# Program Evaluation with Remotely Sensed Outcomes

Ashesh Rambachan<sup>1</sup>, Rahul Singh<sup>2</sup>, Davide Viviano<sup>2</sup>

<sup>1</sup>MIT Economics <sup>2</sup>Harvard Economics

NBER SI 2025

### Economists increasingly use remote sensing

a general trend in top economics journals



• often in environmental and development economics



### Why is remote sensing necessary?

- economic outcomes may be costly or infeasible to collect
  - environmental quality, e.g. crop burning
  - living standards, e.g. household consumption
- so researchers use remotely sensed variables (RSVs)
  - satellite images (Jean et al. 2016, Jayachandran et al. 2017, Aiken et al. 2022
    Currie et al. 2023, Balboni et al. 2024, Jack et al. 2025)
  - night lights (Chen + Nordhaus 2011, Henderson et al. 2012, Asher et al. 2021
  - roofing material (Marx et al. 2019, Michaels et al. 2021, Huang et al. 2021)
- this paper: program evaluation with remotely sensed outcomes?

### Why is remote sensing necessary?

- economic outcomes may be costly or infeasible to collect
  - environmental quality, e.g. crop burning
  - living standards, e.g. household consumption
- so researchers use remotely sensed variables (RSVs)
  - satellite images (Jean et al. 2016, Jayachandran et al. 2017, Aiken et al. 2022, Currie et al. 2023, Balboni et al. 2024, Jack et al. 2025)
  - night lights (Chen + Nordhaus 2011, Henderson et al. 2012, Asher et al. 2021)
  - roofing material (Marx et al. 2019, Michaels et al. 2021, Huang et al. 2021)
- this paper: program evaluation with remotely sensed outcomes?

### Why is remote sensing necessary?

- economic outcomes may be costly or infeasible to collect
  - environmental quality, e.g. crop burning
  - living standards, e.g. household consumption
- so researchers use remotely sensed variables (RSVs)
  - satellite images (Jean et al. 2016, Jayachandran et al. 2017, Aiken et al. 2022, Currie et al. 2023, Balboni et al. 2024, Jack et al. 2025)
  - night lights (Chen + Nordhaus 2011, Henderson et al. 2012, Asher et al. 2021)
  - roofing material (Marx et al. 2019, Michaels et al. 2021, Huang et al. 2021)
- this paper: program evaluation with remotely sensed outcomes?

### Main idea

- suppose the researcher has two data sets
  - 1 experimental: treatment, RSV
  - 2 observational: outcome, RSV
- we study the RSV as a post-outcome variable
  - e.g. fires cause changes in satellite images; not vice versa
- we propose a new method
  - comparing predicted outcomes of treated, untreated has bias
  - novel formula to identify treatment effect by data combination
  - for efficiency, conduct three predictions rather than one

### Main idea

- suppose the researcher has two data sets
  - 1 experimental: treatment, RSV
  - 2 observational: outcome, RSV
- we study the RSV as a post-outcome variable
  - e.g. fires cause changes in satellite images; not vice versa
- we propose a new method
  - comparing predicted outcomes of treated, untreated has bias
  - novel formula to identify treatment effect by data combination
  - for efficiency, conduct three predictions rather than one

### Main idea

- suppose the researcher has two data sets
  - 1 experimental: treatment, RSV
  - 2 observational: outcome, RSV
- we study the RSV as a post-outcome variable
  - e.g. fires cause changes in satellite images; not vice versa
- we propose a new method
  - comparing predicted outcomes of treated, untreated has bias
  - novel formula to identify treatment effect by data combination
  - for efficiency, conduct three predictions rather than one

#### Related work

- auxiliary variable models in causal inference
  - surrogates are pre-outcome variables (Athey et al. 2024, Kallus + Mao 2024)
  - misusing an RSV as a surrogate leads to arbitrary biases
- prediction powered inference
  - machine learning predictors as surrogates (Angelopoulos et al. 2023, Lu et al. 2025, Kluger et al. 2025, Ji et al 2025)
- generative models
  - must be correctly specified (Gentzkow et al. 2019, Alix-Garcia + Millimet 2023, Proctor et al. 2023, Battaglia et al. 2024)
- data combination
  - highly general (Cross + Manski 2002, Chen et al. 2005 + 2008, Ridder + Moffitt 2007, Bareinboim + Pearl 2016, Graham et al. 2016, D'Haultfoeuille et al. 2025)
  - opposite assumption: stability of outcome, versus stability of RSV

Motivation: Takeaway

program evaluation from *post*-outcome variable?

### Outline

- 1 Model
- 2 Common practice
- 3 Proposal
- 4 Case study

### Model: Two samples



- $S \in \{e, o\}$  sample indicator
- $D \in \{0,1\}$  treatment
- $Y \in \{0,1\}$  outcome (discrete or continuous in the paper)
- $\blacksquare$   $R \in \mathcal{R}$  remotely sensed outcome
- $X \in \mathcal{X}$  covariate (see paper)
- goal: treatment effect in the experiment

$$heta_0=\mathbb{E}\set{Y(1)-Y(0)|S=e}$$

- there are two imperfect samples (extensions in the paper)
  - 1 experimental (S = e): D, R
  - 2 observational (S = o): Y, R, and possibly D

### Model: Two samples



- $S \in \{e, o\}$  sample indicator
- $D \in \{0,1\}$  treatment
- lacksquare  $Y \in \{0,1\}$  outcome (discrete or continuous in the paper)
- $R \in \mathcal{R}$  remotely sensed outcome
- $X \in \mathcal{X}$  covariate (see paper)
- goal: treatment effect in the experiment

$$\theta_0 = \mathbb{E}\{\,Y(1)-\,Y(0)|S=e\}$$

- there are two imperfect samples (extensions in the paper)
  - 1 experimental (S = e): D, R
  - 2 observational (S = o): Y, R, and possibly D

### Model: Two samples



- $S \in \{e, o\}$  sample indicator
- $D \in \{0,1\}$  treatment
- $Y \in \{0,1\}$  outcome (discrete or continuous in the paper)
- $\blacksquare$   $R \in \mathcal{R}$  remotely sensed outcome
- $X \in \mathcal{X}$  covariate (see paper)
- goal: treatment effect in the experiment

$$\theta_0 = \mathbb{E}\{Y(1) - Y(0)|S = e\}$$

- there are two imperfect samples (extensions in the paper)
  - 1 experimental (S = e): D, R
    - 2 observational (S = o): Y, R, and possibly D

### Model: Assumptions

We place three assumptions

- 1 The experimental sample was properly collected
  - D was randomly assigned to units:  $D \perp \!\!\! \perp \{Y(1), Y(0)\} | S = e$
  - this assumption is satisfied by design
- 2 The distribution of the RSV is stable across samples
- 3 The observational sample is "complete"

### Model: Assumptions

We place three assumptions

- 1 The experimental sample was properly collected
- 2 The distribution of the RSV is stable across samples



- our main assumption:  $S \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid D, Y$
- assess by diagnostic tests and plots (later in this talk)
- 3 The observational sample is "complete"

### Model: Assumptions

We place three assumptions

- 1 The experimental sample was properly collected
- **2** The distribution of R is stable across samples
- 3 The observational sample is "complete":



- (i) either we observe D in the observational sample;
- (ii) or no dashed line:  $D \perp \!\!\!\perp R \mid Y$  (for today)

Model: Takeaway

RSV is *stable* across samples

### Outline

- 1 Model
- 2 Common practice
- 3 Proposal
- 4 Case study

### Common practice: Method

What is a common practice?

- 1 train a predictor with obs. sample:  $f(R) = \mathbb{E}(Y|R, S = o)$
- 2 compare predicted outcome of treated, untreated in exp. sample

$$ilde{ heta}=\mathbb{E}\{f(R)|D=1,S=e\}-\mathbb{E}\{f(R)|D=0,S=e\}$$

#### Interpretation

- $\blacksquare$  in  $\sim 50\%$  of general interest papers with remotely sensed outcomes
- implicitly uses the RSV as a pre-outcome *surrogate* (Athey et al. 2024)



(a) Our model: Post-outcome

(b) Surrogate model: Pre-outcome

### Common practice: Method

What is a common practice?

- 1 train a predictor with obs. sample:  $f(R) = \mathbb{E}(Y|R, S = o)$
- 2 compare predicted outcome of treated, untreated in exp. sample

$$ilde{ heta}=\mathbb{E}\{f(R)|D=1,S=e\}-\mathbb{E}\{f(R)|D=0,S=e\}$$

#### Interpretation

- $\blacksquare$  in  $\sim 50\%$  of general interest papers with remotely sensed outcomes
- implicitly uses the RSV as a pre-outcome *surrogate* (Athey et al. 2024)



(a) Our model: Post-outcome

(b) Surrogate model: Pre-outcome

### Common practice: Bias

What goes wrong? Recall 
$$f(R)=\mathbb{E}(\,Y|R,S=o)$$
 
$$\widetilde{\theta}=\mathbb{E}\{f(R)|D=1,S=e\}-\mathbb{E}\{f(R)|D=0,S=e\}$$

#### Three levels of critique

- warm up: bias in the "irrelevance" case
  - suppose the RSV fails to predict the outcome
  - then f(R) is constant and  $\tilde{\theta} = 0$ !
- 2 bias in the linear case
  - suppose  $f(R) = \tilde{\beta}_0 + \tilde{\beta}R$  and  $\mathbb{E}(R|Y, D, S = e) = \beta_0 + \beta Y$
  - combining these expressions,  $\ddot{\theta} = \ddot{\beta}\beta\theta_0$
- 3 bias in general
  - Proposition (informal): bias of  $\tilde{\theta}$  can be positive or negative
  - significant in practice: underestimate effect on crop burning by  $\sim 47\%$

### Common practice: Bias

What goes wrong? Recall 
$$f(R) = \mathbb{E}(Y|R, S = o)$$

$$ilde{ heta}=\mathbb{E}\{f(R)|D=1,S=e\}-\mathbb{E}\{f(R)|D=0,S=e\}$$

#### Three levels of critique

- 1 warm up: bias in the "irrelevance" case
  - suppose the RSV fails to predict the outcome
  - then f(R) is constant and  $\tilde{\theta} = 0$ !
- 2 bias in the linear case
  - suppose  $f(R) = \tilde{\beta}_0 + \tilde{\beta}R$  and  $\mathbb{E}(R|Y, D, S = e) = \beta_0 + \beta Y$
  - combining these expressions,  $\tilde{\theta} = \tilde{\beta}\beta\theta_0$
- 3 bias in genera
  - Proposition (informal): bias of  $\tilde{\theta}$  can be positive or negative
  - significant in practice: underestimate effect on crop burning by  $\sim 47\%$

### Common practice: Bias

What goes wrong? Recall 
$$f(R) = \mathbb{E}(Y|R, S = o)$$

$$ilde{ heta}=\mathbb{E}\{f(R)|D=1,S=e\}-\mathbb{E}\{f(R)|D=0,S=e\}$$

#### Three levels of critique

- 1 warm up: bias in the "irrelevance" case
  - suppose the RSV fails to predict the outcome
  - then f(R) is constant and  $\tilde{\theta} = 0$ !
- 2 bias in the linear case
  - suppose  $f(R) = \tilde{\beta}_0 + \tilde{\beta}R$  and  $\mathbb{E}(R|Y, D, S = e) = \beta_0 + \beta Y$
  - combining these expressions,  $\tilde{\theta} = \tilde{\beta}\beta\theta_0$
- 3 bias in general
  - Proposition (informal): bias of  $\tilde{\theta}$  can be positive or negative
  - significant in practice: underestimate effect on crop burning by  $\sim 47\%$

Common practice: Takeaway

what should we do instead?

### Outline

1 Mode

- 2 Common practice
- 3 Proposal
- 4 Case study

Define the treatment variation 
$$\Delta^e = \frac{1(D=1,S=e)}{\mathbb{P}(D=1,S=e)} - \frac{1(D=0,S=e)}{\mathbb{P}(D=0,S=e)}$$

Define the outcome variation 
$$\Delta^o = \frac{1(Y=1,S=o)}{\mathbb{P}(Y=1,S=o)} - \frac{1(Y=0,S=o)}{\mathbb{P}(Y=0,S=o)}$$

Theorem (informal): Under Assumptions 1, 2, and 3(ii), 
$$\theta_0 = \frac{\mathbb{E}(\Delta^e|R)}{\mathbb{E}(\Delta^o|R)}$$
.

Corollary (informal): For any representation 
$$H(R)$$
,  $\theta_0 = \frac{\mathbb{E}\{\Delta^e H(R)\}}{\mathbb{E}\{\Delta^o H(R)\}}$ .

Define the treatment variation 
$$\Delta^e = \frac{1(D=1,S=e)}{\mathbb{P}(D=1,S=e)} - \frac{1(D=0,S=e)}{\mathbb{P}(D=0,S=e)}$$
.

Define the outcome variation 
$$\Delta^o = \frac{1(Y=1,S=o)}{\mathbb{P}(Y=1,S=o)} - \frac{1(Y=0,S=o)}{\mathbb{P}(Y=0,S=o)}$$
.

Theorem (informal): Under Assumptions 1, 2, and 3(ii), 
$$\theta_0 = \frac{\mathbb{E}(\Delta^e|R)}{\mathbb{E}(\Delta^o|R)}$$
.

Corollary (informal): For any representation 
$$H(R)$$
,  $\theta_0 = \frac{\mathbb{E}\{\Delta^e H(R)\}}{\mathbb{E}\{\Delta^o H(R)\}}$ .

Define the treatment variation 
$$\Delta^e = \frac{1(D=1,S=e)}{\mathbb{P}(D=1,S=e)} - \frac{1(D=0,S=e)}{\mathbb{P}(D=0,S=e)}$$
.

Define the outcome variation 
$$\Delta^o = \frac{1(Y=1,S=o)}{\mathbb{P}(Y=1,S=o)} - \frac{1(Y=0,S=o)}{\mathbb{P}(Y=0,S=o)}$$
.

Theorem (informal): Under Assumptions 1, 2, and 3(ii), 
$$\theta_0 = \frac{\mathbb{E}(\Delta^e|R)}{\mathbb{E}(\Delta^o|R)}$$
.

Corollary (informal): For any representation 
$$H(R)$$
,  $\theta_0 = \frac{\mathbb{E}\{\Delta^e H(R)\}}{\mathbb{E}\{\Delta^o H(R)\}}$ .

Define the treatment variation 
$$\Delta^e = \frac{1(D=1,S=e)}{\mathbb{P}(D=1,S=e)} - \frac{1(D=0,S=e)}{\mathbb{P}(D=0,S=e)}$$
.

Define the outcome variation 
$$\Delta^o = \frac{1(Y=1,S=o)}{\mathbb{P}(Y=1,S=o)} - \frac{1(Y=0,S=o)}{\mathbb{P}(Y=0,S=o)}$$
.

Theorem (informal): Under Assumptions 1, 2, and 3(ii), 
$$\theta_0 = \frac{\mathbb{E}(\Delta^e | R)}{\mathbb{E}(\Delta^o | R)}$$
.

Corollary (informal): For any representation 
$$H(R)$$
,  $\theta_0 = \frac{\mathbb{E}\{\Delta^e H(R)\}}{\mathbb{E}\{\Delta^o H(R)\}}$ .

Let's interpret

$$heta_0 = rac{\mathbb{E}(\Delta^e|R)}{\mathbb{E}(\Delta^o|R)}, \quad heta_0 = rac{\mathbb{E}\{\Delta^e H(R)\}}{\mathbb{E}\{\Delta^o H(R)\}}.$$

- numerator and denominator from different samples
  - numerator is effect of D and Y on R
  - so divide by effect of Y on R
- lacksquare no need to specify the distribution of R|Y
- any representation H(R) is valid
  - as long as the representation is predictive:  $\mathbb{E}\{\Delta^{o}H(R)\} \neq 0$
  - weak RSV test: is  $\mathbb{E}\{\Delta^{\circ}H(R)\}\approx 0$ ?
  - joint test: do H(R) and H'(R) give similar estimates?

### Proposal: Efficient inference

Which representation is optimal?

$$\underline{\text{Corollary}} \text{ (informal): Efficiency when } H^*(R) = \frac{\mathbb{E}(\Delta^o|R)}{\mathbb{E}\{(\Delta^e - \Delta^o\theta_0)^2|R\}}.$$

Interpretation

- from theory of optimal instruments (Chamberlain 1987, Newey 1993)
- three predictions rather than one
  - 1 outcome from RSV
  - 2 treatment from RSV
  - 3 sample indicator from RSV
- inference by cross fitting (Angrist et al. 1999, Chernozhukov et al. 2018 + 2023)
  - learn optimal representation (via three predictions) on one fold
  - estimate treatment effect on other fold
  - valid using any mis-specified ML (Mackey et al. 2018, Chen et al. 2020)

Proposal: Takeaway

a novel formula for data combination

### Outline

1 Model

- 2 Common practice
- 3 Proposal
- 4 Case study

### Case study: Smartcards



- what is the effect of Smartcards on poverty in Andhra Pradesh?
- we merge a real randomized experiment (Muralidharan et al. 2023) with real satellite images (Asher et al 2021, Rolf et al. 2021)
- we create two imperfect samples
  - 1 experimental: Smartcard status, satellite image
  - 2 observational: poverty level, satellite image

### Case study: Key assumption

#### Our key assumption is plausible: $S \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid D, Y$ .

For units on the left, we visualize density of R after PCA on the right.



(a) Units with D = 0 and Y = 0.



(c) Units with D = 0 and Y = 1.



(b) Densities of  $R \mid S$ , D = 0, Y = 0.



(d) Densities of  $R \mid S$ , D = 0, Y = 24/.27

### Case study: Synthetic effects, real satellite images

#### Our method outperforms common practice in terms of average bias.

For each sample size n and synthetic treatment effect value  $\theta$ , we use the empirical distribution of  $R \mid Y$ .



Case study: Takeaway

## substantially reduce bias

### Recommendations for practice

How to conduct program evaluation with RSVs?

- auxiliary sample: RSVs with linked outcomes
- three predictions: outcome, treatment, sample
- efficient inference: shortest, prediction-adjusted confidence interval

Which diagnostics should researchers assess?

- weak RSV test
- joint test of identifying assumptions

We would love to talk more!

■ email: asheshr@mit.edu; rahul\_singh@fas.harvard.edu; dviviano@fas.harvard.edu

### Recommendations for practice

How to conduct program evaluation with RSVs?

- auxiliary sample: RSVs with linked outcomes
- three predictions: outcome, treatment, sample
- efficient inference: shortest, prediction-adjusted confidence interval

Which diagnostics should researchers assess?

- weak RSV test
- joint test of identifying assumptions

We would love to talk more!

■ email: asheshr@mit.edu; rahul\_singh@fas.harvard.edu; dviviano@fas.harvard.edu

### Recommendations for practice

How to conduct program evaluation with RSVs?

- auxiliary sample: RSVs with linked outcomes
- three predictions: outcome, treatment, sample
- efficient inference: shortest, prediction-adjusted confidence interval

Which diagnostics should researchers assess?

- weak RSV test
- joint test of identifying assumptions

We would love to talk more!

■ email: asheshr@mit.edu; rahul\_singh@fas.harvard.edu; dviviano@fas.harvard.edu