

How Much Should We Spend to Reduce A.I.'s Existential Risk?

> Chad Jones Stanford GSB

NBER Growth Meeting – July 2025

- OpenAI, Anthropic, Deepmind
 - · Coding, math, browsing the internet to write reports
 - Protein folding, understanding DNA, medical diagnoses
- Scaling compute + algorithms = $\sim 10x$ each year
- Huge, exciting opportunities
- But also potentially large risks...
 - Highlighted by many experts (Hinton, Hassabis, Altman, Amodei, etc.)

Can we use economic analysis to think about the serious risks?

Two Versions of Existential Risk

- Bad actors:
 - Could use Claude/GPT-6 to cause harm
 - E.g. design a Covid virus that is 10x more lethal and takes 3 weeks for symptoms
 - Nuclear weapons mangeable because so rare; if every person had them...
- Alien intelligence:
 - o How would we react to a spaceship near Jupiter on the way to Earth?
 - "How do we have power over entities more powerful than us, forever?" (Stuart Russell)

Outline

- Quick review of "The A.I. Dilemma" (2024 AERI)
- · How much should we spend to reduce existential risk?
 - Covid-19 example
 - Using VSL (value of a statistical life) numbers
 - Model and calibration
 - Monte Carlo simulations to incorporate uncertainty regarding risk and effectiveness of mitigation

Even a selfish perspective suggests we are underinvesting in A.I. safety

- A.I. and Growth
 - Brynjolfsson and McAfee (2014), Aghion, Jones, and Jones (2019), Korinek and Trammell (2020), Nordhaus (2021), Acemoglu (2025), Growiec and Prettner (2025)
 - Brynjolfsson, Korinek, and Agrawal (2024)
- Costs of A.I.?
 - Acemoglu and Lensman (2024), Restrepo (2024), Autor and Thompson (2025)
 - Jones (2016), Aschenbrenner (2024), Aschenbrenner and Trammell (2024)
- Catastrophic risks
 - Posner (2004), Matheny (2007), Ord (2020), MacAskill (2022), Shulman and Thornley (2025), Nielsen (2024)

A Thought Experiment (Jones, 2024 AERI)

- AGI more important than electricity, but more dangerous than nuclear weapons?
- The Oppenheimer Question:
 - If nothing goes wrong, AGI accelerates growth to 10% per year
 - But a one-time small chance that A.I. kills everyone
 - Develop or not? What risk are you willing to take: 1%? 10%?

What does standard economic analysis imply?

Findings:

Log utility: Willing to take a 33% risk!

(Maybe entrepreneurs are not very risk averse?)

- More risk averse ($\gamma = 2 \text{ or } 3$), risk cutoff plummets to 2% or less
 - Diminishing returns to consumption
 - We do not need a 4th flat screen TV or a 3rd iphone.
 Need more years of life to enjoy already high living standards.
- But 10% growth \Rightarrow cure cancer, heart disease
 - \circ Even $\gamma = 3$ willing to take large risks (25%) to cut mortality rates in half
 - Each person dies from cancer or dies from A.I. Just total risk that matters...
 - True even if the social discount rate falls to zero

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - $\circ\,$ A.I. risk is at least this large \Rightarrow spend at least this much?
 - Are we massively underinvesting in mitigating this risk?

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - $\circ\,$ A.I. risk is at least this large \Rightarrow spend at least this much?
 - Are we massively underinvesting in mitigating this risk?
- Better intuition
 - \circ VSL = \$10 million
 - $\circ~$ To avoid a mortality risk of 1% \Rightarrow WTP = $1\% \times \$10$ million ~= \$100,000
 - This is more than 100% of a year's per capita GDP
 - $\circ~$ Xrisk over two decades \Rightarrow annual investment of 5% of GDP
- · Large investments worthwhile, even with no value on future generations

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - $\circ\,$ A.I. risk is at least this large \Rightarrow spend at least this much?
 - Are we massively underinvesting in mitigating this risk?
- Better intuition
 - \circ VSL = \$10 million
 - $\circ~$ To avoid a mortality risk of 1% \Rightarrow WTP = $1\% \times \$10$ million ~= \$100,000
 - This is more than 100% of a year's per capita GDP
 - $\circ~$ Xrisk over two decades \Rightarrow annual investment of 5% of GDP
- · Large investments worthwhile, even with no value on future generations

Incomplete so far: how effective is mitigation?

Model

Model

• Setup

- One-time existential risk at probability $\delta(x)$
- One-time investment x_t to mitigate the risk ($\delta'(x) < 0$)
- Exogenous endowment y_t (grows rapidly via A.I.)
- Optimal mitigation:

$$\max_{x_t} u(c_t) + (1 - \delta(x_t)) \beta V_{t+1}$$
s.t. $c_t + x_t = y_t$

$$V_{t+1} = \sum_{\tau=0}^{\infty} \beta^{\tau} u(y_{t+1+\tau}) \quad \text{(consume } y_t \text{ in future)}$$

• FOC:

$$u'(c_t) = -\delta'(x_t)\beta V_{t+1}$$

• Let
$$\eta_{\delta,x}\equiv -rac{\delta'(x_t)x_t}{\delta(x_t)}$$
 and $s_t\equiv x_t/y_t$

$$\frac{s_t}{1-s_t} = \begin{array}{ccc} \eta_{\delta,x} & \times & \delta(x_t) & \times & \beta \frac{V_{t+1}}{u'(c_t) c_t} \\ \text{effectiveness} & \text{risk to be} & \text{value of} \\ \text{of spending} & \text{mitigated} & \text{life} \\ &> 0.1? & 0.1\%? & > 180 \end{array}$$

• Taking the smallest numbers:

$$\frac{s}{1-s} \ge 0.1 \times 0.1\% \times 180 = 1.8\%.$$

Functional forms

- Existential risk: $\delta(x) = (1 \phi)\delta_0 + \phi\delta_0 e^{-\alpha Nx}$
 - $\circ \delta_0$ is the risk without mitigation

 $\circ \phi$ is the share of the risk that can be eliminated by spending

– with infinite spending, risk falls to $(1 - \phi)\delta_0$

- $\circ \alpha$ is the effectiveness of spending
- \circ N is the number of people each spending x
- To calibrate α :

$$\alpha N = -T\log(1-\xi) \approx \xi T$$

 ξ is the share of the risk that can be eliminated by spending 100% of GDP for one year *T* is "time of perils" = years until risk gets realized (period length)

Calibration

 $\delta(x) = (1 - \phi)\delta_0 + \phi\delta_0 e^{-\alpha Nx}$

	Parameter	Value	Distribution
Extinction risk, no mitigation	δ_0	1%	Uniform (0%, 2%)
Share that can be eliminated	ϕ	0.5	Uniform (0, 1)
Effectiveness of spending	ξ	0.5	Uniform (0, 0.99)
Value of life	$V_{t+1}/u'(y_t)$	180	Uniform (0.5*180, 1.5*180)
Time of perils (period length)	T	10 years	Uniform (5, 20)
CRRA	heta	2	
Discount factor	eta	0.99^{T}	
Value of future generations	$W_{\scriptscriptstyle F}$	0	purely selfish for now

Optimal Spending to Reduce Existential Risk

Baseline 15.8Half the baseline risk $\delta_0 = 0.5\%$ 8.3 Twice the baseline risk, $\delta_0 = 2\%$ 23.2 Less risk can be eliminated, ϕ =0.20 5.9 More risk can be eliminated, ϕ =0.80 20.8 Mitigation less effective, $\xi = .20$ 7.2 Mitigation more effective, $\xi = .80$ 12.5 VSL (after A.I.) = \$5 million 8.3 VSL (after A.I.) = \$15 million 20.2Time of perils T=5 years 16.9Time of perils T=20 years 10.2Value N_{E} =1 future generation 5% 15% 0% 10% 20% 25% 30% Share of GDP

29.5

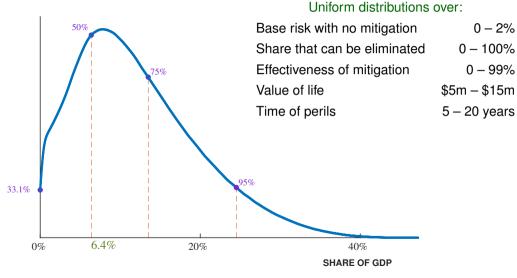
When should we not invest in mitigation?

- From FOC: Do not invest if $u'(y_0) > -\delta'(0)\beta V_{t+1}$
- Using functional forms and approximations:

$$1 > \alpha N \cdot \phi \delta_0 \beta \frac{V_{t+1}}{u'(y_0)} \approx \underbrace{\xi T}_{\text{effectiveness}} \cdot \underbrace{\phi \delta_0 \beta \frac{V_{t+1}}{u'(y_0)}}_{\text{WTP}} = \text{EV of lives}_{\text{lost to x-risk}}$$

 $\implies \xi T \cdot \mathsf{WTP} < 1$

• $\xi = 1/2$, T = 10, and WTP = 60% of GDP, LHS = 3


• But ϕ or ξ or $\delta_0 \Rightarrow 5x$ smaller \Rightarrow invest zero (Little risk, or not much can be done)

Monte Carlo Results

10 million simulations

Optimal Mitigation: Monte Carlo Simulation

Mean = 8%. 65% of runs have $s \ge 1\%$

Summary Statistics for Monte Carlo Simulations

	Selfish baseline $(N_{\rm F}=0)$ $\delta_0\sim {\rm Uniform[0,2\%]}$	Modest altruism $(N_{\rm F}=1)$	Higher risk $(N_{\rm F}=0)$ $\delta_0 \sim {\rm Uniform[0,10\%]}$
Optimal share, mean	8.1%	18.4%	20.7%
Fraction with $s_t = 0$	33.1%	15.0%	12.8%
Fraction with $s_t \ge 1\%$	65.1%	84.2%	86.5%

- How large is the catastrophic risk from A.I.?
 - How much are we currently spending to mitigate A.I. risk?
 - What evidence is there on the effectiveness of mitigation spending?

- How should we think about A.I. competition and race dynamics?
- How can we get A.I. labs to internalize the x-risk externalities?
 - Should we tax GPUs and use the revenue to fund safety research?