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Motivation

• Slope of Phillips curve crucial ingredient in monetary policy analysis

– governs tradeoff between inflation and output stabilization

• In sticky price models pinned down by fraction of price changes

• Data: fraction of price changes increases with inflation

• Our question: how does slope fluctuate in U.S. time series?

– answer using model that reproduces this evidence
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Evidence from the U.S.
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• Source: Nakamura et al. (2018), Montag and Villar (2023)
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Motivation

• Slope of Phillips curve crucial ingredient in monetary policy analysis

– governs tradeoff between inflation and output stabilization

• In sticky price models, key determinant: fraction of price changes

• Data: fraction of price changes increases with inflation

• How does the slope of the Phillips fluctuate in U.S. time series?

– answer using model that reproduces this evidence
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Existing Models

• Time-dependent models (e.g. Calvo)

– widely used due to their tractability

– constant fraction of price changes

• State-dependent models (e.g. menu cost)

– less tractable: state of the economy includes distribution of prices

• We develop tractable alternative with endogenously varying fraction

– multi-product firms choose how many, but not which, prices to change

– exact aggregation: reduces to one-equation extension of Calvo
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Our Findings

• Our model predicts highly non-linear Phillips curve

– slope fluctuates from 0.02 in 1990s to 0.12 in 1970s and 1980s

• Mostly due to feedback loop between fraction and inflation

inflation accelerator

– higher inflation increases fraction of price changes

– higher fraction of price changes further increases inflation

– absent inflation accelerator slope increases to 0.04 in 1970s and 1980s

• Sacrifice ratio in last inflation surge: ≈ 1/3 relative to the 1990s
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Model
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Environment

• Agents: A household & final good firm, intermediate good firms i

– intermediate good firms sell continuum of goods k each [multi-product]

• Preference: Et

∑∞
t=0 β

t (log ct − ht)

+ cash-in-advance constraint implies Wt = Ptct = Mt

– money growth: logMt+1/Mt = µ+ σεt+1 (only aggregate shock)

• Technology final good firm: yt =
(∫ 1

0

∫ 1

0
(yikt)

θ−1
θ dkdi

) θ
θ−1

– demand for individual variety: yikt =
(

Pikt
Pt

)−θ

yt

• Technology firm i product k: yikt = (likt)
η

– η ≤ 1: micro-strategic complementarities in price setting

• Feasibility: ct = yt
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Multi-product Firms Problem

• Price adjustment cost in labor units: F (nti) = ξ (nit − n̄)
2
/2 if nit > n̄

– firm chooses fraction of prices to change but not which

• Real profits:∫ 1

0
(Piktyikt − τWtlikt)dk −WtF (nti)

Pt

– firm i price index: Pit =
(∫ 1

0 (Pikt)
1−θ dk

) 1
1−θ

– firm i within misallocation: Xit =
(∫ 1

0
(Pikt)

− θ
η dk

)− η
θ , Xt/Pt < 1

• Firm chooses P ∗
it and nit to maximize expected discounted profits

• Result: Firm i idiosyncratic state variables are Pit−1 and Xit−1

– e.g. Pit =
(
nit (P

∗
it)

1−θ + (1− nit) (Pit−1)
1−θ
) 1

1−θ

• Since firms are identical: P ∗
t = P ∗

it, Xt = Xit, and nt = nit
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Firms Optimal Decision

• Optimal reset price: p∗t = P ∗
t /Pt [similar to Calvo but time-varying nt]

(p∗t )
1+θ( 1

η−1) =

Et

∞∑
s=0

βs
s∏

j=1

(1− nt+j)π
θ/η
t+jmct+s

}
b2t

Et

∞∑
s=0

βs
s∏

j=1

(1− nt+j)π
θ−1
t+j

}
b1t

– inflation: πt = Pt/Pt−1

– real marginal cost: mct = wty
1/η−1
t /η = y

1/η
t /η

• Fraction of price changes

– misallocation: xt = Xt/Pt
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Firms Optimal Decision
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– real marginal cost: mct = wty
1/η−1
t /η = y

1/η
t /η

• Fraction of price changes [case β = 0]

ytξ (nt − n̄) =

(
(p∗t )

1−θ −
(
Pit−1

Pt

)1−θ
)

yt︸ ︷︷ ︸
change in revenue

− τy
1/η+1
t

(
(p∗t )

− θ
η −

(
Xit−1

Pt

)− θ
η

)
︸ ︷︷ ︸

change in cost [⇓ misallocation]

– misallocation: xt = Xt/Pt

16



Firms Optimal Decision
• Optimal reset price: p∗t = P ∗

t /Pt [similar to Calvo but time-varying nt]

(p∗t )
1+θ( 1

η−1) =

Et

∞∑
s=0

βs
s∏

j=1

(1− nt+j)π
θ/η
t+jmct+s

}
b2t

Et

∞∑
s=0

βs
s∏

j=1

(1− nt+j)π
θ−1
t+j

}
b1t

– inflation: πt = Pt/Pt−1

– real marginal cost: mct = wty
1/η−1
t /η = y

1/η
t /η

• Fraction of price changes [case β = 0]
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1−θ − (πt)
θ−1
)
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change in revenue

− τy
1/η
t

(
(p∗t )

− θ
η − (xt−1)

− θ
η (πt)

θ
η

)
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change in cost [⇓ misallocation]
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Firms Optimal Decision
• Optimal reset price: p∗t = P ∗
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t /η = y

1/η
t /η

• Fraction of price changes

ξ (nt − n̄) = b1t

(
(p∗t )

1−θ − (πt)
θ−1
)

︸ ︷︷ ︸
PDV of change in revenue

− τηb2t

(
(p∗t )

− θ
η − (xt−1)

− θ
η (πt)

θ
η

)
︸ ︷︷ ︸
PDV of change in cost [⇓ misallocation]

– misallocation: xt = Xt/Pt
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Aggregation

• Inflation pinned down by the definition of price index

1 = nt (p
∗
t )

1−θ
+ (1− nt) (πt)

θ−1

• Losses from misallocation

(xt)
− θ

η = nt (p
∗
t )

− θ
η + (1− nt) (xt−1)

− θ
η (πt)

θ
η

• Model reduces to one-equation extension of Calvo

– as ξ → ∞, nt = n̄ so our model nests Calvo
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Phillips Curve in the Time-Series
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Parameterization
• Assigned parameters

– period 1 quarter, β = 0.99, θ = 6, η = 2/3

• Calibrated parameters

– mean and standard deviation of money growth µ and σ

– fraction of free price changes n̄ , price adjustment cost ξ

• Calibration targets

Data Model

mean inflation 0.035 0.035
s.d. inflation 0.027 0.027
mean fraction 0.297 0.297
slope of nt on |πt| 0.016 0.016
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Fraction of Price Changes

• Use non-linear solution to recover shocks that reproduce U.S. inflation
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Towards the Slope of the Phillips Curve
• First order perturbation around equilibrium point at each date t

– hats denote deviations from equilibrium at that date

• Aggregate price index: 1 = nt (p
∗
t )

1−θ
+ (1− nt) (πt)

θ−1

π̂t =
1

(1− nt)π
θ−1
t

πθ−1
t − 1

θ − 1︸ ︷︷ ︸
=Mt

n̂t +
1− (1− nt)π

θ−1
t

(1− nt)π
θ−1
t︸ ︷︷ ︸

=Nt

p̂∗t

• Elasticity Nt to reset price: similar to Calvo but with varying nt

– increases with nt, decreases with πt (lower weight on new prices)

• Elasticity Mt to frequency: zero if πt = 1, increases with inflation
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Intuition

• Why is inflation more sensitive to changes in nt when inflation is high?

Mt =
1

(1− nt)π
θ−1
t

πθ−1
t − 1

θ − 1

• Inflation ≈ average price change × fraction of price changes

– πt = 1: average price change = 0

◦ so fraction inconsequential

– πt is high: average price change is large

◦ so ∆nt increases inflation considerably

– similar intuition as Caplin and Spulber (1987)
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Inflation Accelerator
• Recall aggregate price index

π̂t = Mtn̂t +Ntp̂
∗
t

– elasticity Mt increases with inflation, zero if πt = 1

• Optimal fraction of price changes

n̂t = Atπ̂t + Btp̂
∗
t − Ctx̂t−1 +

nt − n̄

nt
b̂1t

– elasticities At and Bt also increase with πt

• Feedback loop amplifies inflation response to changes in reset price

π̂t =
MtBt +Nt

1−MtAt
p̂∗t −

MtCt
1−MtAt

x̂t−1 +
Mt

1−MtAt

nt − n̄

nt
b̂1t
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Slope of the Phillips Curve
• Let m̂ct =

1
η ŷt aggregate real marginal cost

π̂t = Ktm̂ct + . . .

• Slope of the Phillips curve

Kt =
y

1
η

t

b2t︸︷︷︸
horizon

× 1

1 + θ
(

1
η − 1

)
︸ ︷︷ ︸
complementarities

× MtBt +Nt

1−MtAt︸ ︷︷ ︸
reset price

• Absent endogenous frequency response (At = Bt = 0)

κt =
y

1
η

t

b2t
× 1

1 + θ
(

1
η − 1

) × 1− (1− nt)π
θ−1
t

(1− nt)π
θ−1
t︸ ︷︷ ︸

Nt
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Time-Varying Slope of the Phillips Curve
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Sacrifice Ratio
• Calculate decline in annual output needed to reduce π by 1% over a year
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Conclusion

• Data: fraction of price changes increases with inflation

• Developed tractable model consistent with this evidence

– firms choose how many, but not which prices to change

– reduces to one-equation extension of Calvo

• Implies slope of Phillips curve increases considerably with inflation

– partly because more frequent price changes

– primarily due to endogenous frequency response – inflation accelerator
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Extensions
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Three Practical Extensions

1. Idiosyncratic shocks

– to match distribution of micro price changes

2. Taylor rule for monetary policy

– standard in NK models

3. Multiple aggregate shocks

– to study drivers of inflation

• Robustness: the role of strategic complementarities η = 1
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Idiosyncratic Shocks

• Individual goods produced with technology

yikt = ziktl
η
ikt, where log zikt = log zikt−1 + σzϵikt, ϵikt ∼ N(0, 1)

• Final output

yt =

(∫ 1

0

∫ 1

0

(
yikt
zikt

) θ−1
θ

dkdi

) θ
θ−1

• Firm price index Pit and misallocation Xit depend on ziktPikt

• Expressions similar to benchmark, with scaling terms that depend on σz

– e.g., terms involving πθ−1
t scaled by exp

(
σ2
z
2
(1− θ)2

)
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Calibration
• Because idiosyncratic shocks motive to change prices, assume n̄ = 0

A. Targeted Moments

Data Model

mean inflation 3.517 3.517
s.d. inflation 2.739 2.739
mean frequency 0.297 0.297
slope of nt on |πt| 0.016 0.015
s.d. price changes 0.129 0.129

B. Calibrated Parameter Values

Model

µ mean spending growth rate 0.035
σ s.d. monetary shocks 0.023
ξ adjustment cost 17.00
σz s.d. idiosyncratic shocks 0.068

Note: The mean nominal spending growth rate is annualized. S.d. of price changes is from
Morales-Jimenez-Stevens (2024).
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Slope of the Phillips Curve
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Smaller with idiosyncratic shocks, but fluctuates as much
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Taylor Rule

• Replace nominal spending target with Taylor rule

1 + it
1 + i

=

(
1 + it−1

1 + i

)ϕi
((πt

π

)ϕπ
(

yt
yt−1

)ϕy
)1−ϕi

exp (ut)

• Two versions

– ut shocks iid

– serially correlated with persistence ρ to match autocorrelation inflation

• Use Justiniano-Primiceri (2008) estimates

– ϕi = 0.65, ϕπ = 2.35, ϕy = 0.51
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Calibration of Economy with a Taylor Rule

Targeted Moments

Data ρ = 0 ρ > 0

mean inflation 3.517 3.517 3.517
s.d. inflation 2.739 2.739 2.739
mean frequency 0.297 0.297 0.297
slope of nt on |πt| 0.016 0.016 0.016
autocorr. inflation 0.942 0.913 0.942

Calibrated Parameters

ρ = 0 ρ > 0

log π inflation target 0.040 0.037
σ s.d. monetary shocks ×100 2.626 0.551
ρ persistence monetary shocks – 0.685
n̄ fraction free price changes 0.241 0.241
ξ adjustment cost 1.671 1.688
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Slope of the Phillips Curve
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Additional Aggregate Shocks
• Three sources of aggregate uncertainty, all follow AR(1)

– aggregate productivity shocks

yikt = ztl
η
ikt

– time-varying tax on labor (cost-push shock)

Piktyikt − τtWtlikt

– interest rate shocks in Taylor rule

• Bayesian estimation, as typical in NK literature

• Back out productivity, cost-push and monetary shocks

– so that model matches path of inflation, output growth and interest rate

• Compute slope of Phillips curve as in bechmark
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Slope of the Phillips Curve
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Causes of Inflation
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Losses from Misallocation

(Xit+s)
− θ

η = nit+s (P
∗
it+s)

− θ
η + (1− nit+s)nit+s−1 (P

∗
it+s−1)

− θ
η + · · ·

+
s∏

j=1

(1− nit+j)nit (P
∗
it)

− θ
η +

s∏
j=1

(1− nit+j) (1− nit) (Xit−1)
− θ

η

back
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Steady-State Output and Productivity

y
1
η = η

1− β (1− n)π
θ
η

1− β (1− n)πθ−1

(
n

1− (1− n)πθ−1

) 1+θ( 1
η

−1)
θ−1

xθ =

(
1− (1− n)π

θ
η

n

)η (
1− (1− n)πθ−1

n

)− θ
θ−1

back
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Role of Extensive Margin

• Decompose πt = ∆tnt into two components

– ∆t : average price change conditional on adjustment

– nt : fraction of price changes

• Isolate role of each using Klenow and Kryvtsov (2008) decomposition

– intensive margin: πi
t = ∆tn̄

– n̄ : mean fraction of price changes

– extensive margin: πe
t = ∆̄nt

– ∆̄ : mean average price change
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Role of Extensive Margin: Data
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Montag and Villar (2024)

• Argue that extensive margin plays no role post Covid

• Same decomposition but set n̄ and ∆̄ equal to January 2020 values

– due to seasonality, unusually large n and low ∆

• Illustrate fixing n̄ and ∆̄ at January 2020 values

45



Role of Extensive Margin using January 2020
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Role of Extensive Margin: Our Model
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