How to Sell Public Debt in Uncertain Times

Harold Cole

Daniel Neuhann

Guillermo Ordoñez

July 13, 2025

Introduction

- Wide variation in the auction protocols used to sell government bonds.
 - Most commonly: uniform price (UP), discriminatory-price (DP).

- No clear rationale for which is better and whether protocols can be improved upon.
 - Mirrors lack of theoretical consensus on optimal multi-unit auctions in "realistic" settings.
- We study bond auction design using a model which allows for key macro/finance aspects:
 - ullet Risk averse bidders with CRRA preferences o Risk premia and downward-sloping demand.
 - ullet Asymmetric information about (common-value) default risk and supply shocks ullet winner's curse.

Overview

• Key tradeoff under decreasing marginal utility and common value uncertainty:

Inframarginal surplus extraction (favors DP)

versus

Bidder discouragement through the winner's curse (favors UP)

- Based on this trade-off propose a simple modified protocol that can do better than UP and DP.
- Paper: implications for information acquisition and revelation, and tests in Mexican data.

Relationship to the Literature

• Macro literature on sovereign bond pricing. We focus on the design of primary markets.

- Auction theory. Add risk aversion and asymmetric information about common values.
 - \bullet We study "large auctions" with many bidders + divisible good: \approx price-taking.

Model

Setting

- One country, one good (the numeraire), unit mass of investors and two dates, t = 1, 2.
- At date 1, **Government** needs to raise ψD (e.g., to roll over debt) by selling bonds.
 - Promises to repay 1 per unit of bond, but pays 0 if it defaults.
 - ullet Probability of default is κ and $\delta=1$ denotes default, $\delta=0$ repay.
- ullet κ is a **quality shock** and ψ is a **quantity shock** (also interpretable as demand shock.)
- Investors are risk-averse and ex-ante identical with fixed per-capita wealth W,
 - ullet CRRA preferences over date 2 consumption u(c)
 - can invest in government's risky debt or risk-free asset with gross return 1.
 - · Investors are prohibited from shorting either asset

Information environment

ullet All investors know baseline funding need D, but are initially uninformed about shocks κ and ψ .

- We then consider two groups of investors: informed and uninformed.
 - Fraction of informed denoted by $n \in [0,1]$. (For most of the talk, treat n as a parameter).

• Simple structure: informed investors know either the quantity shock or the quality shock.

Later also consider endogenous costly information acquisition.

Auction rules

• Government sells bonds using sealed-bid multi-unit auctions.

• Investors can submit multiple bids = non-negative quantity and price.

- A bid is a commitment to buy at a price determined by protocol if government accepts bid.
- Government treats bids independently and executes them in descending order of prices.

- ullet Government stops when it generates the required revenue ψD .
- Marginal price P(s) is lowest accepted price in state $s = (\kappa, \psi)$.

Primary Auction

Focus mainly on two protocols widely used in large multi-unit auctions of common-value goods:

- 1. discriminatory-price (DP) auction in which all accepted bids are executed at the bid price
- 2. uniform-price (UP) auction in which all accepted bids are executed at the lowest accepted price.

Later: propose a convex combination of these protocols with partial discrimination.

The "Walrasian" Approach to Auctions

• Continuum of investors plus perfectly divisible bonds leads to **price-taking**.

- Investors have rational expectations about the set of potential marginal prices.
- Choose bids at potential marginal prices under uncertainty about which state will be realized.

$$\underbrace{[B(P(s)),P(s)]}_{\text{bid}}\Rightarrow B(s)\text{: bid quantity in state }s\text{ at associated marginal price }P(s).$$

- Informed investors know that some states (and thus marginal prices) will not be realized.
- Information is valuable because you can bid only at relevant marginal prices.

The Bidding Problem

Bidding Mechanics: Uninformed investors

Assume 4 states with prices $P_j > P_{j+1}$. Uninformed investors' state-contingent expenditures on bonds are:

Uniform Protocol:
$$\mathbf{X}_{\mathbf{UP}}^{\mathbf{U}} = \begin{bmatrix} P_1 & 0 & 0 & 0 \\ P_2 & P_2 & 0 & 0 \\ P_3 & P_3 & P_3 & 0 \\ P_4 & P_4 & P_4 & P_4 \end{bmatrix} \begin{bmatrix} B_1^U \\ B_2^U \\ B_3^U \\ B_4^U \end{bmatrix}$$
 Discriminatory protocol:
$$\mathbf{X}_{\mathbf{DP}}^{\mathbf{U}} = \begin{bmatrix} P_1 & 0 & 0 & 0 \\ P_1 & P_2 & 0 & 0 \\ P_1 & P_2 & P_3 & 0 \\ P_1 & P_2 & P_3 & P_4 \end{bmatrix} \begin{bmatrix} B_1^U \\ B_2^U \\ B_3^U \\ B_3^U \\ B_3^U \end{bmatrix}$$

- ullet Bid execution is **random**. For both UP and DP, **executed bid sets** \mathcal{E}^U contain all states with lower prices.
- Difference across protocols: execution prices determine the cost of a state-contingent bond profile.

Bidding Mechanics: Informed Bidders

Informed bidders have access to an information partition: bid only at feasible marginal prices.

For **UP** in which partition creates **nonoverlapping** schedule $\{P_1, P_2\} \& \{P_3, P_4\}$, expenditures are

$$\mathbf{X}_{\mathsf{UP}}^{\mathsf{I}} = \begin{bmatrix} P_1 & 0 & 0 & 0 \\ P_2 & P_2 & 0 & 0 \\ 0 & 0 & P_3 & 0 \\ 0 & 0 & P_4 & P_4 \end{bmatrix} * \begin{bmatrix} B_1^{\mathsf{I}} \\ B_2^{\mathsf{I}} \\ B_3^{\mathsf{I}} \\ B_4^{\mathsf{I}} \end{bmatrix}$$

For **DP** in which partition creates **overlapping** schedule $\{P_1, P_3\} \& \{P_2, P_4\}$, expenditures are

$$\mathbf{X_{DP}^{I}} = \begin{bmatrix} P_1 & 0 & 0 & 0 \\ 0 & P_2 & 0 & 0 \\ P_1 & 0 & P_3 & 0 \\ 0 & P_2 & 0 & P_4 \end{bmatrix} \begin{bmatrix} B_1^I \\ B_2^I \\ B_3^I \\ B_4^I \end{bmatrix}$$

• Let $\mathbf{Y}_{j}^{i} = \mathbf{B}_{j}^{i} - \mathbf{X}_{j}^{i}$ denote investor i's **net bond payoff** after repayment in protocol j.

• Let (s) denote the element associated with state s. Investor i chooses a bidding strategy to maximize

$$\sum_{s} \left\{ \underbrace{u(W - X_{j}^{i}(s))\kappa(s)}_{\text{default}} + \underbrace{u(W + Y_{j}^{i}(s))(1 - \kappa(s))}_{\text{repay}} \right\} Prob\{s\}$$

Leads to an intricate portfolio choice problem characterized by set of simultaneous FOCs.

- In the uniform protocol, this system has a tractable recursive structure.
- In the discriminatory protocol, all bids must be solved simultaneously.

Market clearing

For protocol j, the market clearing condition in states is

$$nX_i^I(s) + (1-n)X_j^U(s) = \psi(s)D$$

- ullet Quantity shocks affects equilibrium even if no investor is informed about $\psi.$
- Quality shocks affect prices only if some investors are informed.

Simple Benchmark: Asymmetric Information about Two States

- There are two quality shocks, $\kappa \in \{\kappa_b, \kappa_g\}$, where $\kappa_g < \kappa_b$, and a known quantity sock ψ .
- Share $n \ge 0$ of investors are informed about the realized quality shock, rest is uninformed.
- If n > 0, there will be two marginal prices $P(\kappa_b) < P(\kappa_g)$.

Optimality conditions: Informed Investors (who know κ)

Informed investors face a standard risk-return trade-off for both auction protocols

Discriminatory protocol:

$$-u'(W-X_{DP,g}^{I})P_{g}\kappa_{g}\pi_{g}+u'(W+Y_{DP,g}^{I})(1-P_{g})(1-\kappa_{g})\pi_{g}=0 \tag{High price}$$

$$-u'(W - X_{DP,b}^{I})P_{b}\kappa_{b}\pi_{b} + u'(W + Y_{DP,b}^{I})(1 - P_{b})(1 - \kappa_{b})\pi_{b} = 0$$
 (Low price)

Optimality conditions: Informed Investors (who know κ)

Informed investors face a **standard risk-return trade-off** for both auction protocols

Discriminatory protocol:

$$-u'(W-X_{DP,g}^{I})P_{g}\kappa_{g}\pi_{g}+u'(W+Y_{DP,g}^{I})(1-P_{g})(1-\kappa_{g})\pi_{g}=0 \tag{High price}$$

$$-u'(W - X_{DP,b}^{I})P_{b}\kappa_{b}\pi_{b} + u'(W + Y_{DP,b}^{I})(1 - P_{b})(1 - \kappa_{b})\pi_{b} = 0$$
 (Low price)

Uniform protocol has the same exact structure:

$$-u'(W-X_{UP,g}^I)P_g\kappa_g\pi_g+u'(W+Y_{UP,g}^I)(1-P_g)(1-\kappa_g)\pi_g \tag{High price}$$

$$-u'(W - X_{UP,b}^{I})P_{b}\kappa_{b}\pi_{b} + u'(W + Y_{UP,b}^{I})(1 - P_{b})(1 - \kappa_{b})\pi_{b} = 0$$
 (Low price)

DP optimality conditions: Uninformed Investors (who do not know κ)

In the DP auction, uninformed bidding strategies are linked across states of the world:

$$-u'(W - X_{DP,g}^{U})P_{g}\kappa_{g}\pi_{g} + u'(W + Y_{DP,g}^{U})(1 - P_{g})(1 - \kappa_{g})\pi_{g}$$
(High price)
$$-u'(W - X_{DP,b}^{U})P_{g}\kappa_{b}\pi_{b} + u'(W + Y_{DP,b}^{U})(1 - P_{g})(1 - \kappa_{b})\pi_{b} = 0$$

$$-u'(W - X_{DP,b}^{U}) P_{b} \kappa_{b} \pi_{b} + u'(W + Y_{DP,b}^{U}) (1 - P_{b}) (1 - \kappa_{b}) \pi_{b} = 0$$
 (Low price)

Problem DP: Because of the winner's curse, uninformed investors submit fewer bids at the high price.

UP optimality conditions: Uninformed Investors (who do not know κ)

The UP auction removes this disincentive, and creates a "block recursive" structure:

$$-u'(W - X_{DP,g}^{U})P_{g}\kappa_{g}\pi_{g} + u'(W + Y_{DP,g}^{U})(1 - P_{g})(1 - \kappa_{g})\pi_{g}$$
(High price)
$$-u'(W - X_{DP,b}^{U})P_{b}\kappa_{b}\pi_{b} + u'(W + Y_{DP,b}^{U})(1 - P_{b})(1 - \kappa_{b})\pi_{b} = 0$$

$$-u'(W - X_{DP,b}^{U})P_{b}\kappa_{b}\pi_{b} + u'(W + Y_{DP,b}^{U})(1 - P_{b})(1 - \kappa_{b})\pi_{b} = 0$$
 (Low price)

Perfect Replication in the UP protocol

• If informed bids are ordered by price (i.e., $B^{I}(\kappa_{g}) < B^{I}(\kappa_{b})$), uninformed can perfectly replicate:

$$B^{U}(\kappa_{g}) = B^{I}(\kappa_{g})$$
 and $B^{U}(\kappa_{b}) = B^{I}(\kappa_{b}) - B^{I}(\kappa_{g})$
Bid the same at the high price Bid only the increment at the low price

⇒ No gain from being informed.

• Overlapping schedules with common price $P(\kappa_g,\cdot)=P(\kappa_b,\cdot)$ breaks this result.

• Problem UP: Government sells everything at the lowest accepted price – surplus goes to investors.

Figure 1: UP and DP Prices and Bond Issuance with Quality Uncertainty

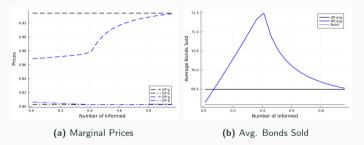


Figure 2: Prices and quantities under UP and DP protocols as a function of the share of informed investors n. Parameters: $u(c) = \log(c)$, W = 250, D = 60, equiprobable $\kappa_g = 0.05$, and $\kappa_b = 0.15$.

- \bullet P_g is higher under UP than DP because of winner's curse for uninformed.
- As $n \to 1$ everyone is informed and prices P_g converge.
- \bullet For high n uninformed do not bid at P_g in DP due to higher prices
- DP extracts more surplus only when winner's curse is mild.

- ullet Introduce Partially Discriminating protocol: Only $\mathcal{T} < \mathcal{B}_g$ bids are at high price
- If $\mathcal{T}=0$ then works like UP, if $\mathcal{T}>B_g$ works like DP
- With $T < B_g$ in the low quality state b:

$$X_{PD,b}^{U} = \underbrace{(P_g - P_b)\mathcal{T}}_{Penalty} + P_b(B_g + B_b)$$

$$Y_{DP,b}^{U} = \underbrace{-(P_g - P_b)\mathcal{T}}_{\text{Penalty}} + (1 - P_b)(B_g + B_b)\mathcal{T}$$

- Same FOCs as UP but more rent extraction like DP.
- Easy to show improves upon both DP and UP in this case.
- ullet Caution about setting ${\mathcal T}$ too big. Constraint set not convex. Confuse global and local optimum.

Figure 3: UP, DP and PD Prices and Bond Issuance with Quality Uncertainty

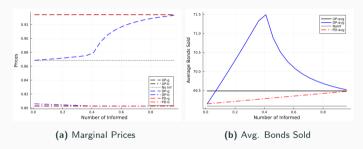


Figure 4: Prices and quantities under UP and DP protocols as a function of the share of informed investors n. Parameters: $u(c) = \log(c)$, W = 250, D = 60, equiprobable $\kappa_g = 0.05$, and $\kappa_b = 0.15$.

- Surplus is small so tier is small, T = 4.
- Tiering leads to UP (like) prices and bids with DP (like) price discrimination.

Informativeness Differences UP vs DP

Small number of informed \implies overlapping (less informative) prices

Assume states 1 and 2 are (κ_g, ψ_s) and (κ_g, ψ_l) states 3 and 4 are (κ_b, ψ_s) and (κ_b, ψ_l)

$$\mathbf{X}_{\mathsf{UP}}^{\mathsf{i}} = \begin{bmatrix} P_1 & 0 & 0 & 0 \\ P_2 & P_2 & 0 & 0 \\ P_3 & P_3 & P_3 & 0 \\ P_4 & P_4 & P_4 & P_4 \end{bmatrix} * \begin{bmatrix} B_1^i \\ B_2^i \\ B_3^i \\ B_4^i \end{bmatrix}$$

$$\underbrace{(1-n)(B_1^U+B_2^U)P_2}_{\text{Demand by Uninformed}}\uparrow\psi_l D \text{ as } n\downarrow 0 \implies (1-n)(B_1^U+B_2^U)P_2 \approx \psi_l D > \psi_{\text{S}} D$$

With replication binds first at $(1 - n)\psi_I D = \psi_s D$

Violates how auctions work. Stop at highest price that meets demand.

Small number of informed + gains from information + less informative prices with UP: $P_2 = P_3$.

DP has large gains to information $\Rightarrow n$ big to compete away rents; quality price schedules distinct.

UP with common prices

• Prices are then determined as follows. Take any two states $s = [\kappa_g, \psi_l]$ and $s' = [\kappa_b, \psi_s]$ for which a binding constraint forces a common price, P = P(s) = P(s'). The respective auction-clearing conditions for these two states are

$$n\left(\frac{1-\kappa_g-P}{1-P}\right)+(1-n)\left(\frac{1-\tilde{\kappa}-P}{1-P}\right)=\frac{D}{W}\psi_I,\tag{1}$$

and
$$n \max \left[\left(\frac{1 - \kappa_b - P}{1 - P} \right), 0 \right] + (1 - n) \left(\frac{1 - \tilde{\kappa} - P}{1 - P} \right) = \frac{D}{W} \psi_s.$$
 (2)

• The two endogenous variables determined by these equations are the common price P and uninformed investors' inferred default probability $\tilde{\kappa}$.

Illustration 3: UP auction binary quality shocks and continuous quantity shocks

Figure 5: UP Equilibria with Quality Uncertainty

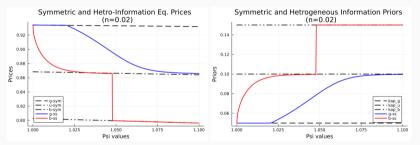
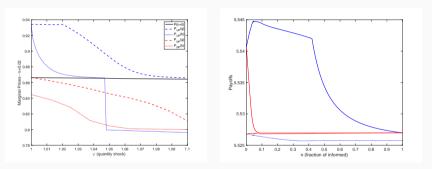


Figure 6: Parameters are: $u = \log(c)$, $\bar{\kappa} = 0.1$, $\kappa_g = 0.05$, $\kappa_b = 0.15$, $Pr(\kappa_g) = 0.5$, W = 250, D = 60. Supply shock ψ is uniformly distributed from $\psi = 1$ to $\psi_M = 1.1$.

• Get overlapping price schedules and hence prices are less informative.

Illustration 3: UP auction binary quality shocks and continuous quantity shocks

Figure 7: Comparing UP vs. DP with Quality Uncertainty (n = 0.02)



- DP has larger gains to information except for n close to 1 where rents have been compete away.
- DP has overlapping prices only for very small n. With endogenous information acquisition:
 - DP: get distinct price schedules.
 - UP: get overlapping price schedules.

Empirical Evaluation Using Mexican Auction Data

How much do auction prices help predict subsequent secondary market prices?

The marginal R^2 is formally given by

$$\Delta R^2 = \frac{R_{(S_{t-1},P_t)}^2 - R_{(S_{t-1})}^2}{1 - R_{(S_{t-1})}^2},$$

Table 1: Marginal R^2 . 28-day Cetes

	<u> </u>	
Auction Protocol	DP	UP
Marginal R^2	0.723	0.291
Number Auctions	735	345

Cetes are domestically-denominated zero-coupon pure discount bonds, auctioned weekly. Used a discriminatory price protocol until October 2017.

Concluding Comments

- Developed model of different auction protocols w/ heterogeneous information.
- Compared standard uniform-price and discriminating-price protocols.
- Approach suggested novel new protocol that performs better.
- Extended characterization to continuous shocks (on non-information dimension).
 - Develop different solution methods for UP and DP.
- With endogenous information acquisition, uniform-price protocol reveals less information than discriminating-price protocol.
- Validated this implication for Mexican Cetes auctions.