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Introduction and Summary

▶ Optimal “Industrial Policy" in set up often used for Big-Push

▶ Dynamic economy with complementarities, tech. adoption after paying
fixed cost (non-convexities), market power & heterogeneity.

Results:

1. Economy is inefficient:

static︷ ︸︸ ︷
misallocation and

dynamic︷ ︸︸ ︷
technology adoption

2. Static inefficiency stems from underproduction/use of intermediate
goods: corrected by directly (or indirectly) subsidizing its use

3. Dynamic Inefficiency stems from firms valuation of tech. adoption too
low relative to its cost: corrected by subsidizing adoption

4. If complementarity are large enough, multiple steady states/BGP

5. Optimal policy started at Laissez-faire BGP without tech adoption

- Either stays there because adoption is too costly

- Or start transition to high adoption steady state/BGP (a Big Push?)

- No role equilibrium selection unless intertemporal elasticity is high
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A MODEL WITH A GROWING FRONTIER



Set Up
▶ Technology frontier grows: eγt (firms can adopt a new tech. after paying a fixed cost)

▶ Gap g : log of TFP distance of frontier, in time units

▶ At t operate technologies with gap g ≤ G(t) (optimal to adjust at threshold G(t))

▶ Poisson rate q: free adoption opportunity

▶ Distribution (density) of Firms at time t indexed by gaps m(g, t)

▶ Law of motion for m(g, t): # firms w/gap g, for 0 ≤ g ≤ G(t)

m(g + dg, t + dt)− m(g, t)(1 − dt q) = 0 (discrete time)

=⇒ mt(g, t) + mg(g, t) + q m(g, t) = 0 (continuous time)

▶ Mass preservation, 1 =
∫ G(t)

0 m(g, t)dg, for all t > 0

⇒ m(0, t︸ ︷︷ ︸
adoption

) = m (G(t), t)︸ ︷︷ ︸
reach G(t)

+ q︸︷︷︸
free

−m (G(t), t)G′(t)︸ ︷︷ ︸
change G



Feasibility: adoption

▶ Consumption C(t) of aggregate good

▶ Costly adoption: κ(t) units of of aggregate good; κ(t) = κ e
γ

1−ν
t

▶ Feasibility, C(t) = Y (t)− κ(t)
[
m(0, t)− q

∫ G(t)
0 m(g, t)dg

]
▶ Preferences:

∫∞
0 e−ρt C(t)1−θ−1

1−θ
dt



Period t technology

▶ Cobb-Douglas output of differentiated good w/TFP e(t−g)γ

e(t−g)γ b x(g, t)ν n(g, t)1−ν

(ν share of intermediate input, 1 − ν labor share, b constant)

▶ Y (t) : net agg. output & X (t) : Intermediate Aggregate

≡Q(t)︷ ︸︸ ︷
Y (t) + X (t) =

[∫ G(t)

0

(
e(t−g)γ b x(g, t)νn(g, t)1−ν

)1− 1
η m(g, t) dg

] 1
1−1/η

X (t) =
∫ G(t)

0
x(g, t)m(g, t) dg

▶ Exogenous labor supply normalized to 1, so: 1 =
∫ G(t)

0 n(g, t)m(g, t)dg



Equilibrium

▶ Household borrow and save, own firms, supply labor

▶ Monopolistic competitive firms:

1. “Static": set prices, hire labor, buy intermediate aggregate

2. “Dynamic": pay fixed cost κ(t) & adopt frontier technology (g = 0)

▶ Prices:

Differentiated good w/gap g : p(g, t); Aggregate final good P(t)
Wages w(t); Interest rate r(t)

▶ Policy instruments - lump sum from household, T (t)

Revenue subsidy, sr ; Intermediate inputs subsidy, sx ; Labor subsidy, sl

Adoption subsidy, sa; Operating profits subsidy, sπ



Households

▶ Budget constraint

0 =

∫ ∞

0
e−

∫ t
0 r(s)ds [P(t)C(t)− Π(t)− w(t) + T (t)]dt ,

▶ Π(t) profits, T (t) transfers, w(t) wages

▶ Euler equation

r(t) = ρ+ θ
Ċ(t)
C(t)

+
Ṗ(t)
P(t)

.



Monopolistic Competitive Firm

▶ π(g, t) = sππ̂(g, t) after subsidy profits of firm g where t

π̂(g, t) ≡ max
p

[
p

P(t)

]−η

Q(t)

sr p −

marginal cost︷ ︸︸ ︷
eγ(g−t)

(
w(t)

sl

)1−ν (P(t)
sx

)ν

 ,

▶ Markup over marginal cost: p(g, t) = 1
sr

η
η−1 eγ(g−t)

(
w(t)

sl

)1−ν (P(t)
sx

)ν

▶ Adoption problem, value function V (g, t) =⇒ G(t):

r(t)V (g, t) = max


r(t)

[
V (0, t)− κ(t)P(t)

sa

]
optimal if g ≥ G(t)

sπ π̂(g, t) + Vg(g, t) + Vt(g, t) + q (V (0, t)− V (g, t))

(solved using VM and SP details )



Temporal Equilibrium, given m(·, t)

▶ Labor allocation: independent of subsidies.

▶ Detrended aggregate productivity:

Z (t) ≡
[∫ G(t)

0 e−γg(η−1)m(g, t)dg
] 1

η−1

▶ Profits, (numeraire) in terms wages:

π(g, t) = sπ 1
(η−1)(1−ν)

e−γg(η−1)

Z (t)η−1

▶ Profits, (real) in terms of final goods:

π(g,t)
P(t) = e

γ
1−ν t sπ

sx

[sr sx( η−1
η )]

1
1−ν

(1−ν)(η−1)
e−γg(η−1)

Z (t)
(η−1)(1−ν)−1

1−ν

▶ Real profits increasing in Z (t) if (η − 1)(1 − ν) < 1



se = sr sx is a sufficient statistic for temporary equilibrium

▶ To simplify consider model with m concentrated in one value g.

▶ Obviously allocation is labor is efficient, normalize w/sl = 1.

▶ Firms optimal price p = η
η−1

1
sr
(P/sx)

ν

▶ Equilibrium p = P so P/sx =
(

η
η−1

1
sr sx

)1/(1−ν)

▶ Optimal choice of input: (P/sx )x
(w/sl )n

= ν
1−ν

▶ In equilibrium n = 1 and (w/sl) = 1 hence x = 1
(P/sx )

ν
1−ν

▶ Thus, equilibrium value of x is monotone increasing in se ≡ sr sx

▶ There is a finite efficient value of x , achieved with se ≡ η
η−1



Aggregate Production Function, given m(·, t)

▶ Aggregate output at t depends only on m(·, t) and se ≡ sr sx

e
γ

1−ν t︸ ︷︷ ︸
trend

Y (m(·, t), se)︸ ︷︷ ︸
detrended output

≡ e
γ

1−ν t A(se)︸ ︷︷ ︸
Misallocation

F (m(·, t))︸ ︷︷ ︸
Prod Function

- Loss on TFP: Static ’misallocation’ (stems from distortions)

A(se) ≡
1

1 − ν

[
1
se

η

η − 1
− ν

] [
se

η − 1
η

] 1
1−ν

- Aggregate production function

F (m(·, t)) ≡ Z (t)
1

1−ν =

[∫ G(t)

0
e−γg(η−1)m(g, t)dg

] 1
(η−1)(1−ν)

▶ Curvature parameter (compl. vs subs. or convex vs conc.)

ζ ≡ 1
(η − 1)(1 − ν)

≷ 1



Static Efficient Allocation Y(m)

▶ Fix m. Maximize net detrended aggregate output Y(m):

choice of date t allocation s.t. mkt clearing intermediate, labor & prod. functions

=⇒ Y(m) = Z (t)
1

1−ν

▶ If ν = 0, then Y(m) = Y (m, se)

▶ If ν > 0, then Y(m) ≥ Y (m, se) with equality if se = s∗
e ≡ η

η−1

▶ mϵ: m perturbed so that ϵ density is moved from g2 to g1:

1. Y(mϵ) is concave in ϵ and m ⇐⇒ ζ ≡ 1
(η−1)(1−ν)

≤ 1

2.
dY(mϵ)

dϵ |ϵ=0 = π(g1,t)−π(g2,t)
sπ P(t)/sx

[
1
se

(
η

η−1

)] 1
1−ν

=⇒ Social marginal benefit ∝ (temp. eqbm) real profits



Efficient Allocation - Two period Mickey-Mouse model
▶ At an Equilibrium, adoption gives:

π(0, t)− π(G(t), t)
P(t)/sa

= κ(t)

▶ For the planner efficient adoption gives:

dY(m(·, t))
dϵ

∣∣∣∣
ϵ=0

= κ(t)

▶ Previous results gives

dY(m(·, t))
dϵ︸ ︷︷ ︸

social benefit

=

[
1
se

(
η

η − 1

)] 1
1−ν se

sr sasπ
× sa

π(0, t)− π(G(t), t)
P(t)︸ ︷︷ ︸

private benefit

▶ Define sd = sπ sa sr , decentralize efficient s∗
e = s∗

d = η
η−1

▶ Result extends exactly the same to infinite horizon model.



Efficient Allocation - Infinite Horizon Model
▶ Given initial m0(g) all g, maximize∫ ∞

0
e−ρ̄t c(t)1−θ − 1

1 − θ
dt , by choosing path of adoption G′(t) s.t.

- Law of motion of entire distribution

0 = mt(g, t) + mg(g, t) + q m(g, t) , all g ∈ [0,G(t)], t ≥ 0

- Resource constraint: c(t) = Y(m(·, t))− κ (m(0, t)− q)

▶ Implementation of efficient allocation

- Eqbm and nec. conditions coincide

□ If ν = 0, sd ≡ sπsr sa = η
η−1

□ If ν > 0, se ≡ sr sx = η
η−1 and sd ≡ sπsr sa = η

η−1

- Possible multiple equilibrium paths under optimal policy
□ unique path: if ζ ≤ 1
□ if multiple eqbm path: role of coordination

Equivalence Eqbm & necessary conditions



Solving for a BGP: fixed point

Economy grows at rate γ
1−ν

, G(t) = G∗ and interest rates are constant

Aggregation: G → Z ∗

Z ∗ =

[∫ G

0
e−γg(η−1) qe−qg

1 − e−qG dg
] 1

η−1

Higher aggregate adoption =⇒ higher “TFP" Z

Optimization of a firm: Z → G∗

Net discounted gain︷ ︸︸ ︷
ζ
[
Z η−1

]ζ−1
R(G∗)/(q + ρ̄) =

Adjusted fixed cost︷ ︸︸ ︷
κ

se

sd

(
1
se

η

η − 1

) 1
1−ν

where R(G) = 1 − e−γ(η−1)G − γ(η−1)
q+ρ+γ(η−1)

[
1 − e−(q+ρ+γ(η−1))G]

Higher TFP Z : has two effects on adoption

1. pro-competitive effect (lower mkt share) =⇒ lower adoption incentives

2. lower price of adoption good =⇒ higher adoption incentives



Strength of Complementarities and BGPs
ζ ≤ 1: one BGP

(pro-competitive effect dominates)

If κ̄ ’large’, then without costly adoption
Otherwise, then with costly adoption

ζ > 1: multiple BGPs are possible

(lower price adoption dominates)

1 without costly adoption
1 with infrequent costly adoption
1 with frequent costly adoption

t

ln C(t)

𝛾𝛾
1 − 𝜈𝜈

𝛾𝛾
1 − 𝜈𝜈

𝛾𝛾
1 − 𝜈𝜈



A MODEL WITH A STATIC FRONTIER



Setup
▶ Frontier normalized to 1. No free adoption, q = 0

▶ Firm with gap z → productivity e−z < 1

▶ Pay fixed cost & jump to frontier; can recoup fixed cost & get back to z
V (z, t)

▶ Define K (t) = mass of firms at frontier ; m0 constant through t

K = 1 −
∫ Ĝ(K )

0
m0 (z) dz =⇒ K̇ (t) = −m0 (G (t)) Ġ (t)

▶ Feasibility: κK̇ (t) + C(t) = A(se)F (K (t))

▶ Aggregate Production: F (K ) =
[∫ Ĝ(K )

0 e−z(η−1)m0 (z) dz + K
]ζ

=⇒ Akin to Neoclassical Growth Model

- K : capital stock

- Same law of motion for K

- Difference: F (K ) is not necessarily concave!



Shape of Production Function F (K )

▶ Properties of F (K ) as function of ζ

1. If ζ ≤ 1, globally concave

2. Allays concave near K = 1

3. If ζ > 1 and regularity, then F (·) is S-shaped, F ′(·) inverse U

F (K ) F ′(K )



Equilibrium: Neoclassical Growth model w/tax!

▶ Fix se, sd and K (0) = K0

▶ Nec. and suff. conditions for interior eq. is that {C(t),K (t)} solve

C(t) + κK̇ (t) = A(se)F (K (t)) , θ
Ċ(t)
C(t)

= B(se, sd )A(se)F ′[K (t)]/κ− ρ

where B(se, sd ) ≡
(

1−ν
1

se
η

η−1 −ν

)
sd
se

& 0 = limT↑∞ e−ρT C(T )−θA(se)F [K (T )]

▶ Interpretation: NGM with 1 − B(1, 1) tax on capital returns
(B(1, 1) = 1 − 1

η when ν = 0)

Interior SS
Solves B(se, sd )A(se)F ′(K ∗)/κ = ρ

▶ If ζ ≤ 1: at most one

▶ If F is S-shaped & ζ large enough
K ∗

L : source, or spiral source (θ∗)
K ∗

H : saddle
K ∗

L < K ∗
H

SS with No Adoption
If B(se, sd )A(se)F ′(0)/κ < ρ

▶ K ∗ = 0 and C∗ = A(se)F (0)

▶ Locally stable (if θ > θ∗)

▶ Convergence in finite time



Equilibrium: Neoclassical Growth model w/tax!

▶ Fix se, sd and K (0) = K0

▶ Nec. and suff. conditions for interior eq. is that {C(t),K (t)} solve

C(t) + κK̇ (t) = A(se)F (K (t)) , θ
Ċ(t)
C(t)

= B(se, sd )A(se)F ′[K (t)]/κ− ρ

where B(se, sd ) ≡
(

1−ν
1

se
η

η−1 −ν

)
sd
se

& 0 = limT↑∞ e−ρT C(T )−θA(se)F [K (T )]

▶ Interpretation: NGM with 1 − B(1, 1) tax on capital returns
(B(1, 1) = 1 − 1

η when ν = 0)

Interior SS
Solves B(se, sd )A(se)F ′(K ∗)/κ = ρ

▶ If ζ ≤ 1: at most one

▶ If F is S-shaped & ζ large enough
K ∗

L : source, or spiral source (θ∗)
K ∗

H : saddle
K ∗

L < K ∗
H

SS with No Adoption
If B(se, sd )A(se)F ′(0)/κ < ρ

▶ K ∗ = 0 and C∗ = A(se)F (0)

▶ Locally stable (if θ > θ∗)

▶ Convergence in finite time



Equilibrium w/Laissez-Faire (se = sd = 1), ζ > 1,
▶ 3 steady states (green stars), middle one unstable.

1 = θ > θ∗ ( u(c) = log(c) )

▶ The case of ζ < 1 is just like the Neoclassical Growth Model



Multiplicity of Eqbm Paths for ζ > 1 and low θ

▶ Let se = sd = 1

θ < θ∗ (θ = 0.04) θ = θ∗ (θ = 0.64)

▶ Low θ case has multiple equilibrium path for K (0) ∈ [0,1.9]



Planner’s Problem

max
C(·)

∫ ∞

0
e−ρtU(C(t))dt subject to κK̇ (t) = F (k(t))− C(t)

Necessary conditions:

1. Euler eq. and Transversality condition hold

2. K ∗ is an optimal steady state if F (K ∗) = C∗ and ρ = F ′(K ∗)/κ

▶ If ζ > 1 these are only necessary. When F is S-shaped there
can be interior solutions K ∗

L < K ∗
H

1. K ∗
L cannot be stable

2. If ρ < F ′(0)/κ, K ∗
H from any K (0) is locally stable (saddle)

3. If θ < θ∗ multiple paths satisfying EE + TC.

▶ Decentralization: eliminate both distortions:
s∗

e = s∗
d = η

η−1 =⇒ A(s∗
e) = B(s∗

d ) = 1



Trap or No trap?
Consider an economy that starts at SS K ∗ = 0 w/no adoption

▶ If
(

η−1
η

) 1
1−ν F ′(0) < κρ < F ′(0)

□ Only one interior SS w/high adoption survives with subsidy

□ Long transition from K ∗ = 0 to interior SS w/high adoption
(i.e. implements a Big Push)

□ Laissaz Faire SS w/no adoption is a TRAP, optimal policy moves
the economy away from it

□ See Figure

▶ If F ′(0) < κρ?

□ The three SS remain even w/optimal policy

□ Economy remains in the SS w/no adoption
(but with no static misallocation)

□ The SS with no adoption is NOT A TRAP



Optimal exit of trap: s∗
e = s∗

d = η/(η − 1)
▶ Assume that ζ > 1 and that

(
η−1
η

) 1
1−ν F ′(0) < κρ < F ′(0)

Optimal policy pushes the economy out of the ’trap’, which converges
to the higher steady state, far away from no adoption SS.



Conclusions
▶ Two versions of dynamics model of adoption:

1. Growing frontier ≈ Vintage Capital Model

2. Fixed frontier ≈ Neoclassical Growth Model

▶ In both cases, static inefficiency acts by reducing output.

▶ In both cases dynamic inefficiency acts as an tax on investment

▶ Optimal policy eliminates static distorsions and investment tax
□ Menu of 5 subsidies/tax to achieve efficiency
□ Optimal involves only two combinations

▶ Fixed frontier model: full analysis of dynamics

▶ Large effects due to strategic complementarities.

▶ No role for Eqbm selection out of a trap, unless θ low enough

▶ If θ small enough, temporary higher sd used as Eqbm selection.



Efficient Allocation

▶ Given initial m0, maximize∫ ∞

0
e−ρ̄t c(t)1−θ − 1

1 − θ
dt

by choosing a time differentiable path of threshold {G(t)}

▶ subject to the constraints for all t ≥ 0:

e−ρ̄tλ(g, t) : 0 = mt(g, t) + mg(g, t) + q m(g, t) , for 0 ≤ g ≤ G(t)

e−ρ̄tω(t) : 0 = 1 −
∫ G(t)

0
m(g, t)dg,

where e−ρtλ(g, t) and ω(t) are Lagrangian multipliers and where

c(t) =
N

1 − ν
Z (t)

1
1−ν − κ (m(0, t)− q) with

Z (t) =

[∫ G(t)

0
e−γg(η−1)m(g, t)dg

] 1
η−1



Adoption problem characterization

▶ Given path {π(·, t),P(t), r(t)} solve for path of threshold {G(t)}

▶ For 0 ≤ g ≤ G(t):

r(t)V (g, t) = π(g, t) + Vg(g, t) + Vt(g, t) + q (V (0, t)− V (g, t))

▶ For g ≥ G(t):

V (g, t) = V (0, t)− sa κ(t)P(t) =⇒ 0 = Vg(g, t)

▶ Value Matching:

V (G(t), t) = V (0, t)− κ(t)P(t) for all t > 0

▶ Smooth pasting:

0 = Vg(G(t), t)[G′(t)− 1] for all t > 0

back



Characterization of Efficient Allocation

▶ Multiplier for law of motion m:

ρ̄λ(g, t) = c(t)−θZ (t)
1

1−ν π(g, t) + λt(g, t) + λg(g, t)
− ω(t) + q (λ(0, t)− λ(g, t)) for t ≥ 0 &g ∈ [0,G(t)]

▶ Boundary conditions:

λ(0, t) = c(t)−θκ, for all t > 0
λ(G(t), t) = 0, all t > 0
λg(G(t), t) = 0, all t > 0

▶ Transversality:

0 = lim
T→∞

e−ρ̄Tλ(g,T )m(g,T ) for all 0 ≤ g < lim
T→∞

G(T )

▶ These conditions + feasibility are necessary.

▶ If ζ ≤ 1 they are sufficient. back



Firm’s Problem

▶ V (z, t), the value of a z at t that has not adopted the frontier

V (z, t) = max
τ≥t

∫ τ

t
e−

∫ s
t r(s̃)ds̃π (z, s) ds + e−

∫ τ
t r(s̃)ds̃

[
V 0 (z, τ)− sa(τ)κP (τ)

]
▶ V 0(z, t), the value of a z firm that has adopted the frontier

V 0 (z, t) = max
{τ≥t}

∫ τ

t
e−

∫ s
t r(s̃)ds̃π (0, s) ds + e−

∫ τ
t r(s̃)ds̃ [V (τ, z) + κsa(τ)P(τ)]

back


