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Abstract

Laboratory tests suggest that air filters have the potential to inexpensively reduce indoor air
pollution and reduce the transmission of infectious diseases. However, it is unclear whether they
can be effective at scale in real-world conditions where filters may not always stay plugged in,
windows may be open, and classroom construction may allow airflow from outside. The impact of
air filters may vary depending on year-to-year fluctuations in pollution levels, infection risk, and the
occurrence of pandemics. Consequently, we assess the expected benefit of a multi-year, large scale,
light touch implementation of air filters under real world conditions through a randomized control
trial which placed portable air filters in Bogotá schools. In 2023, students in treated schools scored
0.03σ higher (p-value 0.03) on a high-stakes exam taken 3-4 months after the filters’ installation,
but in 2024, they had no discernible effects on test scores. Since exams were administered off-site,
these effects do not reflect test-day conditions. Filters led to a modest reduction in PM2.5 pollution
inside classrooms, at .47 µg/m3 (p-value 0.082) from a base of 11.00 µg/m3 in 2023 and by .66
µg/m3 (p-value 0.066) from a base of 16.50 µg/m3 in 2024. Effects did not vary by socio-economic
status, baseline scores, or pollution levels. Filters’ expected benefits would exceed costs, if the 2023
effect of filters on test scores occurs in only half of non-pandemic years, and at least 5% of the test
score-wage correlation reflects human capital accumulation.

*We thank Secretarı́a de Ambiente and Secretarı́a de Educación for constant help during the project. Andrés Abella,
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1 Introduction
Air pollution shortens life expectancy by 2.2 years globally (Greenstone, Hasenkopf, &
Lee, 2022), and infectious respiratory diseases significantly impair health, education,
and productivity, with particularly severe impacts during epidemics. Installing
high-efficiency particulate air (HEPA) filters in schools may mitigate these adverse
effects by reducing exposure to pollutants, curbing the transmission of routine diseases,
and serving as a protective measure during pandemics, potentially reducing the need
for school closures (Liu, Lee, & Gershenson, 2021; Lindsley, 2021; Ueki et al., 2022).
While private adoption of air purifiers by households — particularly in high-income
countries and upper-middle-income contexts — has become common, implementing
air filtration systems in public facilities may offer greater cost-effectiveness due to
economies of scale and broader reach.1 However, there are reasons to be cautious
about expecting large impacts from air filters in schools. Many classrooms in low-
and middle-income countries have vents that allow outside air in, and students or
teachers may turn off filters due to noise, limited electrical outlets, or open windows
in hot weather, thereby reducing their effectiveness.

Evaluating the effectiveness of air filters involves addressing external validity over time
(Rosenzweig & Udry, 2020). Pollution levels fluctuate annually due to factors such
as weather variations and forest fires. The burden of infectious diseases also varies
significantly, often exhibiting highly skewed impacts; COVID-19 alone is estimated to have
reduced global lifetime earnings by US$21 trillion (Azevedo, Akmal, Cloutier, Rogers, &
Wong, 2022). To address these concerns, this paper follows the approach of Rosenzweig
and Udry (2020) by combining randomized controlled trial evidence from non-pandemic
years with modeling to estimate expected impacts during pandemics. Additionally, this
analysis explicitly shows how optimal policy decisions depend on policymakers’ beliefs.
As long as they assign even modest weight to either the economic value of human capital
gains associated with test scores or the likelihood that air filters reduce school closures
during pandemics, the expected benefits of air filters exceed their costs.

Specifically, we report the impact of placing portable HEPA filters in classrooms on student
learning based on a randomized control trial conducted in Bogotá, Colombia, in 2023
and 2024. The study involved more than 42,000 students each year in 357 public schools.
Learning outcomes were measured using scores on a nationwide standardized test (Saber
11). Historical test score data helped account for much of the variation in test scores,

1Approximately 1 in 4 of all American households owns an air purifier (Consumer Reports, 2019); In Delhi
24.1% of high-SES households own an air purifier device (Greenstone, Lee, & Sahai, 2021).

1



allowing relatively small treatment effects to be detected.2 In this setting, students take
the Saber 11 exam in central locations rather than their schools, allowing us to isolate
the impact of prolonged exposure to air filters from any immediate performance boosts
caused by cleaner air on the test day itself.

While reductions in pollution were modest, they were sufficient to yield measurable
benefits in education, as evidenced by higher test scores in 2023. In 2023, students
exposed to filters scored .03σ (p-value 0.03) higher on the Saber 11 test, which
was taken 3–4 months after filter installation. Effects did not vary by student
characteristics, socio-economic status, or prevalent (outdoors) pollution levels. In
2024, we find no effect of air filters on test scores.

Air filters lowered the level of PM2.5 in classrooms by .47 µg/m3 (p-value 0.082) from a
base of 11.00 µg/m3 in 2023, and by .66 µg/m3 (p-value 0.066) from a base of 16.50 µg/m3

in 2024. Air filters reduce pollution more when the level of outdoor pollution is high,
resulting in a -1.2 µg/m3 (p-value 0.00) reduction from a base of 15.10 µg/m3 in 2023 when
outdoor pollution is above the World Health Organization (2021) recommended threshold
of 5µg/m3.3 In 2024, filters also significantly reduced PM2.5 pollution by -1.2 µg/m3

(p-value 0.01) from a higher base of 20.60 µg/m3 when levels exceeded the WHO threshold.

Assuming filters affect test scores only by reducing exposure to particulate matter, placing
air filters can be used as an instrument for indoor air quality. Estimates from 2023 indicate 1
µg/m3 increase in indoor PM2.5 reduces test scores by .089σ. If filters also affect test scores
by reducing exposure to airborne infectious diseases, this estimate could be interpreted as
an upper bound on the local average treatment effect of pollution reduction on learning.

The cost-effectiveness and benefit-cost ratio (BCR) of air filters vary based on assumptions
about aggregate shocks and filter durability. In non-pandemic years, filters yield gains
of 1.76 LAYS per $100 invested if the 2023 effect repeats annually, or 0.88 LAYS if
it occurs half as often. Considering both non-pandemic learning gains and avoided
school closures during pandemics, filters compare favorably with other educational
interventions classified as cost-effective (“good buys”) by the Global Education Evidence
Advisory Panel (Angrist et al., 2025; GEEAP, 2023).

Further, even modest test score improvements from filters could significantly boost lifetime
earnings. Using the established correlation between Saber 11 scores and Colombian
wages, the annual per-student net present value of wage gains ranges between $43.10

2Controlling for a school’s mean lagged test scores reduces the intra-class correlation coefficient by roughly
90 percent.

3These estimates are similar to experimental estimates of portable HEPA filters in Los Angeles, which
reduced PM2.5 by 0.581µg/m3 (Simona, Bartell, & Vieira, 2025).
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and $86.19, resulting in a BCR from learning-related wage gains of 20.08 to 40.15. Even
if the effects of filters occurred only half of the non-pandemic years and only 5% of
the test score-wage correlation reflects actual human capital gains, benefits would still
exceed costs. Filters could also provide net benefits by mitigating learning losses due
to pandemic school closures. Given estimated annual per-student earnings losses of
$31.08 due to pandemics (Azevedo et al., 2022), reducing school closure probability
by just 7% would yield benefits exceeding the filter costs.

This study contributes to three strands of the literature. First, it advances research on
policies to mitigate the effects of air pollution. Two studies have found that installing HEPA
filters in schools in the US improves learning outcomes (Gilraine, 2023; Biasi, Lafortune, &
Schonholzer, 2025).4 This study differs in the nature and the context of the intervention. In
those cases, dramatic changes were made to the ventilation systems in schools, the cost was
10 times higher, and the HEPA filters were not portable. These studies were also done in a
high-income country with lower baseline pollution levels. In contrast, this paper evaluates
a much lighter touch and less expensive program using portable filters in the context of a
middle-income country with higher baseline levels of pollution. Our cost-benefit analysis
suggests policymakers should consider expanding air filter installations in classrooms if
they assign at least a 5% weight to the test score-wage relationship as reflecting genuine
human capital gains, at least a 7% probability that filters avert pandemic-related closures,
or any linear combination of these conditions.

Second, it contributes to the evidence on the effects of school health interventions.
Interventions such as deworming (e.g., Miguel and Kremer (2004)), providing eyeglasses
(e.g., Glewwe, Park, and Zhao (2016)), nutritional interventions (e.g., Glewwe and
Miguel (2007); Field, Robles, and Torero (2009); Luo et al. (2012); Sylvia et al. (2013);
Araújo, Carrillo, and Sampaio (2021)), and anti-malarial treatment (e.g., Fernando,
De Silva, Carter, Mendis, and Wickremasinghe (2006)) are highly cost-effective ways
to improve student outcomes. We complement these findings by establishing that air
filters may be another such cost-effective policy alternative.5

4Multiple quasi-experimental and correlational studies find links between air pollution, including
particulate matter, and test scores (e.g., Stafford (2015); Ebenstein, Lavy, and Roth (2016); Zhang, Chen, and
Zhang (2018); Persico and Venator (2019); Heissel, Persico, and Simon (2020); Balakrishnan and Tsaneva
(2021); Gilraine and Zheng (2024); Aguilar-Gomez, Dwyer, Graff Zivin, and Neidell (2022); Duque and
Gilraine (2022)). Related papers estimate how contemporaneous pollution levels affect cognitive performance,
see Ebenstein et al. (2016); S. Roth (2020); Künn, Palacios, and Pestel (2023).

5Routine respiratory diseases cause school absences in normal times (McLean, Peterson, King, Meece, &
Belongia, 2017) and lead to learning losses. Further, the annual probability of a pandemic that is at least as
severe as COVID-19 is approximately 1% — a one in 105-year event (Marani, Katul, Pan, & Parolari, 2021,
2023; Glennerster, Snyder, & Tan, 2023), potentially leading to large-scale school shutdowns and large learning
losses (Azevedo, Hasan, Goldemberg, Geven, & Iqbal, 2021; Azevedo et al., 2022; Azevedo, Cojocaru, Talledo,
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Third, if the results are unlikely to be driven by reductions in infectious disease, our
results bolster the evidence of the negative effects of air pollution, particularly on cognitive
performance and learning. This contribution is fourfold. First, while most papers
focus on high pollution on the day of the exam, this paper focuses on reducing indoor
pollution during learning sessions. Second, while most prior work analyzes outdoor
or ambient air pollution, this paper focuses on indoor air pollution, as (Metcalfe &
Roth, 2025). Third, while previous research in this area is based on quasi-experimental
evidence, these results provide experimental evidence of how pollution affects learning.
Finally, most of the evidence comes from developed countries; two notable exceptions are
Zhang et al. (2018), which studies China, and Merkus (2024); Villalobos and Blackman
(2025), which studies Colombia. However, the impact of pollution has been shown to
vary across settings Arceo, Hanna, and Oliva (2016). This paper complements these
results with further evidence from a middle-income country.

2 Context

2.1 Education in Bogotá
Schooling in Colombia is divided into basic primary education (grades 1-5), basic
secondary education (grades 6-9), and upper secondary education (grades 10-11).
Education is compulsory through grade 9; the final 2 years are not mandatory but
are necessary to access university or technical education. Public schools in Colombia
run from January through November.6 In Bogotá 22.31% of all students and 61.76%
of low-income students attend a public school.

In the last year of high school (Grade 11), students must take a nationwide standardized
test (Saber 11) to graduate. There are five sections: mathematics, Spanish, natural
sciences, social studies, and English, each scored from 0 to 100, with a maximum global
score of 500.7 While no minimum score is required to graduate, the results are one
of the primary factors that higher education institutions consider in admissions and
scholarship decisions. The Instituto Colombiano para la Evaluación de la Educación
(ICFES) administers the exam on a Sunday at central locations (e.g., at a local university).
Students in our sample sat the exam in August.8

& Narayan, 2023; Schady, Holla, Sabarwal, Silva, & Chang, 2023).
6Schools in Colombia follow one of two academic calendars: Calendar A runs from January through

November, while Calendar B runs from September through June. All public schools in Bogotá and 98.17% of
private schools follow Calendar A.

7‘Global’ refers to the cumulative score from the five sections: mathematics, Spanish, natural sciences,
social studies, and English.

8This timing applies to all schools that follow Calendar A, which includes public schools.
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2.2 Pollution in Bogotá
Particulate matter pollution, comprising airborne particles such as dust, pollen, mold,
soot, and smoke, can have a significant impact on human health. Particulate matter
is categorized based on the size of the particles. Fine particulate matter smaller than
2.5 micrometers (PM2.5) is particularly harmful, compared to larger particles, as it is
more easily absorbed deep into the brain (Chen et al., 2017), lungs, or bloodstream
when inhaled. However, coarser particulate matter, smaller than 10 µm (PM10), is
also known to be detrimental (Environmental Protection Agency, 2023). High levels
of exposure can cause difficulty breathing and irritation to the eyes, throat, or lungs
in the short term and chronic respiratory illnesses, cardiovascular disease, and cancer
in the long term (World Health Organization, 2022).

Particulate matter concentrations in Bogotá exceed global health standards: the average
particulate matter concentrations — 20.05 µg/m3 for PM2.5 and 55.64 µg/m3 for PM10

— exceed the World Health Organization (2021)’s guidelines of 5 µg/m3 for PM2.5 and
25 µg/m3 for PM10. While consistently above recommended limits, Bogotá’s pollution is
lower than that of many other capital cities, ranking 67th out of 115 in the 2023 World Air
Quality Report (IQAir, 2023) —- Delhi, Hanoi, Jakarta, Beijing, Accra, and Lahore (among
many others) have pollution levels that are 3–7 times those of Bogotá.9

Children in Bogotá are exposed to harmful levels of air pollution during school
hours. Data from classroom monitors suggests that students are exposed to ∼11
µg/m3 of PM2.5 on average during school hours. Particulate matter in Bogotá tends
to be at its highest from January to March due to the atmospheric conditions (Mura
et al., 2020), months when schools are in session.

Air quality monitoring reveals stark socio-economic disparities in particulate matter
exposure. Pollution levels, as measured by Colombia’s Subsistema de Información
sobre Calidad del Aire (SISAIRE) system, which operates 22 hourly monitoring
stations across Bogotá, are highest in the city’s south and west, where lower-income
communities reside (Mura et al., 2020). Consequently, students from disadvantaged
backgrounds face significantly worse air quality (see Figure 1 and Figure A.1
for graphical correlational evidence).

9See https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2022

and https://www.iqair.com/world-most-polluted-cities for information on pollution in different cities.
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Figure 1: Pollution, poverty, and schools’ locations

(a) PM2.5 pollution in µg/m3

10 to 15
15 to 20
20 to 25
25 to 30
30 to 35

(b) Multidimensional poverty index in 2018

Notes: The black dots denote the schools in the experimental sample. The shading in Figure 1a reflects average pollution levels

in 2022. Raw data on pollution was obtained from SISAIRE, the government’s official platform that maintains real-time records of

multiple pollution measures http://aircolombia.sisaire.gov.co/portal/index.col. For Bogotá, this information is captured by

22 monitoring stations. Pollution levels across the city were estimated using a linear interpolation process. The multidimensional

poverty in Figure 1b measures deprivation in five categories: housing and access to public utilities, education, health, work, and

childhood conditions. The information is based on the 2018 Census and measures the percentage of poor households according

to the multidimensional index (see https://geoportal.dane.gov.co/visipm/ for more details). School locations were obtained

from the Ministry of Education’s publicly available databases https://www.datos.gov.co/Educaci-n/ESTABLECIMIENTOS-EDUCATIVOS

-COLOMBIA/upkm-vdjb.

2.3 Respiratory diseases and learning
In a non-pandemic scenario, respiratory illnesses are a leading cause of student absenteeism
(Vargas et al., 2020; McLean et al., 2017; Azor-Martı́nez et al., 2014; Neuzil, Hohlbein,
& Zhu, 2002; Castillo-Rodrı́guez et al., 2022), which contributes to learning loss with
long-term economic and social consequences (Liu et al., 2021). By reducing the spread of
airborne pathogens, air filtration systems may improve educational outcomes by lowering
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rates of illness-related absences (Hammond, Khalid, Thornton, Woodall, & Hay, 2021;
Curtius, Granzin, & Schrod, 2021; Burgmann & Janoske, 2021).

During a pandemic scenario, school closures can cause severe learning losses.10 Colombian
schools were closed for 25 weeks due to the COVID-19 pandemic (UNESCO, 2020).
Similar length closures occurred globally, leading to an estimated global cost from
learning losses of USD $21 trillion (Azevedo et al., 2021; Schady et al., 2023). The
annual probability of a pandemic that is at least as severe as COVID-19 is approximately
1% — a one-in-105-year event. The likelihood of a pandemic at least half as severe
as COVID-19 is approximately 1.54%, or once every 65 years (Marani et al., 2021,
2023; Glennerster et al., 2023). Conservative estimates of the expected present value
of learning losses from future pandemics are about USD $1.7 trillion (Glennerster
et al., 2023). Air filters may reduce pandemic-related learning losses by making it
safer for schools to remain open during a pandemic.

However, rare but severe events, such as the COVID-19 pandemic, make it difficult
to accurately generalize about the returns on pandemic preparedness investments
without an unrealistically long study. For example, if pandemics occur once every
hundred years and filters prevent school closures in half of those events, then over a
hypothetical 500-year study, closures would be averted only two and a half times in
expectation, and experimental estimates would still be very noisy.

3 Experimental design

3.1 Sample
The sample consists of 357 public high schools located in urban areas of Bogotá, with over
120,000 Grade 11 students (see Figure 2).11 Randomization was stratified by locality, and
the sample only included localities with at least four schools.

3.2 Randomization
Schools were randomly assigned to one of four groups: schools that received only filters,
schools that received only monitors, schools that received both filters and monitors, and
a control group. The allocation was stratified at the locality level. Seventy-five schools

10There is ample evidence of severe learning losses during the COVID-19 pandemic both in high-income
(see Patrinos, Vegas, and Carter-Rau (2023); Moscoviz and Evans (2022); Betthäuser, Bach-Mortensen, and
Engzell (2023) for reviews) as well as middle- and low-income countries (e.g., see Alasino, Ramı́rez, Romero,
Schady, and Uribe (2024); Guariso and Björkman Nyqvist (2023); Ardington, Wills, and Kotze (2021); Lichand,
Doria, Leal-Neto, and Fernandes (2022); Singh, Romero, and Muralidharan (2024)).

11Bogotá’s administrative boundaries include a large rural area in the south. We exclude schools in this
area since they typically have low pollution levels and due to logistical constraints.
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were assigned to each treatment group, and the remaining 132 schools were assigned to
the control group. Table 1, Panel A presents summary statistics for all eligible schools in
2022 (the year before the treatment). On average, students are 17 years old when they
take the exam, and 64% of them come from the lowest socio-economic strata. Overall, the
four experimental groups are balanced: the p-value from a joint significance test, where
the null hypothesis is that all coefficients are equal to zero, using a system of seemingly
unrelated equations, is 0.78. Balance holds at the student- and school-level when each
treatment group is compared to the control group and in pairwise comparisons between
treatment arms (see Table A.1 and Table A.2).

There are no concerns of differential attrition (see Table 1, Panel B and Panel C). The
likelihood that we observe a school in the post-treatment years is balanced, as is the number
of students that take the Saber 11 test.12 In 2024, the test of equality of means across
groups yields a p-value that is marginally significant at the 10% level. The observable
characteristics of students (age, sex, maternal education, and SES strata) are also balanced
in the post-treatment years (see Tables A.3, A.4, and A.5).

12Schools were selected based on 2021 data showing grade 11 students, but 11 schools had no students
taking the Saber 11 exam in 2023 (4 control schools, 2 filter only schools, 3 monitor only schools, and 2 filter
and monitor schools).
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Table 1: Balance across experimental groups (2022)

Mean (SD) for each group p-value
Control Filter Monitor Both (equality)

(1) (2) (3) (4) (5)

Panel A: Pre treatment (2022)
Global score 0.01 0.01 -0.00 0.01 0.934

(0.31) (0.33) (0.33) (0.31)

Reading score 0.01 0.01 0.00 0.01 0.982
(0.26) (0.28) (0.28) (0.25)

Math score 0.02 0.01 -0.01 0.02 0.750
(0.28) (0.31) (0.30) (0.29)

SES strata 1 or 2 0.67 0.70 0.61 0.66 0.061∗

(0.25) (0.24) (0.26) (0.24)

Lower SES 0.28 0.26 0.34 0.30 0.067∗

(0.25) (0.24) (0.27) (0.25)

Female 0.55 0.54 0.56 0.54 0.251
(0.08) (0.05) (0.09) (0.03)

Age (exam date) 17.39 17.47 17.49 17.46 0.900
(1.59) (0.53) (0.36) (0.29)

Mother some secondary education 0.50 0.50 0.50 0.50 0.770
(0.06) (0.05) (0.06) (0.04)

PM2.5 17.54 17.56 17.45 17.53 0.835
(1.95) (2.19) (2.05) (1.77)

PM10 36.08 35.94 35.37 35.91 0.192
(5.49) (5.72) (5.81) (5.52)

Without Saber 11 data 0.03 0.01 0.03 0.01 0.756
(0.17) (0.12) (0.16) (0.12)

Students (Grade 11) 116.08 127.19 103.83 111.81 0.254
(73.32) (90.82) (60.08) (66.06)

F-test p-value 0 .783
Panel B: Treatment (2023)
Without Saber 11 data 0.03 0.03 0.04 0.03 0.958

(0.17) (0.16) (0.20) (0.16)

Students (Grade 11) 121.94 132.07 104.01 114.49 0.111
(79.39) (93.24) (63.59) (69.33)
[132] [75] [75] [75]

Panel C: Treatment (2024)
Without Saber 11 data 0.02 0.03 0.04 0.03 0.918

(0.15) (0.16) (0.20) (0.16)

Students (Grade 11) 124.46 130.80 104.07 112.64 0.096∗

(78.45) (97.42) (65.59) (65.90)
[132] [75] [75] [75]

Notes: Columns 1–4 show the mean, standard deviation (in parentheses) and number of
observations (in square brackets) for each of the following groups: Control, schools where
filters were installed, schools where air quality monitors were installed, and schools where
both filters and air quality monitors were installed. Column 5 reports the p-value of whether
the mean is the same across all groups. The equality test considers the randomization design
(i.e., it includes strata fixed effects and clusters standard errors at the school level). All
variables except age, number of students, pollution measures, and test scores are % with
respect to the number of students in Grade 11. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Figure 2: Distribution of study schools across the city
Pollution sensor
Control
Filter
Monitor
Both

Notes: Red crosses indicate control schools; blue squares indicate schools treated only with filters; green rhomboids indicate schools

treated with pollution monitors only; and golden triangles indicate schools treated with both filters and pollution monitors. Black dots

indicate government pollution monitoring stations.

3.3 Interventions

3.3.1 Filters

Schools were provided Smart Air HEPA Sqair filters, which are recommended for use in
rooms up to 40m3.13 These are portable devices that consist of a fan with a HEPA filter
pad attached, have low electricity consumption (6-38 watts), and are relatively quiet (23-52
decibels).14 The equipment lasts up to 8 years and costs 287.63 USD (inclusive of the
attached HEPA filter pad, import fees, transportation costs, and installation). However,
HEPA filter pads have a shorter lifespan than the fan and should be replaced roughly every
9 months (if used 6 hours per school day on average) to maintain efficiency. The HEPA
replacement pad costs 54 USD (including installation).

13See https://smartairfilters.com/en/product/sqair-air-purifier/ for more details.
14For comparison, a typical air conditioner consumes between 500-1500 watts and generates noise levels of

approximately 50-60 decibels, while an iPhone generates approximately 30 decibels during use.
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Air filters were placed in Grade 11 classrooms in treated schools. We placed, on average,
three filters in each school, with each filter located in a different classroom. Teachers
and students in schools with filters received training on how to use them. They also
received an infographic with key information, as well as reminders throughout the
school year on the potential benefits of using the equipment. Schools were revisited
in July to check filter usage and deliver a pamphlet with instructions on filter use
(see Figure A.2). The mayor’s office randomly selected 14 schools for additional
in-person training sessions on best practices for filter usage.

Students may sit in the same classroom all day or rotate across classrooms for different
subjects, depending on the school. If students rotated, we placed the filters in the
classrooms where their exposure to the filter during core subjects (Math, Spanish,
Science, and Social Sciences) was maximized.15 We provided a total of 421 filters
to 144 schools. On average, the schools that received filters had 123 students each,
corresponding to approximately one filter for every 41 students.

3.3.2 Monitors

A local NGO, Trebola, installed Plantower PMS7003 monitors in treated schools.16 The
monitors were connected to the school’s Wi-Fi when possible (85% of monitors). The rest
collected the readings on a microSD card, which a student from Universidad del Rosario
retrieved every 3 months. However, the data from these cards had to be excluded because
they contained incorrect dates and times.17 During the installation process, teachers and
students were informed about how the monitors work and provided with a link to access
live and historical data collected by the monitors. They were also provided a pamphlet
with information about the monitors and a QR code to access the data (see Figure A.3).

In each school, one monitor was installed outdoors, typically in the school courtyard,
and two indoors (in Grade 11 classrooms). In schools with air filters, the two monitors
were randomly located in two of the three classrooms with filters. In schools without
filters, the monitors were installed in Grade 11 classrooms that would have received
a filter if the school had been assigned to the treatment group. A total of 426 air
quality monitors were installed in 146 schools.

15When we arrived at the school, we asked if the students rotated classrooms. If possible, we requested
that the schedule be adjusted to select classrooms that devote more hours to core subjects. If we were unable
to obtain the schedule, we installed them in the classrooms where the school coordinator indicated Grade 11
students spent most of their time.

16See https://trebola.org/experiencias/ciencia-ciudadana/ for more information about Trebola and
its work.

17The excluded (microSD) schools are not systematically different from the non-excluded (WiFi) schools.
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3.4 Compliance
Most schools accepted the equipment, so this paper focuses on intent-to-treat effects
throughout. Only five schools in the filters-only group, three in the monitor-only group,
and one in the filters + monitors group declined the equipment.

3.5 Timeline
Filters were installed in all compliant treatment schools by early June 2023, while the
Saber 11 exam took place on August 13, 2023. A quarter of schools assigned to the filter
treatment had a filter by February 23, 50% had one by April 21, 75% by May 11, and
90% by May 23 (see Figure A.4). Therefore, by the 2023 exam date, filters had been in
place for at least 2 months (one during the school year and one during the holidays)
in all schools, and 3 - 6 months in a subset.

The monitors were installed between June and November 2023. Installation was initially
slow due to contracting issues and problems connecting the monitors to the schools’
Wi-Fi. Thus, as of July 13, a month before the test, only two schools allocated to receive
air quality monitors had them installed. By August 2, 25% of treatment schools had
monitors, 50% by August 14, 75% by September 1, and 100% by the end of November
(see Figure A.5). Thus, students were barely exposed to the monitors in 2023 but
were fully exposed in 2024. This timeline alters the empirical strategy for analyzing
student outcomes in 2023 (see Section 3.7). Figure A.6 shows the analyzed sample and
the distribution of filter and monitor assignments over time.

3.6 Data

3.6.1 Student learning

ICFES provides anonymized Saber 11 aggregate and subject-wise test scores for each
student, along with school and socio-demographic information, such as socio-economic
strata, employment status, access to a computer or internet at home, and parents’
education levels.18 The exam is administered in centralized locations (e.g., local
universities), allowing us to capture the effects of filter exposure during instruction,
rather than any benefits from cleaner air on the test day.

18In Colombia, households are classified into six socioeconomic strata (estratos) based on their location.
This classification, established by Law 142 of 1994, is used to allocate utility subsidies and cross-subsidies.
Households in lower strata (1, 2, and 3) receive subsidized utility rates, while those in higher strata (5 and 6)
pay surcharges to fund these subsidies. Stratum 4 is considered neutral, paying cost-reflective rates. While
the system has been criticized for inefficiencies and potential distortions in targeting, it is widely used as a
proxy for socioeconomic status.
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3.6.2 Air quality and air filter usage

Monitors register air quality readings of PM2.5 every 15 minutes. Data from July to
December 2024 is included in the analysis. In addition to our pollution monitors,
we use hourly data on various pollution measures (PM2.5, PM10, NO2, CO, and O3)
obtained from the publicly available SISAIRE databases, which gather air quality data
from 22 monitoring stations across Bogotá (see Figure 2). A simple interpolation
(based on the quadratic distance from the monitoring station) is used to calculate
hourly pollution measurements for each school.

City pollution monitoring station sensors provide more accurate readings than the
Plantower PMS7003 monitors installed in schools, but require interpolation to estimate
pollution near each school (and do not provide indoor air quality measures). Readings
from SISAIRE and school monitors are tightly correlated (see Figure A.7). School outdoor
monitors consistently report lower pollution levels than city sensors, likely due to their
placement in courtyards shielded from direct traffic exposure.

3.6.3 School and classrooms survey

Classroom-level data were collected during installation of air quality monitors or
filters, including room size, number of windows, whether windows could open/close,
subjects taught, and class frequency. In the treatment group, 66% of classrooms had
vents around windows, allowing uncontrolled outdoor airflow that may reduce filter
effectiveness (see Figure A.8). In 77% of treatment schools, Grade 11 students rotated
classrooms, spending only part of the day in treated rooms.

3.7 Empirical strategy

3.7.1 Main estimation

The intent-to-treat effects of the three treatments relative to the control group are estimated
using ordinary least squares. The main estimates rely on an ANCOVA-style specification
that interacts baseline measures of the outcome (demeaned) with treatment indicators, the
most efficient estimator in this context (J. Roth & Sant’Anna, 2023).

Specifically, the following equation is estimated:

Yisl = βFFilters + βM Monitors + βBBoths +

α1Ys,−1 + α2Ys,−1 × Filters + α3Ys,−1 × Monitors +

α4Ys,−1 × Boths + γl + ϵisl, (1)
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where Yisl is the standardized test score of student i, graduating from school s located in
locality l, Filters(= 1) indicates that school s received only filters, Monitors(= 1) that
school s received only monitors, and Boths(= 1) that it received both. Ys,−1 are the
demeaned average lagged scores of the school, and γl are dummies for localities, the unit of
stratification. Standard errors are clustered at the school level (the unit of randomization).19

Variations of these models are estimated by adding student controls (gender, age,
parental education, and socio-economic strata of their household) and other school
controls (pollution measured by the SISAIRE network). Coefficients of interest are
βF, βM, and βB, which estimate the effect of supplying filters, monitors, and both
respectively.20 Pooling filter vs non-filter schools.

3.7.2 Saber 2023

To analyze the 2023 scores, the analysis pools “monitor only” schools with controls and
“monitor + filter” schools with “filter only”, since most monitors were installed after the
2023 exam. The following equation is estimated:

Yisl = βFFilters + α1Ys,−1 + α2Yl,−1 × Filters + γl + ϵisl, (2)

where all variables are defined as in equation (1).21 In 2024, we find no effects of
air quality monitors on student outcomes (i.e., if knowing the pollution concentration
in the classrooms leads teachers or students to take additional measures to reduce
pollution, such as keeping doors or windows closed), and so keep the main specification
the same (i.e., pooling schools with filters and comparing them to all schools without
filters, regardless of whether they have monitors). However, we also show results
with the effects for the three original treatment groups in the Appendix. Overall,
our results are quantitative and qualitatively similar.

3.7.3 Effect of air quality on test scores

As continuous monitoring of filter usage is not possible, the difference between indoor and
outdoor air quality readings at schools with and without filters serves as a proxy for the
actual use of filters. Restricting the sample to schools with air quality monitors, the analysis

19As J. Roth and Sant’Anna (2023) highlight, interacting the demeaned lagged scores with the treatment
dummies is more efficient than simply controlling for the lagged scores (see Lin (2013)) as McKenzie (2012)
proposed in the presence of heterogeneous treatment effects.

20There is no pre-treatment individual student performance data.
21The “controls + monitor only” and “filter + both” groups are generally balanced (see Tables A.6 and A.7).
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estimates the effect of filter installation on indoor pollution by comparing schools with both
filters and monitors to those with only monitors, using the following equation:

Pslt = λFFilters + α2Po
slt + γl + γt + ϵslt, (3)

where Pslt is the air quality (measured by PM2.5) inside school s in locality l at time t.
Filters(= 1) indicates whether school s was assigned to receive the filters (in addition to
the monitors). Po

slt denotes outdoor pollution near the school, measured by the installed
monitors and the city sensors. γl and γt are locality and time (e.g., hour and day of
the week) fixed effects. Standard errors are clustered at the school level (the unit of
randomization). The coefficient of interest is λF, which measures the effect of assigning
a school to receive filters and monitors (vis-á-vis receiving only monitors).

The effect of air pollution on student outcomes is estimated using two-stage least squares,
where air pollution is instrumented by the random assignment of filters. The sample is
restricted to schools that received air quality monitors. The first stage is:

Pslt = λ1Filters + θ1Po
slt + γl + γt + ϵslt (4)

And the second stage is:

Yisl = β0 + βPM2.5 P̂slt + α1Ys,−1 + α2Ys,−1 × Filters + γl + ϵisl (5)

The coefficient of interest is βPM2.5 , which measures the effect of air quality (PM2.5)
on student outcomes. Under the assumption that filters affected test scores only
through particulate matter, this approach estimates the impact of particulate matter
pollution on learning. If filters also raise test scores by reducing infection rates
of respiratory diseases, this could be considered an upper bound of the effect of
particulate matter pollution on learning.

4 Results

4.1 Test scores
Students exposed to the filters for 3-4 months before the Saber 11 exam scored .03σ

(p-value 0.03) higher in 2023, as measured by the global score. The improvement
primarily comes from scores in math, Spanish, and social sciences, with increments of
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.04σ (p-value 0.02), .03σ (p-value 0.04), and .03σ (p-value 0.02), respectively. These results
are robust to the inclusion of pollution measures and student demographic controls
(age, gender, parental education, and socioeconomic strata).

There is no heterogeneity in treatment effects by school characteristics (historical
performance in the Saber test and pollution levels) or student characteristics (sex, age, and
socio-economic strata) (see Table A.9). There are no heterogeneous effects by classroom
features such as size, number of windows, and vents. (See Table A.10). Treatment effects
are also estimated using unconditional quantile regressions (Firpo, Fortin, & Lemieux,
2009) with the RIF package in Stata (Rios-Avila, 2020). Positive effects appear across
the test score distribution, with minimal heterogeneity A.9).
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Table 2: Effect of filters on test scores

Dep. var. Math Spanish Science Social English Global
Sciences

(1) (2) (3) (4) (5) (6)

Panel A: Lagged scores
Treatment (filters) 0.040** 0.030** 0.020 0.029** 0.019 0.033**

(0.0175) (0.0143) (0.0155) (0.0130) (0.0178) (0.0154)
N. of obs. 42,389 42,389 42,389 42,389 42,381 42,389
N. Schools 346 346 346 346 346 346
R2 0.076 0.064 0.073 0.058 0.082 0.087

Panel B: Lagged scores + pollution
Treatment (filters) 0.038** 0.027* 0.013 0.024* 0.020 0.029*

(0.0180) (0.0147) (0.0153) (0.0133) (0.0189) (0.0159)
N. of obs. 42,389 42,389 42,389 42,389 42,381 42,389
N. Schools 346 346 346 346 346 346
R2 0.076 0.064 0.074 0.058 0.082 0.087

Panel C: All controls
Treatment (filters) 0.030* 0.023 0.0061 0.019 0.015 0.023

(0.0173) (0.0140) (0.0151) (0.0133) (0.0179) (0.0153)
N. of obs. 42,389 42,389 42,389 42,389 42,381 42,389
N. Schools 346 346 346 346 346 346
R2 0.17 0.12 0.15 0.10 0.14 0.17

Notes: All regressions consider the randomization design (i.e., include strata fixed effects). Panel
A controls for average school-level lagged scores (we do not have individual student-lagged
scores). Panel B also controls for the average pollution levels of PM2.5, PM10, NO2, CO, and O3
during school hours (7 am–4 pm) in the 270 days (roughly the length of the school year) and
90 days (roughly the length of exposure to the filters) preceding the exam. Panel C controls for
lagged scores, pollution levels, age, sex, mother’s level of education, and socio-economic strata.
Standard errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

When estimating treatment effects using the original pre-specified arms, global
test scores increase by .04σ (p-value 0.09) for schools that received filters only and
by .03σ (p-value 0.08) for schools that received filters and monitors. No effect
on test scores is found in schools that received monitors only (see Table A.8), as
expected given the delayed installation.

In contrast, we find no effects of the filters (or the monitors) on test scores in 2024 (see Table
B.1).
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4.2 Air quality
To assess the impacts of the filters on indoor air pollution, the analysis is restricted to
schools with monitors (those in the monitor-only and monitor + filter groups). The gap
between indoor and outdoor pollution is typically negative, given that outdoor pollution
tends to be higher. Schools with filters show a consistently wider indoor-outdoor gap
than those with only monitors (Figure 3b), with this difference increasing over time 3a).22

However, due to an internet outage in the schools, we do not have pollution measures
in the weeks leading to the 2024 exam (see Figure B.2).

Figure 3: Difference between indoor and outdoor readings in schools with and without
filters

(a) Differences by weeks
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(b) Differences by time of the day
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Notes: These figures display the average difference between indoor and outdoor readings in each school, depending on whether they

have filters. Figure 3a averages the data across weeks, while Figure 3b averages the data across hours of the day.

Filters reduce indoor PM2.5 by .47 µg/m3 (p-value 0.082) during school hours in 2023 (see
Table 3) and by .66 µg/m3 (p-value 0.066) in 2024 (see Table B.2).23 The reduction including
all hours and weekends is similar at .54 µg/m3 (p-value 0.02) in 2023 and .8 µg/m3 (p-value
0.02) in 2024, which may be driven by schools not shutting down the filters when students
are not in the classroom.24 Teachers and students were told it was particularly important
to turn the filters on whenever pollution was above the WHO’s recommended threshold of

22The confidence intervals vary by week since some schools turn off their electricity during school holidays,
which shuts down the monitors. Figure A.10 displays the evolution of the readings over time. Table A.11
reports no differential attrition across treatment groups in the pollution monitor data. However, schools with
filters and monitors are slightly more likely to have missing data from their outdoor monitors compared to
those with only monitors.

23Since the standard deviation of indoors PM2.5 is 9.2 µg/m3, the treatment effect over school hours is
equivalent to -.05σ.

24Some teachers mentioned they leave the filters on, regardless of whether there is a class, pollution is high,
or it is the weekend.
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5 µg/m3 for PM2.5 (World Health Organization, 2021). When outdoor pollution is above
the WHO threshold, filters reduce indoor pollution by -1.2 µg/m3 (p-value 0.00) in 2023
and -1.2 µg/m3 (p-value 0.01) in 2024, suggesting they are effective when pollution is high
(which could be driven by teachers turning the filters on when pollution was high, such
as at the beginning of 2024 due to fires in nearby regions). As expected, filters have no
effect on outdoor pollution (see Table A.12).

Table 3: Effect of filters on students’ exposure to PM2.5

Dep. var. PM2.5 Indoor pollution (µg/m3)
(1) (2) (3) (4) (5)

Filter and Monitor -.47∗ -.53∗∗ -.54∗∗ -.47∗ -1.2∗∗∗

(.24) (.24) (.23) (.27) (.42)
Control mean 9.5 9.5 9.5 11 15
N. of obs. 1,405,455 1,405,455 1,405,447 410,059 205,102

Locality FE X X
Hour FE X
Date FE X
Hour × Date FE X
Locality × Date × Hour FE X X X
Hours All All All 7am–4pm 7am–4pm
Days All All All Mon–Fri Mon–Fri
Outdoor pollution All All All All > 5

Notes: The outcome in all regressions is the indoor readings of PM2.5. All regressions control for outdoor
readings of PM2.5 (demeaned), both as measured by the monitors we installed in schools and the city
monitors and their interaction with the treatment dummy (following J. Roth and Sant’Anna (2023); Lin
(2013)). All regressions consider the randomization design (i.e., include strata fixed effects). Standard
errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

There is no heterogeneity in pollution reduction by outdoor pollution levels as measured
by outdoor monitors and the city’s monitoring systems. Results are similar whether
outdoor pollution is measured using outdoor monitors installed for the study or the city’s
monitoring systems (see Table A.13 and Figures A.12, A.11, and A.13).

4.3 Effect of air quality on test scores
The effect of indoor PM2.5 pollution on test scores is estimated using the experimental
assignment of filters as an instrument for PM2.5 levels. Three caveats apply: First, for 2023,
PM2.5, which is used to proxy filter usage, is only available for dates after the Saber 11 exam.
Pre-exam usage is assumed to be similar to post-exam usage. Second, the instrumental
variable approach assumes filters only affect scores via PM2.5 (the exclusion restriction),
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but filters likely reduce exposure to all particulate matter (including PM10 and PM0.1), so
this should be interpreted as an effect of reductions in all types of particulates, not PM2.5

specifically. Finally, filters likely reduce the risk of respiratory infections ((Hammond et
al., 2021; Curtius et al., 2021; Burgmann & Janoske, 2021)). Thus, the estimate may be an
upper bound of the effect of particulate matter on learning.

The sample is restricted to 114 schools that have both Saber 11 scores and monitors (58 in
the filter and monitor group and 56 in the monitor-only group). In 2023, in these schools,
filters reduced indoor PM2.5 by .78 µg/m3 (p-value 0.02) from a base of 11.2 (Panel A, Table
4), indicative of an .089σ (p-value 0.03) increase in test scores (Panel C, Table 4). In 2024,
filters reduced indoor PM2.5 by .96 µg/m3 (p-value 0.04) from a base of 17.2 (Panel A, Table
B.3), indicative of an .0051σ (p-value 0.87) increase in test scores (Panel C, Table B.3).

Differences from sections 4.1–4.2 arise due to sample variation, the comparison between
the filter + monitor and monitor-only groups, and the inclusion of outdoor pollution
controls. The Wald estimator from the full sample in 2023 suggests a 1 µg/m3 increase
in indoor PM2.5 reduces test scores by ∼0.045σ.

20



Table 4: Effect on 2023 Saber tests

(1) (2) (3) (4) (5) (6)

Panel A: First Stage
Dep. var. PM2.5

Treatment (filters) -0.78**
(0.324)

N. of obs. 12,950
Only monitors mean 11.2
N. Schools 114
R2 0.45

Panel B: Reduced Form
Dep. var. Math Spanish Science Social English Global

Sciences

Treatment (filters) 0.061** 0.073*** 0.046* 0.070*** 0.038 0.070***
(0.0263) (0.0251) (0.0234) (0.0256) (0.0264) (0.0249)

N. of obs. 12,950 12,950 12,950 12,950 12,948 12,950
N. Schools 114 114 114 114 114 114
R2 0.080 0.064 0.079 0.060 0.074 0.089

Panel C: IV Estimates
Dep. var. Math Spanish Science Social English Global

Sciences

Average PM 2.5 (indoors) -0.079* -0.094** -0.059** -0.090** -0.048 -0.089**
(0.0425) (0.0474) (0.0299) (0.0405) (0.0365) (0.0414)

N. of obs. 12,950 12,950 12,950 12,950 12,948 12,950
N. Schools 114 114 114 114 114 114
R2 0.077 0.056 0.078 0.055 0.071 0.084

Notes: All regressions consider the randomization design (i.e., include strata fixed effects). Standard errors,
clustered at the school level, are in parentheses. The p-value of jothe int F-test for the first stage is 5.769. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

4.4 Cost effectiveness

4.4.1 Methodology

Next, we assess whether scaling up air filters in schools is worthwhile under two
scenarios of filter effectiveness: (1) assuming the 2023 effect applies in all non-pandemic
years, and (2) assuming the 2023 effect applies in half of the non-pandemic years
(since we do not find effects in 2024). This analysis evaluates the policy value of
scaling up air filters in schools using two complementary approaches. First, from a
cost-effectiveness perspective, by comparing the learning gains per 100 USD to other
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education interventions. Second, by directly comparing monetary benefits and costs.
Table 5 shows the key parameters used in the analysis.

4.4.2 Costs

Panel A presents the costs. One filter costs 288 USD, which includes the HEPA filter
pad, import fees, transportation, and installation (Table 5, row 1). According to the
manufacturer, they last at least 8 years — only 1 out of 421 broke in the first year of
the experiment (Table 5, row 2). The yearly replacement HEPA filter pad costs 54 USD
(Table 5, row 3), and is needed for every year, excluding the year of filter purchase.25

The annual electricity cost per filter is $11, assuming 8 hours of usage per day, 20 days
per month, over 9 months of the academic year (Table 5, row 4). One filter serves 41
students (Table 5, row 5). A discount rate of 3% is used, based on the parametrization of
Christiano, Eichenbaum, and Evans (2005) and López, Prada, and Rodrı́guez N. (2008)
(Table 5, row 6). The annual per-student net present value of installing and maintaining
one filter throughout its minimum expected lifespan is $2.15 (5, row 6).

4.4.3 Cost-Effectiveness in Non-Pandemic Years

Aiming to model filter effect variation under aggregate shocks, this section presents the
analysis for two scenarios: one in which filters deliver the 2023 effect in all non-pandemic
years (Table 5, column 1; hereafter, the all-years scenario), and another in which they do
so in only half of those years (Table 5, column 2; hereafter, the half-years scenario). In the
all-years scenario, air filters improve test scores by .03σ (see Table 2, column 6 and Table 5,
row 8), which is equivalent to a 0.038 LAYS gain per student year (Table 5, row 9), and an
increase of 1.75 LAYS per 100 USD (Table 5, row 10); in the half-years scenario, the average
test score gain is reduced to .015σ (Table 5, row 8), corresponding to 0.019 LAYS per student
year (Table 5, row 9), and 0.87 LAYS per 100 USD invested (Table 5, row 10).

4.4.4 Cost-Effectiveness in Pandemic Years

Pandemic-related learning losses in Latin America and the Caribbean resulted in an average
loss of 1.8 LAYS (Table 5, row 11) (Azevedo et al., 2022). The annual probability of a
pandemic half as intense as COVID-19 is 1.54% (Based on Marani et al. (2021, 2023);
Glennerster et al. (2023), Table 5, row 12). Thus, the annual expected pandemic LAYS
loss per student year due to school closures is 0.028 (Table 5, row 13). Assuming a 25%
probability that filters avert school closures in a pandemic, in a pandemic year, filters in
the all-years scenario yield an increase of 2.07 LAYS per 100 USD (Table 5, row 14). In the
half-years scenario, the estimated gain falls to 1.20 LAYS per 100 USD (Table 5, row 14).

25The pads need to be replaced roughly every 9 months, which matches the length of the academic year.
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4.4.5 Cost-Effectiveness in Non-Pandemic and Pandemic Years in Expectation

When accounting for benefits from non-pandemic learning gains and averted pandemic
school closures, filters yield an expected return of 1.76 LAYS per 100 USD per student-year
under the all-years scenario (Table 5, row 15). This places them above the average
cost-effectiveness of educational interventions classified as “good buys” by the Global
Education Evidence Advisory Panel (GEEAP) Report, 2023 (Angrist et al., 2025; GEEAP,
2023). However, even assuming a high probability that filters avert school closures during
pandemics, the LAYS per 100 USD remains below the threshold for the most highly
cost-effective interventions or “great buys”. Under the half-years scenario, the expected
LAYS per 100 USD falls to 0.88 (Table 5, row 15) — still above the median for “good
buys,” but considerably lower, and less clearly favorable by comparison.

4.4.6 Benefit-Cost Ratio in Non-Pandemic Scenario

An alternative method for evaluating whether scaling up air filters in schools is worthwhile
is to compare the dollar figures for benefits and costs. When calculating benefits from
learning gains in non-pandemic years, the net present value of the estimated wage
increment is computed by leveraging the correlation between an increase in Saber 11
scores and earnings, as estimated using a Mincerean equation by McLean et al. (2017) for
college graduates. Bogotá’s average annual wage for a population comparable to the one
in this study is approximately 5,251 USD (Table 5, row 17). The share of the population
with tertiary education attainment is 28% (OECD (2023); Table 5, row 18). According to
2023 Saber 11 data, a one-decile increase in test scores requires a 0.39 standard deviation
gain, corresponding to a 3.3% rise in daily income (McLean et al. (2017), Table 7, Column
2). Assuming that the wage increase is linear for smaller test score gains, air filters increase
lifetime earnings by 0.26% for each student served who attends tertiary education under
the full-year scenario (Table 5, row 19). Under the half-years scenario, the corresponding
increase in lifetime earnings is 0.13% (Table 5, row 19). We conservatively assume zero
return for students served who do not pursue tertiary education. This yields a lifetime
wage increment ranging from 43.10 USD to 86.19 USD per student-year of filter use (Table
5, Row 20), resulting in a Benefit-Cost Ratio ranging from 20.08 to 40.16 (Table 5, Row 21).

Table 5 also determines the fraction of the test score-wage relationship that must be causal
to justify the investment, assuming no pandemic effect. If the 2023 effect holds in all
non-pandemic years, even if only 2.49% of the correlation between test scores and wages
in Colombia is causal, these gains would still be sufficient to cover the cost of filters; under
the half-years scenario, the break even threshold rises to 5% (Table 5, row 22).
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4.4.7 Benefit-Cost Ratio in Pandemic Scenario

Filters may also provide net benefits by averting school closures during pandemics,
thereby preventing learning losses and corresponding wage losses. The effect of lost
learning from pandemics is estimated based on (Azevedo et al., 2022), who assumes
that the Psacharopoulos-style Mincerian return to education reflects only human capital,
excluding signaling or rationing effects related to access to high-return tertiary education.
This differs from the non-pandemic analysis, which allows for the possibility that only
a small share of the wage effect of test scores is due to human capital. Based on this
approach, the net present value of earnings lost due to COVID-19 school closures is
$2,014 per student-year (Azevedo et al. (2022) Table D7, Intermediate scenario for LAC,
and Table 5, row 23). The corresponding annual expected pandemic earnings loss per
student-year is $31.08 (Table 5, row 24). Therefore, filters are cost-effective if they reduce
the probability of pandemic school closures by at least 7% (Table 5, row 25)

4.4.8 Benefit-Cost Ratio and Policymakers’ Optimal Decisions

The policymaker’s optimal decision depends on beliefs about the extent to which test scores
reflect human capital, signaling, or access to tertiary education, and how these mechanisms
influence expected wage returns. Expanding air filter installation is optimal in this setting
if at least 5% of the test score-wage correlation reflects human capital accumulation, if
filters prevent school closures with at least 7% probability during a future pandemic,
or for any linear combination of these effects.

Table 5: Cost-Effectiveness and Benefit-Cost Ratio analysis under various assumptions

Filter effectiveness scenarios

2023 effect in
all

non-pandemic
years

2023 effect in
half of

non-pandemic
years

(1) (2)
Row # Parameters Estimates Source

A. Costs
1 Filter cost. $288 Section 3.3.1.

2 Years before filter replacement. 8
The manufacturer suggests filters last a
minimum of 8 years.

3
Filter pad cost (annual, excluding the first
year).

$54 Section 3.3.1.

4 Electricity cost (annual, per filter).a $11
Assumes 8 hours of usage per day, 20
days per month, over 9 months of
schooling per year.

5 Students served per filter. 41 Section 3.3.1.

6 Discount rate. 3%
(Christiano et al., 2005; Lopez & Prada,
2009).

7 Cost (per student year).b $2.15
(NPV of Row(1, 3, 4) over Row(2)
years)/(Row (2) * Row (5)).

B. Cost-effectiveness in LAYS per $100
Non-Pandemic Scenario
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8
Average test scores increase (in SD) per
student year.

0.03 0.015 (Table 2, Panel A)

9 LAYS gain per student year.c 0.038 0.019 Row (8) / 0.8.
10 LAYS per 100 USD per student year. 1.75 0.87 Row (9) * 100 / Row (7)

Pandemic Scenario

11
LAYS loss due to Covid-19 school
closures (per student year).

1.8
Based on Azevedo et al. (2022). Table
D4 Intermediate scenario for LAC.

12
Annual probability of pandemic half as
intense as COVID-19.

1.54%
Based on Marani et al. (2021, revised
2023) and Glennerster et al. (2023).

13
Annual expected pandemic LAYS loss
due to school closures (per student year).

0.028 Row (11) * Row (12).

14

LAYS per 100 USD per student year
assuming a 25% probability that filters
avert school closure conditional on
pandemics.

2.07 1.20
(Row (9) + (0.25 * Row (13))) * 100 / Row
(7)

15
Expected LAYS per 100 USD per
student year.

1.76 0.88
(Row (10) * (1-Row(12))
+ Row(14)*Row(12))

16
Cost-effectiveness characterization
according to the GEEAP smart buys
report.d

Good Buy Good Buy

C. Benefit-Cost Ratio
Non-Pandemic Scenario

17 Average annual wage (Bogotá). $5,251.33 Colombian Household Survey (GEIH).

18
Share of population with tertiary
education attainment.

28% OECD (2023)

19
Percentage increase in yearly earnings
associated with 0.03 SD increase in
Saber 11 score.e

0.26% 0.13%
Based on Bentley MacLeod et al. (2017)
(Table 7, Column 2).

20
Estimated wage increment per student
year. f $86.19 $43.10

NPV of Row (17) * Row (18) * Row (19)
over 37 years.

21
Benefit-Cost Ratio (based on wage
increment only).

40.16 20.08 Row (20) / Row (7).

22

Fraction of test score-wage
relationship representing true
increase in human capital for
cost-effectiveness (no pandemic
effect)

2.49% 4.98% 1 / (Row (22)).

Pandemic Scenario

23
NPV of earnings loss due to COVID-19
school closures (per student year).g

$2,014
Based on Azevedo et al. (2022). Table
D7 Intermediate scenario for LAC.

24
Annual Expected pandemic earnings loss
due to school closures (per student
year).

$31.02 Row (12) * Row (23).

25
Cutoff probability that filters avert
school closure for E[benefits] >Costs
(no additional learning gains)

6.91% Row (7) / Row (24).
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Notes: This table reports the LAYS generated per 100 USD in expenditure and benefit-cost ratio of air filter
investments, conditional on various assumptions. Each includes benefits from wage increases due to learning gains in
non-pandemic years and from averted school closures in pandemic years. Column (1) reports calculations assuming
the 2023 impact of filters on test scores in non-pandemic years, while column (2) reports calculations assuming the
2023 impact of filters on test scores in half of non-pandemic years and no impact in the other half of non-pandemic
years. Panel A presents costs. Panel B reports LAYS gained per $100 in expenditure, including human capital benefits
from learning gains in non-pandemic years and benefits from averting school closures in pandemic years. Panel C
compares benefits and costs in non-pandemic years, while Panel D focuses on pandemic years. When accounting for
benefits from non-pandemic learning gains and averted pandemic school closures, if filters perform as observed in
the current study in all non-pandemic years, they would be comparable to other “effective but relatively expensive”
interventions listed in the Global Education Evidence Advisory Panel Report, 2023. Even assuming the maximum
probability that filters avert school closures during pandemics, the LAYS per $100 remains below the threshold for
cost-effective interventions or “good buys” (see footnote d for more detail on GEEAP 2023). However, benefits from
filters would exceed costs if 2.5% of the test score-wage correlation reflects human capital accumulation, if filters
prevent school closures with 7% probability during a future pandemic, or for any linear combination of these effects.
a Electricity consumption is based on smart plug measurements and manufacturer specifications. The cost per kWh
(COP 806.57) is taken from Bogotá Electric Power Company (ENEL) tariff schedule for non-residential, low-voltage
Level 1 customers-applicable to public schools in Bogotá.
b The net present value of installing and maintaining a single filter includes a one-time purchase cost (Row 1), an
annual electricity cost (Row 4), and an annual maintenance cost (excluding the first year) (Row 3) over the filter’s
lifespan (Row 2).
c Learning-Adjusted Years of Schooling is computed following Angrist et al. (2025). The estimated yearly learning
gain for Singapore (0.80σ) is used as a high-performance benchmark to adjust for education quality in Colombia.
d GEEAP’s Smart Buys report ranks education interventions in low- and middle-income countries into five categories:
great buys, good buys, promising but limited evidence, effective but relatively expensive, and bad buys. For good
buys, the average number of LAYS per $100 is approximately 1.3, with a median of 0.6. In contrast, for great buys,
the average is about 27 LAYS per $100, with a median of 3.5.
e From 2023 Saber 11 data, a one-decile increase in test scores requires a 0.39 standard deviation gain and corresponds
to a 3.3% rise in daily income (Bentley MacLeod et al., 2017: Table 7, Column 2). Bentley MacLeod et al. (2017) attempt
to isolate the return to test scores from the return to tertiary initiation or reputation, estimating the parameters only
for college graduates and excluding effects from tertiary education rationing. The calculated annual wage gain for
students exposed to filters assumes similar wage increases for smaller learning gains.
f The net present value of the earnings increase resulting from a 0.03 SD increase in the Saber 11 score for college
graduates is calculated directly from Row (19) parameter and assumes that individuals enter the workforce at an
average age of 26 and retire at 62, in accordance with Colombian law. Since the correlation between test-score and
wages is computed only for college graduates, we conservatively assume zero return for students who don’t pursue
tertiary education.
g The net present value of earnings loss, due to Covid-19 school closures (per student year) based on Azevedo 2022
Table D7 Intermediate scenario for LAC.

5 Conclusions and discussion
This paper finds evidence that installing high-efficiency particulate (HEPA) air filters
in classrooms in Bogotá, Colombia, increased learning levels even after a short period
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of exposure. In schools randomly assigned to receive filters 3 - 4 months before a
high-stakes exam, conducted outside school premises, students scored .03 standard
deviations higher. Data from air pollution monitors suggests that students in schools
with filters were exposed to lower levels of PM2.5 (a reduction of .47 µg/m3 from a base
of 11.00 µg/m3). This paper also suggests that, when accounting for benefits from both
non-pandemic learning gains and averted pandemic school closures, air filters would
be comparable to other cost-effective educational interventions.

These results are specific to a particular context, and one cannot rule out sampling
variation; however, at a minimum, they suggest that further exploration of the learning
impact of filters would be warranted. The small absolute impacts highlight the advantages
of conducting large-scale studies in contexts with good administrative data. Future research
could examine more advanced filter systems, could identify and measure impacts on
subpopulations at particular risk, such as students with asthma, and could directly measure
impacts on infectious disease transmission within classrooms, which could shed light on
mechanisms, and thus on whether air filters might deliver learning benefits in settings
with much lower air pollution. Ideally, this research would be conducted in a range of
different environments with varying pollution levels to evaluate the differences in impact.
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Abdulkadiroğlu, A., Pathak, P. A., & Walters, C. R. (2018, January). Free to choose:
Can school choice reduce student achievement? American Economic Journal: Applied
Economics, 10(1), 175-206.

Aguilar-Gomez, S., Dwyer, H., Graff Zivin, J., & Neidell, M. (2022). This is air: The
“nonhealth”’ effects of air pollution [Journal Article]. Annual Review of Resource
Economics, 14(Volume 14, 2022), 403-425. Retrieved from https://www.annualreviews

.org/content/journals/10.1146/annurev-resource-111820-021816 doi: https://
doi.org/10.1146/annurev-resource-111820-021816

Alasino, E., Ramı́rez, M. J., Romero, M., Schady, N., & Uribe, D. (2024). Learning losses
during the COVID-19 pandemic: Evidence from Mexico. Economics of Education
Review, 98, 102492.

Angrist, N., Evans, D. K., Filmer, D., Glennerster, R., Rogers, H., & Sabarwal, S. (2025).
How to improve education outcomes most efficiently? a review of the evidence
using a unified metric. Journal of Development Economics, 172, 103382. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0304387824001317 doi:
https://doi.org/10.1016/j.jdeveco.2024.103382
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Künn, S., Palacios, J., & Pestel, N. (2023). Indoor air quality and strategic decision making.

Management Science, 69(9), 5354–5377.
Lichand, G., Doria, C. A., Leal-Neto, O., & Fernandes, J. P. C. (2022). The impacts of

remote learning in secondary education during the pandemic in Brazil. Nature Human
Behaviour, 1–8.

Lin, W. (2013). Agnostic notes on regression adjustments to experimental data:
Reexamining Freedman’s critique. The Annals of Applied Statistics, 7(1), 295 – 318.
Retrieved from https://doi.org/10.1214/12-AOAS583 doi: 10.1214/12-AOAS583

Lindsley, W. G. (2021). Efficacy of portable air cleaners and masking for reducing indoor
exposure to simulated exhaled SARS-CoV-2 aerosols - United States, 2021. MMWR.
Morbidity and mortality weekly report, 70.

Liu, J., Lee, M., & Gershenson, S. (2021). The short-and long-run impacts of secondary
school absences. Journal of Public Economics, 199, 104441.
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A decade of air quality in Bogotá: A descriptive analysis. Frontiers in Environmental
Science, 8. doi: 10.3389/fenvs.2020.00065

Neuzil, K. M., Hohlbein, C., & Zhu, Y. (2002). Illness among schoolchildren during
influenza season: effect on school absenteeism, parental absenteeism from work,
and secondary illness in families. Archives of pediatrics & adolescent medicine, 156(10),
986–991.

OECD. (2023). Education at a glance 2023: Colombia - country note. Education at a Glance
2023. (Available at https://doi.org/10.1787/d7f76adc-en)

Patrinos, H., Vegas, E., & Carter-Rau, R. (2023, 08). An analysis of COVID-19 student learning
loss. Oxford University Press. Retrieved from https://oxfordre.com/economics/

view/10.1093/acrefore/9780190625979.001.0001/acrefore-9780190625979-e-893

doi: 10.1093/acrefore/9780190625979.013.893
Persico, C. L., & Venator, J. (2019). The effects of local industrial pollution on students

and schools. Journal of Human Resources. Retrieved from https://jhr.uwpress

.org/content/early/2019/08/02/jhr.56.2.0518-9511R2 doi: 10.3368/jhr.56.2.0518
-9511R2

Rios-Avila, F. (2020). Recentered influence functions (RIFs) in stata: RIF regression and

31

https://www.sciencedirect.com/science/article/pii/S030438781200003X
https://www.sciencedirect.com/science/article/pii/S2772655X24000016
https://www.sciencedirect.com/science/article/pii/S2772655X24000016
http://www.nber.org/papers/w33510
https://doi.org/10.1787/d7f76adc-en
https://oxfordre.com/economics/view/10.1093/acrefore/9780190625979.001.0001/acrefore-9780190625979-e-893
https://oxfordre.com/economics/view/10.1093/acrefore/9780190625979.001.0001/acrefore-9780190625979-e-893
https://jhr.uwpress.org/content/early/2019/08/02/jhr.56.2.0518-9511R2
https://jhr.uwpress.org/content/early/2019/08/02/jhr.56.2.0518-9511R2


RIF decomposition. The Stata Journal, 20(1), 51-94. Retrieved from https://doi.org/

10.1177/1536867X20909690 doi: 10.1177/1536867X20909690
Rosenzweig, M. R., & Udry, C. (2020). External validity in a stochastic world: Evidence

from low-income countries. The Review of Economic Studies, 87(1), 343–381.
Roth, J., & Sant’Anna, P. H. C. (2023). Efficient estimation for staggered rollout designs.

Journal of Political Economy Microeconomics, 1(4), 669-709. Retrieved from https://

doi.org/10.1086/726581 doi: 10.1086/726581
Roth, S. (2020). The effect of indoor air pollution on cognitive performance: Evidence from

the UK. Manuscript, London School of Economics https://personal. lse. ac. uk/roths/JMP.
pdf .

Schady, N., Holla, A., Sabarwal, S., Silva, J., & Chang, A. Y. (2023). Collapse and recovery:
How the COVID-19 pandemic eroded human capital and what to do about it. Washington,
DC: World Bank. Retrieved from https://openknowledge.worldbank.org/entities/

publication/94cd910e-033e-42f4-9e8a-92a0bc316bbb (Accessed: 2025-03-11)
Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge.
Simona, S. C., Bartell, S. M., & Vieira, V. M. (2025). Classroom air quality in a

randomized crossover trial with portable HEPA air cleaners. Journal of Exposure
Science & Environmental Epidemiology. Retrieved from https://doi.org/10.1038/

s41370-025-00743-9 doi: 10.1038/s41370-025-00743-9
Singh, A., Romero, M., & Muralidharan, K. (2024). COVID-19 learning loss and recovery.

Journal of Human Resources. Retrieved from https://jhr.uwpress.org/content/

early/2024/04/01/jhr.0723-13025R2 doi: 10.3368/jhr.0723-13025R2
Stafford, T. M. (2015). Indoor air quality and academic performance. Journal of

Environmental Economics and Management, 70, 34-50. Retrieved from https://www

.sciencedirect.com/science/article/pii/S0095069614001016 doi: https://doi

.org/10.1016/j.jeem.2014.11.002
Sylvia, S., Luo, R., Zhang, L., Shi, Y., Medina, A., & Rozelle, S. (2013). Do you get what

you pay for with school-based health programs? evidence from a child nutrition
experiment in rural China. Economics of Education Review, 37, 1–12.

Ueki, H., Ujie, M., Komori, Y., Kato, T., Imai, M., & Kawaoka, Y. (2022). Effectiveness
of HEPA filters at removing infectious SARS-CoV-2 from the air. Msphere, 7(4),
e00086–22.

UNESCO. (2020). Global monitoring of school closures caused by COVID-19. Retrieved from
https://covid19.uis.unesco.org/global-monitoring-school-closures-covid19/

(Accessed: 2024-12-06)
Vargas, S. L., Matiz, M. I., Olano, V. A., Sarmiento-Senior, D., Jaramillo, J. F., Neal, A., . . .

Overgaard, H. J. (2020). Razones de ausentismo en escuelas primarias rurales de dos
municipios colombianos. Revista Salud Bosque(1).

Villalobos, L., & Blackman, A. (2025). Air pollution and education in the global south:
Fine particulates reduce high-stakes test scores in Bogotá. Applied Economics Letters,
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A Additional tables and figures
A.1 Tables

Table A.1: Student-level balance (2022)

Mean/SD for each group Treatment effect (vs control) Comparing treatments

Control Filter Monitor Both F vs C M vs C B vs C F vs M F vs B M vs B
(C) (F) (M) (B) (2)vs(1) (3)vs(1) (4)vs(1) (3)vs(2) (4)vs(2) (4)vs(3)

Global score -0.01 0.04 -0.02 0.00 0.06 -0.04 -0.00 -0.10∗∗ -0.06 0.04
(1.01) (0.99) (1.00) (1.00) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)

[15,323] [9,539] [7,787] [8,386] [24,862] [23,110] [23,709] [17,326] [17,925] [16,173]
Reading score -0.01 0.03 -0.02 0.00 0.04 -0.03 -0.00 -0.08∗ -0.05 0.03

(1.01) (0.99) (1.00) (1.00) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05)
[15,323] [9,539] [7,787] [8,386] [24,862] [23,110] [23,709] [17,326] [17,925] [16,173]

Math score -0.01 0.05 -0.05 0.00 0.07 -0.07 0.00 -0.13∗∗∗ -0.06 0.07
(1.01) (1.00) (0.98) (0.99) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05)

[15,323] [9,539] [7,787] [8,386] [24,862] [23,110] [23,709] [17,326] [17,925] [16,173]
SES strata 1 or 2 0.63 0.68 0.60 0.64 0.03 -0.01 0.02 -0.05∗ -0.02 0.03

(0.48) (0.47) (0.49) (0.48) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)
[15,323] [9,539] [7,787] [8,386] [24,862] [23,110] [23,709] [17,326] [17,925] [16,173]

SES strata 3 or 4 0.30 0.27 0.34 0.30 -0.02 0.02 -0.01 0.04 0.02 -0.03
(0.46) (0.44) (0.47) (0.46) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

[15,323] [9,539] [7,787] [8,386] [24,862] [23,110] [23,709] [17,326] [17,925] [16,173]
Female 0.55 0.53 0.56 0.53 -0.03∗ 0.00 -0.02∗ 0.03∗ 0.00 -0.03∗

(0.50) (0.50) (0.50) (0.50) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02)
[15,323] [9,539] [7,787] [8,386] [24,862] [23,110] [23,709] [17,326] [17,925] [16,173]

Age (exam date) 17.62 17.48 17.62 17.58 -0.14∗∗ 0.01 -0.04 0.15∗ 0.10 -0.04
(1.59) (1.30) (1.52) (1.42) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09)

[15,107] [9,438] [7,714] [8,295] [24,545] [22,821] [23,402] [17,152] [17,733] [16,009]
Mother some secondary education 0.48 0.50 0.49 0.49 0.01 0.01 0.01 0.00 0.00 0.00

(0.50) (0.50) (0.50) (0.50) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
[15,323] [9,539] [7,787] [8,386] [24,862] [23,110] [23,709] [17,326] [17,925] [16,173]

Notes: Columns 1–4 show the mean, the standard deviation (in parentheses), and the number of observations (in square brackets) for
each of the experimental groups: Control, Filters (F), Monitors (M), and Both (B). Columns 5–7 report the difference between the three
treatment groups and the control, the standard error of the difference (in parentheses), and the number of observations used for the
estimation (in square brackets). Columns 8–10 show the difference between treatment groups, the standard error of the difference (in
parentheses), and the number of observations used for the estimation (in square brackets). All the differences between groups (Columns
4–10) consider the randomization design (i.e., include strata fixed effects). Standard errors are clustered at the school level. The p-value
from a joint test that all coefficients in Columns 1–4 are zero (from a multinomial logit with the treatment groups on the left-hand side
and all the covariates on the right-hand side) is .126. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.2: School-level balance (2022)

Mean/SD for each group Treatment effect (vs control) Comparing treatments

Control Filter Monitor Both F vs C M vs C B vs C F vs M F vs B M vs B
(C) (F) (M) (B) (2)vs(1) (3)vs(1) (4)vs(1) (3)vs(2) (4)vs(2) (4)vs(3)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PM2.5 17.54 17.56 17.45 17.53 0.02 -0.06 0.05 -0.08 0.03 0.11
(1.95) (2.19) (2.05) (1.77) (0.15) (0.12) (0.11) (0.15) (0.15) (0.12)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

PM10 36.08 35.94 35.37 35.91 -0.10 -0.61∗ -0.01 -0.51 0.09 0.60∗

(5.49) (5.72) (5.81) (5.52) (0.34) (0.32) (0.33) (0.35) (0.36) (0.34)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

O3 26.90 26.41 27.10 26.81 -0.53 0.12 -0.02 0.65 0.51 -0.13
(4.51) (3.93) (3.93) (3.88) (0.36) (0.38) (0.39) (0.40) (0.41) (0.42)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

Without Saber 11 data 0.03 0.01 0.03 0.01 -0.02 -0.00 -0.02 0.01 -0.00 -0.01
(0.17) (0.12) (0.16) (0.12) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

Students (Grade 11) 116.08 127.19 103.83 111.81 12.40 -11.69 -3.09 -24.08∗ -15.49 8.60
(73.32) (90.82) (60.08) (66.06) (11.84) (9.27) (9.53) (12.28) (12.43) (10.14)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

Notes: Columns 1–4 show the mean, the standard deviation (in parentheses), and the number of observations (in square brackets) for
each of the experimental groups: Control, Filters (F), Monitors (M), and Both (B). Columns 5–7 report the difference between the three
treatment groups and the control, the standard error of the difference (in parentheses), and the number of observations used for the
estimation (in square brackets). Columns 8–10 show the difference between treatment groups, the standard error of the difference (in
parentheses), and the number of observations used for the estimation (in square brackets). All the differences between groups (Columns
4–10) consider the randomization design (i.e., include strata fixed effects). Standard errors are clustered at the school level. The p-value
from a joint test that all coefficients in Columns 1–4 are zero (from a multinomial logit with the treatment groups on the left-hand side
and all the covariates on the right-hand side) is .376. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.3: Balance across experimental groups (2023)

Mean/SD for each group p-value
Control Filter Monitor Both (equality)

(1) (2) (3) (4) (5)

Panel A: Student level (2023)
SES strata 1 or 2 0.60 0.63 0.57 0.60 0.432

(0.49) (0.48) (0.50) (0.49)
[16,096] [9,905] [7,801] [8,587]

SES strata 3 or 4 0.30 0.29 0.35 0.31 0.643
(0.46) (0.45) (0.48) (0.46)

[16,096] [9,905] [7,801] [8,587]
Female 0.54 0.52 0.57 0.54 0.033∗∗

(0.50) (0.50) (0.50) (0.50)
[16,096] [9,905] [7,801] [8,587]

Age (exam date) 17.55 17.39 17.48 17.47 0.263
(1.69) (1.28) (1.38) (1.39)

[15,737] [9,782] [7,703] [8,466]
Mother some secondary education 0.48 0.48 0.47 0.49 0.202

(0.50) (0.50) (0.50) (0.50)
[16,096] [9,905] [7,801] [8,587]

Panel B: School level (2023)
PM2.5 15.78 15.68 15.67 15.77 0.569

(2.04) (2.06) (2.09) (2.00)
[132] [75] [75] [75]

PM10 31.80 31.71 31.25 31.76 0.199
(4.87) (5.00) (4.99) (4.96)
[132] [75] [75] [75]

O3 27.16 26.69 27.49 26.93 0.269
(4.73) (4.69) (4.57) (4.72)
[132] [75] [75] [75]

Without Saber 11 data 0.03 0.03 0.04 0.03 0.958
(0.17) (0.16) (0.20) (0.16)
[132] [75] [75] [75]

Students (Grade 11) 121.94 132.07 104.01 114.49 0.111
(79.39) (93.24) (63.59) (69.33)
[132] [75] [75] [75]

Notes: Columns 1-4 show the mean, standard deviation (in parentheses) and the number of
observations (in square brackets) for each of the following groups: Control, schools where
filters were installed, schools where air quality monitors were installed, and schools where
both filters and air quality monitors were installed. Column 5 reports the p-value of whether
the mean is the same across all groups. The equality test considers the randomization design
(i.e., it includes strata fixed effects and clusters standard errors at the school level). All
variables except age, number of students, pollution measures, and test scores are % with
respect to the number of students in Grade 11. The p-value from a joint test that all coefficients
are zero (from a multinomial logit with the treatment groups on the left-hand side and all the
covariates on the right-hand side) is .354 for Panel A and .426 for Panel B. ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001.
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Table A.4: Student-level balance (2023)

Mean/SD for each group Treatment effect (vs control) Comparing treatments

Control Filter Monitor Both F vs C M vs C B vs C F vs M F vs B M vs B
(C) (F) (M) (B) (2)vs(1) (3)vs(1) (4)vs(1) (3)vs(2) (4)vs(2) (4)vs(3)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SES strata 1 or 2 0.60 0.63 0.57 0.60 0.02 -0.02 0.01 -0.04 -0.01 0.03
(0.49) (0.48) (0.50) (0.49) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

[16,096] [9,905] [7,801] [8,587] [26,001] [23,897] [24,683] [17,706] [18,492] [16,388]
SES strata 3 or 4 0.30 0.29 0.35 0.31 -0.01 0.02 -0.01 0.03 0.00 -0.03

(0.46) (0.45) (0.48) (0.46) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)
[16,096] [9,905] [7,801] [8,587] [26,001] [23,897] [24,683] [17,706] [18,492] [16,388]

Female 0.54 0.52 0.57 0.54 -0.02 0.02 -0.01 0.04∗∗∗ 0.01 -0.03∗

(0.50) (0.50) (0.50) (0.50) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02)
[16,096] [9,905] [7,801] [8,587] [26,001] [23,897] [24,683] [17,706] [18,492] [16,388]

Age (exam date) 17.55 17.39 17.48 17.47 -0.15∗ -0.06 -0.07 0.10 0.08 -0.02
(1.69) (1.28) (1.38) (1.39) (0.08) (0.08) (0.08) (0.07) (0.07) (0.08)

[15,737] [9,782] [7,703] [8,466] [25,519] [23,440] [24,203] [17,485] [18,248] [16,169]
Mother some secondary education 0.48 0.48 0.47 0.49 0.01 -0.00 0.02∗ -0.01 0.01 0.02∗

(0.50) (0.50) (0.50) (0.50) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
[16,096] [9,905] [7,801] [8,587] [26,001] [23,897] [24,683] [17,706] [18,492] [16,388]

Notes: Columns 1–4 show the mean, the standard deviation (in parentheses), and the number of observations (in square brackets) for
each of the experimental groups: Control, Filters (F), Monitors (M), and Both (B). Columns 5–7 report the difference between the three
treatment groups and the control, the standard error of the difference (in parentheses), and the number of observations used for the
estimation (in square brackets). Columns 8–10 show the difference between treatment groups, the standard error of the difference (in
parentheses), and the number of observations used for the estimation (in square brackets). All the differences between groups (Columns
4–10) consider the randomization design (i.e., include strata fixed effects). Standard errors are clustered at the school level. The p-value
from a joint test that all coefficients in Columns 1–4 are zero (from a multinomial logit with the treatment groups on the left-hand side
and all the covariates on the right-hand side) is .354. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.5: School-level balance (2023)

Mean/SD for each group Treatment effect (vs control) Comparing treatments

Control Filter Monitor Both F vs C M vs C B vs C F vs M F vs B M vs B
(C) (F) (M) (B) (2)vs(1) (3)vs(1) (4)vs(1) (3)vs(2) (4)vs(2) (4)vs(3)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PM2.5 15.78 15.68 15.67 15.77 -0.09 -0.07 0.05 0.02 0.14 0.12
(2.04) (2.06) (2.09) (2.00) (0.11) (0.10) (0.11) (0.11) (0.12) (0.10)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

PM10 31.80 31.71 31.25 31.76 -0.04 -0.49∗ 0.14 -0.44 0.18 0.62∗

(4.87) (5.00) (4.99) (4.96) (0.30) (0.29) (0.32) (0.30) (0.33) (0.32)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

O3 27.16 26.69 27.49 26.93 -0.50 0.14 -0.16 0.64∗ 0.34 -0.30
(4.73) (4.69) (4.57) (4.72) (0.32) (0.29) (0.34) (0.34) (0.38) (0.36)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

Without Saber 11 data 0.03 0.03 0.04 0.03 -0.00 0.01 -0.00 0.01 0.00 -0.01
(0.17) (0.16) (0.20) (0.16) (0.03) (0.03) (0.02) (0.03) (0.03) (0.03)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

Students (Grade 11) 121.94 132.07 104.01 114.49 11.15 -17.34∗ -6.32 -28.49∗∗ -17.47 11.02
(79.39) (93.24) (63.59) (69.33) (12.38) (9.71) (10.22) (12.59) (12.97) (10.58)
[132] [75] [75] [75] [207] [207] [207] [150] [150] [150]

Notes: Columns 1–4 show the mean, the standard deviation (in parentheses), and the number of observations (in square brackets) for
each of the experimental groups: Control, Filters (F), Monitors (M), and Both (B). Columns 5–7 report the difference between the three
treatment groups and the control, the standard error of the difference (in parentheses), and the number of observations used for the
estimation (in square brackets). Columns 8–10 show the difference between treatment groups, the standard error of the difference (in
parentheses), and the number of observations used for the estimation (in square brackets). All the differences between groups (Columns
4–10) consider the randomization design (i.e., include strata fixed effects). Standard errors are clustered at the school level. The p-value
from a joint test that all coefficients in Columns 1–4 are zero (from a multinomial logit with the treatment groups on the left-hand side
and all the covariates on the right-hand side) is .426. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.6: Balance across experimental groups (2022)

Control Filter
(1) (2)

Panel A: Student level (2022)
SES strata 1 or 2 0.62 0.03∗

(0.48) (0.02)
[23,110] [41,035]

SES strata 3 or 4 0.31 -0.02
(0.46) (0.02)

[23,110] [41,035]
Female 0.55 -0.03∗∗

(0.50) (0.01)
[23,110] [41,035]

Age (exam date) 17.61 -0.09∗

(1.52) (0.05)
[22,819] [40,553]

Mother some secondary education 0.49 0.01
(0.50) (0.01)

[23,110] [41,035]
Global score -0.02 0.05

(1.00) (0.03)
[23,110] [41,035]

Reading score -0.01 0.03
(1.01) (0.03)

[23,110] [41,035]
Math score -0.02 0.06∗

(1.00) (0.03)
[23,110] [41,035]

Panel B: School level (2022)
PM2.5 17.50 0.06

(1.98) (0.09)
[207] [357]

PM10 35.82 0.17
(5.61) (0.25)
[207] [357]

O3 26.97 -0.31
(4.30) (0.28)
[207] [357]

Without Saber 11 data 0.03 -0.02
(0.17) (0.02)
[207] [357]

Students (Grade 11) 111.64 8.88
(68.92) (7.83)
[207] [357]

Notes: Column 1 reports the mean, standard deviation
(in parentheses), and number of observations (in square
brackets) of the control group. Column 2 shows the
difference between the treatment and control groups,
accounting for the randomization design (i.e., it includes
strata fixed effects), the standard errors of the difference
(clustered at the school level, in parentheses), and the
number of observations (in square brackets). The p-value
from a joint test that all coefficients are zero (from a
regression with the treatment dummy on the left-hand side
and all the covariates on the right-hand side) is .094 for Panel
A and .718 for Panel B. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table A.7: Balance across experimental groups (2023)

Control Filter
(1) (2)

Panel A: Student level (2023)
SES strata 1 or 2 0.59 0.02

(0.49) (0.02)
[23,897] [42,389]

SES strata 3 or 4 0.32 -0.01
(0.47) (0.02)

[23,897] [42,389]
Female 0.55 -0.02∗∗

(0.50) (0.01)
[23,897] [42,389]

Age (exam date) 17.52 -0.10∗

(1.59) (0.06)
[23,440] [41,688]

Mother some secondary education 0.47 0.01∗

(0.50) (0.01)
[23,897] [42,389]

Panel B: School level (2023)
PM2.5 15.74 0.00

(2.06) (0.08)
[207] [357]

PM10 31.60 0.22
(4.91) (0.22)
[207] [357]

O3 27.28 -0.38
(4.66) (0.24)
[207] [357]

Without Saber 11 data 0.03 -0.01
(0.18) (0.02)
[207] [357]

Students (Grade 11) 115.44 8.69
(74.40) (8.24)
[207] [357]

Notes: Column 1 reports the mean, standard deviation
(in parentheses), and number of observations (in square
brackets) of the control group. Column 2 shows the
difference between the treatment and control groups,
accounting for the randomization design (i.e., it includes
strata fixed effects), the standard errors of the difference
(clustered at the school level, in parentheses), and the
number of observations (in square brackets). The p-value
from a joint test that all coefficients are zero (from a
regression with the treatment dummy on the left-hand side
and all the covariates on the right-hand side) is .126 for Panel
A and .39 for Panel B. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table A.8: Effect on 2023 Saber tests for all treatment groups

Dep. var. Math Spanish Science Social English Global
Sciences

(1) (2) (3) (4) (5) (6)

Panel A: Lagged scores
Only Filter 0.057** 0.026 0.022 0.029* 0.012 0.037*

(0.025) (0.020) (0.023) (0.017) (0.024) (0.022)
Only Monitor -0.00086 -0.0064 -0.0055 -0.010 -0.022 -0.0081

(0.023) (0.019) (0.020) (0.018) (0.021) (0.020)
Filter and Monitor 0.034 0.036* 0.024 0.027 0.027 0.035*

(0.021) (0.019) (0.019) (0.019) (0.024) (0.020)
N. of obs. 42,389 42,389 42,389 42,389 42,381 42,389
N. Schools 346 346 346 346 346 346
R2 0.077 0.064 0.074 0.058 0.083 0.087

Panel B: Lagged scores + pollution
Only Filter 0.061** 0.028 0.022 0.031* 0.015 0.039*

(0.024) (0.019) (0.022) (0.016) (0.024) (0.021)
Only Monitor 0.0019 -0.00098 -0.0039 -0.0044 -0.025 -0.0043

(0.023) (0.020) (0.020) (0.018) (0.021) (0.020)
Filter and Monitor 0.033 0.036* 0.024 0.027 0.026 0.034*

(0.022) (0.019) (0.019) (0.019) (0.024) (0.020)
N. of obs. 42,389 42,389 42,389 42,389 42,381 42,389
N. Schools 346 346 346 346 346 346
R2 0.078 0.065 0.074 0.058 0.083 0.088

Panel C: All controls
Only Filter 0.040* 0.013 0.0025 0.016 0.0014 0.020

(0.021) (0.017) (0.020) (0.016) (0.021) (0.019)
Only Monitor -0.0054 -0.0084 -0.011 -0.0090 -0.032* -0.012

(0.020) (0.018) (0.018) (0.017) (0.018) (0.017)
Filter and Monitor 0.039** 0.041** 0.029* 0.031* 0.031 0.040**

(0.020) (0.017) (0.017) (0.018) (0.022) (0.018)
N. of obs. 42,389 42,389 42,389 42,389 42,381 42,389
N. Schools 346 346 346 346 346 346
R2 0.16 0.11 0.14 0.095 0.14 0.16

Notes: All regressions consider the randomization design (i.e., include strata fixed effects).
Standard errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A.9: Heterogeneity in treatment effects on the 2023 global score

Covariate High High Female Age Low
performing pollution strata

(1) (2) (3) (4) (5)

Treatment (filters) 0.068* 0.046** 0.026 0.033** 0.017
(0.0383) (0.0203) (0.0196) (0.0140) (0.0240)

Treatment (filters) × Covariate -0.039 -0.021 0.011 -0.023 0.017
(0.0524) (0.0317) (0.0246) (0.0171) (0.0305)

Covariate 0.42*** 0.034 -0.28*** -0.10*** 0.15***
(0.0379) (0.0507) (0.0183) (0.0107) (0.0213)

N. of obs. 42,389 42,389 42,389 42,389 42,389
N. Schools 346 346 346 346 346
R2 0.055 0.087 0.10 0.11 0.092

Notes: The outcome is the global score in all regressions. The covariate in Columns 1 and 2 is defined
at the school level. In Column 1, the covariate is a dummy that equals 1 if the school’s average score
between 2019 and 2022 is above the median average score of schools in the sample. Likewise, in Column
2, the covariate is a dummy that equals one if the average PM2.5 during school hours (8 am to 4 pm)
in the 270 days before the exam is above the median for all schools. In Columns 3–5, the covariates are
defined at the student level. We use sex, age (demeaned, so the interaction coefficient is interpreted as the
marginal effect at the mean age), and whether the student lives in a household entitled to public utility
subsidies. All regressions consider the randomization design (i.e., include strata fixed effects). Standard
errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.10: Heterogeneity in treatment effects on the 2023 global score by school physical
features

Covariate Vents Rotative Filter Classroom Proxy Math
Exposure Volume Usage Classroom

(1) (2) (3) (4) (5) (6)

Treatment 0.0069 -0.0059 0.016 -0.0066 -0.036 -0.11
(0.0888) (0.0933) (0.0847) (0.0849) (0.0526) (0.107)

Treatment x Covariate -0.056 0.015 -0.00052 0.00015 0.00039 0.059
(0.0473) (0.0545) (0.00213) (0.000114) (0.000598) (0.0454)

Covariate 0.0028 -0.0044 0.00067 -0.00023** -0.00075 -0.031
(0.0396) (0.0497) (0.00177) (0.000107) (0.000852) (0.0388)

N. of obs. 42389 42389 42389 42389 42389 42389
N. Schools 346 346 346 346 346 346
R2 .088 .087 .087 .088 .087 .077
Mean of Covariate .39 .46 8.2 150 45 .31

Notes: The outcome is the global score in all regressions. All regressions consider the randomization design (i.e.,
include strata fixed effects). Standard errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

Table A.11: Attrition in the pollution monitor data

Sensor-level panel Location-level panel School-level panel

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Filter and Monitor -.0062 -.0062 -.006 -.033 .0087 .0087 -.024 .0091 .0091
(.027) (.027) (.027) (.03) (.032) (.032) (.036) (.041) (.041)

Outside .032 -.058∗

(.029) (.029)
Filter & Monitor × Outside .079∗ .067∗

(.042) (.038)
Control mean .41 .41 .41 .41 .46 .46 .46 .51 .51
N. of obs. 111,195 111,195 111,195 111,195 78,013 78,013 78,013 43,066 43,066

Notes: The outcome in all columns is whether the air pollution monitor data is missing. In Columns 1–4,
the dataset is a monitor-level panel at the day level. In Columns 5–7, the data is a daily school-location-level
panel: each school has two observations per day, one outdoors and one indoors. In Columns 8–9, the data
is a school-level panel at the day level. All regressions consider the randomization design (i.e., include strata
fixed effects). Standard errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

43



Table A.12: Effect of filters on students’ exposure to PM2.5

(1) (2) (3) (4) (5)

Panel A: Outdoor PM2.5

Filter and Monitor .57∗ .47 .42 .41 .39
(.33) (.32) (.32) (.32) (.36)

Control mean 11 11 11 13 18
N. of obs. 808,273 808,269 808,189 233,908 156,174

Panel B: Indoor PM2.5
Filter and Monitor -.4 -.5∗ -.53∗∗ -.57∗∗ -.99∗∗

(.27) (.26) (.25) (.27) (.43)
Control mean 9.5 9.5 9.5 11 15
N. of obs. 1,405,455 1,405,455 1,405,447 410,059 205,102

Panel C: ∆ Indoor–Outdoor PM2.5
Inside -1.3∗∗∗ -1.3∗∗∗ -1.3∗∗∗ -1.6∗∗∗ -2.5∗∗∗

(.24) (.24) (.23) (.28) (.33)
Filter & Monitors × Indoors -.9∗∗ -.89∗∗ -.8∗∗ -.95∗∗ -1.4∗∗∗

(.37) (.37) (.37) (.43) (.49)
Control mean 11 11 11 13 18
N. of obs. 2,213,728 2,213,728 2,213,134 643,774 361,739

Locality FE X X
Hour FE X
Date FE X
Hour × Date FE X
Locality × Date × Hour FE X X X
Hours All All All 7am–4pm 7am–4pm
Days All All All Mon–Fri Mon–Fri
Outdoors pollution All All All All > 5

Notes: The outcome in all regressions is the indoor readings of PM2.5. In all regressions, we control for
the outdoor readings of PM2.5 (demeaned), both as measured by the monitors we installed in schools
and by the city’s monitors (SISAIRE) and their interaction with the treatment dummy (following J. Roth
and Sant’Anna (2023); Lin (2013)). Column 5 defines outdoor pollution based on the monitors we
installed. Column 6 defines outdoor pollution based on the city’s monitors. All regressions consider
the randomization design (i.e., include strata fixed effects). Standard errors, clustered at the school level,
are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.13: Effects of filters on students’ exposure to PM2.5 by schools’ pollution levels

PM2.5
(1) (2)

Filter and Monitor -.49 -.58∗

(.34) (.34)
PM25 ext demean NM × Dummy NM .083

(.052)
PM25 ext demean NM × Filter and Monitor × Dummy NM .013

(.04)
PM 2.5 (city sensors) .046∗

(.026)
PM 2.5 (city sensors) × Filter and Monitor -.05∗

(.027)
N. of obs. 69,739 69,739

Locality × Date × Hour FE X X
Hours 7am–4pm 7am–4pm
Days Mon–Fri Mon–Fri
Outdoor pollution All All

Notes: The outcome in all regressions is the indoor readings of PM2.5. In all regressions, we control for
the outdoor readings of PM2.5 (demeaned), both as measured by the monitors we installed in schools
and by the city’s monitors (SISAIRE) and their interaction with the treatment dummy (following J. Roth
and Sant’Anna (2023); Lin (2013)). Column 1 defines outdoor pollution based on the monitors we
installed. Column 2 defines outdoor pollution based on the city’s monitors. All regressions consider
the randomization design (i.e., include strata fixed effects). Standard errors, clustered at the school level,
are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A.2 Figures

Figure A.1: Pollution and SES across years
(a) PM10 and proportion of low SES students
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(b) PM2.5 and proportion of low SES students
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Notes: These figures show the correlation between the average pollution and the likelihood that a student
comes from a low SES background (measured by whether they live in a household entitled to subsidies for
public utilities). The figures represent binscatter least squares estimations — following Cattaneo, Crump,
Farrell, and Feng (2024) — using data from all students graduating from all schools in our experimental
sample from 2021.
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Figure A.2: Infographic about the filter

4

Conectarlo a una toma eléctrica y girar la rueda

ubicada encima del filtro. Hay tres frecuencias,

recomendamos la #3.

SMART HEALTH S
AIR PURIFIER

USO DE FILTROS

Los purificadores de aire necesitan espacio para

respirar, así que asegúrese de que tenga espacio

libre alrededor de la parte superior e inferior.

1

2
3

Es más eficiente dejarlo encendido todo la jornada,

descontaminando el aire de su salón. Apagarlo al

final de la última jornada o fines de semana.

¿Y LAS VENTANAS Y LA PUERTA?

El filtro funciona mejor manteniendo cerradas

puertas y ventanas. 

¿DÓNDE COLOCARLO?

¿CÓMO ENCENDERLO?

¿CUÁNDO APAGARLO?

Generan poco ruido (43
decibeles, menos que
una nevera promedio

que genera 55 decibeles)

Limpian el aire de alérgenos (polen,
polvo y pelos de animales)

Consumen poca energía
(18 vatios, un cargador de

celular usa entre 15-30
vatios)

Mejoran la salud
eliminando material

particulado producido
por fábricas, camiones,

carros, etc.

VENTAJAS

Dudas e inquietudes, escribir a 318 609 0746, 316 709 0943  o  al correo
proyecto.calidadaire2022@gmail.com 
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Figure A.3: Infographic about the air quality monitor

4

Dispositivo de encendido y conexión a internet

automatica. Solo tiene que conectarlo a una toma

corriente y mantenerlo conectado siempre.

SENSORES
CALIDAD DEL AIRE

USO DE SENSORES

Escaneando el código QR - >

 O en la página web aireciudadano.com , busca

PUR y el nombre de su IED 

1

2

3
¿Y LA ENERGÍA?

¡No se preocupe! Los equipos son eficientes no

usarán mucha energía, mientras estén encendidos

no interrumpirán sus labores. 

¿DÓNDE PUEDO VER LOS DATOS?

¿CÓMO FUNCIONA?

Generan minimo ruido, y
no interfieren en sus

actividades cotidianas.

Contribuir a revisar la calidad del aire
es cuidarnos como sociedad.

Consumen poca energía
(de 0.2 a 1 vatio, un

cargador de celular usa
entre 15-30 vatios)

Una mala calidad del aire 
 traerá efectos en nuestra

salud. Revisar y saber
interpretar las

herramientas es el primer
paso para el cambio

VENTAJAS

Dudas e inquietudes, escribir a 318 609 0746, 316 709 0943  o  al correo
proyecto.calidadaire2022@gmail.com 

¿PARA QUÉ SIRVEN?

Los sensores miden contaminacion del aire (PM2.5),

humedad y temperatura; permitiendo conocer la

calidad del aire en su institución y alrededores. 
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Figure A.4: Filter installations and exam date
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Figure A.5: Monitor installations and exam date
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Figure A.6: Consort diagram
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Figure A.7: Pollution readings: SISAIRE vs. school monitors
(a) Outdoor school monitors vs. city monitors
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(b) Indoor school monitors vs. city monitors
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Notes: These figures represent binscatter least squares estimations—following Cattaneo et al. (2024)—using
hourly data from the pollution monitors we installed in schools, as well as the network of 22 monitors
managed by the government, known as SISAIRE. We use a simple interpolation (based on the quadratic
distance to the monitor to obtain hourly pollution measurements for each school in the sample.

Figure A.8: Classroom with slits
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Figure A.9: Quantile treatment effects (2023)
(a) Global
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Notes: These figures present unconditional quantile treatment effects (Firpo et al., 2009) and their 95%
confidence intervals estimated using the RIF package in Stata (Rios-Avila, 2020).
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Figure A.10: PM2.5 readings from the monitors we installed in schools over time
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Figure A.11: Quantile treatment effects on PM2.5 levels
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Notes: These figures present unconditional quantile treatment effects (Firpo et al., 2009) on indoor PM2.5

levels and their 95% confidence intervals estimated using the RIF package in Stata (Rios-Avila, 2020).
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Figure A.12: Indoor PM2.5 distribution across schools with and without filters

KS statistic: 0.03
p-value: 0.42
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Note: This figure presents the cumulative distribution of PM2.5 by treatment status (with or without filters,
among schools with monitors) (Abadie, 2002) (and the implementation of Abdulkadiroğlu, Pathak, and
Walters (2018)). All estimates control for outdoor pollution readings, hour, day, and locality fixed effects. This
figure only includes data for school hours (weekdays, 7 am–4 pm). All models use a Gaussian kernel and
Silverman (2018)’s rule of thumb bandwidth. KS statistics are the maximum differences in CDFs.P-valuess
are estimated via bootstrap.
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Figure A.13: Distribution regression for indoor PM2.5 levels
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Notes: This figure presents distribution regression estimators. For each value of PM2.5, it displays the effect
on the probability that the indoor pollution level is above this value.
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B Results for 2024
B.1 Test scores

Table B.1: Effect of filters on test scores

Dep. var. Math Spanish Science Social English Global
Sciences

(1) (2) (3) (4) (5) (6)

Panel A: Lagged scores
Treatment (filters) -0.0052 -0.019 -0.0057 -0.019 -0.011 -0.014

(0.0183) (0.0164) (0.0185) (0.0172) (0.0171) (0.0180)
N. of obs. 42,491 42,491 42,491 42,491 42,003 42,491
N. Schools 346 346 346 346 346 346
R2 0.070 0.061 0.066 0.054 0.086 0.082

Panel B: Lagged scores + pollution
Treatment (filters) -0.0046 -0.022 -0.0039 -0.021 -0.0059 -0.014

(0.0173) (0.0159) (0.0182) (0.0166) (0.0167) (0.0173)
N. of obs. 42,491 42,491 42,491 42,491 42,003 42,491
N. Schools 346 346 346 346 346 346
R2 0.071 0.061 0.066 0.054 0.087 0.083

Panel C: All controls
Treatment (filters) -0.0030 -0.021 -0.0026 -0.021 -0.0024 -0.012

(0.0151) (0.0142) (0.0170) (0.0165) (0.0162) (0.0158)
N. of obs. 42,491 42,491 42,491 42,491 42,003 42,491
N. Schools 346 346 346 346 346 346
R2 0.19 0.12 0.15 0.096 0.14 0.17

Notes: All regressions consider the randomization design (i.e., include strata fixed effects). Panel
A controls for average school-level lagged scores (we do not have individual student-lagged
scores). Panel B also controls for the average pollution levels of PM2.5, PM10, NO2, CO, and O3
during school hours (7 am–4 pm) in the 270 days (roughly the length of the school year) and
90 days (roughly the length of exposure to the filters) preceding the exam. Panel C controls for
lagged scores, pollution levels, age, sex, mother’s level of education, and socio-economic strata.
Standard errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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B.2 Air quality

Figure B.1: Difference between indoor and outdoor readings in schools with and without
filters

(a) Differences by weeks
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(b) Differences by time of the day
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Notes: These figures display the average difference between indoor and outdoor readings in each school, depending on whether they
have filters. Figure 3a averages the data across weeks, while Figure 3b averages the data across hours of the day.
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Figure B.2: Percentage of Monitors with data transmission by day in 2024
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Table B.2: Effect of filters on students’ exposure to PM2.5

Dep. var. PM2.5 Indoors pollution (µg/m3)
(1) (2) (3) (4) (5)

Filter and Monitor -.94∗∗ -.86∗∗ -.8∗∗ -.66∗ -1.2∗∗∗

(.36) (.34) (.33) (.36) (.45)
Control mean 15 15 15 16 20
N. of obs. 2,000,016 2,000,013 1,999,964 609,559 331,699

Locality FE X X
Hour FE X
Date FE X
Hour × Date FE X
Locality × Date × Hour FE X X X
Hours All All All 7am–4pm 7am–4pm
Days All All All Mon–Fri Mon–Fri
Outdoors pollution All All All All > 5

Notes: The outcome in all regressions is the indoor readings of PM2.5. All regressions control for outdoor
readings of PM2.5 (demeaned), both as measured by the monitors we installed in schools and the city
monitors and their interaction with the treatment dummy (following J. Roth and Sant’Anna (2023); Lin
(2013)). All regressions consider the randomization design (i.e., include strata fixed effects). Standard
errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.3 Effect of air quality on test scores

Table B.3: Effect on 2024 Saber tests

(1) (2) (3) (4) (5) (6)

Panel A: First Stage
Dep. var. PM2.5

Treatment (filters) -0.96**
(0.461)

N. of obs. 12,235
Only monitors mean 17.2
N. Schools 109
R2 0.31

Panel B: Reduced Form
Dep. var. Math Spanish Science Social English Global

Sciences

Treatment (filters) -0.0011 -0.0014 -0.0100 0.021 0.023 0.0049
(0.0350) (0.0288) (0.0305) (0.0297) (0.0284) (0.0309)

N. of obs. 12,235 12,235 12,235 12,235 12,086 12,235
N. Schools 109 109 109 109 109 109
R2 0.068 0.054 0.066 0.052 0.075 0.077

Panel C: IV Estimates
Dep. var. Math Spanish Science Social English Global

Sciences

Average PM 2.5 (indoors) 0.0012 0.0014 0.010 -0.022 -0.024 -0.0051
(0.0363) (0.0299) (0.0322) (0.0327) (0.0312) (0.0321)

N. of obs. 12,235 12,235 12,235 12,235 12,086 12,235
N. Schools 109 109 109 109 109 109
R2 0.067 0.054 0.065 0.051 0.072 0.077

Notes: All regressions consider the randomization design (i.e., include strata fixed effects). Standard
errors, clustered at the school level, are in parentheses. The p-value of joint F-test for the first stage is
4.318000000000001. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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