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I. Introduction

Research in machine learning has found that heavily overparametrizing models such that they fit

the training data perfectly can result in good out-of-sample predictions. In a linear regression

setting, this means that the number of covariates may far exceed the number of observations in

the training data [Belkin, Hsu, Ma, and Mandal (2019), Bartlett, Long, Lugosi, and Tsigler (2020),

Hastie, Montanari, Rosset, and Tibshirani (2022)]. These findings in machine learning have inspired

a fast-growing literature in empirical asset pricing that uses Random Fourier Features (RFF)—a

very large number, P , of randomized nonlinear transformations of a small number, K, of predictor

variables—for return prediction and for modeling of the stochastic discount factor (SDF).1

Kelly, Malamud, and Zhou (2024) (KMZ), the pioneering paper using this approach, presents a

stunning result. In a time-series setting for predicting excess returns on the CRSP value-weighed

index, regressions with P = 12, 000 RFF derived fromK = 15 variables—predictors fromWelch and

Goyal (2008) augmented with lagged index returns—produce a market timing strategy with strong

out-of-sample performance even with rolling training data windows as short as T = 12 months and

in ridgeless regression, i.e., without explicit shrinkage. This is a stunning result because most of the

Goyal-Welch predictor variables are highly persistent and the forecasting target is extremely noisy.

Conventional wisdom holds that extracting useful predictive signals from such variables requires

sample sizes spanning decades—not just a single year.

In line with conventional wisdom, I find that the high-complexity ridgeless regression using

rolling training windows of T = 12 months and P = 12, 000 RFF fails to extract meaningful predic-

tive information from the training data. Instead, the resulting market-timing strategy effectively

reduces to a certain volatility-timed momentum strategy. Crucially, the ridgeless regression does

not learn from the training data that a volatility-timed momentum strategy is profitable. Rather,

the resemblance to a volatility-timed momentum strategy arises mechanically from the structure of

the RFF representation and the persistence of the underlying predictors. That this mechanically

induced strategy happens to perform well in historical data is merely coincidental.

The reason the strategy based on thousands of RFF predictors collapses to a simple volatility-

timed momentum strategy stems from the fundamental properties of RFF. When P ≫ K, dot

1. See Kelly, Malamud, and Zhou (2024), Jensen, Kelly, Malamud, and Pedersen (2024), Didisheim, Ke, Kelly,
and Malamud (2023), Didisheim, Ke, Kelly, and Malamud (2024), Kelly, Malamud, and Zhou (2022),
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products of RFF vectors converge to Gaussian kernels in the space of the original K predictors, as

shown in Rahimi and Recht (2007) and Sutherland and Schneider (2015). Consequently, forecasts

from ridgeless regression using RFF essentially equal those from kernel ridgeless regression with

Gaussian kernels. In this setting, return forecasts are constructed as weighted averages of the

T = 12 lagged returns in the training window, where the weights depend on the distance between

the current K-dimensional predictor vector and each lagged predictor vector. For example, if the

one-month lagged predictor vector is more similar to the current one than the two-month lagged

predictor vector, then the corresponding one-month lagged return receives a higher weight in the

construction of the return forecast than the two-month lagged return. Because most predictor

variables are persistent, recent predictor vector observations tend to be more similar to the current

one, leading to higher positive weights on recent returns—producing a momentum-like forecast.

Moreover, when the predictor variables are less volatile, distances between predictor vectors are

smaller, resulting in higher weights. Thus, the strategy embeds a form of volatility timing, where

the overall strength of the momentum signal varies inversely with predictor volatility in the training

window. The combination of these effects yields a volatility-timed momentum strategy.

This makes clear that the high-complexity ridgeless regression with RFF does not learn complex

relationships between the K predictor variables and future returns from the short training data.

The only information used in the construction of the market-timing strategy is the information

encoded in the distances between lagged predictor vectors and the current predictor vector. In

a short training sample, this information reflects two mechanical features. First, closer lags of

predictor vectors have smaller distance to the current predictor vector. This is a property of

any vector-autoregressive process with persistence and does not reflect predictive content that the

predictor variables may have for future returns. Second, there are times when the distances between

predictors are smaller than in other times. This reflects time-varying volatility of shocks to the

predictors. This volatility does not embody predictive content of the predictors for future returns.

Conceptually, the method performs as intended. With a very long training sample, it would

search across the historical record—potentially spanning decades—for instances in which the pre-

dictor vector resembled the current one, and use the returns following these instances to forecast

future returns. However, when the training window is very short, as in KMZ’s rolling approach

with T = 12 months, the method cannot look for instances of predictor similarity in the distant

2



past. As a result, it simply averages the most recent few returns in the training window, which

correspond to the predictor vectors most similar to the current one.

Empirically, a simple volatility-timed momentum strategy that assigns linearly declining weights

to the past 12 months returns, scaled by the inverse of predictor volatility over the same win-

dow, generates market-timing positions that closely resemble those of the RFF-based strategy and

achieves comparable out-of-sample performance. When included as an explanatory factor, this sim-

ple strategy captures most of the abnormal returns attributed to the RFF-based approach. Like the

RFF-based strategy, it tends to reduce exposure ahead of recessions—not because of any foresight,

but because it systematically de-risks when predictor volatility increases.

To demonstrate that the ridgeless regression with RFF does not learn from the training data

that a volatility-timed momentum strategy is profitable, I generate artificial return data by adding

a simulated MA(2) component with strong negative autocorrelation to actual market index re-

turns. These artificial returns now exhibit return reversals rather than momentum. Nevertheless,

the RFF-based ridgeless regression continues to produce forecasts that place positive weights on

recent returns. As a result, the corresponding market-timing strategy delivers negative abnormal

returns out-of-sample on the artificial data. This illustrates that the RFF-based regression does not

learn from the training data whether momentum or reversal dynamics are present; it mechanically

imposes a momentum-like structure regardless of the underlying return process.

While most of my analysis focuses on the time-series predictive regression setting of KMZ,

I also show that similar logic applies in a cross-sectional asset pricing setting when P RFF of

K firm characteristics are used to construct RFF factors from a panel of stock returns. When

P ≫ K, a high-complexity SDF with thousands of RFF factors as in Didisheim, Ke, Kelly, and

Malamud (2024) (DKKM) involves dot products that converge to Gaussian kernels of the K firm

characteristics. The resulting mean-variance efficient portfolio weights implied by the estimated

SDF are kernel-smoothed past stock returns, where the smoothing is based on similarity in firm

characteristics across stock-time observations in the training panel. For example, the portfolio

weight of stock n at time t then reflects an average from training-period stocks that exhibited

similar characteristics as stock n at t. When the training sample is as short as T = 12 months

and P ≫ T , the closest matches in characteristic space are likely to be recent observations of stock

n itself. This imparts a momentum-like nature to the strategy. As in the time-series setting, a
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volatility-timing component also emerges: lower volatility in the firm characteristics leads to tighter

clustering in characteristic space, resulting in higher weights on past returns.

Beyond the specific settings of KMZ and DKKM, this analysis highlights a broader limitation

that small training sample sizes impose on complex return prediction. When the true expected

return function is high-dimensional, but sample sizes are small, estimators are constrained to explore

only a very small subspace of the predictor space, leaving most of it unexamined. This limits

variation in the signal, while noise is large. In a time-series setting, with training sample sizes

as short as T = 12 months, little can be learned from the training data about the expected

return function. But even with sample sizes spanning several decades, the available data may

still be small relative to the dimensionality of the predictor space, especially when accounting for

nonlinear transformations. This reflects a fundamental challenge in empirical asset pricing: the

ratio of sample size to model complexity is likely far lower than in many other machine learning

applications.

This paper connects to several others in the literature. Most directly related, several recent

papers examine the analysis in KMZ. Berk (2023) raises the concern that the reported Sharpe

ratios reported in KMZ are not actually achievable since they are actually averages across 1000

draws of the random weights in the construction of RFF. Relatedly, Buncic (2025) shows that

the increasing relation between out-of-sample performance and complexity disappears when RFF-

based return forecasts are first aggregated across different draws of RFF weights before computing

the OOS performance measures rather than aggregating the OOS performance measures after

constructing forecasts. In my analysis I focus on the ridgeless regression limit where P is very

large and the choice of aggregation method has little effect. Cartea, Jin, and Shi (2025) shows

that the measurement errors in return predictors can limit the virtue of complexity. Fallahgoul

(2025) develops information-theoretic bounds on learning in KMZ’s setting, showing that learning

of complex predictive relationships is impossible with the training sample sizes employed by KMZ.

These results are consistent with my analysis of the limitations imposed by sample size, but obtained

with a different, complementary approach.

The kernel ridgeless regression representation used in my analysis connects to recent papers that

explore kernel-based approaches in asset pricing. Kozak (2023) uses the kernel trick to represent dot

products of high-dimensional nonlinear transformations of firm characteristics in terms of kernels.
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Filipović and Pasricha (2022) use Gaussian process regression in asset pricing. Filipović, Pelger,

and Ye (2022) employ kernel ridge regression in bond yield curve estimation.

The fact that sample size limits what can be learned about complex functions from training

data relates to theoretical research that studies what economic decision makers can learn from data

in high-dimensional settings, and how this affects equilibrium pricing. Martin and Nagel (2022)

consider investors learning about asset fundamentals. Molavi, Tahbaz-Salehi, and Vedolin (2024)

study the effects of limits on the complexity of models that investors can entertain. In Da, Nagel,

and Xiu (2024), statistical arbitrageurs are learning about investment opportunities

II. Properties of Predictive Regressions with Random

Fourier Features in the High-Complexity Case

I focus on the case of ridgeless regression, which yields the most striking results in KMZ. In this

setting, the predictive regression appears to achieve substantial out-of-sample performance despite

the absence of explicit ridge regularization and with the number of predictor variables, P , vastly

outnumbering the number of observations used to estimate the regression, T . The analysis below

centers on this high-complexity, small-sample ridgeless case, which generates the most surprising

and counterintuitive findings in KMZ.

II.A. Preliminaries: Predictability Induced by Standardization of the Dependent Variable

KMZ standardize the dependent variable in the predictive regressions, and the return to be fore-

casted, with the standard deviation of returns over the previous 12 months. This can generate

predictability that does not exist in the returns before standardization. Appendix A discusses the

issue in more detail. The resulting bias in predictability is small, but to completely avoid it, I

deviate from KMZ and work with returns that are not standardized.

II.B. Properties of Ridgeless Regression when P > T

Let T denote the number of observations used in rolling predictive regressions, and hence the length

of the training window. The dependent variable observations are returns from t− T to t, collected

in the vector rt. The realizations of the P predetermined predictor variables during the training
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window are collected in the P columns of the T × P matrix Zt−1 = (zt−1 zt−2 ... zt−T )
′. I

focus on the case P > T .

In a regression of returns on the predictor variables, the ridgeless OLS estimator in this case is

b̂t = (Z ′
t−1Zt−1)

+Z ′
t−1rt, (1)

where + denotes the Moore-Penrose pseudoinverse. As the number of predictors is higher than the

number of return observations in rt, the regression perfectly fits the training data in the window

of length T .

With the predictor variable observations in period t collected in the vector zt, the predicted

value for rt+1 is

r̂rfft+1|t = w′
trt, with w′

t = z′
t(Z

′
t−1Zt−1)

+Z ′
t−1. (2)

The predicted return, and hence the market timing position taken by this strategy, is therefore

a weighted average of the T returns in rt. Considering that P > T and using the rules for the

Moore-Penrose pseudoinverse, we can rewrite the weights as

w′
t = z′

tZ
′
t−1(Zt−1Z

′
t−1)

−1. (3)

This provides an interpretation of the T weights: they represent the coefficients in a regression of P

predictor variable observations in the vector zt on lagged observations of the predictors in periods

t− 1 to t− T . Roughly speaking, this regression evaluates which of the past vectors of predictors

zt−1, zt−2, ...,zt−T is most similar to zt. The regression coefficients, and hence the weights wt

then reflect this similarity. For example, if the predictors follow an autoregressive process with

persistence, a zt−k that is closer in time to zt will tend to be more similar to zt than predictor

vectors that are more distant in time. As a consequence, the elements of the weight vector w

corresponding to small k will tend to be higher than those for larger k. When these weights are

then applied to lagged returns in the construction of r̂t = w′
trt, this results in a a version of a

momentum strategy, with higher weights on the most recent returns.

That the predicted return is a weighted average of past returns is always true for any predicted

regression estimated on past returns in the high-complexity case where the number of predictor

variables exceeds the number of observations in the training window. The question is whether
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the weights placed on these past returns reflect any predictive information that predictor variables

have about future returns. As I will show next, when the predictors are constructed as RFF of a

small number of variables, more can be said about how the information from predictors is used in

construction of the weights.

II.C. Forecasts from Ridgeless Regression with Random Fourier Features Approximate Fore-

casts from Kernel Ridgeless Regression

KMZ construct z as a very large number of nonlinear transformations of a small number of predictor

variables from the Goyal-Welch data set as predictors. Specifically, the nonlinear transformations

take the form of Random Fourier Features (RFF). Results on the convergence of dot products of

RFF help shed light on what happens to KMZ’s ridgeless regression estimator when P ≫ T .

The K = 15 predictor variables used by KMZ include 14 predictor variables from the Goyal-

Welch data set augmented with the one-month lagged market index return. KMZ then form RFF

where consecutive elements i and i+ 1 of zt are constructed as

 zi,t

zi+1,t

 =

√
2

P

 cos(γω′
ixt)

sin(γω′
i+1xt)

 , ωi ∼ IID N(0, I), i = 1, ..., P/2, (4)

with γ = 2. KMZ form up to 6,000 of such pairs.2 Focusing on the highest number they consider, we

then have P = 2×6, 000 = 12, 000. KMZ then standardize the RFF, dividing by the within-training-

window standard deviation of each RFF. I first ignore this standardization and will incorporate it

in the next step.

Rahimi and Recht (2007) show that RFF can approximate kernels. Sutherland and Schneider

(2015) show similar results for the RFF specification used by KMZ. The analysis in these papers

focuses on the case of large training data sets. Kernel methods require the evaluation of k(u,v) =

k(u − v) for every pair of datapoints. With large data sets, this entails a huge computational

cost, and approximation of kernels with RFF can dramatically reduce computational cost. This

is the typical use-case for RFF. The idea is to reduce computational complexity relative to direct

computation of kernels. In contrast, in KMZ’s setting, training data sets are small and direct

2.KMZ do not pre-multiply by
√

2/P , but this is inconsequential for the resulting portfolio weights of the market
timing strategy as this scalar factor cancels out in the weights (3).
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computation of kernels is not a challenge. As shown in Rahimi and Recht (2007), when P is large

relative to K, dot products of RFF accurately approximate a kernel

z′
tzt−k ≈ k(xt,xt−k) (5)

that only takes the K original characteristics as inputs. That dot products in a high-dimensional

space of P nonlinearly transformed features can be computed as a kernel that takes inputs in the

lower-dimensional space of the K original features is also known as the kernel trick in machine

learning.3 Given the standard normal distribution of the weights in KMZ’s construction of the

RFF, the kernel will be a Gaussian kernel

k(xt,xt−k) = exp

(
−γ2

2
∥xt − xt−k∥22

)
, (6)

as shown in Sutherland and Schneider (2015).

With the notation

k(xt,Xt−1) =

(
k(xt,xt−1), ..., k(xt,xt−T )

)
(7)

and

K(Xt−1,Xt−1) =


k(xt−1,Xt−1)

...,

k(xT ,Xt−1)

 (8)

we then get

z′
tZ

′
t−1 ≈ k(xt,Xt−1), Zt−1Z

′
t−1 ≈ K(Xt−1,Xt−1), (9)

which leads to the result that the predicted value in ridgeless regression with a very large number

P > T of RFF is approximately equal to the predicted value in the ridgeless limit case of a kernel

ridge regression4

r̂t+1|t ≈ k(xt,Xt−1)K(Xt−1,Xt−1)
−1rt. (10)

3. See Kozak (2023) for an application of the kernel trick in empirical asset pricing.
4. I refer to this regression as a kernel ridgeless regression, which is distinct from a kernel regression—e.g. based

on the Nadarya-Watson estimator—that simply weights observations of the dependent variable without involving the
K(., .)−1 matrix.
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The kernel form of the estimator in (10) is revealing about the nature of KMZ’s market-timing

strategy that results from using the predicted returns as time-varying portfolio weights. The

estimator constructs a prediction of future returns by smoothing past returns. The predicted value

in (10) is a weighted average of the T lagged returns in rt, where the weights depend simply on the

similarity between xt and the T columns of X. The function k(xt,Xt−1) evaluates the similarity

of the current predictor vector xt with the predictor vectors in the training data contained in the

columns ofXt−1. If among these columns there are xt−k for some lags k that are close in distance to

xt, while others are not, then the prediction r̂t+1|t is close to an average of the rt−k+1 observations

at those lags k.

With a very long sample of training data, this estimator would do something economically

reasonable. Given a current predictor vector xt, it would look for instances in the training data

when the predictor vector was similar. Then it would use the realized returns in the months

following these instances as the prediction of future returns associated with xt. Essentially, this is

nonparametric smoothing based on local averaging, where locality is determined by an evaluation

of the kernel. For example, consider using the price-dividend ratio as a single predictor variable in

this approach. With a long training sample, the approach would effectively ask at which points in

time in the past the price-dividend ratio took values similar to the current price-dividend ratio.

However, when applied to very short training windows, e.g. T = 12 months as in KMZ, this

approach is unlikely to learn predictive information from the training data. In fact, when the set

of predictors includes ones with strong persistence—as is the case for the Goyal-Welch predictor

variables—then the weights on past returns in the construction of the predicted value in (10) take a

mechanical form. In this case, there are two effects that largely account for how the weights on past

returns look like. First, the less distant xt−k from xt, the higher the weight that rt−k+1 gets in the

construction of r̂t+1|t. If elements of x have strong persistence, similarity will be higher for predictor

vectors closer in time to t, and hence weights will be higher on training window returns closer in

time to t. This makes the weights resemble a momentum strategy: r̂t+1|t will be an average of lagged

returns in recent months leading up to and including t. Second, in times when the xt and xt−k are

subject to bigger noise shocks—which will tend to happen during periods of high volatility—they

will differ more, and hence k(xt,xt−k) will be smaller, resulting in a smaller weights on past returns

in the construction of r̂t+1|t. The combination of the two effects is basically a momentum strategy
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interacted with a volatility-timing strategy that makes the momentum strategy less aggressive when

volatility is high.

To illustrate how the weights on past returns look like, I use the replication data provided

by KMZ to construct their estimator and the return predictions that follow. Figure I shows the

weights wt averaged over 1,000 draws of random weights for 12,000 RFF and focusing on the

ridgeless regression case with T = 12. The percentiles are based on the distribution over time of

the averaged weights across these 1,000 draws of RFF.5

Panel A shows the time-series mean of the weights for the different return lags as well as

the 10th and 90th percentiles. The results show that the ridgeless regression basically forms a

momentum strategy with the highest weight on the most recent lagged return yt and smaller

weights on earlier return observations. As discussed, this can be anticipated from the kernel ridge

regression representation of the return prediction in (10). Panel B shows the cross-sectional mean

of the T = 12 weights every month. There is strong time-variation in these weights. As I will

show, this time-variation is closely related to the reciprocal of a volatility measure, which means

that KMZ’s market-timing strategy essentially amounts to a volatility-timed momentum strategy.

II.D. Within-Window Standardization of Random Fourier Features Leads to a Scaled Ver-

sion of the Forecasts from Kernel Ridgeless Regression

One issue that still remains to be addressed is that KMZ do not use the RFF directly as predictors.

Instead, within each regression time window, they standardize the RFF by dividing with the within-

window standard deviation of each RFF. Let z̃ denote the standardized RFF. Their dot product

is

z̃′
tz̃

′
t−k = z′

tΩ
−1
t−1zt−k, (11)

where Ωt−1 =
1

T−1 diag(Z
′
t−1Zt−1) is a diagonal matrix with the P within-window variances of the

RFF on its diagonal. The results from Rahimi and Recht (2007) and Sutherland and Schneider

(2015) on approximating kernels no longer apply to this weighted dot product of RFF.

While I do not have a closed-form result that relates the dot products of standardized RFF

to kernels, empirically it turns out that in KMZ’s setting the return prediction based on the

5.The variation of in wt for different draws of RFF random weights is miniscule. Hence, the mean weights and
percentiles for a single draw of RFF random weights would look almost identical to Figure I.
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0 2 4 6 8 10 12

Lag

-0.05

0

0.05

0.1

0.15

0.2

0.25

T
.S

. 
M

e
a

n
 W

e
ig

h
t

(b) Cross-Sectional Means of Weights
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Figure I
Weights on T Past Returns in Ridgeless Regression Return Prediction
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standardized RFF is extremely well approximated by a simple scaling up of the kernel in (10) to

r̂kernelt+1|t ≈ 1.69× k(xt,Xt−1)K(Xt−1,Xt−1)
−1rt. (12)

I refer to the market timing strategy based on this scaled version of the kernel ridge regression as

the kernel approach.

For the same RFF as those in Figure I, Figure II shows that the weights on past returns implied

by KMZ’s high-complexity regression with P = 12, 000 RFF are almost exactly the same as those

resulting from the kernel ridgeless regression approach in (12). Panel A shows the weights for the

most recent lagged return rt in the construction of r̂t+1|t. As the weight on the most recent lagged

return is typically the biggest, this weight is the most important one. As Panel A shows, the

weights on rt in the RFF-based ridgeless regression (horizontal axis) are almost the same as those

implied by the kernel ridgeless regression (vertical axis). The correlation is 0.99. Panel B shows

similar results for the lag 2 return, i.e., the weight on rt−1. For more distant lags not shown in

the figure, the correlations between the different versions of weights are extremely high, too. This

confirms that KMZ’s ridgeless regression with thousands of RFF essentially boils down to a kernel

ridgeless regression that takes a small number of K inputs.

Figure III reinforces this conclusion. It shows the predicted returns, r̂rfft+1|t produced by the

high-complexity regression and r̂kernelt+1|t produced by the kernel approach. They are very similar.

The correlation is 0.93.

II.E. Nature of the Market-Timing Strategy when T is Small: Effectively a Volatility-Timed

Momentum Strategy

The weight that the predicted return rkernelt+1|t puts on return rt−k+1 depends, via the Gaussian kernel

k(xt,xt−k) = exp

(
−γ2

2
∥xt − xt−k∥22

)
(13)

on the distance between xt and xt−k. Broadly speaking, this distance reflects two effects. First,

lags that are more distant in time (larger k) are less similar, which results in greater distance, and

lower k(xt,xt−k). Second, the more volatile the predictors are in the training window, the greater

the distance between xt and xt−k. The two effects combined produce a momentum strategy (higher
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(a) Weight for lag 1 return
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(b) Weight for lag 2 return
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Figure II
Weights on Past Returns implied by Ridgeless Regression and Scaled Kernel Ridgeless Regression
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Figure III
Predicted Returns Implied by KMZ’s Ridgeless Regression and Kernel Approach

positive weights for nearby lags of returns) that is volatility-timed (higher weights when predictor

volatility is low).

Importantly, in a short training window with persistent predictors, the weights will, mechani-

cally, always have this volatility-timed momentum form. The kernel ridgeless regression does not

learn from the data that a volatility-timed momentum effect exists. This pattern of weights akin to

a volatility-timed momentum strategy simply reflects the property of persistent predictor vectors

that similarity is decreasing in time distance, and that the similarity is lower if predictor volatility is

high. These properties of predictor vectors are always true irrespective of whether a volatility-timed

momentum effect exists in the data or not. With much longer training windows the situation would

be different. Then not only a few recent predictor vectors could have a high degree of similarity

to the current one, but predictor vectors in the more distant past—years or decades ago—could

be similar, too, as persistent predictor variables slowly cycle through their empirical range. By

smoothing the return data based on predictor vector similarity, the regression could then learn

nonlinear relationships between predictors and returns. But with windows as short as T = 12, this

cannot happen.

Figure IV presents empirical evidence on the negative relation between predictor volatility and
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Figure IV
Ridgeless Regression Mean Weight on Past Returns and Reciprocal of Mean Predictor Variance

the magnitude of weights on past returns. The figure shows, for each month t, the mean of the

elements of the weight vector wt in (3) that multiplies the 12 training window returns in the

construction of r̂rfft . This is the same time series as in Panel B of Figure I. For comparison, the

figure also shows the reciprocal of the mean of the variances of the 15 predictor variables within

each training window. The figure shows that the mean weights on past returns produced by the

ridgeless RFF strategy are highly correlated over time with the reciprocal mean predictor variance,

consistent with the reasoning I outlined above: low predictor volatility implies higher weights

assigned to recent past returns in the RFF-based strategy.

These results suggest that it should be possible to approximate KMZ’s market timing strategy

with a very simple one: a momentum strategy with weights on past returns that decay with lag

length, similar to the decay of the time-series mean of weights shown in Panel A of Figure I,

combined with a volatility-timing scaling factor that increases the magnitude of weights on past

returns if the volatility of the predictor variables is low. The following market-timing strategy

implements this idea:

r̂volmom
t+1|t = 0.05× 1

σ̂2
x,t−1

×
11∑
k=0

12− k

78
rt−k+1. (14)

Here σ̂2
x,t−1 is the average variance of the K = 15 predictors in the training window of length
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Figure V
Mean Weight on Past Returns in High-Complexity Ridgeless Regression with RFF and in the

Volatility-Timed Momentum Strategy

T = 12. The weights on the past returns in the summation term are linearly declining with the lag

and the division by 78 scales the weights inside the summation to have a sum of unity. The initial

multiplication by 0.05 makes the average magnitude of the market-timing position r̂volmom
t+1|t similar

to the average magnitude of r̂rfft+1|t, but this scaling has no effect on t-statistics and information

ratios of the out-of-sample returns of the strategy.

Figure V compares the linearly declining weights of the volatility-timed momentum strategy

with the weights implied by the KMZ’s RFF-based strategy. They are not identical, but the broad

pattern of decline with lag length is similar.

Figure VI shows the means of the past-return weights of the two strategies each month. Much

of the time-series variation is shared between the two series.

II.F. Spanning Tests: Any Virtue in Complexity?

The analysis so far suggests that KMZ’s RFF-based strategy should essentially be similar to one

based on a kernel ridgeless regression that takes the original K = 15 predictor variables as inputs.

In this section, I show that the kernel-based approach indeed produces very similar market-timing

returns. The above analysis further suggests that KMZ’s strategy is approximately similar to a
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Figure VI
Mean Weight on Past Returns in High-Complexity Ridgeless Regression with RFF and

Volatility-Timed Momentum Strategy

simple volatility-timed momentum strategy. In this section, I show that such a simple volatility-

timed momentum strategy indeed gets close to explaining the returns earned by KMZ’s strategy.

Panel A in Table I reports the alpha of each strategy relative to a one-factor model with the

excess return of the CRSP value-weighted index as the single factor, as well as the corresponding

t-statistics and information ratios.6 The first column shows the result from KMZ that the high-

complexity RFF strategy produces positive alpha, with high t-statistic (2.417) and information ratio

(0.255).7 As expected, the abnormal returns of the strategy based on kernel ridgeless regression

are quite similar to the abnormal returns of the RFF-based strategy. Interestingly, the volatility-

timed momentum strategy produces t-statistics and information ratios that are even slightly larger

than those of the high-complexity RFF strategy. This means that the volatility-timed momentum

strategy could potentially explain the high returns of the RFF-based strategy.

6. For the RFF-based approach, I follow KMZ’s method of calculating statistics for each draw of the random
weights in the RFF construction, followed by averaging the statistics across the draws of random weights. Buncic
(2025) criticizes this approach. I stick to it here to preserve comparability with KMZ’s Figure 8.

7. The t-statistic and information ratio are slightly lower than those that KMZ report in their Figure 8 for the
ridgeless case (log10 z = −3) and high complexity (c = 1000). The reason for this discrepancy is that I do not
standardize the variable to be predicted to avoid the bias discussed in Appendix A. If I standardize returns in the
same way as KMZ do, I obtain a t-statistic of 2.811 and an information ratio of 0.296, which exactly matches the
results in KMZ’s Figure 8.
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TABLE I
Out-of-Sample Market Timing Performance

The RFF market timing strategy in the first column uses RFF as predictors and it is the same as in the ridgeless

regression case in KMZ with T = 12 and P = 12, 000 RFF, but without standardizing the predicted return, for the

reasons discussed in Appendix A. The abnormal returns of the RFF-based market timing strategy are averaged over

1,000 draws of the random weights in the construction of RFF. The second column shows the market timing strategy

based on the Gaussian kernel ridgeless regression in (12). The third column shows results for the volatility-timed

momentum strategy in (14). Panel A shows alphas and information ratios relative to a one-factor model with the

monthly excess return of the CRSP value-weighted index as the single factor. Panel B uses a two-factor model with

the CRSP value-weighted index and the return on the kernel-based strategy as the two factors. Panel C uses the

volatility-timed momentum strategy as the second factor along with the CRSP value-weighted index. Alphas are

annualized in percent.

High-Complexity RFF Kernel Vol-Timed Momentum

Panel A: One-Factor α (Market Factor)
Alpha 0.034 0.040 0.034
(t-stat.) (2.417) (2.900) (3.684)
Information Ratio 0.255 0.306 0.388

Panel B: Two-Factor α (Market and Kernel Factors)
Alpha -0.001
(t-stat.) (-0.122)
Information Ratio -0.013

Panel C: Two-Factor α (Market and Vol-Timed Momentum Factors)
Alpha 0.012
(t-stat.) (0.945)
Information Ratio 0.100
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This is further reinforced by the spanning test in Panel B. Here I add the kernel-based strategy

return as a second factor to the market factor. The alpha of the high-complexity RFF strategy

drops to almost exactly zero, and the t-statistic and information ratios become very small. This is

a natural outcome, given how similar the market timing positions of the two strategies are. Panel

A in Figure VII shows that every month, the kernel-based strategy takes almost exactly the same

position as the high-complexity RFF strategy.

Panel C uses the volatility-timed momentum strategy as second factor. Here the alpha doesn’t

drop as much, but it still falls by about 2/3 compared with Panel A and the t-statistic falls far

below conventional levels of significance. Relatedly, Panel B of Figure VII shows that the market

timing positions of the volatility-timed momentum strategy are very close to those of the high-

complexity RFF strategy. This suggests that the volatility-timed momentum strategy, despite its

extreme simplicity, explains much of the returns earned by the high-complexity RFF strategy.

Figure VII shows that both the kernel-based strategy and the volatility-timed momentum strat-

egy tend to reduce market exposure ahead of recessions. KMZ interpret this pattern in the RFF-

based strategy as evidence that “the machine learning strategy learns to divest leading up to

recessions.” However, the volatility-timed momentum structure of the weights on past returns in

the RFF-based approach suggests a more mechanical explanation. The observed business-cycle

pattern arises because the strategy places greater weight on past returns during periods of low

predictor volatility—periods that typically fall outside recessions. This behavior is not the result

of the machine learning that volatility-timing is beneficial, but rather a mechanical consequence of

how the RFF-based strategy assigns weights based on predictor vector similarity in a short training

window.

Figure VIII shows the cumulated abnormal returns of the three strategies with abnormal returns

measured relative to the one-factor model with the market factor. The cumulated abnormal returns

are divided by the full-sample standard deviation, which makes them interpretable as proportional

to a cumulated information ratio. The volatility-timed momentum strategy overall has somewhat

stronger performance than the others, but it is almost perfectly in sync with them in terms of the

periods in which it gains and loses. Interestingly, almost all the gains for the three strategies accrued

until 1970s. This could perhaps explain why the volatility-timed momentum for the aggregate

market index is not a well-known anomaly.
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(a) Comparison with Kernel Strategy

(b) Comparison with Volatility-Timed Momentum Strategy

Figure VII
Market Timing Positions of RFF-Based Ridgeless Regression, Kernel, and Volatility-Timed

Momentum Strategy

Six-month moving averages of market timing positions r̂rfft+1|t, r
Kernel
t+1|t , and rVolmom

t+1|t with T = 12, P = 12, 000. The

market timing positions r̂rfft+1|t are averaged over 1,000 draws of random weights in the construction of RFF.
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Figure VIII
Cumulative Standardized Out-of-Sample Abnormal Returns

Abnormal returns relative to one-factor model with the excess return of the CRSP value-weighted index as single
factor, divided by the full-sample standard deviation of the abnormal return. The abnormal returns of the market
timing strategy is based on high- ridgeless regression with T = 12 and P = 12, 000 RFF, averaged over 1,000 draw
of random weights in the construction of RFF.

II.G. Out-of-Sample Market Timing Performance in Artificial Data with Reversals

The ridgeless regression in KMZ’s RFF-based approach does not learn from the data that a

volatility-timed momentum effect exists; rather, it mechanically produces a volatility-timed mo-

mentum strategy regardless of the underlying properties of the return data. This structure emerges

because, in short training windows with persistent predictors, the similarity of predictor vectors

leads to systematically higher weights on recent returns during periods of low predictor volatility.

The strong out-of-sample performance is therefore not the result of the model uncovering gen-

uine predictive relationships, but a coincidence: a volatility-timed momentum effect happens to be

present in the data, and the RFF-based strategy inadvertently exploits it.

While the mathematical argument is clear, it is still useful to demonstrate the point empirically.

To that end, I modify the return data so that a volatility-timed momentum strategy no longer de-

livers positive returns. An algorithm that genuinely learns from the data—detecting whether or not

volatility-timed momentum is present—should adapt and avoid pursuing such a strategy when ap-

plied to the modified data. In contrast, an algorithm that constructs a volatility-timed momentum
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TABLE II
Out-of-Sample Market Timing Performance in Artificial Data with Reversals

The RFF market timing strategy in the first column uses RFF as predictors and it is the same as in the ridgeless

regression case in KMZ with T = 12 and P = 12, 000 RFF, but without standardizing the predicted return, for

the reasons discussed in Appendix A, and here in applied to artificial data. The abnormal returns of the RFF-

based market timing strategy are averaged over 1,000 draws of the random weights in the construction of RFF. The

second column shows the market timing strategy based on the Gaussian kernel ridgeless regression in (12). The third

column shows results for the volatility-timed momentum strategy in (14). Panel A shows alphas and information

ratios relative to a one-factor model with the monthly excess return of the CRSP value-weighted index as the single

factor. Panel B uses a two-factor model with the CRSP value-weighted index and the return on the kernel-based

strategy as the two factors. Panel C uses the volatility-timed momentum strategy as the second factor along with

the CRSP value-weighted index. Alphas are annualized in percent.

High-Complexity RFF Kernel Vol-Timed Momentum

Panel A: One-Factor α (Market Factor)
Alpha -0.143 -0.137 -0.124
(t-stat.) (-1.835) (-1.757) (-4.099)
Info Ratio -0.193 -0.185 -0.432

Panel B: Two-Factor α (Market and Kernel Factors)
Alpha -0.013
(t-stat.) (-0.517)
Information Ratio -0.055

Panel C: Two-Factor α (Market and Vol-Timed Momentum Factors)
Alpha -0.045
(t-stat.) (-0.628)
Information Ratio -0.066

strategy for purely mechanical reasons, independent of predictive patterns in the training sample,

will continue to do so even when it is no longer profitable.

Specifically, I modify the return data to such that it exhibits short-term reversals instead of

momentum by adding an MA(2) process with negative autocorrelation to the original returns rt.

The artificial data of monthly market index returns then is

r̃t = rt + ξt − θ1ξt−1 − θ2ξt−2, (15)

with θ1 = θ2 = 0.2 and where ξt ∼ N(0, 0.01). I chose the parameters of the MA(2) process such

that the negative autocorrelation is big enough to overcome the momentum effect in the actual

market index returns. I then replace the market index returns in KMZ’s data with this artificial

return series and redo the estimation.
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Figure IX
Cumulative Standardized Out-of-Sample Abnormal Returns in Artificial Data with Reversals

Abnormal returns relative to one-factor model with excess return of CRSP value-weighted index as single factor,
divided by full-sample standard deviation of the abnormal return. The abnormal returns of the market timing
strategy based on high-complexity ridgeless regression with T = 12 and P = 12, 000 RFF are averaged over 1,000
draw of random weights in the construction of RFF.

Table II replicates the analysis from Table I, but using the artificial market index return data. As

expected, the abnormal performance of the RFF-based strategy, the kernel-based strategy, and the

volatility-timed momentum strategy is now uniformly negative. This confirms that the RFF-based

approach continues to construct portfolio weights akin to a volatility-timed momentum strategy,

despite the poor performance of such a strategy in the altered data. The RFF-based model does

not learn from the data whether momentum (in the original data) or reversal (in the artificial data)

dynamics are present. Instead, the structure of the weights is driven entirely by predictor-vector

similarity. Even in the presence of return reversals, the most recent predictor vectors remain the

most similar to the current one, leading the model to assign the highest positive weights to recent

past returns—regardless of their predictive value.

Figure IX illustrates the out-of-sample performance in cumulative terms. In sharp contrast

to Figure IX, the cumulative abnormal performance is negative. This reflects the inability of the

RFF-based ridgeless regression, and the kernel approach that it approximates, to learn about the

presence of reversals in the data in short training windows of only 12 months. These approaches

still mechanically produce a volatility-timed momentum strategy, which performs badly in this
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artificial data.

III. Cross-Sectional Asset Pricing

In the analysis above, I focused on understanding the time-series predictability results in KMZ,

which are especially puzzling given the conventional wisdom regarding the limitations of small-

sample predictive regressions for stock market index returns. However, the findings also offer

insight into the behavior of models that employ a large number of RFF-based factors in a cross-

sectional asset pricing setting. While there are notable parallels with the time-series case, important

differences also emerge, reflecting the distinct structure of cross-sectional prediction problems.

Consider now an unbalanced panel setting as in Didisheim, Ke, Kelly, and Malamud (2024)

(DKKM), with n = 1, ..., Ns stocks at time s, each with a vector of j = 1, ...,K characteristics

xn,s, stacked into a Ns ×K matrix Xs = (x1,s, ...,xNs,s)
′. The researcher uses a training sample

of length T , with T < Ns for all s.

Construct RFF based on these characteristics for each stock n as zn,i,s

zn,i+1,s

 =

√
2

P

 cos(γω′
ixn,s)

sin(γω′
i+1xn,s)

 ωi ∼ IID N(0, I), i = 1, ..., P/2 (16)

and, in each cross-section s, place the RFF in a P × Ns matrix Zs. DKKM randomly generate

different values for γ for each i from a grid [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. Here I assume that γ is

non-random.

Let rs+1 be an Ns-dimensional vector of stock returns. Forming cross-products of returns and

lagged RFF delivers a P -dimensional vector of RFF factors

f s+1 = Zsrs+1. (17)

As in DKKM, I assume that the SDF has a representation as

Ms = 1− λ′f s. (18)

Let Êt[.] denote a sample average in the training data sample from t − T + 1 to t. Solving for
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the minimum-norm solution of the sample moment conditions Êt[f sMs] = 0 delivers the ridgeless

estimator of the prices of risk

λ̂t =
(
Êt[f sf

′
s]
)+

Êt[f s]

=
(
F ′

tF
)+

F ′
tι, (19)

where ι is a conformable vector of ones and F t = (f t−T+1, ...,f t)
′ has dimension T × P .

Using the same approach as in (3), I can write λ̂t as

λ̂t = F ′
t

(
F tF

′
t

)−1
ι. (20)

As usual, the prices of risk in the SDF that prices excess returns are the coefficients in a projection

of 1 onto the space of factor excess returns (Hansen and Richard 1987). In the ridgeless case with

P > T , the in-sample fit is perfect, so that F tλ̂t = ι and the fitted in-sample SDF is zero every

period in the training sample.8

The prices of risk vector λ is proportional to the weights of the mean-variance efficient combi-

nation of the RFF factors. The estimated implied mean-variance efficient portfolio weights for the

underlying Nt stocks, which can be applied out-of-sample to rt+1, are therefore proportional to

ωt = Z ′
tλ̂t = Z ′

tF
′
t

(
F tF

′
t

)−1
ι. (21)

As before, we can use the fact that dot products of large RFF feature vectors approximate

kernels to write the estimator in terms of kernels. Specifically,

Z ′
tF

′
t =

[
Z ′

tZt−Trt−T+1, ... ,Z ′
tZt−1rt

]
≈ [K(Xt,Xt−T )rt−T+1, ... ,K(Xt,Xt−1)rt] , (22)

where K(., .) again denotes a Gaussian kernel matrix, as earlier, and the approximation follows for

the same reasons I discussed earlier in Section II.C.

The T × T matrix F tF
′
t has on its diagonal f ′

sf s, for s = t− T + 1, ..., t. These dot products

8. In Section 4.5 in the theory part of their paper, DKKM discuss that the properties of the very large P×P matrix
F ′

tF are difficult to characterize. However, in the ridgeless case, calculation of this matrix is not necessary—all we
need is the much smaller T × T matrix F tF

′
t.
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have the following approximation, again for the reasons discussed earlier in Section II.C:

f ′
sf s = r′sZ

′
s−1Zs−1rs

≈ r′sK(Xs−1,Xs−1)rs. (23)

Off-diagonal elements are

f ′
sf s−k = r′sZ

′
s−1Zs−1−krs−k

≈ r′sK(Xs−1,Xs−1−k)rs−k, (24)

i.e., a kernel-weighted sum of serial and cross-serial comoments of returns at lag k. As serial

correlation of returns is very small, and squared expected returns are small relative to the second

moments of returns, the matrix F tF
′
t can be approximated by setting the off-diagonal elements to

zero. Writing it in terms of kernels makes transparent that the RFF-based estimator has a lot of

similarity with the kernel trick approach in Kozak (2023).

With this approximation and (22), the weight vector in (21) becomes

ωt ≈
t∑

s=t−T+1

K(Xt,Xs−1)rs
r′s+1K(Xs,Xs)rs+1

. (25)

To discuss what the estimator is effectively doing, it is useful to focus on the element of the weight

vector that applies to stock n,

ωn,t ≈
t∑

s=t−T+1

K(xn,t,Xs−1)rs
r′sK(Xs−1,Xs−1)rs

. (26)

To determine the weight for stock n at the end of period t, this approach looks back at the

panel of stock returns in the training data and constructs a weighted average of past returns of

stocks. Consider one term in the summation. In the weighted average in the numerator, the kernel

assigns higher weights to returns of stock observations with characteristics that are similar to xn,t,

applying kernel smoothing to these returns. The denominator introduces a (co-)variance timing

effect on the weights. If return volatility is high in period s, and especially when stocks with

similar characteristics have similar returns, the denominator will be large, pulling towards zero the
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contribution of the summation term in (26) that corresponds to training sample period s.

DKKM find that their method produces high out-of-sample Sharpe ratios even with T = 12

months, although their baseline analysis finds higher Sharpe ratios with T = 360. As in the time-

series setting, training windows as short as T = 12 raise the risk that the strategy behaves like

a form of momentum strategy that performs well in the historical sample by coincidence but is

not truly learned from the data. In this case, the portfolio weight assigned to stock n at time

t depends a weighted average of returns across the entire return panel, where the weights favor

stock-time observations with firm characteristics most similar to xn,t. Given the persistence of

firm characteristics and the short training window, stock n’s own past returns are likely to receive

the most weight, imparting a strong momentum component. If other stocks have exhibited similar

characteristics, their returns may also receive weight, introducing elements of group momentum or

factor momentum. In addition, the denominator in (26) introduces a (co)variance-timing effect,

increasing the influence of returns from periods with lower (co)variances. Taken together, the

resulting strategy resembles a volatility-timed momentum strategy, shaped more by mechanical

similarity and volatility patterns than by learned return predictability.

When the training window is substantially longer—as in DKKM’s baseline analysis with T =

360—the strategy becomes more nuanced and is less likely to resemble a mechanical momentum-

style approach. With T = 360, the estimator effectively scans the multi-decade return panel for

stock-time observations whose firm characteristics resemble xn,t and then smooths the associated

returns to construct the numerator in (26). A longer training window increases the likelihood that

relevant characteristics-similar observations are found in the more distant past, beyond the stock’s

own recent history, enabling the estimator to learn from a broader cross-section of the data about

the typical returns linked to a given set of characteristics. The fact that DKKM report substantially

higher out-of-sample Sharpe ratios with T = 360 than with T = 12 supports the interpretation

that the estimator is capturing meaningful patterns in the data rather than simply reproducing the

returns of a mechanical momentum-like strategy.
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IV. Sample Sizes in Empirical Asset Pricing Limit Learning of

Complex Functions

The evidence presented earlier in this paper shows that the out-of-sample performance of KMZ’s

market-timing strategy does not reflect predictive relationship learned from the data and therefore

does not shed light on the virtue of complexity in return prediction. To be clear, this does not mean

that there is no virtue of complexity in return prediction, but rather that KMZ’s empirical analysis

does not demonstrate the virtue of complexity. Conceptually, there remains a sound rationale

for expecting models with a large number of predictors to outperform overly artificially sparse

alternatives, provided appropriate regularization is applied, either explicitly through shrinkage or

implicitly via minimum-norm estimators, such as in ridgeless regression. The key question for

empirical asset pricing, however, is whether the benefits of model complexity can compensate for

the severe limitations imposed by small sample sizes.

The training data sets available to asset pricing researchers are small by the standards of

most machine learning applications. Much of the theoretical literature on the double-descent phe-

nomenon, including the theoretical analysis in KMZ, focuses on asymptotic settings in which both

T and P grow large. However, such asymptotic analysis does not address the central question

facing empirical asset pricing: whether any meaningful predictability can be extracted from train-

ing samples of limited size. Conventional wisdom holds that windows as short as 60 or even 12

months—as employed in KMZ—are insufficient to uncover reliable return predictability. In this

section, I examine this question focusing in finite-sample analysis.

Consider a time series of returns generated as

rt+1 = z′
tb+ et+1, et+1 ∼ N(0, σ2), (27)

where the P predictors are drawn as

zt ∼ N(0, I) (28)

every period t and the coefficients as

b ∼ N

(
0,

1

P
I

)
, (29)
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so that E[b′b] = 1. This setting uncorrelated predictors and normally distributed shocks is a special

case of the DGP in the theoretical analysis of KMZ. The (infeasible) maximum squared Sharpe

ratio achievable with perfect knowledge of b (see Appendix B.1) is

SR2
max ≈ 1

σ2 + 2
. (30)

This is an unconditional Sharpe ratio in the sense that it is not conditioned on Z, consistent with

an empirical approach as in KMZ that calculates the mean and variance of market-timing returns

based on forecasts from rolling training windows with varying Z. The Sharpe ratio in (30) does

not depend on P . Therefore, by changing P , we can change the complexity of the true expected

return function without changing the maximum achievable Sharpe ratio.

Let Z denote the matrix of T × P features and r = Zb + e the vector of returns observed

in a training window of length T < P − 1. I focus first on the well-specified case where the

econometrician uses all the P predictor variables present in the true model of expected returns.

The ridgeless regression estimator of b is

b̂ = Z ′(ZZ ′)−1r. (31)

With all predictor variables at the time of prediction, after the end of the training window, collected

in zt, the estimated market-timing weight is

r̂t = z′
tb̂. (32)

A strategy based on these weights earns a squared Sharpe ratio (see Appendix B.2) of

SR2 ≈
(
T

P

)
1

σ2
[
1 + P+2+σ2P

P−T−1

]
+ 3− T

P

. (33)

Several cases are instructive to consider here. First, as T approaches P − 1 from below, the

variance term inside the brackets in the denominator of SR2 explodes, causing the Sharpe ratio to

collapse to zero. This gives rise to a double-ascent pattern in the Sharpe ratio, mirroring the more

commonly discussed double-descent behavior of the squared forecast error. In this sense, there is a

qualitative virtue of complexity: for fixed T , increasing P beyond the critical threshold where it is
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close to T improves the Sharpe ratio.

Second, even when P ≫ T and virtuous complexity is exploited to the fullest extent, the

attainable Sharpe ratio remains tiny when T is small. In the empirically relevant case for studies

like KMZ—where P is large and T is small—the Sharpe ratio remains far below its theoretical

maximum SRmax. For example, with T = 50, σ = 5, P = 1000 we have SRmax = 0.1925, or about

0.67 on an annualized basis.9 Yet in this case, equation (33) implies that Sharpe ratio of the the

market-timing strategy based on ridgeless regression forecasts is only SR = 0.0084, roughly 1/25

of SRmax. Thus, while higher P helps lift the Sharpe ratio from zero when P is close to T to

higher levels, these higher levels are still tiny. Ultimately, the size of the training sample imposes

a binding constraint on the achievable Sharpe ratio.

To understand why small T limits the Sharpe ratio, it useful to see how the estimator processes

the information in the signal component, Zb, in the training data returns r = Zb + e. We can

write the ridgeless estimator as

b̂ = Z ′(ZZ ′)−1Zb+ noise. (34)

The first term on the right-hand side represents a projection of the P -dimensional vector b onto

the T -dimensional random subspace spanned by the T rows of Z. As a result, even abstracting

from any distortions introduced by noise, the estimator can recover only a weighted average of the

true coefficient vector b, but not the full b. In other words, much of the information in b remains

unidentifiable from the limited sample.10 As a consequence, non-zero forecast error will arise if

T < P even in a noiseless setting where r ≈ Zb. This highlights a fundamental limitation imposed

by training sample size. If it is indeed true that the true model of expected return is complex,

then, with P in the thousands, it is impossible to learn much about the expected return function

from samples as small as T = 12 or T = 60, even in the absence of noise. From the training data,

the regression can only learn about return predictability in the T directions represented by the

subspace spanned by the T rows of Z. Other dimensions remain unexplored. As a consequence,

the attainable squared Sharpe ratio based on the estimated strategy will be less than T/P times

9. Scaling et and the elements of zt by the same constant would not alter the Sharpe ratio.
10. This is related to the notion that the effective complexity of a prediction model can be quantified with the

effective degrees of freedom (EDF) of a fitted model [Efron (1986), Hastie and Tibshirani (1987)] calculated as the
trace of the hat-matrix, which in this case is tr

(
Z′(ZZ′)−1Z

)
= T . Fallahgoul (2025) uses learning theory to make

related observations about the limitations induced by training sample size in KMZ’s setting.
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Figure X
Out-of-sample Sharpe ratios for different training sample sizes

Market-timing strategy based on ridgeless regression shown as solid lines, based on Bayesian posterior mean shown
as dotted lines.

SR2
max.

In the misspecified case—where the number of predictors used by the econometrician is smaller

than the number of predictors in the true model of expected returns—there is an additional benefit

to using a more complex model: incorporating more predictors reduces the omission of relevant

predictive information. As KMZ note, this is a plausible characterization of the econometrician’s

problem in empirical asset pricing. Let P now denote the number of predictor variables in the

true model, and p ≤ P is the number actually used by the econometrician. I simulate the Sharpe

ratios achieved by the econometrician’s market-timing strategy. Figure X displays the resulting

Sharpe ratios for three value of T , holding fixed P = 1, 000, σ = 5, implying SRmax = 0.1925, as

before. In addition to the results for ridgeless regression, shown as solid lines, I also include the

Sharpe ratio of a market-timing strategy that uses the Bayesian posterior mean as portfolio weight.

This posterior mean is based on the prior belief that the elements of b are drawn from the same

distribution that, in fact, generates them.

For all three values of T , higher p helps lift the Sharpe ratio, except in a region around p = T ,

due to the double-ascent property. However, as the figure shows, this dip in the Sharpe ratio
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can be avoided by employing optimal Bayesian shrinkage. For values of p close to P , the Sharpe

ratio based on ridgeless regression and the Bayesian posterior mean are generally similar. That

the Sharpe ratio is highest for high p shows that, qualitatively, there is a virtue of complexity.

However, quantitatively, the benefits from higher complexity are minuscule when T is small. For

T = 50 and p = P , the Sharpe ratio tops out at 0.0084 which is only around 1/25 of SRmax.

The key takeaway is that an empirical Sharpe ratio of approximately 0.30 with a training

window of T = 12, as reported in KMZ cannot plausibly be attributed to the virtue of complexity

in estimation. Even under conditions that fully exploit the benefits of model complexity, the Sharpe

ratios achievable with such limited data are exceedingly small. As such, empirical findings of high

Sharpe ratios in this setting cannot reflect predictive patterns learned from the training data—they

must be driven by other factors. The insights from this analysis extend more broadly and generalize

in several important directions:

Persistence. Predictor variables used in empirical asset pricing typically have some persistence.

Persistence exacerbates the effects of small sample size because it reduces the in-sample variance

of the predictor variable relative to the noise variance, which amplifies estimator error and forecast

error. Put differently, with persistence, the estimator effectively only explores a very small part of

the T -dimensional space spanned by the rows of Z, and hence cannot learn about the regression

slopes with much precision.

Cross-sectional asset pricing. In the cross-sectional setting of Section III, similar conclusions

apply to some degree. The estimator of the P -dimensional vector of prices of risk in (20) represents

the coefficients in a projection of 1 onto the training sample factor returns. We can decompose the

vector of ones into “signal” and orthogonal noise as ι = Fλ+ e. Then, inserting into (20) yields

λ̂ = F ′
t

(
F tF

′
t

)−1
Fλ+ noise. (35)

The first term on the right-hand side represents the projection of the P -dimensional λ onto the

T -dimensional random subspace spanned by the T rows of F t. As a result, the estimator can learn

from the signal component only a weighted average of λ, but not the full λ. As in the time-series

setting, when T < P , this limited view of the predictor space introduces out-of-sample forecast

error beyond the estimation error caused by noise. Thus, the size of the training sample imposes

a fundamental constraint on the dimensionality of factor risk pricing that the model can learn
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from the data. This limitation is not unique to DKKM; it also applies to other high-dimensional

approaches that utilize large sets of factors or firm characteristics, e.g., as in Gu, Kelly, and Xiu

(2020), Kozak, Nagel, and Santosh (2020), Chen, Pelger, and Zhu (2024).

There is, however, an important distinction from the time-series setting. In the cross-sectional

asset-pricing context, the RFF-based factors in F t are constructed as portfolio returns of the form

f s+1 = Zsrs+1. For a given T , a larger cross-sectional dimension Ns can help reduce the noise

in these factor returns, thereby improving the estimator’s ability to recover the true prices of risk.

The extent to which a higher Ns reduces noise depends on the structure of the return covariance

matrix. Specifically, it matters whether a given row of Zs (which determines a factor’s portfolio

weights) is aligned with eigenvectors corresponding to large or small eigenvalues of the covariance

matrix. If a factor portfolio loads primarily on low-variance directions (i.e., eigenvectors with

small eigenvalues), the associated risk tends to diversify away, resulting in a cleaner signal. In

contrast, if the factor loads on high-variance directions, diversification is less effective and noise

remains substantial. When risk diversifies away but the corresponding price of risk remains large,

an increase in Ns improves the signal-to-noise ratio, enhancing the estimator’s ability to learn the

true price of risk.

Return measurement frequency. Since return measurement frequency is a choice available to

researchers, one might think that increasing frequency—and thereby raising the sample size T—

could mitigate the limitations imposed by small training samples. Formally, this is correct: the first

term on the right-hand side of (34) would represent a projection onto a higher-dimensional random

subspace as measurement frequency increases. In a noiseless setting, this implies that the estimator

could, in principle, learn about more directions in the predictor space. However, in practice, this

benefit is minimal unless return-predictive signals also vary at high frequency. If predictors are

instead persistent, increasing measurement frequency simply induces more smoothing. To see this,

consider the ridgeless kernel regression representation (10). When a predictor vector xs in a past

period s < t is similar to the current predictor vector xn,t when measured at low frequency, then the

predictor vectors measured at higher frequency around time s will also be similar. As a consequence,

returns will be smoothed over all these adjacent higher-frequency periods, making it effectively a

lower-frequency return. Ultimately, with persistent predictors, it is the total length of the training

sample—rather than how finely the data is sampled within it—that determines how much of the
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predictor space is explored and, thus, how much signal can be extracted relative to the noise that

obscures the true expected return function.

V. Conclusion

The empirical success of out-of-sample stock market index return prediction with a large number, P ,

of predictors constructed as Random Fourier Features (RFF)—randomly weighted and nonlinearly

transformed versions of a small number, K, of original predictor variables—and small training

sample size T ≪ P appears to suggest that a virtue of complexity allows the discovery of predictive

relationships even when T is very small. However, the strong out-of-sample performance of the

market-timing strategy in KMZ using training samples as small as T = 12 months is not evidence

of virtuous complexity. Rather, it reflects fortunate coincidence: with small training sample sizes,

the RFF approach in KMZ mechanically reduces approximately to a volatility-timed momentum

strategy, which happened to perform well in the historical sample.

Crucially, the RFF-based regressions do not learn from the data that a volatility-timed momen-

tum strategy is effective. Instead, the momentum-type weighting of past returns in the construction

of predicted future returns arises mechanically. The predicted returns effectively take the form of

a kernel-smoothed average of past returns, where the weights depend on the distance between past

and current realizations of the K-dimensional original predictor vector. Because most of the K

predictor variables underlying the RFF are persistent, recent observations tend to be more similar

to the current predictor vector, leading to higher weights on recent returns—giving the strategy

a momentum-like character. Moreover, when volatility is low, past and current predictor realiza-

tions are more tightly clustered, further concentrating the weights on recent months—imparting a

volatility-timing component to the strategy.

Similar effects can arise in cross-sectional asset pricing applications where the SDF is expressed

as a function of P factors, each constructed by weighting individual stock returns with RFF trans-

formations of K original firm characteristics. When the training window is as short as 12 months,

the predicted return for stock n effectively becomes a kernel-smoothed average of its own recent

past returns, albeit possibly with some cross-stock smoothing as well if other stocks have recently

exhibited firm characteristics similar to those of stock n.

These findings do not challenge the broader idea that complexity is virtuous—that is, a complex
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prediction model will often outperform an ad hoc, sparse, misspecified model that omits potentially

relevant predictors. Rather, they challenge the notion that this virtue of complexity enables the

discovery of substantial out-of-sample predictability in stock market index returns when models

are trained on extremely small data sets. Conventional wisdom holds that identifying meaning-

ful predictive relationships for stock returns requires training data spanning decades—not just a

few years—if any such predictability exists at all. My empirical results are consistent with this

conventional wisdom.

The fact that virtuous complexity cannot overcome the limitations of small training sample size

is natural. When T ≪ P , an overparametrized regression projects onto a very small T -dimensional

random subspace within the P -dimensional space of predictors. Much of the predictive information

embodied in predictors then necessarily remains hidden in unobserved dimensions, and the variance

of the extractable signal is small relative to that of the noise. This also highlights a general limitation

of what machine learning can achieve in empirical asset pricing: even when training samples are

expanded to include all available data, sample sizes remain modest relative to the number of

potentially useful informative variables and the complexity of predictive relationships.
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Appendix

A. Spurious Predictability Induced by Standardizing Returns

The following analysis shows how standardizing can induce spurious predictability under the null
of no true predictability.

Let excess returns on a stock market index return be rt+1 = µ+ σtet+1, where µ > 0 and et+1

is IID noise with Et et+1 = 0 and Et e
2
t+1 = 1. Assume that σ2

t is time-varying, i.e., var(σ2
t ) > 0.

Assume that σ2
t is observable to a researcher. The researcher examines market excess returns

standardized by conditional volatility:

rt+1 =
rt+1

σt
=

µ

σt
+ et+1. (A.1)

The first term, µ
σt
, now has predictable variation and Et rt+1 =

µ
σt

is time-varying.

While a predictability test applied to r with predictor σ−1
t would yield

cov(rt+1, σ
−1
t ) = 0, (A.2)

applied to y it yields evidence of predictability

cov(rt+1, σ
−1
t ) = µ var(σ−1

t ) (A.3)

and the regression slope coefficient in a regression of rt+1 on σ−1
t is equal to µ and the intercept

is zero. Therefore, the fitted prediction is µσ−1
t , which is also equal to Et rt+1. The predictable

variation is

R2 =
µ2 var(σ−1

t )

var(rt)
≈ 0.43% (A.4)

which is not negligible in monthly data. This calculation uses µ = 0.0068 (mean of the CRSP
index return in the Goyal-Welch data set), var(σ−1

t ) = 108.80 (using 12m lagged volatility of index
returns as σt), and var(yt) = 1.19.

Now construct a timing strategy based on the predicted value

ft+1 = rt+1xt, with xt = µσ−1
t (A.5)

(The return of this timing strategy will be the same as the return of a volatility-timing strategy
with weight µσ−2

t applied to the non-standardized return rt+1, which exploits that µ does not vary
with σt).

To get alpha, let’s first get the covariance with the market excess return:

cov (ft+1, rt+1) = cov

(
rt+1

σt

(
µ

σt

)
, rt+1

)
= E

[
µσ2

t e
2
t+1

σ2
t

]
= µ (A.6)
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so

β =
µ

var(rt+1)

=
µ

E[σ2
t ]
. (A.7)

Therefore,

α = E [ft+1]− βµ

= µ2 E[σ−2
t ]− µ2 E[σ2

t ]
−1

= µ2
(
E[σ−2

t ]− E[σ2
t ]

−1
)

> 0, (A.8)

where the bound in the last line follows from Jensen’s inequality. With the same moments as I
used for the R2 above, and after annualizing,

α ≈ 0.24. (A.9)

Using the standardized market return as benchmark, as in KMZ, the alpha is smaller: Covari-
ance with the standardized market return

cov (ft+1, rt+1) = µE[σ−1
t ] (A.10)

and, since var(rt+1) ≈ 1,

β = µE[σ−1
t ] (A.11)

α = E [ft+1]− βµE[σ−1
t ]

= µ2(E[σ−2
t ]− E[σ−1

t ]2)

= µ2 var(σ−1
t ), (A.12)

which comes out to be annualized about α ≈ 0.06 with empirical moments for µ and var(σ−1
t ).

In simulations, I find the same value of alpha on average, and an information ratio of about 0.25,
which is not a negligible magnitude!

In the simulations with window size T = 12, however, I find that the fitted values from predictive
regressions with RFF don’t get close to capturing all this predictability that the reciprocal volatility
strategy above captures. The information ratio I find in these simulations for the RFF-based
strategy is only around 0.05. So much of the predictability captured by the RFF is due to something
else, not the above mechanical effect related to standardization. That said, as a general matter,
that the above analysis shows that standardizing the dependent variable is a somewhat dangerous
practice in a study that has the objective of documenting predictability. It’s only a small part of
the story in KMZ, but it could play a bigger role in others.
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B. Proofs

Lemma 1. Let x ∼ (N)(0, I) with dimension P and A a deterministic symmetric matrix. Then

E[xx′Axx] = tr(A)Ip + 2A (A.13)

Proof. For the (i, j)-entry,

E[xix
′Axxj ] =

∑
k,ℓ

Akℓ E[xi xj xk xℓ] (A.14)

Because x ∼ N(0, I), the fourth moment factorizes via Isserlis’ theorem

E[xi xj xk xℓ] = δij δkℓ + δik δjℓ + δiℓ δjk, (A.15)

where δ·· is the Kronecker delta. Inserting into the sum yields

E[xix
′Axxj ] = δij

∑
k,ℓ

δkℓAkℓ +
∑
k,ℓ

δik δjℓAkℓ +
∑
k,ℓ

δiℓ δjkAkℓ

= δij tr(A) + Aij + Aji. (A.16)

Stacking the entries and using the symmetry of A then leads to the result.

Lemma 2. Let X be a T × P random matrix with IID standard normal elements and T < P and
let b be a deterministic P × 1 vector. Then

E[b′X(XX ′)−1X ′b] =
T

P
b′b (A.17)

and

var(b′X(XX ′)−1X ′b) = (b′b)2
2T (P − T )

P 2(P + 2)
. (A.18)

Proof. Define P = X ′(XX ′)−1X. Since X has IID standard normal entries, P is a random
orthogonal projector of rank T that represents the orthogonal projection in RP onto a random T -
dimensional subspace that is distributed uniformly on the Grassmannian of all such subspaces (see
Vershynin (2025) Section 5.2.6). Lemma 5.3.2. in Vershynin (2025) then provides the stated result
for the expected value. Next consider the variance. Instead of considering fixed b and random
P , the same random subspace can be obtained by considering fixed P and random 1√

b′b
b, with

b ∼ N(0, I) (see Vershynin (2025), proof of Lemma 5.3.2). Proceeding with this latter view, Lemma
1.5.7. in Muirhead (1982) then implies

b′Pb

b′b
∼ Beta

(T
2
,
P − T

2

)
. (A.19)

Switching back to the view of P as random and b as fixed, we still have the same distribution.
Evaluating the variance of the beta distribution, then gives the result on variance.

Lemma 3. Let X be a T × P random matrix with IID standard normal elements and T < P − 1.
Then

E[(XX ′)−1] = IT
1

P − T − 1
. (A.20)

Proof. This result follows from the fact XX ′ follows a Wishart distribution and application of the
properties of the inverse Wishart distribution.
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Lemma 4. Let X be a T × P random matrix with IID standard normal elements and T < P − 1
and let b be a deterministic P × 1 vector. Then

E[b′X ′(XX ′)−2Xb] =
T

P (P − T − 1)
b′b. (A.21)

Proof. Let S = XX ′ and A = X ′(XX ′)−2X. Using rotational invariance, i.e., XV
d
= X,

replacing X with XV in A then shows

A
d
= V ′AV (A.22)

for all orthogonal matrices V . Hence, we have E[A] = V ′ E[A]V for every orthogonal matrix V ,
which means that E[A] commutes with every orthogonal matrix, which, by Schur’s lemma, implies
that

E[A] = cI (A.23)

for some scalar constant c. We can find c by noting that

E[tr(A)] = E[tr(S−1)] =
T

P − T − 1
. (A.24)

where the last equality follows from Lemma 3. Hence c = T
P (P−T−1) and the stated result follows.

B.1. Maximum achievable Sharpe ratio

Expected market-timing return

E[z′
tbb

′zt|b] = E[tr(z′
tbb

′zt)|b]
= E[tr(ztz

′
tbb

′)|b]
= tr(bb′)

= b′b (A.25)

The expected squared market timing return is

E[z′
tbb

′ztz
′
tbb

′zt|b] = E[tr(ztz
′
tbb

′ztz
′
tbb

′)|b] + E[e2t+1z
′
tbb

′zt|b]
= tr

{[
tr(bb′)Ip + 2bb′

]
bb′

}
+ σ2 E[tr(z′

tbb
′zt)|b]

= tr
{
tr(bb′)bb′ + 2bb′bb′

}
+ σ2b′b

= 3(b′b)2 + σ2b′b (A.26)

where the second equality follows from Lemma 1. Therefore,

var(z′
tbb

′zt|b) = 3(b′b)2 + σ2b′b− (b′b)2 = σ2b′b+ 2(b′b)2 (A.27)

and hence the squared Sharpe ratio is

SR2
max =

(b′b)2

σ2b′b+ 2(b′b)2
=

b′b

σ2 + 2(b′b)
≈ 1

σ2 + 2
(A.28)

where the approximation is accurate for large P .

41



B.2. Sharpe ratio based on estimated parameters with ridgeless regression in the T < p case

Expected returns

E[rt+1r̂t|Z, b] = E[b′ztz
′
tZ

′(ZZ ′)−1Zb|Z, b]

= b′Z ′(ZZ ′)−1Zb (A.29)

Conditioning down and using Lemma 2, I obtain

E[rt+1r̂t|b] =
T

P
b′b ≈ T

P
. (A.30)

To calculate the variance, let’s first focus on the uncentered second moment,

E[r2t+1r̂
2
t |Z, b] = E[

{
(et+1 + z′

tb)z
′
tZ

′(ZZ ′)−1(Zb+ e)
}2 |Z, b]

= E[(et+1z
′
tZ

′(ZZ ′)−1Zb)2|Z, b]

+ E[(et+1z
′
tZ

′(ZZ ′)−1e)2|Z, b]

+ E[(z′
tbz

′
tZ

′(ZZ ′)−1Zb)2|Z, b]

+ E[(z′
tbz

′
tZ

′(ZZ ′)−1e)2|Z, b]. (A.31)

The omitted cross-product terms have zero expected value due to the mutual independence of et+1,
e, and zt. Evaluating the conditional expectations, the cyclical property of the trace, and then in
the second step Lemma 1 for the third and the last term, I find that the conditional variance is

var(rt+1r̂t|Z, b) = E[r2t+1r̂
2
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By Lemma 2 for the first and third term, Lemma 3 for the second, as well as Lemma 3 and
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then Lemma 4 for the fourth, and Lemma 2, adding squared mean and variance, for the fifth
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(A.33)

Using Lemma 2,

var (E[rt+1r̂t|Z, b]|b) = var
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(A.34)

Hence,

var (E[rt+1r̂t|b]) = E[var(rt+1r̂t|Z, b)|b] + var (E[rt+1r̂t|Z, b]|b)
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(A.35)

Combing the results for expected return and variance, we get the squared Sharpe ratio condi-
tional on b
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(A.36)
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