $\tau(t) = t t_0$
 - \implies Policy: Hazard functions $\alpha(\bar{x},\tau)$, $\omega(\bar{x},\tau)$ and return point $\bar{x}^*(\tau)$

Forgone Profits and Optimal Return Point

(a) Forgone Profit Function F(x)

(b) Return points $\bar{x}^*(\tau)$ for $\mu \in \{0, 0.6\}$

- hedging motive as information ages (high τ , as in Fernandez-Villaverde et al paper)

Adjustment Hazard

(a) Hazard of adjustment (uncentered) $\alpha(\bar{x}, \tau; \mu)$

(b) Hazard of adjustment (centered) $\alpha(\bar{\mathbf{X}}^*(\tau) - \Delta \mathbf{p}, \tau; \mu)$

- wider inaction as information ages (reduces the importance of idiosyncratic shocks)

Research Hazard

– Large gradient w.r.t. au, small gradient w.r.t μ

Cross-section aggregation of firms

▶ Aggregation: Kolmogorov equation $\bar{m}(\bar{x}, \tau)$ (omit arguments)

$$(\alpha + \omega)\,\bar{\mathbf{m}} = \mu\,\partial_{\bar{\mathbf{x}}}\bar{\mathbf{m}} - \partial_{\tau}\bar{\mathbf{m}}$$

▶ using $x \sim \mathcal{N}(\bar{x}, \sigma^2 \tau)$ gives distribution of actual gaps and info age $m(x, \tau)$

Aggregation: Marginal distribution of *x*

Mapping Model to Observables

Frequency of price adjustment and research

$$\mathbf{N_a} = \int_0^\infty \int_{-\infty}^\infty \alpha(\bar{\mathbf{x}}, \tau) \cdot \bar{\mathbf{m}}(\bar{\mathbf{x}}, \tau) \, d\bar{\mathbf{x}} \, d\tau
\mathbf{N_r} = \int_0^\infty \int_{-\infty}^\infty \omega(\bar{\mathbf{x}}, \tau) \cdot \bar{\mathbf{m}}(\bar{\mathbf{x}}, \tau) \, d\bar{\mathbf{x}} \, d\tau$$

Distribution of price changes

$$q(\Delta p) = \int_0^\infty \int_{-\infty}^\infty \mathbb{1}(\bar{x}, \tau; \Delta p) \cdot \alpha(\bar{x}, \tau) \cdot \bar{m}(\bar{x}, \tau) \, d\bar{x} \, d\tau$$

where
$$\mathbb{1}(\bar{x},\tau;\Delta\,p)\equiv\{(\bar{x},\tau):\,\bar{x}^*(\tau)-\bar{x}=\Delta\,p\}$$

Adjustment and Research frequency wrt inflation

(b) Research frequency N_r

– menu cost flat because σ/μ large; info friction make model more SW like

What's in a price change: Δp ?

- Firm with $(\bar{x}^*(\tau_0), \tau_0)$ chooses Δp after spell of duration τ^a
- Information age at adjustment: $\tau \in [0, \tau_0 + \tau^a]$
- ▶ Then $\triangle p$ related to (τ^a, τ) as follows:

$$\Delta p = \underbrace{\bar{X}^*(\tau) - \bar{X}^*(\tau_0)}_{\text{info age difference}} + \underbrace{\mu \, \tau^a}_{\text{keep up with } \mu} - \underbrace{\sigma \, Z(\tau_0 + \tau^a - \tau)}_{\text{new info}}$$

where Z is a Wiener process with Z(0) = 0. Details

What's in a price change: Δp ?

- Firm with $(\bar{x}^*(\tau_0), \tau_0)$ chooses Δp after spell of duration τ^a
- Information age at adjustment: $\tau \in [0, \tau_0 + \tau^a]$
- ▶ Then $\triangle p$ related to (τ^a, τ) as follows:

$$\Delta p = \underbrace{\bar{\mathbf{X}}^*(\tau) - \bar{\mathbf{X}}^*(\tau_0)}_{\text{info age difference}} + \underbrace{\mu \, \tau^a}_{\text{keep up with } \mu} - \underbrace{\sigma \, Z(\tau_0 + \tau^a - \tau)}_{\text{new info}}$$

where Z is a Wiener process with Z(0) = 0. Details

• We get:
$$N_a \tilde{E} (\Delta p - \mu \tau^a)^2 = N_a \widetilde{Var} (\bar{x}^*(\tau) - \bar{x}^*(\tau_0)) + \sigma^2$$

Costs of inflation in the theoretical model

ightharpoonup Misallocation, χ , due to price gaps

Misall.
$$Cost_{\mu} = \frac{\eta}{2} Var_{\mu}(x)$$

ightharpoonup Price management, ϕ , of adjustment and research

Mgmt.
$$\mathsf{Cost}_{\mu} = \frac{1}{\eta} \mathsf{E}_{\mu} \left[\kappa_{\mathsf{a}} (\alpha(\bar{\mathsf{x}}, \tau))^2 + \kappa_{\mathsf{r}} (\omega(\bar{\mathsf{x}}, \tau))^2 \right]$$

lacktriangle Costs of inflation are defined in excess of levels at $\mu=0$

$$\chi(\mu) = \text{Misall. Cost}_{\mu} - \text{Misall. Cost}_{0}, \qquad \phi(\mu) = \text{Mgmt. Cost}_{\mu} - \text{Mgmt. Cost}_{0}$$

A simple exercise

Calibrate model to Turkey with "moderate" to "high" inflation periods

► Analyze "misallocation" and "price management" costs as fct. of inflation

Data

- PriceStats data (Cavallo and Rigobon, 2016)
- Micro-data: Food and beverages sectors in Turkey (14 largest retailers)
- Sample period between June 2019 and July 2024
- Price changes and duration of completed price spells at daily frequency

Turkey: Inflation time series (source Pricestats)

Turkey: Frequency of price adjustment

elasticity
$$\theta \equiv \frac{\partial \log N}{\partial \log \mu} = 0.6$$

Turkey: Absolute Size of Price Changes

This moment is Nakamura et. al (2018) measure for the cost of inflation.

Our calibration yields a similar non-targeted increase around 20% (from 13% to 16%)

Calibration

- ▶ select four parameters: $\{\mu, \sigma^2, \kappa_a, \kappa_r\}$
- ▶ to match four moments: $\{\tilde{E}(\Delta p), N_a, \tilde{E}(\Delta p \mu \tau^a)^2, \frac{\Delta \log N_a}{\Delta \log \mu}\}$

Useful model identities (blue is data):

$$N_a \tilde{E} (\Delta p - \mu \tau^a)^2 = N_a \underbrace{Var(\bar{x}^*(\tau) - \bar{x}^*(\tau_0))}_{Information dispersion} + \sigma^2$$

$$\frac{1}{\tilde{E}\, au^a}=\, N_a, \;\; , \;\; N_a\,\tilde{E}\,(\Delta\, p)=\, \mu \; , \;\;\;$$
also $heta\equiv rac{\Delta\,\log N_a}{\Delta\,\log \mu}$ is increasing in $rac{\mu}{\sigma^2}$

Calibration for Turkey for 2019-2021 (inflation is $\mu = 0.16$)

			Targeted moments	Parameters				Others	
	Na	$E[\Delta p]$	$N_a ilde{E}\left[(\Delta p - \mu au^a)^2 ight]$	Elasticity θ	σ^2	κ_{a}	κ_r	μ	N _r
data	3.7	0.04	0.10	0.57	-	_	_	_	_
W. info frictions	3.7	0.04	0.10	0.37	0.04	0.025^{2}	0.25^{2}	0.16	1
W/o info frictions	3.7	0.04	0.10	0.11	0.10	0.037^2	-	0.16	_

- model with info friction better at capturing extensive margin response
- w/o info friction high inflation requires larger variance of marginal costs

Misallocation Costs of Inflation: Models Comparison

Baseline Model Decomposition

Quadratic Profit Model Decomposition

Decomposition of $\chi(0.55) - \chi(0.16) = 74$ bp

$$\frac{\eta}{2} \Delta \text{Var}(x) = \frac{\eta}{2} \Delta \left(\underbrace{E[\text{Var}(\bar{x}|\tau)]}_{\text{Sheshinski-Weiss effect}} + \underbrace{\text{Var}[E(\bar{x}|\tau)]}_{\text{mixing normals with diff. means}} + \underbrace{\sigma^2 E(\tau)}_{\text{target errors}} \right)$$

	SW	Mixing normals	Target errors	Total N _a
$\begin{array}{l} \mu = \text{0.55 + "behavior fixed"} \\ \mu = \text{0.55 + optimal } \alpha, \bar{\textbf{\textit{x}}}^* \\ \mu = \text{0.55 + optimal } \omega, \alpha, \bar{\textbf{\textit{x}}}^* \end{array}$	21 bp 43 bp 43 bp	-3 bp 16 bp 23 bp	-4 bp 3 bp 8 bp	14 bp 6 62 bp 5.4 74 bp 5.4
Only menu cost (total)	6 bp	_	-	6 bp 4.1

[&]quot;behavior fixed" means $\{\omega,\alpha,\bar{x}^*\}$ fixed at $\mu=$ 0.16 values

Price Management Costs: Research and Adjustment Activities

Summing up

use simple NK model to quantify costs of inflation

▶ imperfect info useful to fit data (boosts elast. of N to μ)

- imperfect info amplifies inflation costs
 - more action on extensive margin (wider inaction region)
 - ignorance spreads firms' return points (hedging motive)
- Non negligible inflation costs, steep gradient
 - The welfare cost of 10% inflation are 25bp of GDP in cons. equiv.
 - The welfare cost of 55% inflation are 138bp of GDP in cons. equiv.

Thank you!

Appendix

- ► How to compute joint moments of price adjustments and time between adjustments $\{\Delta p, \tau^a\}$
- Define generator of the uncontrolled state + discovery process
- From an initial condition, propagate that process forward removing mass upon adjustments
- The removed density is the joint distribution of price changes, information ages (measured at adjustment dates) and time between adjustments
- Continue in next slide...

Appendix cont'd

- Let A be the generator of the uncontrolled + observation process
- Let $F(\bar{x}, \tau, t)$ be a time-varying measure on (\bar{x}, τ) that keeps track of the states that have not adjusted and Q for the measure of states that have
- Let $P(\Delta p, \tilde{\tau}, \tau^a)$ be the distribution of price changes, information age (measured at times of adjustments) and time between adjustments

Appendix cont'd

- Let $F(\bar{x}, \tau, 0)$ be a density integrating to 1 of states right after an adjustment e.g. a Dirac density on $(\bar{x}^*(\tau), \tau)$
- $ightharpoonup F(\bar{x}, \tau, t)$ solves the following PDE

$$\partial_t F = \mathcal{A}F - \alpha \cdot F$$

▶ Then the distributions Q and P are

$$P(\bar{x}^*(\tau) - \bar{x}, \tilde{\tau}, \tau^a) = Q(\bar{x}, \tilde{\tau}, \tau^a) = \alpha(\bar{x}, \tau) \cdot F(\bar{x}, \tilde{\tau}, \tau^a)$$

New information at price adjustment dates

- ▶ New information (mg cost shocks) at adjustment dates has three components
- $ightharpoonup au_0$: information age at start of price spell
- $ightharpoonup au^a$: information that transpired during the price spell
- ightharpoonup au: information age at end of price spell
- ightharpoonup new info has variance $au_0 + au^a au$ Return

Sequential problem

Firm with state (\bar{x}, τ) at t = 0 solves

$$v(\bar{x}, \tau) = \min_{\alpha, \omega, \bar{x}^*} \mathbb{E}\left[\int_0^\infty e^{-\rho t} F[x(t)] dt \,|\, x(0) \sim \mathcal{N}(\bar{x}, \sigma^2 \tau)\right]$$

 $d\bar{x} = -\mu dt$ and $d\tau = dt$.

- For illustration assume α, ω fixed.
- Developing the RHS for the flow and the non-jump term

$$\begin{split} v(\bar{x},\tau) &= \min_{\bar{x}^*} \mathbb{E}_0 \left[F[x(0)] \Delta + o(\Delta) + e^{-(\rho + \alpha + \omega)\Delta} \int_{\Delta}^{\infty} e^{-\rho(t-\Delta)} F[x(t)] dt + \ldots \right] \\ v(\bar{x},\tau) &= \min_{\bar{x}^*} \mathbb{E}_0 \left[F[x(0)] \Delta + o(\Delta) + e^{-(\rho + \alpha + \omega)\Delta} v[\bar{x}(\Delta), \tau(\Delta)] + \ldots \right] \\ v(\bar{x},\tau) &= \min_{\bar{x}^*} \mathbb{E}_0 \left[F[x(0)] \Delta + o(\Delta) + e^{-(\rho + \alpha + \omega)\Delta} \left\{ v(\bar{x},\tau) + \partial_{\bar{x}} v \cdot (-\mu \Delta) + \partial_{\tau} v \cdot (\Delta) \right\} + \ldots \right] \\ (\rho + \alpha + \omega) \Delta v(\bar{x},\tau) &= \min_{\bar{x}^*} \mathbb{E}_0 \left[F[x(0)] \Delta + o(\Delta) + e^{-(\rho + \alpha + \omega)\Delta} \left\{ \partial_{\bar{x}} v \cdot (-\mu \Delta) + \partial_{\tau} v \cdot (\Delta) \right\} + \ldots \right] \end{split}$$

Denote the conditional expectation by \mathbb{E}_0

Sequential problem (cont'd)

Developing the jump terms

$$\begin{split} &\ldots = \min_{\bar{x}^*} \mathbb{E}_0 \left[\ldots + e^{-\rho \Delta} \left[(1 - e^{-\alpha \Delta}) v(\bar{x}^*, \tau(\Delta)) + (1 - e^{-\omega \Delta}) v(x(\Delta), 0) \right] \right] \\ &\ldots = \min_{\bar{x}^*} \mathbb{E}_0 \left[\ldots + e^{-\rho \Delta} \left[(1 - e^{-\alpha \Delta}) \left[v(\bar{x}^*, \tau) + \partial_\tau v \cdot \Delta \right] + (1 - e^{-\omega \Delta}) v(x(\Delta), 0) \right] \right] \\ &\ldots = \min_{\bar{x}^*} \mathbb{E}_0 \left[\ldots + e^{-\rho \Delta} \left[\alpha \Delta v(\bar{x}^*, \tau) + o(\Delta) + \omega \Delta v(x(0), 0) \right] \right] \end{split}$$

2nd to 3rd line: drift and diffusion terms times hazards are order Δ^2

lacktriangle Putting the terms together, dividing by Δ and taking the limit as $\Delta o 0$

$$(\rho + \alpha + \omega) v(\bar{x}, \tau) = \min_{\bar{x}^*} \mathbb{E}_0 [F[x(0)] + \partial_{\bar{x}} v \cdot (-\mu) + \partial_{\tau} v + \alpha v(\bar{x}^*, \tau) + \omega v(x(0), 0)]$$

$$(\rho + \alpha + \omega) v(\bar{x}, \tau) = \mathbb{E}_0 F[x(0)] + \partial_{\bar{x}} v \cdot (-\mu) + \partial_{\tau} v + \alpha \min_{\bar{x}^*} v(\bar{x}^*, \tau) + \omega \mathbb{E}_0 v(x(0), 0)$$

Q.E.D. Return

Mapping Observables to Model Parameters: No Info Friction

- LHS: moments in the data $\{\Delta p, \tau^a\}$
- Operators \tilde{E} , Var integrate w.r.t. density of $\{\Delta p, \tau^a\}$

$$\frac{1}{\tilde{E}\tau^a} = N_a, \tag{1}$$

$$N_a \tilde{E} \Delta p = \mu,$$
 (2)

$$N_a \tilde{E} \left(\Delta p - \mu \tau^a\right)^2 = \sigma^2, \tag{3}$$

$$N_a \tilde{E} \tau^a \left(\Delta \rho - \frac{\mu}{2} \tau^a \right) = x^* - \tilde{E} x$$
 (4)

$$\frac{1}{3}\frac{N_a}{\mu}\tilde{E}\left(\Delta p\right)^3 - (x^* - \tilde{E}x)\left(\frac{\sigma^2}{\mu} + x^* - \tilde{E}x\right) = Var(x)$$
 (5)

Relative Entropy (skip)

- How the distribution of gaps changes with higher inflation?
- ▶ One measure is relative entropy between two densities m_1 and m_0 e.g. m_1 corresponds to 0.6 inflation and m_0 to 0.3 inflation
- ► Relative entropy measures $\int_{-\infty}^{\infty} \log[n(x)] n(x) m_0(x) dx$ where $n(x) \equiv m_1(x)/m_0(x)$
- Next figure displays $\log[n(x)]n(x) m_0(x) dx$ as a share of relative entropy to understand important contributors

Pricestats vs CPI data: Turkey

