Sufficient Statistics for Measuring Forward-Looking Welfare

David Baqaee UCLA Ariel Burstein
UCLA

Yasu Koike-Mori
UNC Chapel Hill

July 13, 2025

Measuring changes in welfare is an essential task for economics.

- Measuring changes in welfare is an essential task for economics.
- In static settings, well-known suff. stats: change in income deflated by average price change.

- ▶ Measuring changes in welfare is an essential task for economics.
- In static settings, well-known suff. stats: change in income deflated by average price change.
- In dynamic settings, welfare depends on future outcomes.
- Straightforward if full set of contingent claims markets exist, but as Samuelson (1961) notes:

"The futures prices needed... are simply unavailable. So it [is] difficult to make operational the theorists' desired measures."

- ► Measuring changes in welfare is an essential task for economics.
- ▶ In static settings, well-known suff. stats: change in income deflated by average price change.
- In dynamic settings, welfare depends on future outcomes.
- ▶ Straightforward if full set of contingent claims markets exist, but as Samuelson (1961) notes:
 - "The futures prices needed... are simply unavailable. So it [is] difficult to make operational the theorists' desired measures."
- Literature takes two approaches to the problem:
 - 1. Compute welfare inside fully-specified dynamic model.
 - 2. Use net-present value of real wealth (discounting future cashflows & prices).
- ▶ Both require taking stance on state-contingent prices, cashflows, returns, probabilities, plans.

What We Do

- ▶ Develop sufficient-stats for dynamic welfare side-stepping knowledge of future.
- ▶ Key assumption: preferences are separable between the present and the future.
- ▶ Use changes in savings behavior to learn about changes in expectations about the future.
- ▶ Method allows for incomplete markets, idiosyncratic risk & borrowing constraints.
- ▶ Application using the PSID between 2005 2019:
 - Dynamic measures of growth and cost-of-living very different to static.
- Measure can be used to estimate dynamic welfare treatment effects:
 - e.g. job loss associated with 20% reduction in welfare.

Selected Related Literature

- Basic theory of intertemporal welfare measures:
 Samuelson (1961), Alchian and Klein (1973), Pollack (1975).
 - ► Fully-specified models: Reis (2005), Aoki and Kitahara (2010), Jones and Klenow (2016), etc.
 - Discounting future:
 Hulten (1979), Goodhart (2001), Basu et al. (2022), Fagereng et al. (2022), Del Canto et al. (2023).

Static price index literature: Feenstra (1994), Hamilton (2001), Costa (2001), Almås (2012), Atkin et al. (2024), Jaravel and Lashkari (2024), Baqaee et al. (2024).

Agenda

Inferring Welfare in Stripped-down Example

Inferring Welfare in General Environment

Empirical Illustration Using PSID data

Conclusion

Agenda

Inferring Welfare in Stripped-down Example

Inferring Welfare in General Environment

Empirical Illustration Using PSID data

Conclusion

Example with Complete Markets

 \triangleright Consumers with horizon *J* living at date τ solve following problem:

$$V(\tau,w) = \max_{\mathbf{c},\mathbf{a}} \sum_{j=0}^J \sum_{s_j} \beta^j \pi(s^j | \tau) \frac{c(s^j | \tau)^{1-1/\sigma}}{1-1/\sigma}.$$

Subject to sequence of budget constraints

$$egin{split} &
ho(s^0| au)c(s^0| au) + \sum_{k\in S_1} a_k(s^0| au) = w, \ & p(s^j| au)c(s^j| au) + \sum_{k\in S_{l+1}} a_k(s^j| au) = R_k(s^{j-1}| au)a_k(s^{j-1}| au), \ & p(s^J| au)c(s^J| au) \leq R_k(s^{J-1}| au)a_k(s^{J-1}| au). \end{split}$$

 \blacktriangleright Hold J (age of consumer) fixed, so suppress dependence on J.

Measure welfare at (au,w) using money-metric: wealth in au_0 that makes consumer indifferent

$$V(\tau, w) = V(\tau_0, m(\tau, w|\tau_0)).$$

- ▶ Use $m(\tau, w|\tau_0)$ to measure growth (by varying $\tau \& w$) or cost-of-living (by varying τ_0).
- Write $m(\tau, w)$ instead of $m(\tau, w | \tau_0)$ from now (hold base year τ_0 constant).

Towards Solution

- ▶ With intertemporal budget constraint, problem is static w/ CES demand over dates/states.
- ▶ Hence, money-metric is total wealth divided by CES ideal price index.

$$m(\tau, w) = w / \left[\frac{P(\tau)}{P(\tau_0)}\right].$$

Towards Solution

- With intertemporal budget constraint, problem is static w/ CES demand over dates/states.
- ▶ Hence, money-metric is total wealth divided by CES ideal price index.

$$m(\tau, w) = w / \left[\frac{\sum_{j=0}^{J} \sum_{s_j} (\beta^j \pi(s^j | \tau))^{\sigma} \rho(s^j | \tau)^{1-\sigma} \prod_{l=0}^{j} R_{s_{l+1}} (s^l | \tau)^{\sigma-1}}{\sum_{j=0}^{J} \sum_{s_j} (\beta^j \pi(s^j | \tau_0))^{\sigma} \rho(s^j | \tau_0)^{1-\sigma} \prod_{l=0}^{j} R_{s_{l+1}} (s^l | \tau_0)^{\sigma-1}} \right]^{\frac{1}{1-\sigma}}.$$

- ► Need beliefs about future probabilities, prices & returns.
- Illustrates Samuelson's problem: require knowledge of future prices.

• Use consumption-wealth ratio, B^P , to back out intertemporal $P(\tau)$:

$$B^P(\tau, w) = rac{p\left(s^0| au
ight)c\left(s^0| au, w
ight)}{w} = B^P(au).$$

By CES demand, change in consumption-wealth ratio satisfies

$$rac{B^P(au)}{B^P(au_0)} = \left[rac{p(s^0| au_0)/P(au_0)}{p(s^0| au_0)/P(au_0)}
ight]^{1-\sigma}.$$

• Use consumption-wealth ratio, B^P , to back out intertemporal $P(\tau)$:

$$B^P(\tau, w) = \frac{p\left(s^0|\tau\right)c\left(s^0|\tau, w\right)}{w} = B^P(\tau).$$

By CES demand, change in consumption-wealth ratio satisfies

$$\log \frac{P(\tau)}{P(\tau_0)} = \log \frac{p(s^0|\tau)}{p(s^0|\tau_0)} - \frac{1}{1-\sigma} \log \frac{B^P(\tau)}{B^P(\tau_0)}.$$

• Use consumption-wealth ratio, B^P , to back out intertemporal $P(\tau)$:

$$B^P(\tau,w) = rac{p\left(s^0| au
ight)c\left(s^0| au,w
ight)}{w} = B^P(au).$$

By CES demand, change in consumption-wealth ratio satisfies

$$\log \frac{P(\tau)}{P(\tau_0)} = \log \frac{p(s^0|\tau)}{p(s^0|\tau_0)} - \frac{1}{1-\sigma} \log \frac{B^P(\tau)}{B^P(\tau_0)}.$$

Using equation above

$$\log m(\tau, w) = \log w - \log \frac{P(\tau)}{P(\tau_0)}.$$

• Use consumption-wealth ratio, B^P , to back out intertemporal $P(\tau)$:

$$B^P(\tau,w) = rac{p\left(s^0| au
ight)c\left(s^0| au,w
ight)}{w} = B^P(au).$$

By CES demand, change in consumption-wealth ratio satisfies

$$\log \frac{P(\tau)}{P(\tau_0)} = \log \frac{p(s^0|\tau)}{p(s^0|\tau_0)} - \frac{1}{1-\sigma} \log \frac{B^P(\tau)}{B^P(\tau_0)}.$$

Using equation above

$$\log m(\tau, w) = \underbrace{\log w - \log \frac{p(s^0|\tau)}{p(s^0|\tau_0)}}_{\text{static "real wealth"}} + \underbrace{\frac{1}{1-\sigma} \log \frac{B^p(\tau)}{B^p(\tau_0)}}_{\text{adjustment for future}}.$$

If σ < 1 and consumption-wealth ratio rises, then relatively more optimistic.

• Use consumption-wealth ratio, B^P , to back out intertemporal $P(\tau)$:

$$B^P(\tau,w) = \frac{p\left(s^0|\tau\right)c\left(s^0|\tau,w\right)}{w} = B^P(\tau).$$

▶ By CES demand, change in consumption-wealth ratio satisfies

$$\log \frac{P(\tau)}{P(\tau_0)} = \log \frac{p(s^0|\tau)}{p(s^0|\tau_0)} - \frac{1}{1-\sigma} \log \frac{B^P(\tau)}{B^P(\tau_0)}.$$

Using equation above (Feenstra, 1994 logic for value of new goods applied to value of future goods)

$$\log m(\tau, w) = \underbrace{\log w - \log \frac{p(s^0|\tau)}{p(s^0|\tau_0)}}_{\text{static "real wealth"}} + \underbrace{\frac{1}{1-\sigma} \log \frac{B^p(\tau)}{B^p(\tau_0)}}_{\text{adjustment for future}}.$$

If σ < 1 and consumption-wealth ratio rises, then relatively more optimistic.

Non-homotheticities in consumption-wealth ratio

- ▶ Method requires using changes in consumption-wealth ratio.
- ▶ But, consumption-wealth ratio strongly declining in permanent wealth (as in Straub 2019).

Need to extend to non-homothetic case; whose changes in consumption-wealth to use?

Agenda

Inferring Welfare in Stripped-down Example

Inferring Welfare in General Environment

Empirical Illustration Using PSID data

Conclusion

Preferences

ightharpoonup Without loss, preferences over consumption streams **c** with beliefs π representated as

$$U = D(\mathbf{c}, \boldsymbol{\pi}, U),$$

where D is homogeneous of degree one in \mathbf{c} .

Preferences

 \blacktriangleright Without loss, preferences over consumption streams **c** with beliefs π representated as

$$U = D(\mathbf{c}, \boldsymbol{\pi}, U),$$

where D is homogeneous of degree one in \mathbf{c} .

Assume this representation is separable between present and future

$$U = D(\underbrace{P(\mathbf{c}(s^0), U)}_{\substack{\text{present}\\ \text{bundle}}}, \underbrace{F(\{\mathbf{c}(s^j)\}_{j>0}, \{\pi(s^j)\}_{j>0}, U)}_{\substack{\text{future}\\ \text{bundle}}}, U),$$

If preferences are homothetic, then can drop U from RHS.

Implies spending on i relative to j in same block only function of prices in that block and U.

Examples with Time Separability

- Some examples assuming one good per period (to keep notation light).
- e.g. Non-homothetic patience

$$U = \frac{c(s^0)^{1-1/\sigma}}{1-1/\sigma} + \sum_{i=1}^J \beta_i(U) \frac{c(s^i)^{1-1/\sigma}}{1-1/\sigma}.$$

• e.g. Non-homothetic risk-aversion

$$U = \frac{c(s^0)^{1-1/\sigma}}{1-1/\sigma} + \sum_{i=1}^{J} \beta^j \frac{\left[\sum_{s^j} \pi(s^j) c(s^j)^{\gamma(U)}\right]^{\frac{1-1/\sigma}{\gamma(U)}}}{1-1/\sigma}.$$

• e.a. Non-homothetic intertemporal elasticity of substitution

$$U = \frac{c(s^0)^{1-1/\sigma(U)}}{1-1/\sigma(U)} + \sum_{i=1}^{J} \beta^j \frac{c(s^j)^{1-1/\sigma(U)}}{1-1/\sigma(U)}.$$

Constraints

First period budget constraint:

$$p(s^0|\tau)c(s^0|\tau) + \sum_{k \in K} a_k(s^0|\tau) = w.$$

Each subsequent history s^{j} , receive capital and labor income $y(s^{j}|\tau)$:

$$p(s^{j}|\tau)c_{n}(s^{j}|\tau) + \sum_{k \in K} a_{k}(s^{j}|\tau) = \sum_{k \in K} R_{k}(s^{j}|\tau)a_{k}(s^{j-1}|\tau) + y(s^{j}|\tau).$$

- ▶ Borrowing constraints $\sum_k a_k(s^j|\tau) \ge -X(s^j|\tau)$. No-ponzi requires $X(s^J) = 0$.
- ► Rentiers are households with no labor income: $y(s^i|\tau) = 0$ for all s^i .

Dynamic Money Metric Utility

- ► Consumer behaves as-if future plans are followed (relax in extensions).
- Value function is

$$V(\underbrace{\{\mathbf{p},\mathbf{R},oldsymbol{\pi},\mathbf{X}\}}_{\text{indexed by } au},w,\mathbf{y})=\max_{\mathbf{c},\mathbf{a}}\left\{ ext{utility }: ext{constraints satisfied}
ight\} .$$

- No single intertemporal budget constraint, so many alternative ways to define money metric.
- We use equivalent wealth as rentier.

Dynamic Money Metric Utility

- ► Consumer behaves as-if future plans are followed (relax in extensions).
- Value function is

$$V(\underbrace{\{\mathbf{p},\mathbf{R},oldsymbol{\pi},\mathbf{X}\}}_{ ext{indexed by } au},w,\mathbf{y})=\max_{\mathbf{c},\mathbf{a}}\left\{ ext{utility }: ext{constraints satisfied}
ight\}.$$

- ▶ No single intertemporal budget constraint, so many alternative ways to define money metric.
- We use equivalent wealth as rentier.
- Consider a consumer living at τ with wealth w and income y. How much wealth would he need, as a rentier, at date τ_0 to be indifferent? This is $m(\tau, w, y)$ that solves

$$V(\tau, \mathbf{w}, \mathbf{y}) = V(\tau_0, \mathbf{m}(\tau, \mathbf{w}, \mathbf{y}), \mathbf{0}).$$

Dynamic Money Metric Utility

- ► Consumer behaves as-if future plans are followed (relax in extensions).
- Value function is

$$V(\underbrace{\{\mathbf{p},\mathbf{R},oldsymbol{\pi},\mathbf{X}\}}_{ ext{indexed by } au},w,\mathbf{y})=\max_{\mathbf{c},\mathbf{a}}\{ ext{utility }: ext{constraints satisfied}\}\,.$$

- ▶ No single intertemporal budget constraint, so many alternative ways to define money metric.
- We use equivalent wealth as rentier.
- Consider a consumer living at τ with wealth w and income y. How much wealth would he need, as a rentier, at date τ_0 to be indifferent? This is $m(\tau, w, y)$ that solves

$$V(\tau, \mathbf{w}, \mathbf{y}) = V(\tau_0, \mathbf{m}(\tau, \mathbf{w}, \mathbf{y}), \mathbf{0}).$$

Consider special cases that build to general result.

Special Case I: homothetic rentiers

Proposition

Suppose homoth. preferences, one consumption good per period, and constant EIS. For rentiers:

$$\log m(\tau, w, \mathbf{0}) = \underbrace{\log w - \log \frac{p(s^0 | \tau)}{p(s^0 | \tau_0)}}_{static "real wealth"} + \underbrace{\frac{\log \left(B^P(\tau, w, \mathbf{0})/B^P(\tau_0, w, \mathbf{0})\right)}{1 - \sigma}}_{adjustment for future}.$$

➤ Generalizes simple example for incomplete markets & more general preferences (e.g. EZ).

Special Case I: homothetic rentiers

Proposition

Suppose homoth. preferences, one consumption good per period, and constant EIS. For rentiers:

$$\log m(\tau, w) = \underbrace{\log w - \log \frac{p(s^0|\tau)}{p(s^0|\tau_0)}}_{static "real wealth"} + \underbrace{\frac{\log \left(B^P(\tau)/B^P(\tau_0)\right)}{1 - \sigma}}_{adjustment for future}$$

► Generalizes simple example for incomplete markets & more general preferences (e.g. EZ).

Special Case II: allowing non-homotheticity

- ▶ If preference non-homoth., then consumption-wealth ratio could change for two reasons:
 - 1. Because cost of present consumption relative to future changed.
 - 2. Because household in τ is differently wealthy to τ_0 .
- Need to use changes in savings behavior due only to the first reason.
- lacktriangle Use consumption-wealth ratio for consumer on same indifference curve at au_0

Special Case II: allowing non-homotheticity

- ▶ If preference non-homoth., then consumption-wealth ratio could change for two reasons:
 - 1. Because cost of present consumption relative to future changed.
 - 2. Because household in τ is differently wealthy to τ_0 .
- ▶ Need to use changes in savings behavior due only to the first reason.
- \blacktriangleright Use consumption-wealth ratio for consumer on same indifference curve at τ_0

Proposition

One consumption good per period, and constant EIS. For rentiers:

$$\log m(\tau, w) = \underbrace{\log w - \log \frac{p(s^0|\tau)}{p(s^0|\tau_0)}}_{\text{static "real wealth"}} + \underbrace{\frac{\log \left[B^P(\tau, w)/B^P(\tau_0, m(\tau, w))\right]}{1 - \sigma}}_{\text{adjustment for future}}$$

Special Case II: allowing non-homotheticity

- ▶ If preference non-homoth., then consumption-wealth ratio could change for two reasons:
 - 1. Because cost of present consumption relative to future changed.
 - 2. Because household in τ is differently wealthy to τ_0 .
- ▶ Need to use changes in savings behavior due only to the first reason.
- Use consumption-wealth ratio for consumer on same indifference curve at au_0 (logic of Baqaee et al. (2024) applied to dynamic)

Proposition

One consumption good per period, and constant EIS. For rentiers:

$$\log m(\tau, w) = \underbrace{\log w - \log \frac{p(s^0 | \tau)}{p(s^0 | \tau_0)}}_{static "real wealth"} + \underbrace{\frac{\log \left[B^P(\tau, w)/B^P(\tau_0, m(\tau, w))\right]}{1 - \sigma}}_{adjustment for future}$$

General Case for Rentiers

Fully general case, with multiple goods and variable EIS.

Proposition

Money metric for rentiers is solution to the fixed point problem:

$$\log m(\tau, w) = \underbrace{\log w - \int_{\tau_0}^{\tau} \sum_{n \in N} B_n(t, w_t^*) \frac{d \log p_n}{dt} dt}_{\text{static "real wealth"}} + \underbrace{\int_{\tau_0}^{\tau} \frac{d \log B^P(t, w_t^*)/dt}{1 - \sigma(t, w_t^*)} dt}_{\text{adjustment for future}},$$

where for each $t \in [\tau_0, \tau]$, w_t^* satisfies the equation

$$m(t, w_t^*) = m(\tau, w).$$

Money Metric for Non-Rentiers

- \triangleright Separability implies budget shares in present, b_n , depend **only** on prices in present and U.
- ▶ If $b_n(\mathbf{p}, U)$ is one-to-one in U, can use budget shares to infer U for non-rentiers.
- \triangleright e.g. dentist & landlord with same budget shares in τ on same indifference curve.
- To obtain this inverse:
 - 1. Regress wealth on budget shares and time for rentiers.
 - 2. Use fitted relationship to impute money metric wealth for non-rentiers.

Money Metric for Non-Rentiers

- \triangleright Separability implies budget shares in present, b_n , depend **only** on prices in present and U.
- If $b_n(\mathbf{p}, U)$ is one-to-one in U, can use budget shares to infer U for non-rentiers.
- \triangleright e.g. dentist & landlord with same budget shares in τ on same indifference curve.
- To obtain this inverse:
 - 1. Regress wealth on budget shares and time for rentiers.
 - 2. Use fitted relationship to impute money metric wealth for non-rentiers.

Logic of Hamilton (2001) applied in the cross-section rather than over time.

Testing Method using Monte Carlo

Consider parametric example

$$U = \frac{1}{1 - 1/\sigma} \mathbb{E}_0 \sum_{j=0} \beta^j C_j^{1 - \frac{1}{\sigma}}, \quad \text{where} \quad C_j = \left[\sum_n \omega_n^{\frac{1}{\gamma}} \left[\frac{c_{nj}}{U^{\varepsilon_n}} \right]^{\frac{\gamma}{\gamma - 1}} \right].$$

- Simulate Bewley households with borrowing constraint & risk-free bond.
- Off-the-shelf AR(1) calibration of income process.
- Use $\beta = 0.96$, $\sigma = 0.1$ (Best et al. 2024), $\gamma = 0.25$.
- Compare error against NPV calculation using risk-free discount rate.

Money Metric Against NPV of Total Wealth

▶ NPV of income overstates money metric utility, especially for poor households.

Changes Due to Income Shock

▶ NPV performs less badly in response to shocks, but errors still large for low wealth.

1. Unconstrained consumers receiving risk-free labor income isomorphic to rentiers (pensioners, civil servants, etc.)

- 1. Unconstrained consumers receiving risk-free labor income isomorphic to rentiers (pensioners, civil servants, etc.)
- 2. Labor-leisure: method extends if leisure is separable from consumption.

- Unconstrained consumers receiving risk-free labor income isomorphic to rentiers (pensioners, civil servants, etc.)
- 2. Labor-leisure: method extends if leisure is separable from consumption.
- 3. No commitment with time inconsistency: method applies if time separability holds.

- 1. Unconstrained consumers receiving risk-free labor income isomorphic to rentiers (pensioners, civil servants, etc.)
- 2. Labor-leisure: method extends if leisure is separable from consumption.
- 3. No commitment with time inconsistency: method applies if time separability holds.
- 4. Changes in mortality: method extends but need WTP to reduce probability of death.

- 1. Unconstrained consumers receiving risk-free labor income isomorphic to rentiers (pensioners, civil servants, etc.)
- 2. Labor-leisure: method extends if leisure is separable from consumption.
- 3. No commitment with time inconsistency: method applies if time separability holds.
- 4. Changes in mortality: method extends but need WTP to reduce probability of death.
- 5. What about non-time-separable non-homotheticity?

Non-Separable Non-homotheticity

▶ A common functional form, due to Comin et al. (2020), is

$$U = rac{1}{1-1/\sigma} \mathbb{E}_0 \sum_{i=0} eta^j C_j^{1-rac{1}{\sigma}}, \quad ext{where} \quad C_j = \left[\sum_n \omega_n^{rac{1}{\gamma}} \left[rac{c_{nj}}{C_j arepsilon_n}
ight]^{rac{1-\gamma}{\gamma-1}}
ight]^{rac{1}{\gamma-1}}.$$

Non-homotheticity depends on C_i not U, so does not satisfy our assumption.

Non-Separable Non-homotheticity

▶ A common functional form, due to Comin et al. (2020), is

$$U = rac{1}{1-1/\sigma} \mathbb{E}_0 \sum_{j=0} eta^j C_j^{1-rac{1}{\sigma}}, \quad ext{where} \quad C_j = \left[\sum_n \omega_n^{rac{1}{\gamma}} \left[rac{c_{nj}}{C_j arepsilon_n}
ight]^{rac{1-\gamma}{\gamma-1}}.$$

- Non-homotheticity depends on C_i not U, so does not satisfy our assumption.
- But method still works in practice:
 - As EIS tends to zero, we show method works exactly for both rentiers and non-rentiers.
 - Under mild assumption about shocks, method exact for rentiers even if EIS far from zero.
- Quantitative illustration using EIS $\sigma = 0.1$.

Money Metric for Non-Rentiers Against NPV of Total Wealth

- Not shown: method works very well for rentiers even with gigantic shocks.
- Method also works quite well for non-rentiers:

Method works much better than NPV, with much less information.

Changes Due to Income Shocks

In response to income shocks, in changes, the errors are even smaller.

Method works better than NPV, with much less information.

Agenda

Inferring Welfare in Stripped-down Example

Inferring Welfare in General Environmen

Empirical Illustration Using PSID data

Conclusion

Data

- Household survey with financial net worth, age, consumption survey, subset of rentiers.
 (We use PSID, bi-annual from 2005 2019).
 (Group consumers by decade of life show results for 60 69 year olds for illustration.)
- Prices of goods and services.
 (CPI prices for seven categories in PSID).
- Elasticity of intertemporal substitution $\sigma(\tau, w)$ (use Best, Cloyne, Ilzetzki, and Kleven 2020 of $\sigma = 0.1$.) (if consumption is a normal good, then compensated EIS < uncompensated EIS.)

Classifying Rentiers

- Proxy wealth = net assets (including DC) + discounted labor income + transfers.
- ▶ Forecast income using cross-section + CBO forecast of NGDP.
- ▶ Discount future labor income and transfers by 4% real rate (Catherine et al., 2022).
- ► Rentiers: Net financial assets ≥ 90% of total wealth & not unemployed.
- Drop from rentier set if net assets are in the top and bottom 2.5%.

Money metric wealth in 2005 base prices for 60-69 year olds

- ▶ Money metric converts wealth in 2019 into equivalent in 2005 and vice versa.
- ► Static inflation overstates cost-of-living changes.

Change in log consumption wealth ratios 2005 - 2019 (60 - 69 year olds)

- Consumption-wealth ratios grew, so future is brighter.
- Compensated grew less than uncompensated since some changes due to wealth effects.

Dynamic Welfare Treatment Effect

- Consider a treatment that affects households over time in uncertain ways.
- For example, job training program, educational investment, interest rate policy, etc.
- Our money metric estimates can be used to study welfare treatment effect.
- Illustrate using job loss for head of household using PSID.

Percent change in money metric wealth due to job loss

	log money metric	
	(1)	(2)
Job Loss	-0.197	-0.218
	(0.031)	(0.034)
Job loss \times 1(age \geq 60)		0.180
, - ,		(0.083)
Lagged LHS	Yes	Yes
Controls	Yes	Yes
Observations	48,357	48,357
	F . II O	
	Full Sample	

Controls: year fixed effects, age group, marital status of HH head, industry, and education level.

▶ Infer difference in money-metric using difference in budget shares of job-havers vs. -losers.

Agenda

Inferring Welfare in Stripped-down Example

Inferring Welfare in General Environmen

Empirical Illustration Using PSID data

Conclusion

Conclusion

Use time-separability to infer it from consumption-savings for rentiers.

Match rentiers and non-rentiers using budget shares.

Static and dynamic different, with heterogeneity in wealth & age.

Ingredient for policy evaluation of shocks that affect future.

Extension 1: Pseudo rentiers

- Consider a subset of households with risk-free cash flow $y(s^{j}|\tau) = y(j|\tau)$.
- For example, public sector employees, teachers, pensioners on defined benefits, etc.
- For these households, assume no ad-hoc borrowing constraints & access to bonds of maturities {1,...,J}.
- These households' problem is isomorphic to rentier with augmented wealth

$$w(s^0|\tau) + \sum_{j=0}^{J} \frac{y(j|\tau)}{R(j|\tau)},$$

where $R(j|\tau)$ is return on bond with maturity j purchased in τ .

Do not pursue this in empirical application (for now).

Extension 2: Changes in mortality

- ▶ Let λ_P and λ_F be prob. of reaching *P* and *F*.
- Marginal willingness to pay for increasing survival probabilities: $\Phi_P(\tau, w), \Phi_F(\tau, w)$.
- Money metric solves:

$$\log u(\tau, w, \mathbf{0}) = \underbrace{\log w - \int_{\tau_0}^{\tau} \left(\sum_{n \in N} B_n(t, w_t^*) \frac{d \log p_n}{dt} - \frac{1}{1 - \sigma} \frac{d \log B^P(t, w_t^*)}{dt} \right) dt}_{\text{what we had before}}$$

$$+ \underbrace{\int_{\tau_0}^{\tau} \left(\Phi_P(t, w_t^*) \frac{d \log \lambda_P(t)}{dt} + \Phi_F(t, w_t^*) \frac{d \log \lambda_F(t)}{dt} \right) dt}_{\text{compensated value of increased survival}}$$

$$+ \underbrace{\int_{\tau_0}^{\tau} \frac{\sigma}{1 - \sigma} \left(1 - B^P(t, w_t^*) \right) \frac{d \log \lambda_F(t)}{dt} dt}_{\text{changes in consmption/wealth ratio due to } d\lambda_F}$$

Extension 3: Leisure

- Results unchanged for rentiers if, conditional on observables, leisure choices do not change as a function of calendar time (e.g. labor productivity = 0, or 9-to-5 job).
- Results unchanged for non-rentiers if relative static budget shares only depend on utility and static prices of goods and services.
- Rules out non-separabilities between consumption choices and leisure.
- Example:

$$U^{\frac{\sigma-1}{\sigma}} = \tilde{P}\left(c\left(s^{0}\right), U\right)^{\frac{\sigma-1}{\sigma}} + \tilde{F}\left(\left\{c(s^{j})\right\}_{j>0}, \boldsymbol{\pi}, U\right)^{\frac{\sigma-1}{\sigma}} + \tilde{H}\left(\left\{l(s^{j})\right\}_{j\geq0}, \boldsymbol{\pi}, U\right).$$

Recall a common class of preferences take the form

$$U = rac{1}{1-1/\sigma} \mathbb{E}_0 \sum_{t=0} eta^t C_t^{1-rac{1}{\sigma}}, \quad ext{where} \quad C_t = \sum_n \omega_{nt}^rac{1}{\gamma} \left[rac{C_{nt}}{C_t^{\mathcal{E}_n}}
ight]^rac{1-\gamma}{\gamma}.$$

- Not time separable in the way we need (unless homothetic).
- But method still works in practice:
 - In paper, prove as EIS tends to zero, method works well for both rentiers and non-rentiers.
 - ▶ Under mild assumption about shocks, method works perfectly for rentiers even if $\sigma \gg 0$.
- Illustrate reliability using quantitative examples with EIS \approx 0.1.

For these preferences, the EIS is

$$\sigma(\tau, w, y) = \left[(1 - \gamma) \frac{Var_{B(s^0)}(\varepsilon_n)}{\mathbb{E}_{B(s^0)}[\varepsilon_n]^2} + 1 - \frac{\left[1 - \frac{1}{\theta}\right]}{\mathbb{E}_{B(s^0)}[\varepsilon_n]} \right]^{-1}.$$

where the variance and expectation use period 0 budget shares, denoted $B(s^0)$, as weights. Since $B(s^0)$ vary as a function of (τ, w, y) , the EIS also varies.

For rentiers, proposition holds but there is an error term.

$$\log m(\tau, w, 0) = \log w - \int_{\tau_0}^{\tau} \left(\sum_{n \in N} B_n(x, w_x^*, 0) \frac{d \log p_n}{dx} - \frac{d \log B^P(x, w_x^*, 0)/dx}{1 - \sigma(x, w_x^*, 0)} \right) dx + (1 - \gamma) \text{error.}$$

Error term is

$$\begin{aligned} \textit{error} &= \int_{\tau_0}^{\tau} \frac{\sigma(x, w_x^*, 0)}{\sigma(x, w_x^*, 0) - 1} \left[\textit{Cov}_{\textit{B}(s^0)}(\frac{\varepsilon_i}{\mathbb{E}_{\textit{B}(s^0)}[\varepsilon_i]}, \frac{d \log p_n(s^0)}{dx}) \right. \\ &\left. - \sum_{j=0}^{J} \frac{\textit{E}(s^j) / \textit{R}(s^j)}{\sum_{j'} \textit{E}(s^{j'}) / \textit{R}(s^j)} \textit{Cov}_{\textit{B}(s^j)}(\frac{\varepsilon_n}{\mathbb{E}_{\textit{B}(s^j)}[\varepsilon_n]}, \frac{d \log p_n(s^j)}{dx}) \right] dx. \end{aligned}$$

- As EIS goes to zero, (e.g. $\sigma \rightarrow$ 0), the error goes to zero.
- ► Error depends on *difference* in contemporaneous and future covariance of profile of shocks with slopes of Engel curves likely to be small for many shocks.
- e.g. interest rates shocks have zero error.

lacktriangle For non-rentiers, as $\sigma o 0$, method also applies.

Proposition

Matching on budget shares correctly identifies money-metric utility for non-rentiers when $\sigma = 0$ (which happens if, for example, $\theta \to 0$).

Proof Sketch

1. There exist shadow prices q^* that "rationalize" consumer's choices:

$$c_n^*(s^j|q^*, \boldsymbol{\pi}, V(\tau, w, y)) = c_n(s^j|\tau, w, y)$$

with shadow prices for goods in first period equal to observed prices:

$$q_n^*(s^0|\tau, w, y) = p_n(s^0|\tau).$$

- 2. Dual shadow prices for rentiers depend on τ and V not the case for non-rentiers.
- 3. Money metric is expressible using shadow intertemporal expenditure function:

$$m(\tau, w, \mathbf{0}) = e(q^*(\cdot|\tau_0, m(\tau, w, \mathbf{0})), \boldsymbol{\pi}(\cdot|\tau_0), m(\tau, w, \mathbf{0})).$$

4. Manipulate to get:

$$\log m(\tau, w, \mathbf{0}) = \log w - \log \frac{e(q^*(\cdot | \tau, m(\tau, w, \mathbf{0})), \boldsymbol{\pi}(\cdot | \tau), m(\tau, w, \mathbf{0}))}{e(q^*(\cdot | \tau_0, m(\tau, w, \mathbf{0})), \boldsymbol{\pi}(\cdot | \tau_0), m(\tau, w, \mathbf{0}))}.$$

Proof Sketch

5. Using fundamental theorem of calculus:

$$\log m(\tau, w, \mathbf{0}) = \log w + \int_{\tau}^{\tau_0} \sum_{t=0}^{J} \sum_{s'} \left(\frac{\partial \log e(q^*(s'|t, m(\tau, w, \mathbf{0})), \boldsymbol{\pi}(s'|t), m(\tau, w, \mathbf{0}))}{\partial \log q^*(s'|t, m(\tau, w, \mathbf{0}))} \cdot \frac{d \log q^*(s'|t, m(\tau, w, \mathbf{0}))}{dt} \cdot \frac{d \log e(q^*(s'|t, m(\tau, w, \mathbf{0})), \boldsymbol{\pi}(s'|t), m(\tau, w, \mathbf{0}))}{\partial \boldsymbol{\pi}(s'|t)} \cdot \frac{d \boldsymbol{\pi}(s'|t)}{dt} \right) dt.$$

Cut through the complexity using time-separability:

$$\frac{\partial \log e(q, \boldsymbol{\pi}, U)}{\partial \log q} \cdot d \log q + \frac{\partial \log e(q, \boldsymbol{\pi}, U)}{\partial \boldsymbol{\pi}} \cdot d \boldsymbol{\pi} = -\frac{d \log b^P(q, \boldsymbol{\pi}, U)}{1 - \sigma^*(q, \boldsymbol{\pi}, U)} + \sum_{n \in N} b_n(q(s^0), U) d \log q_n(s^0).$$

- Substitute this back in to get desired result.
- Idea from Bagaee et al. (2024) that compensation is fixed point.

Banking 5(1), 173–191.

Almås, I. (2012). International income inequality: Measuring ppp bias by estimating engel curves for food. American Economic Review 102(2), 1093–1117.

Alchian, A. A. and B. Klein (1973). On a correct measure of inflation. Journal of Money, Credit and

Aoki, S. and M. Kitahara (2010). Measuring a dynamic price index using consumption data. *Journal of Money, Credit and Banking 42*(5), 959–964.

Atkin, D., B. Faber, T. Fally, and M. Gonzalez-Navarro (2024). Measuring welfare and inequality with incomplete price information. *The Quarterly Journal of Economics* 139(1), 419–475.

- Baqaee, D. R., A. T. Burstein, and Y. Koike-Mori (2024). Measuring welfare by matching households across time. *The Quarterly Journal of Economics* 139(1), 533–573.
 Basu, S., L. Pascali, F. Schiantarelli, and L. Serven (2022, 01). Productivity and the Welfare of Nations. *Journal of the European Economic Association* 20(4), 1647–1682.
- Catherine, S., P. Sodini, and Y. Zhang (2022). Countercyclical income risk and portfolio choices: Evidence from sweden. *Swedish House of Finance Research Paper* (20-20). Costa, D. L. (2001). Estimating real income in the united states from 1888 to 1994: Correcting cpi
- bias using engel curves. *Journal of political economy 109*(6), 1288–1310.

 Del Canto, F. N., J. R. Grigsby, E. Qian, and C. Walsh (2023). Are inflationary shocks regressive?
 - a feasible set approach. Technical report, National Bureau of Economic Research.

- Asset-price redistribution. Technical report, Working Paper.

 Feenstra, R. C. (1994). New product varieties and the measurement of international prices. *The American Economic Review*, 157–177.
- Hamilton, B. W. (2001, June). Using engel's law to estimate cpi bias. *American Economic Review 91*(3), 619–630.

Fagereng, A., M. Gomez, E. Gouin-Bonenfant, M. Holm, B. Moll, and G. Natvik (2022).

- Hulten, C. R. (1979). On the importance of productivity change. The American economic review 69(1), 126–136.Jaravel, X. and D. Lashkari (2024). Measuring growth in consumer welfare with income-dependent
- preferences: Nonparametric methods and estimates for the united states. *The Quarterly Journal of Economics* 139(1), 477–532.
- Jones, C. I. and P. J. Klenow (2016). Beyond gdp? welfare across countries and time. *American Economic Review 106*(9), 2426–2457.
- Pollack, R. A. (1975). The intertemporal cost of living index. In *Annals of Economic and Social Measurement, Volume 4, number 1*, pp. 179–198. NBER.
- Reis, R. (2005). A dynamic measure of inflation.

Samuelson, P. A. (1961). The evaluation of 'social income': Capital formation and wealth. In *The Theory of Capital: Proceedings of a Conference held by the International Economic Association*, pp. 32–57. Springer.

Straub, L. (2019). Consumption, savings, and the distribution of permanent income. *Unpublished manuscript, Harvard University*.