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Abstract

More than 42 million Americans are exposed to medium or high levels of traffic noise.
Despite its potentially large toll and unequal distribution, the economic costs, incidence,
and policy implications of traffic noise have received limited attention in economics. We
quantify the aggregate economic burden of this externality and its distribution across
demographic groups by estimating homebuyers’ willingness to pay for quieter environ-
ments. Using quasi-experimental variation from the construction of noise barriers, we
find that reduced traffic noise exposure leads to significant increases in house prices, im-
plying that buyers are willing to pay a substantial premium for each decibel of noise
reduction. In the five years before construction, we detect no differential pre-trends in
prices between treated and control properties. Following construction, we observe an im-
mediate and largely permanent 6.8% increase in prices within 100 meters, with smaller
gains at greater distances. Information on each barrier’s noise attenuation allows us to
recover the willingness to pay per decibel of traffic noise. Combining these estimates with
spatially granular data on noise exposure, we calculate the aggregate economic cost of
traffic noise at $110 billion nationwide. The economic burden is disproportionately borne
by lower income and minority households, suggesting that the externality is regressive.
The cost varies widely across cities, reflecting differences in noise levels, property val-
ues and population density. Based on our estimates, the socially efficient Pigouvian tax
amounts to $974 per vehicle. A broad shift to electric vehicles – which are quieter than
traditional vehicles – could yield noise reduction benefits of $77.3 billion, concentrated
among low-income families in dense urban areas.
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1 Introduction

Traffic noise is an understudied and potentially costly negative externality. More than 42

million Americans live in census tracts with medium or high traffic noise levels, and exposure

is even higher in Europe (European Environmental Agency, 2020). Low-income households are

disproportionately represented in neighborhoods near major roads. Noise has been linked to a

wealth of physical and mental health conditions (World Health Organization, 2011, Greenhill,

2024). Despite its potentially large economic toll and unequal distribution, the aggregate costs,

incidence, and policy implications of traffic noise have received limited attention in economics.

In this paper, we quantify the economic cost of traffic noise by estimating its effect on

homebuyers’ willingness to pay for quieter environments. Using quasi-experimental variation

based on the construction of noise barriers, we find that reduced traffic noise exposure leads

to significant increases in house prices indicating that buyers are willing to pay a substantial

premium for each decibel of noise reduction. Equipped with these estimates and spatially

granular data on noise exposure, we quantify the aggregate economic burden of the traffic

noise externality and its distribution across demographic groups. For the U.S. as a whole, we

estimate the total cost of traffic noise at $110 billion – an economically significant burden.

Notably, the burden of traffic noise is not evenly distributed. In per capita terms, this burden

is substantially higher for low-income households than for high-income ones, suggesting that

traffic noise acts as a regressive externality. In terms of policy, we estimate that a tax aimed at

internalizing the costs of traffic noise would translate to a one-time fee of $974 per vehicle. In

addition, we estimate that a broader shift to electric vehicles – which are quieter than traditional

vehicles – could yield noise reduction benefits on the order of $77.3 billion, concentrated among

low-SES families in dense urban areas.

Our empirical analysis is based on transaction-level housing price data from CoreLogic,

location-specific estimates of traffic noise from the U.S. Department of Transportation Na-

tional Transportation Noise Map, and sound barriers data from the Florida Department of

Transportation (FDOT) barriers inventory. We focus much of the analysis on Florida because

it has the most accurate data on sound barriers and provides information on barriers that were

proposed but not built.

In the first part of the paper, we estimate the causal effect of traffic noise on house prices.

We first use a difference-in-differences model that compares changes in prices following the

construction of a sound barrier for properties located 0–500 m from traffic with changes in

prices for properties located 500–1500 m from traffic. The definition of the control group is

based on the physics of the spatial decay of noise. We focus on properties on the noise-abated

side of the barrier and use those on the opposite side for a placebo test. Second, we estimate

a triple-difference model that uses information on barriers that were proposed but not built.
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We “match” each of the barriers that were proposed but not built to a nearby barrier that

was actually constructed. This allows us to condition on a richer set of controls that absorb

any time-varying barrier-specific and distance-bin-specific heterogeneity. Identification of this

model comes from comparing the before and after price changes near and far away from the

barrier experienced by properties linked to constructed and proposed barriers.

In the five years before the barrier construction, we observe no differential pre-trends be-

tween properties in the treated and control group. This is probably not too surprising: since the

control group and the treatment group are geographically close, most local amenities that affect

local housing demand – school quality, crime, street cleanliness, etc. – should be balanced, if

not in levels then at least in changes. After construction, we observe an immediate and largely

permanent increase in property values. For houses within 100 m of the barrier, the estimated

price increase is 6.8%. The estimated effects for houses 100–200, 200–300 and 300–400 m from

the barrier decline with distance. For distances above 400 m, we find no statistically significant

effect. Estimates of the difference-in-differences and triple-difference models are similar. When

we focus on repeated sales of the same property to control for property fixed effects, we find

slightly larger estimates.

To assess whether the impact on home prices increases in the amount of noise abatement,

we use information on each barrier’s noise reduction, measured in decibels. This allows us

recover the willingness to pay per decibel of noise abatement. We find that the effect of a

barrier increases with its noise reduction, but the relationship is concave in decibel reduction.

In principle, the construction of a sound barrier may reduce not only noise exposure but

also air pollution and it may improve visual amenities by blocking views of the road. If so,

our estimates could conflate the effects of noise reduction with endogenous improvements in air

quality or views. To assess the role of air pollution, we use spatially granular air quality data

to test whether barriers are associated with improvements in air quality. We also use data on

wind direction and speed. If air quality improvements were driving our results, we would expect

larger price effects for properties located downwind of traffic, where pollution is higher, and in

areas with lower wind speeds, where pollutants tend to linger. To assess the role of improved

views, we test whether the estimated effect of a barrier is smaller for properties whose view

of the road was already obstructed by trees or buildings. Empirically, we find little evidence

consistent with these patterns. We also consider whether our results could be explained by

changes in unobserved housing quality due to new construction. We find that few new homes

are sold following barrier construction – likely because of limited undeveloped land in treated

neighborhoods – suggesting a minimal role for endogenous supply changes.

In the second part of the paper, we seek to understand how the economic burden of the

externality is distributed across demographic groups and quantify its aggregate cost. To do so,

we combine our estimates of the per-decibel price of noise with spatially granular data on noise
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exposure to estimate the cost of the noise externality for each census tract in the U.S. We find

that the burden of the noise externality is unevenly distributed. The estimated economic cost is

significantly larger for tracts with low median family income, high poverty rate and high share

of the population that is Black. A 10% decrease in a tract’s median family income is associated

with 1% higher per-capita costs of traffic noise. The corresponding figures for the poverty rate

and Black share are 6.3% and 0.8%, respectively. These correlations are even stronger if the

cost of traffic noise is calculated as a share of local median family incomes or property values.

In sum, the externality is “regressive,” meaning that its cost is larger for low-SES tracts. This

reflects the fact that low-SES families are overrepresented in tracts that are more exposed to

traffic noise.

To assess how large the aggregate cost of the noise externality is, we aggregate our tract-

level estimates to the state-level for Florida and, under some additional assumptions, the entire

United States. We estimate that the cost of the externality amounts to $7.0 billion and $110
billion for Florida and the United States, respectively. Since these measures are based on the

effect on property values, not annual rents, they need to be interpreted as a stock, not a flow.

The cost varies widely across cities, due to differences in noise levels, property values and

the interaction of the two – namely, the relative noise exposure of expensive and inexpensive

neighborhoods. In general, we find that the per-capita costs tend to increase with the share

of a tract’s population that is urban and its population density. Among the most populous

cities, the total cost of the noise externality is largest in Los Angeles at $11 billion. New York

and Boston follow, with total costs of $6.9 billion and $6.4 billion, respectively. Boston has the

highest per-capita costs ($1,310 per resident) followed by Los Angeles ($830) and Washington

D.C. ($690).
In the final part of the paper, we discuss the policy implications of our findings. One

approach to internalize the noise externality is a Pigouvian tax equal to the marginal external

economic cost of noise. Our estimates imply that the cost of the noise externality produced by

the average internal combustion engine (ICE) vehicle over its lifetime is $974. A comparison

with recent estimates by Allcott et al. (2024) of the average vehicle’s local costs of air pollution

and global costs of CO2 emissions indicates that the noise externality accounts for a large share

of local externalities, and a small share of global externalities of vehicles.

We also discuss the external benefits of electric vehicles (EVs). EVs generate less noise

than traditional vehicles because electric engines are quieter. Estimates from the engineering

literature suggest that replacing all ICE vehicles with EVs would reduce traffic noise by an

average of 7.1 decibels in areas adjacent to roads – a reduction similar to the 7 decibels achieved

by sound barriers in our sample. Combining this estimate with our estimates of the cost of

traffic noise, we calculate that universal EV adoption would generate aggregate noise reduction

benefits of $77.3 billion nationwide. These benefits would be concentrated among low-SES and
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minority households. (Of course, the full incidence across SES groups ultimately depends on

ownership rates, since housing cost adjustments would shift some of the benefits from renters

to owners.) The counties with the highest potential benefits from EVs are Philadelphia ($1,190
per resident), Manhattan ($1,090), and Santa Clara ($600).1

Finally, we use data on current EV adoption by county to quantify the realized benefits

of existing EVs as of 2023. Our estimates imply economically sizable realized benefits for

counties with a currently high EV share. For example, we find the benefits in San Francisco,

Santa Clara and Orange counties to be $276 million, $265 million and $193 million, respectively.

By contrast, in low adoption counties, the estimated benefits are trivial.

The paper is organized as follows. Section 2 describes the existing literature and Section

3 describe the data. Section 4 discusses the research design. The estimates of the effect of

noise on prices are in Section 5. Section 6 quantifies the total cost of the externality and its

distribution. Section 7 discusses Pigouvian taxes and electric vehicles. Section 8 concludes.

2 Literature on the Effect of Traffic Noise on Housing Prices

The earlier literature on the link between traffic noise and property values has tended to focus

on the correlation between exposure and prices, conditional on housing observables.2 Due

to the likely presence of omitted variables correlated with noise, it is unclear whether the

estimates in these studies can be interpreted in causal terms. More recent work has sought to

use credible research designs to isolate the causal effect of traffic noise. For example, Wang

et al. (2023) use the outbreak of COVID-19 to study the short-term tenant responses to traffic

noise in Singapore. Magagnoli and Tassinari (2024) use variation in perceived street noise in a

Barcelona district to quantify the effect of street noise on rents.3

The part of this literature that is most relevant for our purposes is the one that seeks to

estimate the price effect of mitigating traffic noise, as through sound barriers. The two earliest

attempts at studying the price effects of noise barriers are Kamerud and Von Buseck (1985)

and Hall and Welland (1987), with the former finding no significant price effects, and the latter

finding mixed effects. Their respective samples sizes however are too small to draw definitive

conclusions. More recently Julien and Lanoie (2007) quantifies how the price of 134 houses

1These estimates do not include the value of other externalities of EVs relative to ICEs, such as pollution,
CO2, risk of accidents, etc. Adding our estimate to Allcott et al. (2024)’s estimate indicates that a fifth of the
external benefits of an EV (relative to an ICE) stems from noise reduction.

2For example: Hughes and Sirmans (1992), Verhoef (1994), Espey and Lopez (2000), Wilhelmsson (2000),
Navrud (2002), Nelson (2004), Theebe (2004), Rich and Nielsen (2004), Hofstetter and Müller-Wenk (2005),
Kim et al. (2007), Li et al. (2009), Marmolejo-Duarte and González-Tamez (2009), Andersson et al. (2010),
Blanco and Flindell (2011), Brandt and Maennig (2011), Franck et al. (2015), Swoboda et al. (2015), von
Graevenitz (2018).

3Tang (2021) uses the adoption of the London Congestion Charge estimate the elasticity of housing values
with respect to all traffic-related disamenities, including noise, pollution, congestion, etc.
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responds to the construction of one particular noise barrier in a Montreal neighborhood; and

Lindgren (2021) evaluates a noise mitigation program run by the Swedish Road Administration

that installed facade insulation in dwellings as well as noise barriers and finds increases in

property values particularly for properties with lower energy efficiency and exterior quality.

Our work is also indirectly related to papers that study the price effects of noise from

airplanes (Mieszkowski and Saper, 1978, Cohen and Coughlin, 2008, Salvi, 2008, Pope, 2008,

Cohen and Coughlin, 2009, Boes and Nüesch, 2011, Almer et al., 2017, Thanos and Dube, 2023,

Vestman et al., 2023, Sugasawa et al., 2024), trains (Szczepańska et al., 2018, Ahlfeldt et al.,

2019, Li et al., 2023), wind turbines (Hoen et al., 2015, Jensen et al., 2018) and manufacturing

plants (Dubin and Zabel, 2021).4 A much larger literature focuses on other environmental

externalities i.e. Hoek et al. (2002), Chay and Greenstone (2005), Gauderman et al. (2007),

Greenstone and Gallagher (2008), Bayer et al. (2009), Currie and Walker (2011), Grainger

(2012), Currie et al. (2015), Bayer et al. (2016a), Anderson (2020), Han et al. (2024) and non-

market amenities (Glaeser et al., 2006, Albouy, 2016). This paper also contributes to work on

how transportation infrastructure affects urban form (Baum-Snow, 2007, Duranton and Turner,

2012) by focusing on the external costs of road networks, specifically traffic noise.

3 Data

3.1 Sources

Property Prices and Characteristics. Data on house prices and characteristics come from

two CoreLogic datasets: transactions data spanning the period from 1990 to 2022, and assessor

data from 2006 and 2022. The transaction data include information on individual property

transactions, such as sale date, sale price, buyer and seller characteristics. The assessor data

contain information on property characteristics, including year built, building area, land area

and land use category. The unit of observation is a parcel, which in the data is equivalent to a

tax unit. We include single family homes, condos, apartments and duplex. We exclude mobile

homes, buildings with 5 stories or more and buildings with 3 units or more. We include only

arm’s length transactions with a sale price greater than $1000 and less than $7.5 million.

Noise Exposure and Neighborhood Characteristics. To measure baseline traffic noise

exposure by census tract, we rely on the 2020 U.S. Department of Transportation National

Transportation Noise Map. This dataset provides model-based estimates of tract-level noise

generated by aviation, rail and road traffic. For our analysis, we focus specifically on noise

emanating from road traffic. The noise map relies on the Federal Highway Administration’s

Transportation Noise Model (TNM). The model predicts 24-hour average road noise levels in

30 meter cells based on traffic volume, speed limits, vehicle mix, roadway type and topography.

4Greenhill (2024) estimates the causal effect of noise on health of pregnant mothers and newborns.
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A field study found that total measured traffic noise levels had an average discrepancy of 1

dB from the TNM, and were generally within 1.5 dB of TNM estimates (Rochat and Fleming,

2004). Murphy and King (2014) offers a methodological discussion of noise mapping and its

limitations. We incorporate census tract-level information on median family income, poverty

rates and racial composition from the American Community Survey (ACS) for the period

2015–2019 and using 2010 tract boundaries.

Sound Barriers. Sound barriers are structures built beside roads to reduce noise diffusion.

Since 1963, the Federal-aid Highway Program run by the U.S. Departments of Transportation

has helped states to fund the construction of sound barriers, with the cost of the barrier typically

split between the federal and the state Department of Transportation. The process to identify

the location where the barriers are built is based on a formula: a site is considered for a barrier

if the traffic noise is projected to exceed 67 decibels (dB) during the noisiest hour of the day,

and it is “reasonable and feasible” to reduce it by at least 5 dB for some percentage of homes.

In practice, what constitutes “reasonable” is likely interpreted by each state differently.

We focus on Florida because it has the most accurate data on sound barriers, and it provides

information on barriers that were proposed but not built. We obtained data on the exact loca-

tion and date of construction of sound barriers from the Florida Department of Transportation

(FDOT) barriers inventory. This dataset includes the universe of barriers built from 1988 to

2023 and offers detailed information on their characteristics (cost, materials, height, depth,

length and expected noise reduction), as well as shapefiles indicating their precise locations.

While we obtained barrier inventories for 47 other states from the U.S. Department of

Transportation Barriers Inventory, we found that the data quality is generally lower than

Florida’s because the barrier starting and end points are often incomplete or imprecise. In

addition, we are not aware of states other than Florida that make available information on

barriers that were proposed but not built.

Summary statistics are in Appendix Table A1. Our sample includes 1143 barriers built

and 497 barriers proposed but not built. The average cost of constructed barriers is $741,000,
and the average expected noise reduction in properties near the barrier is 7.15 decibels (dB).5

Column (3) reports means for barriers that were proposed but not built, and column (5) tests

whether the means are different. The p-values indicate that the barriers built and those pro-

posed but not built have similar costs, height, length, and expected noise reduction. Proposed

barriers are located in tracts with slightly higher incomes, college share andWhite share, though

these differences are economically small: the median family income is $70,000 for constructed

5This is not the actual noise reduction obtained by direct acoustic measurement of the noise level at each
property before and after barrier construction. Rather, it is an engineering estimate based on the barrier’s
height, depth and length and the construction materials used, calibrated to actual measurements of traffic flow,
traffic noise and topography (Murphy and King, 2014). While it may not capture all site-specific features of a
given barrier, empirical estimates by Rochat and Fleming (2004) support the validity of this measure.
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barriers versus $73,000 for recommended barriers, while the corresponding college shares are

0.22 versus 0.23.

To be included in our analysis, a property needs to have its centroid within a buffer of

length 1500 m drawn from the barrier on the far side of the highway. This is illustrated

in Figure 1 which shows an example of a barrier in Daytona Beach and the corresponding

properties. Since the average barrier has length 496 m, our analysis is based on rectangular-

shaped “neighborhoods” with mean length 496 m and depth 1500 m. In our main analysis, we

include properties on the relevant side of the barrier. We use properties on the “wrong side”

(i.e. those that would not benefit from the noise abatement) only for a placebo test as part of

the robustness analysis.6

The final dataset contains all properties within 1500 m of a built or proposed barrier,

transacted within 10 years of the barrier construction, and on both the “correct” and “wrong”

sides. In total, our sample on the “correct side” includes 596,419 home sales that took place

between 1990 and 2022. Summary statistics are in Appendix Table A2. The first column

reports means computed on the full sample. The remaining columns report means for selected

distance bins. These columns show that the observable characteristics of properties in our

sample are not identical in all distance bins. On the other hand, most variables do not display

an obvious monotonic correlation with distance. For example, the mean price fluctuates across

bins, from $320,000 in the 0–100 m bin, to $280,000 in the 400–500 m bin, to $321,000 in the

900–1000 m bin and $306,000 in the 1400–1500 m bin. One exception is size, which appears to

increase systematically with distance from 1,763 sq ft in the 0-100 m bin to 1,917 sq ft in the

1400-1500 bin. Heterogeneity in property quality is an important identification concern that

we discuss in our empirical analysis below.

6To link home transactions to barriers and determine which side of the road a barrier was built on – thereby
identifying which properties are affected – we use shapefiles of noise barriers and maps of Florida’s road system
from FDOT. We overlay properties that were ever transacted in Florida from CoreLogic using the property’s
centroid from the assessor files. First, we extract the end points of the barrier and construct a line segment
between the points. (This is a linear approximation to the barrier. The approximation will be more accurate if
it was built on a straight-away and less accurate if the barrier is along a curve in the road). Second, we identify
all properties that fall within the rectangle formed by the linear approximation and continuing 1500 m away in
either direction of the barrier. To this sample, we add in properties that fall within a 200 m buffer of the barrier
itself - using its continuous shape to do so. This procedure will include any properties along a curved barrier
that may have been excluded by the linear approximation. We then calculate how far each property in this
sample is from the actual noise barrier. We repeat this process for both barriers that were actually built and
those that have been proposed but not built yet. Finally we use information from FDOT on the locations of
roads to determine which side of a highway a noise barrier was constructed: we sum the total length of roadway
within 100 m of the barrier and we take the side that has more road length as the “wrong”-side. The road data
are from https://www.fdot.gov/statistics/gis/default.shtm#Roadway.
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3.2 Correlation Between Noise Exposure and Neighborhood Characteristics

To understand which type of neighborhoods are more exposed to noise, Table 1 reports mean

neighborhood characteristics by level of noise exposure, in deviation from the county mean.

The unit of observation is a census tract. For this analysis, we use a dataset assembled by

Seto and Huang (2023), which includes noise produced by all modes of transportation (air,

rail and road).7 We categorize tracts into three groups: those with a population-weighted

average of greater than 50 dB of transportation-related noise, and those with noise between

46 and 50 dB, or less than 46 dB, respectively. The top panel includes tracts in Florida. For

comparison, the bottom panel includes all tracts in the U.S. There are 2.2 million individuals

in Florida and 42.1 million individuals in the U.S. that live in tracts exposed to average noise

levels above 50 dB. These tracts have lower median property values, median family incomes

and share of college-educated residents compared to tracts with lower levels of noise exposure.

Tracts exposed to high levels of noise also have higher poverty rates, Black and urban shares

of the population and population density.

Notably, the relationship between noise and socioeconomic characteristics appears similar

between the U.S. and Florida. For example, moving from column (1) to column (3) is associated

with an increase in median family income from -13.2 to 6.4 in the U.S. and from -12.5 to 6.7

in Florida. It also raises the share of college educated residents from -2.7 to 1.1 in the U.S.

and -2.7 to 1.5 in Florida. The corresponding numbers for the poverty rates are 4.0 and -1.9

for the U.S. and 3.7 and -1.6 for Florida. The similarity between the U.S. and Florida in the

correlation between noise and socioeconomic characteristics is helpful in assessing the external

validity of our estimates based on Florida data, a point that we discuss in detail later.

Figure 2 shows the cross-sectional correlation between traffic noise exposure and median

property values after conditioning on county fixed effects. The level of observation in this figure

is a census tract and the sample consists of all 4,212 census tracts in Florida. The negative

correlation indicates that tracts with higher noise exposure have lower median property values.

The slope is -0.007 (0.001), indicating that one additional decibel is associated with 0.7 percent

lower property values.

This correlation is difficult to interpret causally, since properties and residents in tracts that

are exposed to noise could have worse unobservables. Properties near freeways or major roads

may be of lower quality and enjoy worse amenities than properties further away. Similarly,

tracts near freeways or major roads may be exposed to higher crime, more blight or more air

pollution than tracts in quieter areas. Thus, the negative slope in Figure 2 could simply reflect

7Seto and Huang (2023) provides a 2020 census tract-level dataset assembled from the Transportation Noise
Map with national coverage. Neighborhood demographics come from the 2016–2020 ACS to align with the 2020
boundaries. We also use the 2020 TIGER Shapefiles to calculate the area within 2020 census tract boundaries
in order to measure population density.
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the presence of omitted variables correlated with noise.

4 Econometric Specifications and Identification Assumptions

Our empirical analysis uses changes in noise levels induced by the construction of sound barriers.

Sound barriers are considered effective at reducing noise in nearby properties. As shown above,

the average expected noise reduction in our Florida data is 7.15 dB, remarkably close to the

corresponding average for the U.S. as a whole, which Rochat (2016) estimates to be 7.0 dB.

Noise decays quickly and non-linearly with distance. According to the “inverse square law,”

the intensity of a sound wave changes in inverse proportion to the square of the distance from

the source. For our purposes, this implies that the noise reduction caused by a new sound

barrier is expected to decay rapidly with distance from traffic.

Appendix Table A3 illustrates this point by quantifying the expected effect of the average

sound barrier on properties located at various distances from an average highway. Column

(2) reports the expected noise level without a barrier. The entry in the first row is based

on the fact that highway noise at a distance of 25 meters typically ranges from 70 dB to 80

dB, with a median of 76 dB (Corbisier, 2003). The other entries in column (2) are derived

using the “inverse square law,” which implies that a doubling of distance results in a 6 dB

reduction in noise. Entries in column (3) report the noise level after the construction of a

noise barrier. Since the average barrier reduces traffic noise by 7 dB, entries in column (3) are

equal to the ones in column (2) minus 7 dB. Since the magnitudes in columns (2) and (3) are

not immediately interpretable because they are measured in decibels, in columns (4) and (5)

we report noise using a scale from 0 to 100, with 100 representing the unobstructed level of

loudness experienced at 25 m from the barrier (row 1, column 4).

Column (6) shows that the expected change in loudness caused by the construction of the

barrier declines rapidly with distance. The expected change for properties that are 25 m from

traffic is -38.5%, more than double the one for properties that are 100 m from traffic (-17.0%).

In turn, the latter is more than double the one for properties that are 400 m from traffic (-

7.4%). The last two columns provide some examples to help visualize the level of noise at each

distance. The benefits of the barrier appear more noticeable at shorter distances and become

harder to detect at longer distances. For example, shifting from the noise level of a food mixer

to that of a dishwasher (25 m) is likely to be salient to homebuyers. By contrast, the benefits

for properties at distances of 400 m or more appear less noticeable.

4.1 Difference-in-Differences Model

We use two specifications to estimate the effect of noise exposure on transacted home prices.

First, we use a difference-in-differences model that compares transaction prices in the five years
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after barrier construction with the five years prior, for properties plausibly affected by the new

barrier and properties plausibly unaffected by the new barrier within the same narrowly defined

neighborhood. Specifically, we compare changes in prices following the construction of a barrier

for properties located 0–500 m from it (and on its relevant side) with changes in prices for

properties located 500–1500 away (and also on its relevant side). The control group is based

on the assumption that the effect of the barrier is negligible for properties located more than

500 m from traffic because the change in noise induced by the barrier is negligible at distances

greater than 500 m. This assumption is consistent with the physics of the spatial decay of noise

illustrated in Appendix Table A3.

Specifically, we estimate the following model:

log ρit =
∑

j≤500m

1{dist = j} · 1{τ ≥ 0} · βj

+
∑
j

(
1{dist = j} · 1{τ < −5} · β0

j + ·1{dist = j} · 1{τ > 5} · β1
j

)
+ γb(i)d(i) + ηb(i)τ + x′

itζ + εit (1)

where the dependent variable ρit is the sale price of parcel i at time t in 2022 dollars; d is

the distance bin; τ is the number of years since or to the year of the barrier construction; b

indexes the barrier; γb(i)d(i) is a vector of barrier × distance group fixed effects that for each

barrier in our sample controls for permanent differences in prices across parcels that are closer

or further away from a specific barrier; ηb(i)τ is a vector of barrier × event time fixed effects

that control for localized trends in prices that may be correlated with the timing of the barrier

construction.8 The vector xit includes property-level controls: year built × year of sale fixed

effects; log building area (continuous, with zero filled in for missing) × year of sale fixed effects;

building area missing indicator × year of sale fixed effects; log land area × year of sale fixed

effects; land area missing indicator × year of sale fixed effects; noise level (from the traffic noise

map) × year of sale fixed effects; no traffic noise indicator × year of sale fixed effects; land

use category × year of sale fixed effects. Throughout the paper, we focus on the period that

includes the 5 years before construction and the 5 years after construction.9

8The barrier × event time fixed effects are identical to barrier × year fixed effects because each barrier only
has one event timing.

9We keep in the estimation sample 10 years before and after – namely, τ < −5 and τ > 5 – and use a dummy
for τ < −5 interacted with distance and a dummy for τ > 5 interacted with distance to absorb their direct
effects:

∑
j(1{dist = j}·1{τ < −5}·β0

j +1{dist = j}·1{τ > 5}·β1
j ). Transactions outside of the 5-year window

help to pin down the barrier by distance bin fixed effects, as well as any price trends in building characteristics.
They also ensure a greater comparability between the samples used in our main estimation with those used in
our repeat-sales specification, which includes property fixed effects. The repeat-sales specification necessarily
omits properties that had a single sale over the study window.
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The control group is geographically close to the treatment group. Recall that the control

group and treatment group are within rectangularly-shaped “neighborhoods” with mean length

496 m and depth 1500 m. The limited size is important for identification because it implies

that many local amenities are likely to be homogeneously distributed over space within our

comparison areas. For example, amenities like school quality, crime and street cleanliness are

likely to be similar. And even if they were not identical in levels, there are not obvious reasons

to expect that their change over time is systematically correlated with the construction of

new barriers. For example, it is implausible that after the construction of a barrier, school

quality or crime would change more in the 0–500 m range compared to the 500–1500 m range.

Empirically, we find no evidence of differential pre-trends. In the five years before the barrier

construction, the movement of prices of properties located 0–500 m and 500–1500 m from the

barriers are indistinguishable.

In some models, we focus on repeated sales of the same property to control for property

fixed effects. Comparing the same property over time allows us to test whether unobserved het-

erogeneity in housing quality biases our baseline estimates. However, the sample is necessarily

smaller because not all properties are transacted multiple times.

4.2 Triple-Difference Model

To further relax our identification assumption, we estimate a triple-difference (DDD) model

that uses barriers that have been proposed but not built. We “match” each of the barriers

that were built to their closest proposed (but not built) barrier that is at least 1000 m away.

Having a matched barrier for each constructed barrier allows us to condition on a richer set of

controls that absorb any time-varying barrier-specific and distance-bin-specific heterogeneity.

Identification of the DDD model comes from comparing the before and after price changes near

and far from the barrier experienced by properties linked to constructed and proposed barriers.

Using the matched barriers, we estimate the following specification:

log ρit =
∑

j≤500m

1{Barrier built} · 1{dist = j} · 1{τ ≥ 0} · βj

+
∑
j

(
1{Barrier built}·1{dist = j}·1{τ < −5}·β0

j+1{Barrier built}·1{dist = j}·1{τ > 5}·β1
j

)
+ ηb(i)τ + γb(i)d(i) + ξmjτ + x′

itζ + εit (2)

The indicator 1{Barrier built} denotes whether the barrier was actually constructed, rather

than proposed. As before, we include controls xit, barrier by distance bin fixed effects γb(i)d(i)

and barrier × event time fixed effects ηb(i)τ .

Any time-varying and barrier-specific unobserved shocks that affect the price of properties
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are absorbed by ηb(i)τ . Any distance-from-barrier and barrier-specific unobserved shocks that

affect prices are also absorbed by γb(i)d(i). A matched barrier for each constructed barrier allows

us to condition on match m × distance bin × event time fixed effects ξmjτ . Identification now

comes from the fact that for each event time, we observe the prices of properties affected by a

constructed barrier and its paired proposed barrier. The control group for, say 0–100 m, are

transactions that were 0–100 m away from the matched proposed barrier. This set of controls

fully absorb any distance-specific time-varying unobserved shock that is correlated with barrier

construction. Empirically, our estimates of the triple-difference are similar to the ones from

the double-difference model.

5 The Effect of Noise on Property Values

5.1 Graphical Evidence

We start with an event study that allows us to both assess the validity of our identification

assumption, as well as study the timing of the effect. We begin with a single distance group

d∗ = 0–100 m. The omitted category is the 500–1500 m group and the controls are the same

as those used in Equation 1:

log ρit =
∑
k ̸=−1

1{dist = d∗} · 1{τ = k} · αk +
∑

j ̸=d∗, j≤500m

1{dist = j} · 1{τ ≥ 0} · β̃j

+
∑
j

(
1{dist = j} ·1{τ < −5} ·β0

j +1{dist = j} ·1{τ > 5} ·β1
j

)
+ γ̃b(i)d(i)+ η̃b(i)τ +x′

itζ̃+ ε̃it

(3)

The αk are the parameters of interest for distance d∗, and we account for the direct effects

β̃j on other distances within 500 m of the barrier. Throughout the paper we report standard

errors clustered by barrier.

Figure 3 shows the event study estimates for properties that are 0–100 m from the barrier.

It shows the effect of the construction of new barriers on the price of properties that are 0–100

m from the barrier (and on the relevant side of the barrier) relative to properties that are

500–1500 m from the barrier (and on the same side of the barrier). In the five years before the

construction of the barrier, we observe no obvious pre-trends in conditional property values.

After the construction of the barrier, we observe an immediate increase in property values.

The increase in the five years after construction ranges from 6% to 11%, with a mean equal to

6.8%.

Figure 4 shows the corresponding estimates for distance bins 100–200 m, 200–300 m, 300–

400 m and 400–500 m. There appears to be an effect for distance bin 100–200 m, although

smaller than the one for the 0–100 m bin in Figure 3. The effect for other distance bins
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appears even smaller and not statistically different form zero in many event times. Overall, a

comparison of this figure with the previous one confirms that the price effects become smaller

and less clearly detectable as we move away from the barrier, consistent with the spatial decay

of noise.

One possible concern is that our control group is indirectly treated through demand spillovers.

This could happen if the construction of the barrier shifts demand from properties in the 500

to 1500 m range to properties in the 0 to 500 m range. In Appendix Figure A1, we use trans-

actions 500–1500 m away from barriers that have yet to be constructed as the control group.

Each coefficient corresponds to the effect of the barrier on transacted home values in the years

before and after the barrier was built, relative to the year prior to barrier construction. Since

this design is subject to concerns over two-way fixed effects models with variation in treatment

timing, we use the estimator of de Chaisemartin and D’Haultfœuille (2024). We find no evi-

dence of a change in transacted home prices beyond 500 m from the barrier. The average effect

over the 5-year window is -0.0075 (0.021).10

5.2 Baseline Estimates

Our baseline difference-in-differences estimates are presented in Table 2. The model is the

one specified in Equation 1. It includes five treated distance bins: d = 0–100 m, 100–200 m,

200–300 m, 300–400 m, and 400–500 m while the control group includes properties at distances

500–1500 m. In column (1), we condition on our “main” set of fixed effects which include

barrier × distance bin fixed effects γb(i)d(i), barrier × event time fixed effects ηb(i)τ and the

vector xit defined above. For houses situated within 100 m of the barrier, we find a 6.76%

increase in sale prices, the same as the mean effect observed in Figure 3. The estimated effect

diminishes monotonically with distance, declining to 3.99% for houses 100–200 m away, 3.19%

for houses 200–300 m away, and becoming statistically indistinguishable from zero for houses

located 300–400 m or more from the barrier.

In column (2), we add parcel fixed effects which fully absorb time-invariant heterogeneity.

Thus in this specification, we compare the change in price experienced by the same property

after barrier construction (relative to before) for properties that are close to the barrier (relative

to further away). The effective sample size drops from 594,936 to 474,033 because not all

properties experience multiple sales. For houses within 100 m of the barrier, the estimated

effect increases to 8.59%. For houses 100–200 and 200–300 m from the barrier, the estimated

10An alternative test is to consider whether there is any evidence of price effects beyond 500 m using properties
farthest from the barriers as a control group. We implement this test within the same difference-in-differences
design of Equation 3, but using 1200–1500 m as the control group. The difference-in-differences estimates for
all distance bins from 0–100 m through 1100–1200 m are depicted in Appendix Figure A2. The figure shows the
same clear decay pattern with increasing distance from the barrier. We find no evidence for significant effects
500–1200 m away relative to sales 1200–1500 m away from the barrier.
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effects increase to 5.79% and 4.41%, respectively. The effect on properties 300–400 m from

the barrier is marginally statistically significant. The fact that the estimated effects are larger

than those in column (1) indicates that if anything, unobserved heterogeneity in time-invariant

property characteristics biases estimates in column (1) downward.

Columns (3) through (6) report estimates from a larger sample that includes properties

near barriers that were proposed for construction, but have yet to be built. The sample nearly

doubles to 1,093,205 transactions. Note that here, we have yet to match barriers that were

proposed but not built to barriers that were actually built. For now, we simply include prop-

erties near recommended barriers to the control group.11 The model in column (4) conditions

on property fixed effects. The coefficients are similar to the ones in column (2). For houses

within 100 m of the barrier, the estimated effect is 8.84%. For houses 100–200, 200–300 and

300–400 m from the barrier, the estimated effects are 6.33%, 4.39% and 4.58%, respectively.

One may be concerned that properties near traffic differ from properties further away in

unobserved ways and that the effect of these unobserved factors on house prices is time-varying.

For example, properties near traffic could have lower unobserved quality than those further

away. Models in columns (2) and (4) account for time-invariant heterogeneity across distance

bins, as they include distance group and parcel effects. Thus, if houses 0–100 m from a barrier

have permanently lower unobserved quality than houses 100–200 m away, this heterogeneity

is fully accounted for by distance group and parcel controls. However, these models do not

account for the possibility that house quality may differentially change over time. To address

this concern, the models in columns (5) and (6) include a set of distance × year fixed effects.

This specification accounts for distance-specific shocks to the unobserved determinants of house

prices.12 The coefficients in column (5) and (6) are larger than those in column (3) and (4),

respectively. This finding suggests that unobserved shocks that change the desirability of

properties close to traffic relative to properties further away are not the main drivers of our

estimates.

In Table 3, we estimate the triple-differences model in Equation 2. We match each of the

barriers that were proposed but not built to a barrier that was built. The sample size is greater

in Table 3 relative to Table 2 because there are more built than proposed barriers. Recall

that we report standard errors clustered by barrier. In column (1) we condition on barrier ×
event time fixed effects ηb(i)τ . This is a DD model in the style of those presented in Table 2,

and consequently, the estimated impacts are quite similar. Column (2) controls for match m

× distance bin × event time fixed effects ξmjτ . Identification relies on the fact that for each

event time, we observe the prices of properties affected by a constructed barrier and its paired

11Since later we match the two types of barriers, the estimates in column (3) demonstrate that the inclusion
of barriers not built do not greatly affect the difference-in-differences estimates.

12The proposed barriers help pin down these distance bin by year fixed effects.
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proposed barrier. The control group for, say 0–100 m, are transactions that were 0–100 m away

from the matched proposed barrier.

Finally, in column (3) we estimate the full DDD specification that includes both barrier by

event time (ηb(i)τ ) and match × distance bin × event time fixed effects (ξmjτ ). Identification

comes from comparing the before and after price changes near and far away from the barrier

experienced by properties near constructed and proposed barriers. For houses situated within

100 m of the barrier, we find a 9.67% increase in sale prices. The estimated effect declines

to 5.69% for houses 100–200 m away, 5.89% for houses 200–300 m away, and is statistically

indistinguishable from zero for houses located 300–400 m or more from the barrier.

Overall, Tables 2 and 3 indicate that within 100 m of the barrier, the construction of a new

barrier raises property values by 6.8%–10.3% and 7.0%–9.7%, respectively, and by a smaller

amount 100–300 m from the barrier. We conclude that the estimates appear generally stable

across specifications within each table and across tables.

Since our data report the construction cost of each barrier, we can compute the marginal

value of public funds (MVPF), defined as the property value appreciation over costs (Hendren

and Sprung-Keyser, 2020). The average MVPF for barriers that were built amounts to 1.7,

while the MVPF for barriers proposed but not built is 1.4. This is to be considered as a back-

of-the-envelope calculation that ignores property taxes. Property taxes would reduce both the

social benefits (since some of the home value increase gets taxed), and the social costs (since

property taxes end up in local government coffers).

5.3 Placebos

We perform two placebo tests. In the top panel of Figure 5, we examine the effects of barrier

construction on housing prices on the opposite side of the highway where noise levels should

not be affected. For this analysis, we ignore properties that are on the correct side of another

constructed barrier. Since there are often few properties on the “wrong” side of the barrier

within 100 m due to the existence of the highway, we pool distance bins to study the effect

within 0–200 m. We uncover no significant effect of the new barrier on prices.

In the bottom panel of Figure 5, we examine the effect of barrier construction on housing

prices after randomly permuting the year of barrier construction. We show the distribution

of the coefficient on 0–100 m × 1{τ ≥ 0}, obtained from 100 permutations. The placebo

distribution has mean and standard deviation of 0.012 (0.020). For reference, the red vertical

dotted line shows the estimate that we obtain using the correct year of construction (from Table

2, column 1). It is clear that the placebo sample yields estimates that are indistinguishable

from random noise.

For completeness, in Appendix Figure A3 we also show estimates of the effect on transacted

home prices for proposed (but not built) barriers. As expected, no effect is detectable.
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5.4 Intensity of Treatment Based on Expected Noise Reduction

We test whether the effect of a new barrier on home prices varies as a function of the expected

noise reduction induced by the barrier measured in decibels. This question is important for

two reasons. First, it is an additional way to probe the validity of our identification. If our

interpretation of the evidence is correct, the estimated effect should increase in the amount of

expected noise reduction. Finding that noise reduction is not systematically related to changes

in sales prices would cast doubt on the causal interpretation of our estimates. Second, it

allows us to scale the price increase by decibels of noise reduction. This feature is particularly

important to the next two sections, where we quantify the total cost of the noise externality

and study the potential economic benefits of policies that foster quieter streets.

In Table 4, we estimate a model where the effect of barriers on prices is allowed to vary by

their expected effectiveness in noise reduction. For reference, column (1) is from a model with

no interactions (as in Table 2, column 1). In columns (2) though (4), the effect of the barrier

is allowed to vary as a linear, quadratic and cubic function of the expected noise reduction

measured in dB. We center the expected noise reduction on 7 dB, which is the average for

barriers in our sample. For parsimony, we focus on properties within 100 m of the barrier. In

column (2), the coefficient on the linear interaction is positive but statistically insignificant. In

columns (3) and (4), the coefficient on the linear interaction is positive, while the coefficient

on the quadratic interaction is negative (significant at the 10%-level), suggesting a concave

relationship. The coefficient on the cubic interaction in column (4) is not significant, leading

us to reject a cubic functional form.13

Thus, the table confirms that the price effect of sound barriers is indeed larger for barriers

with larger expected noise reduction. Figure 6 shows more explicitly the functional form implied

by the estimates in column (3) as well as the confidence band. To simplify interpretation, we

have rescaled the x-axis so that it’s measured in dB, as opposed to deviation from the mean.

The figure shows that the estimated effect on property values is a concave function of expected

decibel reduction. The effect is predicted to be zero when noise reductions are around 4.9 dB.

This closely aligns with FDOT’s Traffic Noise Modeling and Analysis Practitioners Handbook,

which specifies that to justify the construction of a barrier, it must reduce noise by at least 5 dB

at one benefiting location. Nearly all barriers in our data – except four – meet this threshold.

The effect plateaus at 10 dB of reduction, which represents the 96th percentile in our sample.

Our estimates imply an average price depreciation of 0.9% with every decibel of noise.14

13Since both the dependent and independent variables are on a log scale, the concavity refers to the elasticity.
To investigate robustness, Appendix Table A4 shows estimates under an alternative set of controls and finds
that the estimates tend to be generally stable and the coefficient on the quadratic term becomes statistically
significant at the 5% level.

14This number comes from the fact that an average barrier increases property prices by 6.76% and reduces
noise by 7.23 decibels in our regression sample. This effect is similar to the effect from a 1 pp decline in tree
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To put the magnitude of this estimate into perspective, consider that a 10 dB decline in noise

levels implies a reduction of the intensity of noise by one half. Our estimates indicate that for

properties that are 0–100 m from the barrier, cutting traffic noise by half results in a 9% mean

increase in property values.

5.5 Endogenous Confounders: Pollution, Views and New Construction

In interpreting our findings, it is important to establish if the construction of new barriers

results in endogenous changes in important characteristics other than noise reduction that may

affect home prices. We consider three potentially important changes that represent alternative

explanations of the evidence: a reduction in air pollution, an improvement in views, and the

construction of new homes.

Pollution. The erection of a sound barrier may reduce not just exposure to noise but also

to air pollution. In this case, our estimate of the price effect of the barriers would be biased

upwards, as it would reflect not just the benefits of noise reduction but also the benefits of

pollution reduction.

The main question for our purposes is whether localized improvements in air quality are

salient enough for the average homebuyer to affect their willingness to pay. Unlike noise,

differences in air pollution are more difficult for homebuyers to detect personally and quantify

with any level of precision. Since our models compare changes near the barrier with changes

further away, what matters is the ability of homebuyers to detect differential changes in air

quality near the barrier and further away. It is easy to imagine that a homebuyer visiting two

open houses located at 100 m and 400 m from a freeway is aware of the difference in traffic

noise (as illustrated in Appendix Table A3 above). However, it is less clear that the same

homebuyer would be able to detect the difference in air quality between the two locations, if

such a difference exists.15

We note that even if a buyer was particularly focused on pollution, spatially granular

information on pollution differences across properties within a neighborhood is not available in

most locations, as EPA monitors are spaced too widely to provide this type of detail. Similarly,

Purple Air monitors were unavailable for most of our sample period and far too sparse. When

we searched 200 randomly chosen postings of open houses in 7 Florida counties, we found no

mention of the terms “air quality” or “clean air” or “pollution.” By contrast, we found that

18% of postings contained the terms “quiet” or “peaceful” or “noise.”16

cover (Han et al., 2024).
15It is unclear that we should expect the same sharp drop in pollutants following a barrier construction that

we see in noise. While Ahangar et al. (2017) and Thiruvenkatachari et al. (2022) do find reductions in air
pollution immediately next to a barrier, less is known on the spatial decay in pollution caused by barriers.

16Zillow announced only in September 2024 that they began providing some air quality measures for listings.
But even so, they do not vary at the granularity that we consider.
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Ultimately, this is an empirical question. We provide three pieces of evidence that are

helpful in assessing the relevance of air pollution changes as an alternative explanation. First,

we use information on wind direction and speed to test if our estimate of the effect of barriers

is different for observations downwind of traffic and in areas where wind speed is typically low.

There is evidence that barriers affect air pollution, but only downwind of traffic and only when

wind is low or non existent (Ran et al., 2020, Baldauf et al., 2016, Bowker et al., 2021, 2007,

Heist et al., 2009). Barriers upwind from traffic or in areas where wind speeds are high appear

to have no detectable effect on air quality. If our estimates are mainly explained by air quality

improvements, as opposed to noise improvements, we should see that our estimates are larger

for properties located downwind of traffic and in areas where wind speed is typically low. We

should see smaller or no effect for properties located upwind from traffic or in areas where wind

speed tends to be high.17

In Table 5, we estimate a version of Equation 3 where the effect is allowed to vary with

measures of wind speed and direction. Wind data is from NCEI (2025) and includes daily

information on average wind speed, average sustained wind speed, average sustained wind

direction, and share of days over the year with the wind blowing in directions of 10-degree

bins. For each barrier, we construct a spatial average of the 2024 wind sensors in Florida

with weights inversely proportional to distance in meters. Columns (1) and (2) report the

estimated coefficients on the interactions of our main 0–100 m effect with average wind speed

and average sustained wind speed, respectively. Columns (3) and (4) interact with whether

wind is perpendicular from the road to barrier. In particular, column (3) uses a measure of

how far the wind is from being perpendicular to the barrier. The measure is based on the

angle between the wind direction and the line from the sound barrier to the focal property:

min{|θ1 − θ2|, 360 − |θ1 − θ2|}, where θ1 is the angle from the sound barrier to each property

and θ2 is the average wind direction. In Column (4), we calculate the share of days over a year

in which the wind was blowing in the direction of the barrier from the road plus or minus 45

degrees, and we interact this measure with our main effect.

The entries in Table 5 indicate that none of the estimated interactions are statistically

17Wind can influence how traffic noise travels (Greenhill, 2024), but its impact on the effectiveness of noise
barriers is less well established. Modeling and wind tunnel studies suggest that downwind conditions can shrink
the quiet zone behind a barrier and raise noise levels at intermediate distances (Nelson and Abbott, 1971,
DeJong and Stusnick, 1976, Salomons, 1999). These effects appear to matter more for higher-frequency sounds,
and may be less relevant for the lower frequencies typical of traffic noise (Nelson and Abbott, 1971). They are
also unlikely to affect properties directly behind a barrier, where noise reduction is generally strongest. Notably,
the direction of wind’s effect on noise attenuation is opposite to its effect on air pollution dispersion, where
downwind conditions typically enhance pollutant exposure. There exists little direct field evidence of barrier
performance in the presence of wind. One exception is Van Renterghem and Botteldooren (2002), who find that
the presence of windbreaks behind a barrier can improve its performance in windy conditions. At our sample’s
average wind speed of 3.6 m/s, their results imply a roughly 1.2 dB gain in noise abatement – noticeable, but
small compared to our observed average abatement of 7.15 dB. A one standard deviation increase in wind speed
(0.24 m/s) would correspond to just a 0.06 dB improvement.
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different from zero. The estimates imply that we can rule out a 3.4 percentage point larger

price effect for one standard deviation faster wind speeds at the 95% level. We can rule out a 3

percentage point larger price effect for a one standard deviation increase in the perpendicularity

of the wind to the barrier.18 Taken together, our findings suggest that the estimated effect does

not depend on wind direction or its typical strength.

For a second piece of empirical evidence on the role of air pollution, we turn to the effect of

one specific type of pollutant: lead. Lead offers a good case study because it is a particularly

harmful pollutant that has been banned from gasoline since 1996. In column (5), we test

whether our estimate of the effect of new barriers for the period after the ban is different from

the estimate for the period before the ban. The estimate for the period after the ban is not

significantly different from the estimate for the period prior to it, indicating that at least this

specific type of air pollutant is not driving our results.

For a third test, we directly examine changes in air quality around barriers using the most

spatially granular data we could find. The Google Maps Platform provides real-time air quality

estimates at a 500 m × 500 m resolution, based on a combination of official monitoring stations,

satellite imagery, live traffic conditions, and meteorological data. The data were not available to

homebuyers during our sample period. One limitation is that the data are only cross-sectional.

Thus, we cannot use the design that we used above to measure the change in air quality

before and after a barrier is constructed. Instead, we use a difference-in-differences model that

compares the difference in air quality between properties near and far from constructed barriers

to the corresponding difference for barriers that were proposed but not constructed.19

Figure 7 presents estimates for 0–100, 100–200, 200–300, 300–400, and 400–500 m away, with

500–1500 m being the omitted distance. The blue and red markers show the conditional mean

air quality for properties near constructed barriers and unbuilt, proposed ones, respectively.

The model conditions on barrier fixed effects. The red circles indicate that in the absence of

a constructed barrier, being near traffic is associated with lower air quality. Within 100 m of

a barrier, air quality is 12% of a standard deviation worse than it is 500–1500 m away and

still is 3.4% of a standard deviation worse 400–500 m away. This pattern is not surprising,

and it reflects the spatial decay of air pollution from major roadways. The blue diamonds

indicate that the presence of a constructed barrier does not significantly alter this pattern. Air

quality is slightly better near constructed barriers, but the difference is economically small and

not statistically significant at the 10% level. Specifically, at 0–100 m air quality is 2.3% of a

18In our sample, the standard deviation is 0.24 m/s for average wind speed and 47.9 degrees for the measure
of perpendicularity to the barrier. Based on Table 5, a one standard deviation increase in wind speeds leads
to 0.9% higher price appreciation from noise barriers, with a 95% confidence interval of (-1.6%, 3.4%). A one
standard deviation increase in perpendicularity leads to 0.8% higher price appreciation from noise barriers, with
a 95% confidence interval of (-1.4%, 3.0%).

19For each barrier constructed or proposed, we randomly sample a transacted property within each distance
bin and extract air quality estimates at those locations, resulting in a sample of 18,598 observations.
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standard deviation better (s.e. = 1.6%). This estimate is sufficiently precise to rule out that

barriers cause air quality improvements larger than 5.4% of a standard deviation at the 95%

level – a magnitude that is arguably too small for humans to detect.

Overall, the evidence in Table 5 and Figure 7 suggests that air quality improvements are

unlikely to be an important alternative explanation of our estimated price effects.

Views. Another alternative explanation of the evidence is the possibility that the construc-

tion of a sound barrier increases the attractiveness of nearby properties by blocking the view

of the road. Our estimates of the price effect would be biased upward, as they would reflect

the benefits of improved views, not just noise reduction.

To assess this possibility, we first test if the estimated effect of a barrier is smaller for

properties whose view of the road is blocked by trees along or near the road. The idea is that

if there are many trees between a property and the road, the visual impact of a new barrier is

likely to be less pronounced as the tree canopy shields views of the road even in the absence of

the barrier. Finding that the estimated effect does not depend on the presence of trees would

cast doubt on the hypothesis that our estimated price increases are explained by improved

views rather than improved noise. In addition, we also test if the estimated effect of a barrier

is smaller for properties whose view of the road is blocked by other properties.

In column (1) of Table 6, we estimate a variant of Equation 3 where we interact our main

0–100 m effect with the percentage of tree canopy cover in the vicinity of the road. To construct

this measure, we use the MRLC Consortium (2025) data to calculate land cover at each property

and identify barrier canopy cover near the road as that for the property that is closest to the

barrier.20 In columns (2) and (3), we construct measures of the build environment 0–100 m

from the barrier that would block the view for properties 100–200 m away. Our first measure

calculates the aggregate building square footage 0–100 m from the barrier, normalizes it by

the length of the barrier, and then standardizes this measure to have mean zero and standard

deviation one. The second measure calculates the average number of stories for buildings 100 m

away from the barrier. Columns (2) and (3) interact our 100–200 m effect with these measures

of build density near the barrier.21

None of the interactions in the table are statistically different from zero. We conclude

that our estimated effects do not vary with tree canopy coverage or the presence of buildings,

suggesting that the role of views in explaining our findings is limited.

New Construction. If the arrival of a new barrier raises prices, one may expect some

20The average and standard deviation of canopy coverage in our sample are 11.8% and 10.8%, respectively.
21The presence of buildings can affect the noise too. We estimated additional models where we control for

noise reduction and found very similar estimates. The estimates in columns (2) and (3) are 0.00808 (0.0117)
and 0.0192 (0.0263), respectively.
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supply response in the form of new construction. This could affect the interpretation of our

estimates for two reasons. First, if newly built homes have higher unobserved quality and

command higher prices, our estimates could be contaminated by endogenous changes in the

local mix of properties. In this respect, we note that all our models condition on year built ×
year of sale fixed effects, and therefore directly control for differences in typical quality that

are associated with age of the buildings.

Second, even in the absence of unobserved quality differences, a strong supply response

would affect how to interpret our estimates because it would mute the price effects observed in

the data. In the extreme, if supply was infinitely elastic, we would observe no price increase

following the barrier construction, even if buyers value quiet neighborhoods, are willing to

pay for it and the barrier increases demand. Thus, measuring the extent of sales for newly

constructed homes following the arrival of a barrier is important to understand whether to

interpret our estimates as a change in demand only or both demand and supply.

In Appendix Table A5, we present estimates that exclude newly constructed homes from

our sample. Column (1) contains all transactions for properties built within 5 years of the

date of barrier construction. Columns (2) through (4) restrict this further to properties built

on or before the year the barrier was built, the year before, and 6 years before the barrier

was built, respectively. Our estimates do not vary much and appear similar to the baseline

estimates in Table 2. The main reason is that the number of newly constructed units is small.

This is evident from the limited change in sample size. The number of properties that exist at

τ = 0 is 577,045 (column 2 of Appendix Table A5), not too different from the sample size of

594,936 used for our baseline estimates (column (1) in Table 2). Any supply response hinges

on the availability of empty lots for sale and clearing all regulatory barriers. It appears that in

practice the supply response in treated neighborhoods is limited.

In addition, we observe virtually no differential composition changes following the construc-

tion of a new barrier in property characteristics (bedrooms, stories, pool, AC, garage), the

types of transactions (investor, resale, new building, cash purchases, mortgage, foreclosures),

and residential types (single family home, condo, duplex, apartment) across distance bins, as

shown in Appendix Table A6.22

22To provide the most conservative form of the test possible, this table does not include property fixed effects.
In principle, it is possible that the areas affected by the barrier construction experience endogenous changes
in the type of residents, if quieter and more expensive homes attract over time a wealthier mix of residents.
While the number of new constructions in itself is too small to induce a profound change in the character of
the neighborhood, we cannot rule out that some churning takes place within the existing housing stock. This
change would be problematic for the validity of our findings if it results in improvements to the supply of
local amenities – school quality, crime, street cleanliness, etc. In practice, we do not expect these effects to be
meaningful confounders in our analysis as our treatment and control groups are spatially very close. The set of
local amenities whose supply varies across space within this narrowly defined geography is limited.
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5.6 Robustness

In Appendix Table A7, we conduct a series of additional sensitivity analyses. First, we explore

the sensitivity of our results to the specific choice of distance bands by re-estimating our

models using alternative distance cutoffs. Second, we use additional or fewer years around

the timing of the barrier construction. Third, we examine the potential impact of outliers by

systematically excluding observations with extreme values for sale prices. The results in the

table indicate that our estimates are robust to these changes. We also re-estimated our models

using Poisson Pseudo Maximum Likelihood (PPML) and found similar, albeit slightly larger

estimates (available on request).

6 The Aggregate Cost of the Externality and its Distribution

In this section, we use our estimate of the causal effect of noise on property values and spatially

granular data on traffic noise exposure and property values to estimate the economic cost of the

noise externality for each census tract. We use these estimates to ask three questions. First, is

the cost of the externality experienced by economically disadvantaged families higher or lower

than the cost experienced by wealthier families? We relate our tract-level estimates to three

socioeconomic characteristics of the tract: median family income, share of the population that

is Black and the poverty rate.

It is a priori unclear whether we should expect positive or negative correlations. On the

one hand, we have shown that noise exposure is higher in tracts with lower socioeconomic

status and higher minority shares, suggesting that the cost of the externality borne by more

disadvantaged families could be larger than the cost borne by wealthier families. On the other

hand, tracts with higher SES and lower minority shares tend to have higher baseline levels of

property values. Despite being less exposed to noise, they could in principle experience a higher

per-capita cost of the noise externality. Second, we ask: how large is the aggregate cost of the

noise externality? To do so, we aggregate our tract-level estimates to the state-level for Florida

and, under some additional assumptions, the entire United States. Finally we ask: what are

the U.S. cities with the highest cost of the noise externality?

The objective of the first question is not to measure how noise affects welfare for different

SES groups. Our goal is simply to document whether the cost is positively or negatively

correlated with socioeconomic and minority status. Housing units in noisier tracts are more

affordable so residents who choose to live near traffic also experience lower costs to housing (in

the form of lower rents and prices, for renters and owners respectively).

Incidence depends on preferences and ownership status. The price of noise – defined as the

equilibrium price per dB – is set by the marginal resident, who is the one indifferent between

living in a noisy tract with a lower cost of hosing and a quiet tract with a higher cost of
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housing. In the case of homogeneous preferences, the disutility from noise is the same across

individuals, and the equilibrium price of noise is such that everyone is indifferent between noisy

and quiet tracts. In the case of idiosyncratic preferences over noise – namely, each individual’s

utility includes an idiosyncratic draw that determines their disutility from noise – there will be

inframarginal residents in noisy and quiet tracts. For example, quiet tracts will have residents

with a stronger disutility from noise than the one of the marginal individual. For owners, there

is the additional consideration that properties in noisy tracts are an asset that is made cheaper

by noise. If noise is stable over time, then buyers of properties in noisy tracts buy and re-sell

an asset for the same, lower price. When noise levels change unexpectedly, the gains or losses

fall on incumbent owners – windfalls if noise declines, losses if it rises.

Whether preferences are homogeneous or heterogeneous, and whether an individual owns or

rents, in equilibrium some individuals are exposed to more noise than others. Since noise has

been linked to significant physical and mental health conditions (World Health Organization,

2011, Greenhill, 2024), it is important to quantify differences in the cost of noise experienced

by different SES groups, which is what we do next.

We also note that conceptually our empirical estimates of the price effects cannot necessarily

be interpreted as a willingness to pay. Kuminoff and Pope (2014), for example, show that

trading between heterogeneous buyers and sellers drives a wedge between the “capitalization

effects” and welfare changes. In their context, capitalization effects of the type identified in

our Equations 1 and 2 understate the willingness to pay for a non-market amenity, suggesting

that our estimates may be a lower bound for willingness to pay.23

As discussed in Section 3, the DOT National Transportation Noise Map provides an estimate

of exposure to traffic noise measured in dB for each plot in the U.S. We use this information

combined with our estimate of the price of a decibel from the “intensity of treatment” model

to assign to each property an estimated dollar cost of traffic noise. The key assumption that

is needed for this exercise is that the estimate of the price of a decibel that we can identify

using the barrier design is representative of the price of a decibel for all properties. Under this

assumption, we can estimate the cost of the noise externality for property i as:

Ĉosti = Property Valuei × Q̂(noisei − 45) (4)

where Property Valuei is the most recent assessed value (as of 2022) of property i from our

23Banzhaf (2021) argues that quasi-experimental evidence of the type identified in Equations 1 and 2 identifies
movement along the ex-post price function and this effect is a lower bound on general equilibrium welfare. See
Kuminoff et al. (2013) for a review of the literature and Bayer et al. (2016b) for a prominent example of
estimating the marginal willingness to pay for non-marketed amenities in a dynamic framework.
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CoreLogic assessor data measured in dollars;24 Q̂(noisei − 45) is the percent effect of noise

decibels on prices predicted based on our intensity of treatment parameter estimates; and

noisei is the property’s noise level from the Noise Map measured in dB. Traffic noise of 45 dB

is the lowest level recorded in the Noise Map data, so that (noisei − 45) dB is the noise level in

a tract relative to the minimum level observed.

For a given decibel level, the quadratic function estimated in column (3) of Table 4 gives us

the predicted percent effect on prices, which one could use to predict Q̂(noisei − 45) for each

property. However, since we are interested in estimating Ĉosti not just for Florida but also for

the rest of the U.S., our preferred specification is based on a richer model. We are concerned

that the relationship between noise and house prices that we estimate in Table 4 using Florida

data may not necessarily extend to the rest of the U.S. The extrapolation is invalid if the

effect of noise on property values differs between Florida and other locations, for example due

to heterogeneity across SES strata. If noise affects prices differently in poor versus wealthy

neighborhoods, and Florida has a different socioeconomic composition than other areas, then

our Florida estimates may not be valid for predicting Q̂(noisei−45) elsewhere.25 To increase the

external validity of our Florida estimate, we re-estimate the regression including the interactions

between all terms and tract median home values from the 2015–2019 American Community

Survey and use this richer specification to predict Q̂. The estimates, reported in Appendix

Table A8, suggest that the effect of noise is indeed heterogeneous across high- and low-price

tracts. In what follows we use the estimated parameters from this richer specification to predict

Q̂ and report the estimates based on the more restrictive model of Table 4 in the Appendix.

6.1 Distribution of the Cost of the Externality by Income and Race

With a predicted Ĉosti for each property in hand, we aggregate the property-specific estimates

to the 2010 census tract-level for all properties in each census tract in Florida and the U.S.,

yielding an estimate of the total economic cost of the noise externality for each tract. We then

divide the tract-specific cost by the tract population to obtain the per-capita cost.

We relate our tract-level estimate of the cost of the externality to measures of the tract’s

socioeconomic status and minority share. Figure 8 plots the estimated per-capita cost of the

externality for each tract in Florida against the tract log median family income, share of the

population that is Black and poverty rate. We log-transform the per-capita costs to interpret

the slope in percentage terms. The level of observation is a tract and the sample includes

all tracts in Florida. Throughout, we residualize on county fixed effects. The figure shows

24We use assessed values as opposed to sale price in order to be able to include all properties, not just those
that have been sold.

25Recall that in practice Florida’s observables are not too different from those of the U.S., and their correlation
with noise is also comparable (Table 1). However, there are some differences, indicating that this may be a
valid concern.
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a negative correlation between the cost of the externality and median family incomes. The

slope is -0.10 (0.01), indicating that a 10% lower income is associated with a 1% higher per

capita cost. The correlations with the share of residents who are Black and the poverty rate are

positive. The slopes are 0.08 (0.01) and 0.63 (0.05), respectively, indicating that a 10 percentage

point higher share of Blacks or a 1 percentage point higher poverty rate are associated with

0.8% and 0.6% higher per-capita costs.26

Therefore, the noise externality appears “regressive,” meaning that its cost is larger for

low-income and Black families. The reason is that low-income families and Black families are

overrepresented in tracts that are more exposed to traffic noise and that this sorting dominates

the level differences in prices. In Appendix Figure A4, we show that the same conclusion

applies when we use two alternative measures of costs: the per-capita cost as a share of the

tract median family income (obtained by dividing the per capita cost by the tract MFI) and

the cost as a share of local property values (obtained by dividing the tract total cost by the

total assessed value of properties).

6.2 Aggregate Cost

To quantify the total economic cost of the noise externality for Florida, we aggregate tract-level

estimates by summing across all tracts in the state. Table 7 reports our estimates based on

the preferred specification, namely the model that allows for heterogeneity. The entry in the

top row of column (1) in Table 7 shows that the aggregate cost of the traffic noise externality

in Florida amounts to $7.0 billion. This measure is to be interpreted as a stock, not an annual

flow, since it is based on the effect of traffic noise capitalized in property values (not annual

rents). The next four rows show that the costs for tracts in the bottom and top quartile of

median family income are respectively, $2.31 and $1.56 billion, while the costs for tracts in the

bottom and top quartile of the Black share of the tract are respectively, $1.50 and $2.06 billion.

Columns (2), (3) and (4) report the cost in per capita terms, and as a percentage of income

and property values, respectively. The results confirm those illustrated in Figure A4: the costs

are smaller in more affluent and White areas and larger in low-income areas and areas with

a higher share of Black residents. For example, the per-capita costs in tracts in the bottom

income quartile are $470 compared to $300 in tracts in the top income quartile. The per-capita

costs for tracts in the bottom quartile by Black population share are $360 compared to $380 for

tracts in the top quartile. The differences are more pronounced when costs are scaled as a share

of median family incomes or local property values: 0.40% versus 0.74% of incomes (column 3),

and 0.17% versus 0.46% of property values (column 4).

The lower panel of Table 7 extends our estimates to the entire U.S. Entries indicate that

26The figures is largely unchanged if we use the more restrictive model that does not allow for heterogeneity
in the effect of noise across tracts with different baseline price.
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the aggregate cost of traffic noise for the nation as a whole is $109.75 billion, arguably a large

amount. Unlike for Florida, the per-capita costs for tracts in the bottom income quartile are

now slightly smaller than those for tracts in the top income quartile. However, the pattern of

a higher burden of noise borne by lower SES tracts is confirmed in columns (3) and (4) when

costs are scaled in dollars of median family incomes or local property values. The per-capita

costs for tracts in the bottom quartile of the Black population share are $270 compared to

$300 for tracts in the top quartile. The differences are larger when costs are scaled by income

and property values: 0.31% vs 0.52% of incomes (column 3), and 0.22% vs 0.44% of property

values (column 4).27

6.3 Geographic Differences

There are vast differences in the cost of the noise externality across cities. To give a sense of the

geographic differences in the cost of the noise externality, Table 8 shows our estimates for the

ten most populous cities defined as CBSAs. In absolute terms, the cost of the noise externality

is largest in Los Angeles: $11.0 billion. New York and Boston follow, with total costs of $6.9
billion and $6.4 billion, respectively. In per-capita terms, Boston has the highest costs ($1,310
per resident) followed by Los Angeles ($830), Washington D.C. ($690) and Philadelphia ($570).
At the other end of the spectrum, Chicago ($110) and Atlanta ($100) stand out as examples

of low per-capita costs. Surprisingly, New York has per-capita costs of only $350, reflecting
the fact that its CBSA includes large swaths in suburban New Jersey, Connecticut and Long

Island.28 On its own, Manhattan has the highest per capita noise costs of any large U.S. county,

at $1,800 per resident. This is more than twice the cost in Los Angeles, which also ranks among

the highest, at $870 per resident.

The heterogeneity in per-capita costs across cities reflects geographic differences in the level

of noise, the overall value of properties and the interaction of the two—namely the relative

noise exposure of expensive and inexpensive neighborhoods. Geographic differences in the level

of noise reflect differences in the degree of proximity of residents to major urban roads and

freeways. When we look across all cities in the U.S., we find perhaps unsurprisingly that the

cost of noise increases with the urban share of the population and population density. For

example, the per-capita cost for cities in the top quartile of density is $590, or almost four

times the cost for cities in the bottom quartile ($160).
27The alternative estimates based on the model that does not allow for heterogeneous effects are similar

for Florida, suggesting that the more parsimonious model is well specified in this case (Appendix Table A9).
The alternative estimates for the U.S. are much larger, indicating that heterogeneity in the noise effects are
important in extrapolating the costs outside Florida.

28The New York CBSA contains 23 million residents, including 8 million in the five boroughs and 1.6 million
in Manhattan.
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7 Policy Implications: Pigouvian Taxes and Electric Vehicles

Taxes. The textbook solution to an activity that generates a negative externality is a Pigouvian

tax equal to the marginal external economic cost of the activity. We can use our estimates

from the previous section to obtain a back-of-the-envelope estimate of the cost of the noise

externality produced by the average vehicle (car or truck) in Florida. To do so, we divide our

estimate of the total costs of traffic noise in Florida from column 1 of Table 7 by the number

of vehicles registered in the state in 2006 (the mid-point in our sample period).29 The ratio is

equal to $974 per car.

Recall that this is a measure of a stock, not an annual flow, since it is based on the negative

effect that the average car creates on property values. Thus, it needs to be interpreted as

the lifetime external cost of the average vehicle. The efficient annual levy would be set equal

to the corresponding annualized flow. For comparison, Allcott et al. (2024) estimate that the

lifetime economic cost of air pollution created locally by driving the average vehicle is only $378
– reflecting the fact that emissions have fallen spectacularly in recent years (Jacobsen et al.,

2022) – while the lifetime global externality from CO2 emissions is much higher: $13,833.
Taken literally, this comparison would suggest that noise accounts for the majority of the

average vehicle’s local external costs, but a trivial share of its global external costs.

Of course, our estimate is an average across vehicle models with vastly different external

costs. Tractor trailer trucks are louder than passenger vehicles, and within the latter group

SUVs are louder than smaller vehicles. A model-specific corrective tax proportional to the

external cost of noise emissions of each model is more efficient than one that is the same for

all vehicles. With engineering data on the noise generated by each model in the average hour

of operation measured in decibels (Dm) and each model’s share of traffic (Sm), the lifetime

corrective tax on model m can be calculated as a function of observable variables:

Tm = 974

(
Dm∑

m Sm ·Dm

)
(5)

where the term in parentheses ( Dm∑
m Sm·Dm

) reflects how noisy modelm is relative to the weighted

average of all models in circulation.30

Electric Vehicles. Besides taxes, there is a limited set of policy levers that can be adopted

to reduce traffic noise in U.S. cities. In principle, policies that incentivize the adoption of

29During our sample period electric vehicles were a negligible share of the vehicles in circulation.
30Knittel and Sandler (2018) and Jacobsen et al. (2020) estimate welfare losses from imperfectly pricing

heterogeneous externalities from cars. First-best would be taxing the externality directly and continually
(Jacobsen et al., 2022). A one-time payment would miss differences in number of total miles, locations, times
of day, etc. See Bento et al. (2009), Fowlie et al. (2012) for a broader discussion of environmental regulation of
the car market. See also Kahn (1996).
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electric vehicles (EVs) lower traffic noise because electric engines tend to be significantly quieter

than Internal Combustion Engines (ICEs). To provide a back-of-the-envelope estimate of the

potential external benefits of the widespread adoption of EVs in terms of noise abatement, we

combine our estimates of the cost of the noise externality in each census tract with engineering

estimates of the noise difference between EVs and ICEs. We report estimates for a scenario

of universal EV adoption, although our methodology can be used to provide estimates for any

share of EV adoption of interest.31

We make three assumptions. First, based on Lan et al. (2018), we assume that if all internal

combustion engine vehicles are replaced by EVs, traffic noise in the immediate vicinity of traffic

would decline by 7.1 dB on average.32 As before, we use Equation 4 to quantify the cost of

noise and set the counterfactual level of noise in property i equal to max{noisei−7.1, 45}. Since
the average reduction achieved by sound barriers in our sample is about 7 dB, our estimates of

the costs of noise are based on variation that is consistent with the expected noise reduction

from the adoption of EVs.

Second, we ignore the possible heterogeneity in the effect of EVs experienced by properties

near fast and slow traffic. We stress that this a strong assumption and a limitation of our

methodology, because the EV noise reduction has been found to be smaller at high speeds,

since the contribution of rolling noise becomes relatively more important (Pallas et al., 2016,

Iversen and Holck, 2015, Marbjerg, 2013). Thus, our estimates almost certainly overstate the

relative benefits of EV near fast roads, like freeways. We note that in practice the number

of properties exposed to noise from urban roads – where average speed tends to be lower – is

likely to be much larger than the number of properties exposed to noise from freeways – where

average speed tends to be higher. In principle, with speed data on each road one could relax

this assumption.

Third, we focus on changes in noise intensity – arguably the main effect of EV adoption

– and ignore possible second-order effects through changes in noise quality due to changes in

wave frequency. There is evidence that EVs may affect the wave length (Lan et al., 2018), but

we have no way to evaluate the impact of changes in wave frequency on property prices. Given

the limitations of our three assumptions, our estimates need to be interpreted as a back-of-

the-envelope illustration of the order of magnitude of benefits involved, rather than an exact

31We do not attempt to directly estimate the effect of EVs on property values because we lack an exogenous
source of variation in local EV adoption.

32Lan et al. (2018) conduct a noise measurement experiment where they randomly vary the proportions of
EVs that drive by and compare the noise emissions from traffic flows with different proportions of EVs. Their
data include 1,434 acoustic records, with observed speeds ranging from 22km/h to 67 km/h. They find that an
increase in the proportion of EVs causes a decrease in measured noise. They estimate that a scenario where
100% of vehicles are EVs implies a reduction in noise near the road between 7.1 dB(A) and 7.3 dB(A). Walker
et al. (2016) and Pallas et al. (2014) also find significant noise reduction from EVs. See also Pallas et al. (2016),
King (2017).
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calculation. On the other hand, the relative magnitudes of the benefits for low-SES and high-

SES groups are likely to be more informative, as any bias in our aggregate estimates is likely

to be at least partially shared across SES groups.33

Table 9 reports estimates of the potential aggregate benefits of 100% EV adoption in terms

of forgone noise. For Florida, we estimate that 100% EV adoption would generate $5.39 billion

in benefits (column 1). The corresponding estimate for the U.S. as a whole suggests aggregate

benefits of $77.28 billion.34 Among counties with the highest potential benefits from EVs are

Philadelphia ($1,190 per resident), Manhattan ($1,090), Seattle ($550) and Los Angeles ($480).
Of particular interest are the distributional impacts (Holland et al., 2019). In per-capita

terms, the benefits of EV adoption are larger for low-income tracts and tracts with a higher

share of Black residents (column 2). This is true for both Florida and the U.S. The progressivity

of EV benefits is more pronounced when costs are measured as a share of local incomes and

property values (columns 3 and 4). For example, the EV benefits for the bottom and top

income quartiles in Florida are 0.99% and 0.16% of income, respectively. The EV benefits for

the bottom and top quartiles of the Black population share are 0.28% and 0.62% of income,

respectively. Of course, as discussed above, the full incidence of the noise reduction on different

SES groups depends on ownership status, since cost of housing will adjust. Renters in tracts

exposed to lower noise will experience higher rents, while incumbent homeowners will experience

higher property values. This matters because ownership rates are higher for higher SES groups.

Incidence will also depend on preferences, as the utility of inframarginal residents will be

affected by the change in noise and prices.

These figures represent hypothetical gains under full adoption. Another way to illustrate

the potential benefits of EVs is to use our estimates to quantify the realized benefits from

foregone noise that already exist given the current rate of EV adoption. Table 10 reports

the realized benefits for the 7 counties with the highest EV adoption and the 7 counties with

the lowest EV adoption in 2023.35 Entries indicate that among high adoption counties, the

three counties with the highest aggregate benefits are San Francisco, Santa Clara and Orange.

Our estimates imply that in these counties, the benefits of EVs amount to $276 million, $265
33Our focus is squarely on noise reduction, while previous studies have focused on other externalities of EVs

(Allcott et al., 2024). Holland et al. (2016) estimate differences in EV externalities across localities due to
different fuels used in the electric grid. See also Graff Zivin et al. (2014) and Delmas et al. (2017).

34Estimates based on the model without heterogeneity are much larger: $128.81 billion.
35We focus on the top and bottom 7 counties in Appendix 2 in Davis et al. (2025). Since they measure of

adoption over the period 2012 to 2023, while we are interested in the most up-to-date figures, we collect the 2023
number of EVs for those 14 counties and divide it by the corresponding total number of registered vehicles. We
follow Davis et al. (2025) and define EVs as including both zero emission EVs (ZEV, like Tesla models) as well
as plug-in hybrid EVs (PHEVs, like the Toyota RAV4 Prime). We do not include traditional hybrid vehicles
(like the Toyota Prius) because their noise is not very different from the traditional ICE vehicles. We couldn’t
find data on PHEV for all counties, so we use data from https://afdc.energy.gov/vehicle-registration

and the estimates in Davis et al. (2025) to impute the number of PHEV when missing.
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million and $193 million, respectively. These are arguably sizable benefits. In per-capita terms,

the realized benefits of EVs are the largest in San Francisco ($315 per resident), Santa Clara

($137) and King ($77) counties. Per-capita benefits in Alameda, Orange, Contra Costa and

San Diego counties are $75, $61, $38 and $31, respectively. At the other side of the spectrum,

the per-capita benefits in low adoption counties are trivial. For example, in St. Louis county

they amount to 25 cents, reflecting both the small share of EVs and the low property values.36

Finally, to obtain a back-of-the-envelope estimate of the benefit generated by the average

EV relative to the average ICE, we divide our estimate of the total benefit in Florida (from

column 1 of Table 9) by the number of vehicles registered in the state in 2006 (the mid-point

of our sample period). The ratio is equal to $765. Of course, the externalities of EVs are

not limited to noise. Allcott et al. (2024) find that including all the non-noise externalities

(air pollution, CO2, accidents, manufacturing externalities, etc), EVs generate $3,237 lower

negative externalties relative to ICEs over their lifetime. Adding our estimate of the external

benefits of EVs in terms of noise reduction to Allcott et al. (2024)’s estimate implies that the

total external benefit of EVs (relative to ICEs) increases from $3,237 to $4,002. Taken literally,

this indicates that about one fifth of the total external benefits of EVs (relative to ICEs) stem

from noise reduction.

8 Conclusion

As traffic noise is the primary source of environmental noise exposure in many parts of the world

(Drew, 2019), understanding its economic costs is of first-order importance. We provide the first

causal estimates of the cost of traffic noise in the United States – an environmental externality

that, despite being widespread in urban areas, has received relatively little attention in the

economics literature. Our setting isolates changes in noise exposure without accompanying

changes in other local amenities. This fact, combined with detailed engineering estimates of

the actual noise reductions achieved by each barrier, allows us to recover the willingness to

pay per decibel of noise abatement – a novel scaling that is not available in existing studies.

Equipped with these estimates and detailed national data on noise exposure and property

values, we provide the first estimates of the total cost of the externality and its distribution

across demographic groups.

Our analysis suggests that homebuyers are willing to pay a substantial premium for quieter

living environments: we find that housing prices increase by 6.8% within 100 m of a new barrier.

36The map in Appendix Figure A5 shows the distribution of the realized benefits of current EV adoption.
We lack systematic data on the number of EVs for all U.S. counties, but we have the total numbers by state in
2023 from the U.S. Department of Energy. To make this map, we assume that within each state the share of
each county EVs is proportional to the number of chargers in the county. Data on the location of chargers as
of March 2025 are from the Joint Office of Energy and Transportation. Total personal vehicles in the county
come from the 2019–2023 American Community Survey.
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Our results point to a nationwide external cost of approximately $110 billion. Notably, the

burden of traffic noise is not evenly distributed. Lower-income households tend to live near and

bear the burden of noisier areas, meaning that noise pollution acts as a regressive externality.37

Our estimates allow noise externalities to be incorporated into the calculation of corrective

taxes on ICE vehicles, subsidies for EV adoption, and other policies that affect traffic volumes,

such as congestion pricing. The socially efficient Pigouvian tax amounts to a one-time levy of

$974 per ICE vehicle. We also estimate that the widespread adoption of electric vehicles could

generate $77.3 billion in noise reduction benefits. While policies to incentivize EV adoption are

typically thought of as a way to reduce CO2 – a global externality – our findings indicate that

EVs may also have potentially important localized benefits in the form of lower traffic noise –

a local externality. Importantly, much of this benefit would accrue to low-income households.

More broadly, our findings contribute to the growing body of research on the distributional

consequences of environmental harms. They underscore the importance of integrating noise

pollution considerations into urban planning and transportation policy. Future research could

explore potential links between chronic noise exposure and health outcomes or examine how

noise interacts with other forms of environmental stress to shape life in urban areas.

37Most barriers in the U.S. are built by state governments. Since barriers raise property values, it is reasonable
to ask why more homeowners do not build private barriers. In the case of urban roads with sidewalks and retail
establishments, this is often practically infeasible. In the case of freeways, a limiting factor is the fact that the
land next to the freeway where barriers can be built is often state-owned. Another factor is the coordination
problem that arises when building a wall across multiple properties.
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Almer, Christian, Stefan Boes, and Stephan Nüesch (2017) “Adjustment in housing markets after an environ-

mental shock: Evidence from a large-scale change in aircraft noise exposure,” Oxford Economic Papers, 69

(4), 918–938, 10.1093/oep/gpw066.

Anderson, Michael L. (2020) “As the Wind Blows: The Effects of Long-Term Exposure to Air Pollution on

Mortality,” Journal of the European Economic Association, 18 (4), 1886–1927, 10.1093/jeea/jvz051.
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Marmolejo-Duarte, Carlos and César A. González-Tamez (2009) “Does noise have a stationary impact on

residential values?” Journal of European Real Estate Research, 2 (3), 259–279, 10.1108/17539260910999338.

36

https://ideas.repec.org/a/rje/randje/v27y1996ispringp183-196.html
http://dx.doi.org/10.1016/j.trd.2007.03.002
http://dx.doi.org/10.1016/j.trd.2009.02.001
http://dx.doi.org/10.1016/j.scs.2023.104557
http://dx.doi.org/10.1016/j.scs.2023.104557
http://dx.doi.org/10.1080/21606544.2021.1911861
https://www.dropbox.com/scl/fi/82ruaseahn7nvi5nm7b62/Magagnoli_Tassinari_The_price_of_silence.pdf?rlkey=bia5xrdsvkivkvg0fl8hyvxtq&e=3&st=ej9jpzky&dl=0
https://www.dropbox.com/scl/fi/82ruaseahn7nvi5nm7b62/Magagnoli_Tassinari_The_price_of_silence.pdf?rlkey=bia5xrdsvkivkvg0fl8hyvxtq&e=3&st=ej9jpzky&dl=0
https://www.vejdirektoratet.dk/api/drupal/sites/default/files/publications/noise_from_electric_vehicles.pdf
https://www.vejdirektoratet.dk/api/drupal/sites/default/files/publications/noise_from_electric_vehicles.pdf
http://dx.doi.org/10.1108/17539260910999338


Mieszkowski, Peter and Arthur M. Saper (1978) “An estimate of the effects of airport noise on property values,”

Journal of Urban Economics, 5 (4), 425–440.

MRLC Consortium (2025) “NLCD 2021 Land Cover (CONUS),” https://www.mrlc.gov/data/

nlcd-2021-land-cover-conus, Accessed: 2025-02-11.

Murphy, Enda and Eoin A. King (2014) Noise Mitigation Approaches, Chap. 7, 203–212: Elsevier, 10.1016/

B978-0-12-411595-8.00007-0.

Navrud, St̊ale (2002) “The State-Of-The-Art on Economic Valuation of Noise,”Technical report, Eu-

ropean Commission DG Environment, https://www.researchgate.net/publication/254318936_The_

State-Of-The-Arton_Economic_Valuation_of_Noise, Final Report.

NCEI (2025) “Local Climatological Data (LCD) Version 2,” https://www.ncei.noaa.gov/access/search/

data-search/local-climatological-data-v2, Accessed: 2025-02-14.

Nelson, Jon P. (2004) “Meta-Analysis of Airport Noise and Hedonic Property Values,” Journal of Transport

Economics and Policy, 38 (1), 1–28.

Nelson, P. M. and P. G. Abbott (1971) “Field performance of a noise barrier,” Journal of Sound and Vibration,

17 (3), 327–339, 10.1016/0022-460X(71)90668-7.

Pallas, M. A., B. Kennedy, and P. J. T. Filippi (2014) “Noise Emission of Electric and Hy-

brid Electric Vehicles: Deliverable 5.3,” European Commission, https://www.semanticscholar.

org/paper/Noise-emission-of-electric-and-hybrid-electric-%3A-Pallas-Kennedy/

b226051514d0ebd3bcb56c2dad26d23a31bdefef.

Pallas, Marie Agnès, Michel Berengier, Roger Chatagnon, Martin Czuka, Marco Conter, and Matthew Muirhead

(2016) “Towards a model for electric vehicle noise emission in the European prediction method CNOSSOS-

EU,” Applied Acoustics, 113, 89–101, 10.1016/j.apacoust.2016.06.012.

Pope, Jaren C. (2008) “Buyer information and the hedonic: the impact of a seller disclosure on the implicit

price for airport noise,” Journal of Urban Economics, 63 (2), 498–516.

Ran, Linlin, Lijuan He, Xinyu Cui, and Feng Chen (2020) “Effects of Wind Speed and Atmospheric Stability on

the Air Pollution Reduction Rate Induced by Noise Barriers,” Journal of Wind Engineering and Industrial

Aerodynamics, 200, 104160, 10.1016/j.jweia.2020.104160.

Rich, Jeppe Husted and Otto Anker Nielsen (2004) “Assessment of Traffic Noise Impacts,” International Journal

of Environmental Studies, 61 (1), 19–29, 10.1080/0020723032000113790.

Rochat (2016) “Highway Traffic Noise,” Acoustic Today, 12 (4).

Rochat, Judith L. and Gregg G. Fleming (2004) “TNM Version 2.5 Addendum to Validation of FHWA’s

Traffic Noise Model (TNM): Phase 1,”Technical Report FHWA-EP-02-031 Addendum; DOT-VNTSC-

FHWA-02-01 Addendum, U.S. Department of Transportation, Federal Highway Administration, Wash-

ington, DC, https://www.fhwa.dot.gov/environment/noise/traffic_noise_model/tnm_validation/

tnm25add/tnm25add.pdf, John A. Volpe National Transportation Systems Center.

37

https://www.mrlc.gov/data/nlcd-2021-land-cover-conus
https://www.mrlc.gov/data/nlcd-2021-land-cover-conus
http://dx.doi.org/10.1016/B978-0-12-411595-8.00007-0
http://dx.doi.org/10.1016/B978-0-12-411595-8.00007-0
https://www.researchgate.net/publication/254318936_The_State-Of-The-Arton_Economic_Valuation_of_Noise
https://www.researchgate.net/publication/254318936_The_State-Of-The-Arton_Economic_Valuation_of_Noise
https://www.ncei.noaa.gov/access/search/data-search/local-climatological-data-v2
https://www.ncei.noaa.gov/access/search/data-search/local-climatological-data-v2
http://dx.doi.org/10.1016/0022-460X(71)90668-7
https://www.semanticscholar.org/paper/Noise-emission-of-electric-and-hybrid-electric-%3A-Pallas-Kennedy/b226051514d0ebd3bcb56c2dad26d23a31bdefef
https://www.semanticscholar.org/paper/Noise-emission-of-electric-and-hybrid-electric-%3A-Pallas-Kennedy/b226051514d0ebd3bcb56c2dad26d23a31bdefef
https://www.semanticscholar.org/paper/Noise-emission-of-electric-and-hybrid-electric-%3A-Pallas-Kennedy/b226051514d0ebd3bcb56c2dad26d23a31bdefef
http://dx.doi.org/10.1016/j.apacoust.2016.06.012
http://dx.doi.org/10.1016/j.jweia.2020.104160
http://dx.doi.org/10.1080/0020723032000113790
https://www.fhwa.dot.gov/environment/noise/traffic_noise_model/tnm_validation/tnm25add/tnm25add.pdf
https://www.fhwa.dot.gov/environment/noise/traffic_noise_model/tnm_validation/tnm25add/tnm25add.pdf


Salomons, Erik M. (1999) “Reduction of the performance of a noise screen due to screen-induced wind-speed

gradients: Numerical computations and wind-tunnel experiments,” The Journal of the Acoustical Society of

America, 105 (4), 2287–2293, 10.1121/1.426863.

Salvi, Massimiliano (2008) “Spatial estimation of the impact of airport noise on residential housing prices,”

Swiss Journal of Economics and Statistics, 144 (4), 577–606.

Seto, Edmund and Ching-Hsuan Huang (2023) “The National Transportation Noise Exposure Map,” medRxiv,

10.1101/2023.02.02.23285396.

Sugasawa, Takeru, Yuta Kuroda, Kai Nomura, Shohei Yasuda, and Jun Yoshida (2024) “The Impact of Flight

Noise on Urban Housing Markets: Evidence from the New Landing Flight Paths of Haneda Airport in Japan,”

DSSR Discussion Papers 144, Graduate School of Economics and Management, Tohoku University.

Swoboda, Andreas, Tesfa Nega, and Matthias Timm (2015) “Hedonic analysis over time and space: The case

of house prices and traffic noise,” Journal of Regional Science, 55 (4), 644–670, 10.1111/jors.12189.
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Figure 1: Example of spatial sampling of property transactions

Notes: This figure contains details of the spatial sampling algorithm discussed in Section 3. The depicted
barrier is in Daytona Beach, outside of Orlando, Florida. The black lines are a layer of roads from the Florida
Department of Transportation. The blue line is a noise barrier built on the side of the road. Dots correspond to
property locations from Corelogic. The green shaded areas depict a 500 meter buffer on the side of the barrier.
For reference, 100 meters from the barrier often contains the first one or two rows of homes. The gray buffer
contains properties that are 500–1500 m from the barrier.
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Figure 2: Correlation of home values and noise
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Notes: These figures contain binscatter plots of neighborhood median home values against noise exposure. Our
measure of noise is the maximum decibel level, as modeled by the National Transportation Map (2020), across
parcels in a 2010 census tract. Median home values come from the 2015-2019 5-year American Community
Survey. We residualize both local home values and noise on county fixed effects. Our sample consists of 4,212
census tracts in Florida. The line of best fit is plotted in red.
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Figure 3: Effects for 0-100m by event time
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Notes: This figure contains estimates from Equation 3 of the effect on transacted home prices within 100 m of
the noise barrier in each year leading up to and after the barrier was built. Estimates are in blue and standard
errors at the 90% level are in red. Coefficients are plotted for each of the five years leading up to the barrier
construction and each of the five years after. The estimates use transactions that were 500–1500 m away as the
control group. The average effect is 6.8%. All errors are clustered at the barrier-level.
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Figure 4: Event studies for further out distances

-.1

-.05

0

.05

.1

.15

.2

Lo
g 

Sa
le

 A
m

ou
nt

-5 -4 -3 -2 -1 0 1 2 3 4 5

90% CI

100–200 m

-.1

-.05

0

.05

.1

.15

.2

Lo
g 

Sa
le

 A
m

ou
nt

-5 -4 -3 -2 -1 0 1 2 3 4 5

90% CI

200–300 m

-.1

-.05

0

.05

.1

.15

.2

Lo
g 

Sa
le

 A
m

ou
nt

-5 -4 -3 -2 -1 0 1 2 3 4 5

90% CI

300–400 m

-.1

-.05

0

.05

.1

.15

.2

Lo
g 

Sa
le

 A
m

ou
nt

-5 -4 -3 -2 -1 0 1 2 3 4 5

90% CI

400–500 m

Notes: These figures contain estimates from Equation 3 of the effect on transacted home prices within 100 meter bins of the noise barrier in each year
leading up to and after the barrier was built. Estimates are in blue and standard errors at the 90% level are in red. Figures are shown for 100–200,
200–300, 300–400, and 400–500 m from the barrier. Coefficients are plotted for each of the five years leading up to the barrier construction and each of
the five years after. The estimates use transactions that were 500–1500 m away as the control group. All errors are clustered at the barrier-level.
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Figure 5: Placebo analyses
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(b) Price effects by permuting the year each barrier was built

Notes: These figures contain estimates from Equation 1 of the effect on transacted home prices using two
placebo analyses. The top panel considers price effects within 100 m bins on the “wrong” side of the barrier;
the bottom panel considers price effects for 0–100 m with randomly generated barrier construction years. For
Panel (a), the “wrong” side is the one opposite the highway. Details of how we identified it can be found in
Section 3. Estimates are in blue and standard errors at the 90% level are in red. We combine the 0–100 m and
100–200 m bins for this analysis because, on the wrong-side of the highway, there tend to be few properties
within 100 m due to the highway. For Panel (b), we randomize each barriers build year using the empirical
distribution of actual years barriers were built. For each randomization, we estimate the main difference-in-
differences model, and do so 100 times and plot the distribution of estimates. The y-axis is the fraction of
simulations with a certain estimate value. The red dashed line shows our true estimate of 6.8%. In both
placebos, the difference-in-differences design considers changes in transaction values five years after the barrier
was built with five years before and uses transactions that were 500–1500 m away as the control group. All
errors are clustered at the barrier-level.
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Figure 6: Quadratic effect in noise reduction of barriers on home values

-.0
5

0
.0

5
.1

.1
5

Ef
fe

ct
 o

n 
Lo

g 
Va

lu
e

5 6 7 8 9 10
Decibels of Noise Reduction

90% CI
Predicted effect

Notes: This figure contains a plot of the quadratic effects estimate from Table 4 in expected noise reduction of
the barrier. The plot was constructed using the Stata command marginsplot. Confidence intervals are at the
90% level. All errors are clustered at the barrier-level.
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Figure 7: Air quality near proposed and constructed barriers
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Notes: This figure contains conditional estimates of air quality near proposed (but unbuilt) and constructed
barriers. All estimates are conditional on barrier fixed effects. The AQI measure comes from Google Maps
Platforms and is at the 500 m x 500 m resolution. A higher AQI means better air quality. We pull air quality
readings for a randomly sampled property within each 100 m distance bin around each proposed and constructed
barrier. The data was the most current estimate on June 10th, 2025 at 4pm. We normalize the measure to
have mean zero and standard deviation one in our sample. Estimates of air quality for proposed barriers are
in red. Estimates of air quality for constructed barriers are in blue. Estimates are shown for 0–100, 100–200,
200–300, 300–400, and 400–500 m away, with 500–1500 m being the omitted distance. Confidence intervals at
the 90% level are also depicted. The difference between the estimates at 0–100 m is 2.3% (s.e. = 1.6%), and is
insignificant at all distances. All errors are clustered at the barrier-level.
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Figure 8: Noise externality costs (per capita) across neighborhoods
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Notes: These figures contain binscatter plots of estimates of the dollar value of the noise externality with
neighborhood socioeconomic characteristics. Our externality estimate extrapolates our findings on home value
appreciation for each decibel of noise reduction to all properties in Florida. We divide this number by the
total population in the 2010 census tract, and then log-transform it. Median family incomes, the share of the
population that is Black, and the poverty rate come from the 2015-2019 5-year American Community Survey.
We residualize both our logged per capita externality measure and tract characteristics by county fixed effects.
Our sample consists of 4,212 census tracts in Florida. The line of best fit is plotted in red.
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Table 1: Neighborhood characteristics relative to county means

dB > 50 [46,50] dB < 46

Florida

Population (m) 2.2 9.0 8.7
Tracts # 537 2124 2090
Any Exp. to >90 dB (%) 15.7 -0.3 -3.7
Median Fam. Income ($1k) -12.5 -3.4 6.7
Poverty (%) 3.7 0.6 -1.6
Median Home Val. ($1k) -48.4 -15.1 27.6
Black (%) 4.8 1.3 -2.5
College Educated (%) -2.7 -0.8 1.5
Urban (%) 3.1 3.6 -4.5
Density (#/sq. km) 699 32 -213

United States

Population (m) 42.1 133.6 132.5
Tracts # 11,644 33,020 34,336
Any Exp. to >90 dB (%) 13.9 -1.0 -3.8
Median Fam. Income ($1k) -13.2 -2.2 6.4
Poverty (%) 4.0 0.6 -1.9
Median Home Val. ($1k) -42.5 -5.6 18.7
Black (%) 3.1 0.9 -1.9
College Educated (%) -2.7 -0.2 1.1
Urban (%) 4.8 8.2 -9.5
Density (#/sq. km) 564 102 -290

Notes: This table contains summary statistics for neighborhoods across the U.S. and Florida by noise exposure.
We use Seto and Huang (2023)’s publicly available dataset which contains estimates of the share of a 2020
census tract’s population exposed to different 10-decibel bins of noise. We use these shares to extrapolate an
average noise exposure for each tract. We then bin tracts into three groups: high exposure (greater than 50
dB of average exposure), medium (between 46 and 50 dB of average exposure), and low (less than 46 dB of
average exposure). We then calculate average neighborhood characteristics for each of these three groups. We
use 2016-2020 American Community Survey data and 2020 census tract boundaries to do so. Row (1) contains
the total population. Row (2) contains the total number of census tracts. Each subsequent characteristic is
residualized on county fixed effects. The interpretation of the average median home value, for example, is how
many thousands of dollars is the median home value less or more than the county average for each group. Row
(3) contains the share of the population exposed to any noise. Row (4) contains the share of the population
exposed to extreme noise (greater than 90 dB). Row (5) through (11) contain averages for median home values,
median family income, the poverty rate, the percentage of the population that is Black, the percentage of the
population that is college educated, the percentage of the population that lives in an urban area, and the density
as measured by persons per square kilometer. The top panel contains values for Florida, whereas the bottom
panel contains values for the entire U.S. The area of 2020 census tracts was calculated directly from the 2020
U.S. Census TIGER/Line Shapefiles.
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Table 2: Effect of sound barriers on prices – difference-in-differences models

(1) (2) (3) (4) (5) (6)

Log. Value Log. Value Log. Value Log. Value Log. Value Log. Value

100 meters x post 0.0676*** 0.0859*** 0.0669*** 0.0884*** 0.0777*** 0.103***

(0.0139) (0.0228) (0.0163) (0.0264) (0.0172) (0.0266)

200 meters x post 0.0399*** 0.0578*** 0.0421*** 0.0633*** 0.0582*** 0.0814***

(0.0141) (0.0195) (0.0161) (0.0228) (0.0168) (0.0234)

300 meters x post 0.0319** 0.0441** 0.0320** 0.0439* 0.0431*** 0.0546**

(0.0131) (0.0207) (0.0150) (0.0236) (0.0156) (0.0231)

400 meters x post 0.0285 0.0445* 0.0303 0.0458* 0.0318 0.0492*

(0.0196) (0.0231) (0.0219) (0.0246) (0.0226) (0.0254)

500 meters x post 0.0132 0.0160 0.0146 0.0194 0.0232* 0.0304

(0.0111) (0.0169) (0.0122) (0.0177) (0.0131) (0.0187)

Observations 594,936 474,033 1,093,205 933,301 1,093,205 933,301

R2 0.677 0.806 0.659 0.785 0.659 0.785

Not Built BIDs ✓ ✓ ✓ ✓

Main FE ✓ ✓ ✓ ✓ ✓ ✓

Parcel FE ✓ ✓ ✓

Dist x Yr FE ✓ ✓

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains versions of our main difference-in-differences model in Equation 1 with additional
fixed effects and also by including properties near proposed (but not built) barriers as additional control units.
The coefficients correspond to the βj in Equation 1, and capture the effect of the barrier construction on
transacted home value prices. The design compares transactions in the five years after barrier construction
with the five years prior, and for properties near to the barrier with those that were between 500–1500 m away.
All specifications include barrier by date fixed effects, barrier by distance bin fixed effects, and other controls
discussed in Section 4. Column (1) is our main specification. Columns (2), (4), and (6) include parcel (the
tax unit for a property) fixed effects, and consequently, rely on repeat-sales. Columns (3) through (6) add
properties near barriers that were proposed for construction, but have yet to be built, to the sample. Columns
(5) and (6) add distance from the barrier by year fixed effects. All errors are clustered at the barrier-level.
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Table 3: Effect of sound barriers on prices

Difference-in-differences and triple-difference models using proposed barriers

(1) (2) (3)

Log. Value Log. Value Log. Value

100 meters x post 0.0705*** 0.0817** 0.0967***

(0.0172) (0.0361) (0.0370)

200 meters x post 0.0421*** 0.0336 0.0569**

(0.0151) (0.0230) (0.0273)

300 meters x post 0.0361*** 0.0131 0.0589*

(0.0137) (0.0293) (0.0329)

400 meters x post 0.0392** 0.00816 0.0391

(0.0165) (0.0240) (0.0244)

500 meters x post 0.0158 0.0281 0.0333

(0.0126) (0.0227) (0.0216)

Observations 1,183,327 1,143,946 1,142,992

R2 0.694 0.743 0.751

Specification DD DD DDD

Base FE ✓ ✓ ✓

BID x E. Time FE ✓ ✓

Match x Dist x E. Time FE ✓ ✓

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains a version of our difference-in-differences model in Equation 1, as well as our triple-
differences specification given in Equation 2. The coefficients correspond to the βj in Equations 1 and 2, and
capture the effect of the barrier construction on transacted home value prices. Throughout, the sample includes
all built and proposed barriers, and their associated transactions. The design compares transactions in the five
years after barrier construction with the five years prior. Barriers that were built are “matched” to their closest
proposed (but not built) barrier that was at least 1000 meters away. Using these matched barriers, columns (1)
through (3) vary in which control group is used. Column (1) relies on barrier by event time fixed effects, and
is our main specification (with the inclusion of proposed barriers to the sample). Thus, the control group are
transactions near the same barrier but 500–1500 m away. Column (2) relies on match by distance bin by event
time fixed effects. Thus, the control group for, say 0–100 m, are transactions that were 0–100 meters away
from the matched proposed barrier. Column (3) relies on both barrier by event time and match by distance
bin by event time fixed effects. This is the triple-difference (DDD) specification. All errors are clustered at the
barrier-level.

50



Table 4: Price effect by expected noise reduction

(1) (2) (3) (4)

Log. Value Log. Value Log. Value Log. Value

100 meters x post 0.0676*** 0.0581*** 0.0610*** 0.0640***

(0.0139) (0.0147) (0.0150) (0.0160)

1(d ≤ 100m) ∗ post× (dBs− 7) 0.0111 0.0204** 0.0213**

(0.00727) (0.00986) (0.00984)

1(d ≤ 100m) ∗ post× (dBs− 7)2 -0.00401* -0.00716*

(0.00231) (0.00420)

1(d ≤ 100m) ∗ post× (dBs− 7)3 0.000523

(0.000539)

Observations 594,936 588,003 588,003 588,003

R2 0.677 0.677 0.677 0.677

Main Controls ✓ ✓ ✓ ✓

DBA effects Const. Linear Quad. Cubic

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains a version of our main specification given in Equation 1 where the effects are allowed
to vary with how much noise the barriers reduce. The design compares transactions in the five years after barrier
construction with the five years prior, and for properties near to the barrier with those that were between 500–
1500 m away. All specifications include barrier by date fixed effects, barrier by distance bin fixed effects, and
other controls discussed in Section 4. Column (1) is our main specification. Column (2) interacts our effect with
the number of decibels a barrier was expected to reduce traffic noise. We center the expected noise reduced on
7 decibels - near the average for barriers in our sample. Columns (2) and (3) add in quadratic and cubic terms,
respectively. All errors are clustered at the barrier-level.
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Table 5: Testing the role of air pollution

(1) (2) (3) (4) (5)

Log. Value Log. Value Log. Value Log. Value Log. Value

1(d ≤ 100m) ∗ post×Average Wind (m/s) 0.0384

(0.0544)

1(d ≤ 100m) ∗ post×Avg. Sustained Wind (m/s) 0.0592

(0.0592)

1(d ≤ 100m) ∗ post×Perpendicular to Barrier (deg.) -0.000161

(0.000236)

1(d ≤ 100m) ∗ post×Perp. to Barrier (shr.) 0.0408

(0.0887)

1(d ≤ 100m) ∗ post× Sale in 1997-2003 0.0315

(0.0500)

Observations 594,936 594,936 594,936 594,936 594,936

R2 0.677 0.677 0.677 0.677 0.677

Main Controls ✓ ✓ ✓ ✓ ✓

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains a version of our main specification given in Equation 1 where the effects are allowed
to vary with measures of wind speed and direction. The design compares transactions in the five years after
barrier construction with the five years prior, and for properties near to the barrier with those that were
between 500–1500 meters away. All specifications include barrier by date fixed effects, barrier by distance bin
fixed effects, and other controls discussed in Section 4. Wind data is from NCEI (2025) for 45 sensors in Florida
in 2024. From this data, we collect daily information on average wind speed, average sustained wind speed,
average sustained wind direction, and share of days over the year with the wind blowing in directions of 10-
degree bins. For each barrier, we construct a spatial average of the sensors with weights inversely proportional
to distance. The interactions of our main effect with each of these wind speed measures is contained in columns
(1) and (2). To assess whether the wind is blowing at the barriers, we calculate the angle θ1 from the sound
barrier to each property. For θ2 the average wind direction, min{|θ1 − θ2|, 360 − |θ1 − θ2|} is a measure of
how far the wind is from being perpendicular to the barrier. We interact our main effect with this measure in
column (3). Finally, we calculate the share of days over 2024 in which the wind was blowing in the direction of
the barrier from the road, plus or minus 45 degrees. We interact this measure with our main effect in column
(4). In column (5), we interact our main 0—100 m effect with whether the sale happened in 1997–2003 relative
to 1996 or before. In this specification, we separately estimate the effect on sales after 2003. All errors are
clustered at the barrier-level.
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Table 6: Testing the role of blocking the view of the road

(1) (2) (3)

Log. Value Log. Value Log. Value

1(d ≤ 100m) ∗ post×BID Canopy % 0.000227

(0.000830)

1(d ≤ 200m) ∗ post× 100m B. Area (std.) 0.00734

(0.0113)

1(d ≤ 200m) ∗ post× 100m Avg. # Stories 0.0193

(0.0258)

Observations 594,936 594,936 594,936

R2 0.677 0.677 0.677

Main Controls ✓ ✓ ✓

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains a version of our main specification given in Equation 1 where the effects are allowed
to vary with barrier and neighborhood measures. The design compares transactions in the five years after
barrier construction with the five years prior, and for properties near to the barrier with those that were
between 500–1500 meters away. All specifications include barrier by date fixed effects, barrier by distance bin
fixed effects, and other controls discussed in Section 4. In column (1), we interact our main 0–100 m effect with
tree canopy cover (as a percentage) close to the barrier. To do this, we use the MRLC Consortium (2025) data
to calculate land cover at each property. We identify barrier canopy cover as that for the property closest to
the barrier. In columns (2) and (3), we construct measures of the build environment 0–100 m from the barrier
that would block the view for properties 100–200 m away. Our first measure calculate the aggregate building
square footage 0–100 m from the barrier, normalizes it by the length of the barrier, and then standardizes this
measure to have mean zero and standard deviation one. The second measure calculates the average number
of stories for buildings 100 m away from the barrier. Columns (2) and (3) interact our 100–200 m effect with
these measures of build density nearer to the barrier. All errors are clustered at the barrier-level.
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Table 7: Aggregate costs of the noise externality

Noise Costs

Total
($1b)

Cost ($1k)
per Capita

Costs pc per
MFI (%)

Costs per
Prop. Val (%)

Florida 7.00 0.33 0.47 0.26
Q1 MFI (FL) 2.31 0.47 1.18 0.60
Q4 MFI (FL) 1.56 0.30 0.26 0.13
Q1 Black % (FL) 1.50 0.36 0.40 0.17
Q4 Black % (FL) 2.06 0.38 0.74 0.46
United States 109.75 0.34 0.42 0.32
Q1 MFI (U.S.) 24.25 0.35 0.83 0.67
Q4 MFI (U.S.) 39.13 0.44 0.33 0.24
Q1 Black % (U.S.) 20.24 0.27 0.31 0.22
Q4 Black % (U.S.) 23.37 0.30 0.52 0.44

Notes: This table contains estimates of the dollar value of the noise externality. Column (1) contains the
aggregate of those costs in billions of 2022 U.S. dollars. Column (2) contains estimates of the cost per capita.
Columns (3) and (4) contain estimates of those costs as a percentage of local median incomes and total assessed
property values, respectively. Row (1) performs this analysis for all of Florida. Rows (2) through (5) disaggregate
them by neighborhoods in the lower and upper quartiles by local median family incomes and the share of the
population that is Black, respectively. Row (6) reports totals for the United States, and rows (7) through (10)
perform the same disaggregation as for Florida. These measures are at the 2010 census tract level and come
from the 2015-2019 American Community Survey.
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Table 8: Costs of traffic noise for the most populous cities

Noise Costs

CBSA
Total
($1b)

Cost ($1k)
per Capita

Costs pc per
MFI (%)

Costs per
Prop. Val (%)

New York 6.92 0.35 0.34 0.39
Los Angeles 11.04 0.83 0.94 0.43
Chicago 1.00 0.11 0.12 0.36
Dallas 3.39 0.46 0.53 0.30
Philadelphia 3.48 0.57 0.60 0.66
Houston 2.67 0.39 0.47 0.28
Washington 4.27 0.69 0.54 0.28
Miami 3.00 0.49 0.65 0.33
Atlanta 0.60 0.10 0.12 0.17
Boston 6.35 1.31 1.13 0.52

Notes: This table contains estimates of the dollar value of the noise externality for the top 10 most populous
Core-Based Statistical Areas (CBSAs). The definition of CBSA relies on 2010 boundaries. Column (1) contains
the aggregate of those costs in billions of 2022 U.S. dollars. Column (2) contains estimates of the cost per
capita. Columns (3) and (4) contain estimates of those costs as a percentage of local median incomes and total
assessed property values, respectively. These measures are at the 2010 census tract level and come from the
2015-2019 American Community Survey.
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Table 9: Potential benefits of electric vehicles

EV Benefits

Total
($1b)

Benefit ($1k)
per Capita

Benefit pc per
MFI (%)

Benefit per
Prop. Val (%)

Florida 5.39 0.26 0.36 0.20
Q1 MFI (FL) 1.94 0.40 0.99 0.50
Q4 MFI (FL) 0.96 0.19 0.16 0.08
Q1 Black % (FL) 1.03 0.24 0.28 0.12
Q4 Black % (FL) 1.71 0.32 0.62 0.38
United States 77.28 0.24 0.30 0.22
Q1 MFI (U.S.) 19.72 0.28 0.68 0.54
Q4 MFI (U.S.) 22.63 0.25 0.19 0.14
Q1 Black % (U.S.) 14.13 0.19 0.22 0.15
Q4 Black % (U.S.) 18.29 0.24 0.40 0.35

Notes: This table contains estimates of the dollar value of a 100% diffusion of electric vehicles (EVs). Column
(1) contains the aggregate of those benefits in billions of 2022 U.S. dollars. Column (2) contains estimates of
the benefit per capita. Columns (3) and (4) contain estimates of those benefits as a percentage of local median
incomes and total assessed property values, respectively. Row (1) performs this analysis for all of Florida. Rows
(2) through (5) disaggregate them by neighborhoods in the lower and upper quartiles by local median family
incomes and the share of the population that is Black, respectively. Row (6) reports totals for the United
States, and rows (7) through (10) perform the same disaggregation as for Florida. These measures are at the
2010 census tract level and come from the 2015-2019 American Community Survey.
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Table 10: Realized EV benefits for top/bottom counties by EV adoption

Top / Bottom 7
Counties

EV Share
Total
($1m)

Benefit ($)
per Capita

Benefit pc per
MFI (%)

Benefit per
Prop. Val (%)

Santa Clara 0.230 264.70 137.37 0.10 0.04
San Francisco 0.186 275.86 315.28 0.22 0.09
Alameda 0.178 123.62 74.61 0.06 0.03
Orange 0.156 192.58 60.79 0.06 0.03
King 0.141 168.75 76.86 0.06 0.02
Contra Costa 0.132 43.20 37.82 0.03 0.02
San Diego 0.108 102.83 31.11 0.03 0.02
Hidalgo 0.004 0.90 1.05 0.00 0.00
Macomb 0.004 0.58 0.67 0.00 0.00
El Paso 0.004 1.47 1.76 0.00 0.00
St. Louis 0.003 0.25 0.25 0.00 0.00
Cuyahoga 0.003 0.28 0.22 0.00 0.00
Jefferson 0.002 0.80 1.05 0.00 0.00
Wayne 0.002 0.98 0.56 0.00 0.00

Notes: This table contains estimates of the dollar value of the current diffusion of EVs in U.S. counties. The top
and bottom panels include the top and bottom 7 counties by 2023 share of vehicles that are EVs, respectively.
Column (1) contains the share of vehicles that are EVs. Column (2) contains the aggregate of those benefits
in millions of 2022 U.S. dollars. Column (3) contains estimates of the benefit per capita. Columns (4) and (5)
contains estimates of those benefits as a percentage of local median incomes and total assessed property values,
respectively. These measures are aggregated up from the 2010 census tract level.
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Appendix

Appendix Figure A1: Event study effects for 500–1500 m from the noise barrier

Avg effect:   -.0075 (0.021)

-.1

0

.1

.2

Lo
g 

Sa
le

 A
m

ou
nt

-5 0 5

Years after Barrier Built

Effects for 500-1500 m

Notes: This figure plots event study estimates of the effect of the barrier on transacted home value prices
500–1500 m away from the barrier. To do this, we use transactions 500–1500 m way from barriers that have
yet to be constructed as the control group. This design is subject to concerns over two-way fixed effects models
with variation in treatment timing. Thus, we use the estimator of de Chaisemartin and D’Haultfœuille (2024)
to address these concerns. The specification includes barrier, event time, and year fixed effects. Each coefficient
corresponds to the effect of the barrier on transacted home values in the years before and after the barrier
was built, relative to the year prior to barrier construction. The average effect over the five-year window was
−0.0075. Coefficients are plotted with their 90% confidence interval. All errors are clustered at the barrier-level.
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Appendix Figure A2: Difference-in-differences estimates by distance
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Notes: This figure contains estimates of the average effect on transacted home prices in 100 meter bins from the
noise barrier. Estimates are in blue and standard errors at the 90% level are in red. The difference-in-differences
design considers changes in transaction values five years after the barrier was built with five years before and
uses transactions that were 1200–1500 m away as the control group. Controls include those in Equation 1. All
errors are clustered at the barrier-level.
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Appendix Figure A3: Placebo estimates using proposed barriers
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Notes: This figure contains estimates from Equation 1 of the effect on transacted home prices for proposed (but
not built) barriers within 100 meter bins of the proposed barrier. Estimates are in blue and standard errors at
the 90% level are in red. Figures are shown for 0–100, 100–200, 200–300, 300–400, and 400–500 m from the
barrier. As in Table 3, we match proposed barriers to their nearest constructed barrier that was at least 1000 m
away. The difference-in-differences design considers changes in transaction values five years after the matched
barrier was built with five years before and uses transactions that were 500–1500 m away as the control group.
All errors are clustered at the barrier-level.
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Appendix Figure A4: Noise externality costs (per capita as a share of median family income
and as a share of total property value) across neighborhoods
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Notes: These figures contain binscatter plots of estimates of the dollar value of the noise externality with
neighborhood socioeconomic characteristics. Our externality estimates extrapolate our findings on home value
appreciation for each decibel of noise reduction to all properties in Florida. We divide this number by the
population and then the median family income (on the left) and by assessed property values (on the right)
in the 2010 census tract, and then log-transform it. Median family incomes, the share of the population that
is Black, and the poverty rate come from the 2015–2019 5-year American Community Survey. We residualize
both our logged per capita externality measure and tract characteristics by county fixed effects. Our sample
consists of 4,212 census tracts in Florida. The line of best fit is plotted in red.
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Appendix Figure A5: Realized EV benefits by county
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Notes: This figures contains estimates of the current per capita benefits of EVs in counties across the U.S.
We use the statewide total number of EVs from the U.S. Department of Energy for 2023. We include plug-in
Hybrid EVs in this calculation. We allocate EVs across all counties according to the share of EV charging ports
within the state located in that county. The locations of EV charging ports are from the Joint Office of Energy
and Transportation and are current as of March 2025. We then calculate the share of all personal vehicles in
the county that are EVs using the 2019-2023 American Community Survey. We then multiply this share by
the potential benefits of 100% EVs according to the analysis in Table 9.
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Appendix Table A1: Sound barrier summary statistics

Summary Statistics
Constructed Recommended Diff.

mean s.d. mean s.d. p-val
Year Built 2009 8
Length (m) 496 456 499 519 0.90
Height (m) 4.46 1.59 4.50 1.62 0.63
Cost ($1k) 741 846 799 1,007 0.23
Noise Reduction (dB) 7.15 2.02 7.28 1.10 0.18
Home Val. ($1k) 240 115 230 110 0.11
MFI ($1k) 70 29 73 30 0.02
Poverty Shr 0.15 0.09 0.14 0.11 0.12
College Shr 0.22 0.11 0.23 0.12 0.01
White Shr 0.66 0.24 0.69 0.20 0.06

N 1143 497

Notes: This table contains summary statistics for all noise barriers. The first two columns contain summary
statistics for constructed barriers. The second two columns contain summary statistics for recommended bar-
riers, which we make use of in various alternative specifications and robustness exercises. Columns (1) and (3)
contain averages. Columns (2) and (4) contain standard deviations. Column (5) contains the p-value on the
difference between columns (1) and (3). Rows (1) through (5) contain the year built, the length, the height,
the cost, and the expected noise reduction, respectively. Rows (6) through (10) contain median home values,
median family income, poverty rates, college-educated share, and White population shares for the 2010 census
tracts of the barriers. This data comes from the 2015–2019 American Community Survey. The last row contains
counts of the total number of barriers.
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Appendix Table A2: Property and transactions summary statistics

Summary Statistics
Full Sample 0-100m 400-500m 900-1000m 1400-1500m

Sale Characteristics mean mean mean mean mean
Year of Sale 2007 2008 2007 2007 2007
Year Built 1980 1983 1978 1978 1980
Price ($1k, 2022) 298 320 280 321 306
Area (sq ft) 1,868 1,763 1,844 1,918 1,917
SFR 0.72 0.71 0.75 0.76 0.66
Condo 0.26 0.26 0.23 0.21 0.30
Duplex 0.01 0.02 0.01 0.02 0.02
Apt. 0.01 0.01 0.01 0.02 0.03
Cash 0.35 0.35 0.34 0.33 0.35
New 0.09 0.10 0.07 0.07 0.11

N 596,419 48,166 41,761 34,390 31,427

Notes: This table contains summary statistics for all transactions in our sample. Each column contains averages
of different property and transaction characteristics. The first column contains these estimates for the entire
sample. Columns (2) through (5) consider averages for 0–100, 400–500, 900–1000, and 1400–1500 m from the
barrier, respectively. Rows (1) through (4) contains the year of the transaction, the year the property was built,
the price in 2022 U.S. dollars, and the building area in square feet. Rows (5) through (8) contain the share
of properties that were single family residences, condominiums, duplexes, or apartments. Rows (9) and (10)
contain shares of transactions that were bought with cash, and the share of properties that were newly built.
Row (11) contains total counts of transactions in each distance bin.
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Appendix Table A3: Expected effect of sound barriers on noise, by distance

Distance Noise How Loud Change What It Sounds Like
(Db scale) (0-100 scale) in How Loud

Before After Before After Before After
(1) (2) (3) (4) (5) (6) (7) (8)
25 m 76 dB 69 dB 100 61.5 -38.5 food mixer dishwasher
50 m 70 dB 63 dB 65.9 40.2 -25.7 dishwasher normal conversation
100 m 64 dB 57 dB 43.5 26.5 -17.0 normal conversation electric toothbrush
200 m 58 dB 51 dB 28.7 17.6 -11.1 electric toothbrush refrigerator
400 m 52 dB 45 dB 18.9 11.5 - 7.4 refrigerator bird calls
800 m 46 dB 39 dB 12.5 7.6 -4.9 bird calls library

Notes: This table contains the expected reduction in decibels and perceived loudness at every distance from the sound barrier. Column (1) contains the
distance from the sound barrier. Column (2) contains the level of noise without the sound barrier. Column (3) contains the level of noise with a sound
barrier that reduces noise by 7 dB - about the average barrier for our sample. We use 76 dB as the highway sound without the barrier, following median
estimates from Corbisier (2003). According to the “inverse square law,” the decibel of a noise is reduced by 6 with every doubling of the distance. Hence,
we reduce the decibel level by 6 in both columns (2) and (3) with each additional row. Column (4) and (5) convert decibels to a perception of loudness,
indexed to 100 for the sound of a highway 25 meters away without a sound barrier. It is commonly accepted that a reduction of 10 dB corresponds to a
reduction of half in the perceived loudness; thus, a reduction of x decibels changes perceived loudness by (1/2)(x/10). Column (6) provides the difference
in loudness between column (4) and (5). Columns (7) and (8) give everyday sounds that are of a similar decibel level to columns (2) and (3).
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Appendix Table A4: Intensity of treatment under alternative controls

(1) (2) (3)

Log. Value Log. Value Log. Value

100 meters x post 0.0610*** 0.0825*** 0.103***

(0.0150) (0.0230) (0.0268)

1(d ≤ 100m) ∗ post× (dBs− 7) 0.0204** 0.0430** 0.0420**

(0.00986) (0.0183) (0.0185)

1(d ≤ 100m) ∗ post× (dBs− 7)2 -0.00401* -0.0110*** -0.0106**

(0.00231) (0.00418) (0.00416)

Observations 588,003 468,708 898,648

R2 0.677 0.806 0.789

Main Controls ✓ ✓ ✓

Parcel FE ✓ ✓

Proposed barriers? ✓

Dist x Yr FE ✓

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains a version of our main specification given in Equation 1 where the effects are allowed
to vary quadratically with how much noise the barriers reduce. The design compares transactions in the five
years after barrier construction with the five years prior, and for properties near to the barrier with those that
were between 500–1500 m away. All specifications include barrier by date fixed effects, barrier by distance bin
fixed effects, and other controls discussed in Section 4. Column (1) is the baseline specification. Column (2)
includes parcel fixed effects. Column (3) adds in proposed barriers and distance bin by year fixed effects. All
errors are clustered at the barrier-level.
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Appendix Table A5: Robustness to excluding new developments

(1) (2) (3) (4)

Log. Value Log. Value Log. Value Log. Value

100 meters x post 0.0661*** 0.0668*** 0.0631*** 0.0486***

(0.0137) (0.0136) (0.0131) (0.0122)

200 meters x post 0.0385*** 0.0369*** 0.0345** 0.0220*

(0.0139) (0.0136) (0.0135) (0.0126)

300 meters x post 0.0303** 0.0327*** 0.0305** 0.0143

(0.0128) (0.0121) (0.0121) (0.0106)

400 meters x post 0.0255 0.0265 0.0250 0.000463

(0.0195) (0.0192) (0.0192) (0.0180)

500 meters x post 0.0106 0.0133 0.0130 0.000145

(0.0109) (0.0106) (0.0106) (0.0104)

Observations 588,717 577,045 573,234 541,897

R2 0.678 0.679 0.680 0.679

Main Controls ✓ ✓ ✓ ✓

Built on/before event time? t=5 t=0 t=-1 t=-6

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains our main specification given in Equation 3 for alternative sample restrictions based on
property build year. The coefficients correspond to the βj in Equation 1, and capture the effect of the barrier
construction on transacted home value prices at different distances from the barrier. The design compares
transactions in the five years after barrier construction with the five years prior. All specifications include
barrier by date fixed effects, barrier by distance bin fixed effects, and other controls discussed in Section 4.
Column (1) contains all transactions for properties built on or before five years after the barrier was built.
Columns (2) through (4) restrict this further to properties built on or before the year the barrier was built, the
year before, and six years before the barrier was built, respectively. All errors are clustered at the barrier-level.
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Appendix Table A6: Effect of barriers on transaction, residence, and property characteristics

Panel A: Transaction Outcomes Investor Resale New Bldg Cash Mortg. Forcl.

100 meters × Post -0.000361 -0.0108 0.0107 -0.00494 -0.00209 -0.00253
(0.00233) (0.00769) (0.00769) (0.00737) (0.00748) (0.00685)

200 meters × Post -0.000176 -0.00375 0.00377 0.00345 -0.00911 0.00448
(0.00216) (0.00656) (0.00656) (0.00753) (0.00780) (0.00669)

300 meters × Post -0.00458* -0.00951** 0.00973** -0.000259 -0.00256 -0.00139
(0.00239) (0.00432) (0.00432) (0.00778) (0.00788) (0.00694)

400 meters × Post -0.00167 -0.00827 0.00836* 0.00630 -0.00851 -0.00483
(0.00249) (0.00506) (0.00506) (0.00942) (0.00954) (0.00716)

500 meters × Post -0.00102 -0.00751* 0.00748* -0.0157* 0.0128 -0.000159
(0.00223) (0.00418) (0.00418) (0.00905) (0.00891) (0.00621)

Panel B: Land Use Outcomes SFR Condo Duplex Apt.

100 meters × Post 0.00720 -0.00477 -0.000745 -0.00168
(0.00670) (0.00619) (0.00231) (0.00195)

200 meters × Post -0.00723 0.00522 0.000965 0.00105
(0.00763) (0.00730) (0.00182) (0.00182)

300 meters × Post -0.00252 0.00238 -0.000307 0.000453
(0.00503) (0.00446) (0.00186) (0.00184)

400 meters × Post -0.00419 0.00103 0.00414** -0.000976
(0.00680) (0.00624) (0.00195) (0.00176)

500 meters × Post -0.0000995 -0.00386 0.00467** -0.000706
(0.00491) (0.00417) (0.00208) (0.00169)

Panel C: Building Characteristics Bedrooms Stories Pool Central AC Fin. Garage

100 meters × Post -0.0105 -0.00873 0.00527 -0.00382 0.00134
(0.0204) (0.00835) (0.00520) (0.00290) (0.00470)

200 meters × Post -0.0236 -0.0184 0.00329 -0.000875 0.00524
(0.0171) (0.0129) (0.00405) (0.00256) (0.00421)

300 meters × Post -0.0104 0.00315 0.0120** 0.000471 0.00275
(0.0166) (0.00737) (0.00493) (0.00265) (0.00428)

400 meters × Post -0.0283 -0.000326 0.000247 -0.00651 0.00143
(0.0217) (0.00893) (0.00502) (0.00470) (0.00520)

500 meters × Post 0.00518 -0.000496 0.00859 -0.00235 -0.000290
(0.0154) (0.00653) (0.00531) (0.00316) (0.00422)

Notes: This table contains estimates of Equation 1 using 500–1500 m as the control group. Outcomes are given
in the column headers and contain transaction characteristics (Panel A), land use characteristics (Panel B), and
property characteristics (Panel C). Thus, the table assesses whether the construction of the barrier induces any
change in the types of transactions, residences, or properties that are sold at various distances from the barrier.
For Panel A, columns (1) through (5) consider whether there is a change in whether the transaction was an
investor purchase, a resale, a new building, a cash purchase, a mortgage purchase, or a foreclosure purchase,
respectively. For Panel B, columns (1) through (4) consider whether there is a change in whether the property
is a single family residence, a condominium, a duplex, or an apartment, respectively. For Panel C, columns (1)
through (5) consider whether there is a change in the number of bedrooms, the number of stories, whether the
property has a pool, a central AC, or a finished garage, respectively. All specifications include barrier by date
and barrier by distance bin fixed effects. All errors are clustered at the barrier-level.
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Appendix Table A7: Robustness to outliers and varying distance and time horizons

Panel A: Lower Outliers > $1k > $5k > $10k > $20k

100 meters × post 0.0676*** 0.0608*** 0.0585*** 0.0575***
(0.0139) (0.0126) (0.0122) (0.0118)

200 meters × post 0.0399*** 0.0372*** 0.0357*** 0.0369***
(0.0141) (0.0131) (0.0129) (0.0128)

300 meters × post 0.0318** 0.0297** 0.0248** 0.0280**
(0.0131) (0.0127) (0.0123) (0.0114)

400 meters × post 0.0285 0.0265 0.0266 0.0291
(0.0196) (0.0189) (0.0186) (0.0181)

500 meters × post 0.0132 0.00557 0.00756 0.00674
(0.0111) (0.0102) (0.00995) (0.00942)

Panel B: Upper Outliers < $7.5m < $5m < $2.5m < $1m

100 meters × post 0.0676*** 0.0603*** 0.0415*** 0.0387***
(0.0139) (0.0133) (0.0112) (0.0109)

200 meters × post 0.0399*** 0.0298** 0.0144 0.0159
(0.0141) (0.0129) (0.0106) (0.0105)

300 meters × post 0.0318** 0.0253** 0.0141 0.0158
(0.0131) (0.0123) (0.0107) (0.0100)

400 meters × post 0.0285 0.0156 0.0119 0.00191
(0.0196) (0.0178) (0.0121) (0.0108)

500 meters × post 0.0132 0.00938 0.00125 0.00183
(0.0111) (0.0107) (0.0103) (0.0108)

Panel C: Distance Sensitivity ≤ 1500m ≤ 800m ≤ 1000m ≤ 1200m

100 meters × post 0.0676*** 0.0460*** 0.0637*** 0.0664***
(0.0139) (0.0153) (0.0155) (0.0146)

200 meters × post 0.0399*** 0.0240* 0.0364*** 0.0367***
(0.0141) (0.0144) (0.0138) (0.0141)

300 meters × post 0.0318** 0.0187* 0.0290*** 0.0280**
(0.0131) (0.0109) (0.0106) (0.0114)

400 meters × post 0.0285 0.00658 0.0189 0.0244
(0.0196) (0.0186) (0.0180) (0.0190)

500 meters × post 0.0132 0.00549 0.0133 0.0124
(0.0111) (0.0120) (0.0112) (0.0109)

Panel D: Event Time Window -10 to 10 -5 to 5 -8 to 8 -12 to 12

100 meters × post 0.0676*** 0.0603*** 0.0684*** 0.0674***
(0.0139) (0.0133) (0.0136) (0.0143)

200 meters × post 0.0399*** 0.0347*** 0.0403*** 0.0396***
(0.0141) (0.0134) (0.0141) (0.0146)

300 meters × post 0.0318** 0.0302** 0.0327** 0.0306**
(0.0131) (0.0123) (0.0128) (0.0134)

400 meters × post 0.0285 0.0266 0.0283 0.0276
(0.0196) (0.0177) (0.0194) (0.0200)

500 meters × post 0.0132 0.0158 0.0162 0.0133
(0.0111) (0.0107) (0.0109) (0.0113)

Notes: This table contains estimates of Equation 1 using 500–1500 m as the control group under different
restrictions on outliers (Panels A and B), distances included in our estimation sample (Panel C), and event
times included in our estimation sample (Panel D). All specifications include our main set of fixed effects and
controls. All errors are clustered at the barrier-level.
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Appendix Table A8: Price effect as a function of expected noise reduction interacted with
median home values

(1)

Log. Value

100 m x post 0.0590***

(0.0146)

100 m x post x (dBs - 7) 0.0186*

(0.00953)

100 m x post x (dBs - 7)2 -0.00358

(0.00241)

100 m x post x MHV -0.0649**

(0.0305)

100 m x post x (dBs - 7) x MHV 0.0165

(0.0198)

100 m x post x (dBs - 7)2 x MHV -0.00582

(0.00573)

Observations 585,083

R2 0.678

Main Controls ✓

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains a version of our main specification given in Equation 1 where the effects are allowed
to vary with housing price and barrier noise reduction. The design compares transactions in the five years
after barrier construction with the five years prior, and for properties near to the barrier with those that were
between 500–1500 m away. All specifications include our main set of fixed effects. We interact our main 0–100
meter effect with log median home values (MHV) and with a quadratic in the amount of decibels of traffic
noise the barrier is expected to reduce. Log median home values are demeaned, and decibels of reduction are
relative to 7. Neighborhood demographics come from the 2015-2019 American Community Survey. All errors
are clustered at the barrier-level.

To use these estimates to measure the cost of the noise externality in Section 6, we proceed as follows. We
are concerned that extrapolating our estimates to neighborhoods with home values well below or above those
observed in Florida will lead to issues over external validity, as well as the influence of outliers. To address
this, we censor tract-level log median home values symmetrically so that 10% of Florida’s neighborhoods are
censored. This comes out to ±0.75 around the mean of 12.2 (in logged terms). We then perform the same
censoring for neighborhoods in the U.S. nationally. This censors 32% of tracts nationally, so can be thought
of approximately censoring at 1 standard deviation. We continue to censor the estimated price effects on the
lower range to be positive, and on the upper range, to be equal to their value at 10 dB for any value greater
than 10 dB.
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Appendix Table A9: Costs of traffic noise without adjusting for heterogeneity in price effects
across neighborhoods

Noise Costs

Total
($1b)

Cost ($1k)
per Capita

Costs pc per
MFI (%)

Costs per
Prop. Val (%)

Florida 8.09 0.39 0.54 0.30
Q1 MFI (FL) 1.86 0.38 0.94 0.48
Q4 MFI (FL) 3.06 0.59 0.52 0.26
Q1 Black % (FL) 2.42 0.57 0.65 0.28
Q4 Black % (FL) 1.73 0.32 0.62 0.39
United States 163.97 0.51 0.63 0.48
Q1 MFI (U.S.) 22.76 0.33 0.78 0.63
Q4 MFI (U.S.) 83.46 0.94 0.70 0.51
Q1 Black % (U.S.) 30.85 0.41 0.47 0.33
Q4 Black % (U.S.) 25.61 0.33 0.57 0.49

Notes: This table contains estimates of the dollar value of the noise externality. To do so, we use a simpler
model of price effects in noise reduction that does not allow for the effects to vary across neighborhood types.
Column (1) contains the aggregate of those costs in billions of 2022 U.S. dollars. Column (2) contains estimates
of the cost per capita. Columns (3) and (4) contain estimates of those costs as a percentage of local median
incomes and total assessed property values, respectively. Row (1) performs this analysis for all of Florida. Rows
(2) through (5) disaggregate them by neighborhoods in the lower and upper quartiles by local median family
incomes and the share of the population that is Black, respectively. Row (6) reports totals for the United
States, and rows (7) through (10) perform the same disaggregation as for Florida. These measures are at the
2010 census tract level and come from the 2015-2019 American Community Survey.

14


	Introduction
	Literature on the Effect of Traffic Noise on Housing Prices
	Data
	Sources
	Correlation Between Noise Exposure and Neighborhood Characteristics

	Econometric Specifications and Identification Assumptions
	Difference-in-Differences Model
	Triple-Difference Model

	The Effect of Noise on Property Values
	Graphical Evidence
	Baseline Estimates
	Placebos
	Intensity of Treatment Based on Expected Noise Reduction
	Endogenous Confounders: Pollution, Views and New Construction
	Robustness

	The Aggregate Cost of the Externality and its Distribution
	Distribution of the Cost of the Externality by Income and Race
	Aggregate Cost
	Geographic Differences

	Policy Implications: Pigouvian Taxes and Electric Vehicles
	Conclusion
	References

