EXPECTATIONS FORMATION WITH FAT-TAILED PROCESSES: EVIDENCE AND THEORY

Tim de SilvaEugene Larsen-HallockAdam RejDavid ThesmarStanford GSB & SIEPRCFMCFMMIT, NBER, CEPR

NBER SI: Forecasting and Empirical Methods

July 2025

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - **1** Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - 2 Biases given known DGP (e.g. diagnostic expectations)

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - **1** Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - 2 Biases given known DGP (e.g. diagnostic expectations)
- However, many variables have non-Gaussian DGPs with Pareto tails Gabaix 09
 - Challenge: hard to study beliefs because rational expectations become intractable

- Large recent literature documenting predictability in expectation errors
 - Underreaction: lab + field, often short-term or consensus forecasts
 - Overreaction: lab + field, often longer-term individual forecasts
- Models to explain this predictability typically have two ingredients
 - **1** Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
 - 2 Biases given known DGP (e.g. diagnostic expectations)
- However, many variables have non-Gaussian DGPs with Pareto tails Gabaix 09
 - Challenge: hard to study beliefs because rational expectations become intractable
- This paper: study expectations formation in the presence of "fat" tails
 - Takeaway: helps match data + parsimonious model of under & overreaction

1 Document three facts using analysts forecasts of sales growth from IBES

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- 2 Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock \Rightarrow Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails \Rightarrow Fact #1

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- 2 Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock \Rightarrow Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails \Rightarrow Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- 2 Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock \Rightarrow Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails \Rightarrow Fact #1
- Or Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment \Rightarrow non-linear error-revision relationship

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- 2 Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock \Rightarrow Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails \Rightarrow Fact #1
- Or Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment \Rightarrow non-linear error-revision relationship
 - 3. Returns to momentum are positive in bulk, but exhibit mean-reversion in tails

- 1 Document three facts using analysts forecasts of sales growth from IBES
 - 1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
 - 2. Distribution of growth has non-Gaussian "fat" tails
 - 3. Expected future growth is non-linear in current growth
- 2 Show that a model of beliefs with two ingredients can explain these three facts
 - 1. DGP = persistent component + non-Gaussian shock \Rightarrow Facts #2 and #3
 - 2. Forecasters use optimal expectations (partially) ignoring fat tails \Rightarrow Fact #1
- 3 Provide additional evidence in support of our theory
 - 1. Estimate the model and show it quantitatively three facts
 - 2. Adding fat tails to DGP in experiment \Rightarrow non-linear error-revision relationship
 - 3. Returns to momentum are positive in bulk, but exhibit mean-reversion in tails

 \Rightarrow Allowing for fat tails is helpful for understanding belief formation!

RELATED LITERATURE

- Underreaction: lab Benjamin 19, ST earnings Bouchaud et al. 19, revenues Ma et al. 2024, ST rates Wang 21, macro (consensus) Coibion-Gorodnichenko 15
- Overreaction: lab Afrouzi et al. 23, LT earnings growth Bordalo et al. 19, LT rates Giglio-Kelly 18, d'Arienzo 20, macro (individual) Bordalo et al. 20
- Contributions:
 - **1** Field: evidence of both within **same** forecasting variable + horizon
 - 2 Lab: non-linearity in overreaction depends on the Pareto tail of DGP

- 2 Models of under or overreaction in individual expectations
 - Underreaction: sticky expectations Bouchaud et al. 19, behavioral inattention Gabaix 19
 - Overreaction: diagnostic expectations Bordalo et al. 19, availability Afrouzi et al. 23

- Empirical evidence on under and overreaction in expectations
- 2 Models of under or overreaction in individual expectations
- 3 Models of under and overreaction in individual expectations
 - Experience effects/constant-gain learning Malmendier-Nagel 16, Nagel-Xu 19
 - Selective recall with similarity and interference Bordalo et al. 22, 23
 - Shrinkage towards average persistence or precision Wang 21, Augenblick et al. 24
 - Overreaction to category-specific features Kwon-Tang 25
 - Within vs. across-category comparisons Graeber et al. 24
 - Contribution: model with under + overreaction within category/DGP

- 2 Models of under or overreaction in individual expectations
- Over the second seco
- Models of expectations with unknown/misspecified DGPs
 - Natural expectations Fuster et al. 10, 11
 - Learning Kozlowski et al. 20, Singleton 21, Farmer et al. 24, Dew-Becker et al. 24
 - No restrictions on the DGP de Silva-Thesmar 24
 - Our focus: misspecified model of distribution in the tails (could come from learning)

- 2 Models of under or overreaction in individual expectations
- Over the second seco
- 4 Models of expectations with unknown/misspecified DGPs
- **5** Statistical models with **non-Gaussian** dynamics
 - Pareto tails, especially in firm growth Gabaix 09, Stanley et al. 96, Moran et al. 24
 - Skewness + kurtosis in income Guvenen et al. 14, 21, Braxton et al. 25
 - Contribution: connect with models of belief formation in a tractable way

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

Additional Model Predictions
Quantitative Fit
Forecasting Experiment
Return Momentum

4 Conclusion

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum

4 Conclusion

DATA AND VARIABLES

- Sample: 122K observations from 2000-2023 of US and foreign firms in IBES
- Forecasting variable:

 $g_{it} \equiv \log \text{sales}_{it} - \log \text{sales}_{it-1 \text{ year}}$

- Advantages relative to EPS: larger sample + stationary
- g_{it} standardized by firm: accounts for heterogenous DGPs Wyatt-Bouchaud 03

DATA AND VARIABLES

- Sample: 122K observations from 2000-2023 of US and foreign firms in IBES
- Forecasting variable:

 $g_{it} \equiv \log \text{sales}_{it} - \log \text{sales}_{it-1 \text{ year}}$

- Advantages relative to EPS: larger sample + stationary
- git standardized by firm: accounts for heterogenous DGPs Wyatt-Bouchaud 03
- Forecasts:

 $F_t g_{it+h} \equiv \log F_t \text{sales}_{it+h \text{ years}} - \log F_t \text{sales}_{it+(h-1) \text{ years}}$

- F_t = consensus analyst forecasts after year t FY-end announcement
- *F_tg_{it+h}* standardized using same firm-specific mean and SD as *g_{it}*
- Ignores a Jensen's term, but results similar with % growth

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship

Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum

4 Conclusion

COIBION-GORODNICHENKO ERROR-REVISION REGRESSIONS

$$\underbrace{g_{it+1} - F_t g_{it+1}}_{\text{forecast error}} = \alpha + \beta \underbrace{\left(F_t g_{it+1} - F_{t-1} g_{it+1}\right)}_{\text{forecast revision}} + \epsilon_{it+1}$$

COIBION-GORODNICHENKO ERROR-REVISION REGRESSIONS

$$\underbrace{g_{it+1} - F_t g_{it+1}}_{\text{forecast error}} = \alpha + \beta \underbrace{(F_t g_{it+1} - F_{t-1} g_{it+1})}_{\text{forecast revision}} + \epsilon_{it+1}$$

- $\beta \neq 0$ is inconsistent with rational expectations
 - Revisions are in forecasters' information set \Rightarrow should not predict errors
- $\beta > 0 \Rightarrow$ revisions do not update "enough" \Rightarrow underreaction Bouchaud et al. 19
- $\beta < 0 \Rightarrow$ revisions update "too much" \Rightarrow **overreaction** Bordalo et al. 19
- Now a standard way of characterizing deviations from RE across datasets

FACT 1: NON-LINEAR ERROR-REVISION RELATIONSHIP

• Forecasts underreact and overreact within same variable and horizon

UNDERREACTION IN THE BULK OF THE DISTRIBUTION...

• Between 10-90% of revisions, error-revision slope is positive Bouchaud et al. 19

... BUT OVERREACTION IN THE TAILS!

• Between 0-10%

of revisions, error-revision slope is negative

... BUT OVERREACTION IN THE TAILS!

Between 0-10% and 90-100% of revisions, error-revision slope is negative

Additional Results and Robustness

- 1 Not driven by within-firm adjustment: holds with raw growth O
- 2 Does not reflect omitted Jensen's term: holds with percent growth •
- Obes not reflect sample: similar for both US and foreign firms

- 1 Not driven by within-firm adjustment: holds with raw growth O
- 2 Does not reflect omitted Jensen's term: holds with percent growth •
- Obes not reflect sample: similar for both US and foreign firms
- 4 Not specific to sales growth: present with earnings-price ratios

- 1 Not driven by within-firm adjustment: holds with raw growth •
- 2 Does not reflect omitted Jensen's term: holds with percent growth
- Obes not reflect sample: similar for both US and foreign firms
- 4 Not specific to sales growth: present with earnings-price ratios
- 6 Not driven by aggregation: present in individual forecasts •

- 1 Not driven by within-firm adjustment: holds with raw growth •
- 2 Does not reflect omitted Jensen's term: holds with percent growth
- Obes not reflect sample: similar for both US and foreign firms
- 4 Not specific to sales growth: present with earnings-price ratios
- 6 Not driven by aggregation: present in individual forecasts •
- 6 Driven by cross-section not time-varying aggregate mean or volatility •

- 1 Not driven by within-firm adjustment: holds with raw growth •
- 2 Does not reflect omitted Jensen's term: holds with percent growth
- Obes not reflect sample: similar for both US and foreign firms
- 4 Not specific to sales growth: present with earnings-price ratios
- 6 Not driven by aggregation: present in individual forecasts •
- 6 Driven by cross-section not time-varying aggregate mean or volatility •
- Limited evidence of learning: does not vary with analyst experience

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum

TAILS OF g_{it} are Fatter than Gaussian

TAIL BEHAVIOR IN TOP DECILES IS APPROXIMATELY A POWER LAW

Power Law : $\log P(|g_{it}| > x) = -\nu \log x + \text{constant}$

TAIL BEHAVIOR IN TOP DECILES IS APPROXIMATELY A POWER LAW

Power Law : $\log P(|g_{it}| > x) \approx -2.7 \log x + \text{constant}$

1 Three Key Facts

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

- 2 Model of Expectations Formation
- Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum

Fact 3: $\mathbf{E}(g_{it}|g_{it-1})$ is Non-Linear

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

Additional Model Predictions

Quantitative Fit Forecasting Experiment Return Momentum

4 Conclusion

• DGP for sales growth (dropping *i* subscripts):

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, 1)$$

- gt is a combination of persistent & transitory processes Bansal-Yaron 04, Lettau-Wachter 07
 - $g_t^* =$ **unobservable** persistent latent state
 - ϵ_t = transitory shock with **Pareto tail**: $f(\epsilon) \propto \epsilon^{-\nu}$ as $|\epsilon| \longrightarrow \infty$, where $\nu > 2$

• DGP for sales growth (dropping *i* subscripts):

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, 1)$$

- gt is a combination of persistent & transitory processes Bansal-Yaron 04, Lettau-Wachter 07
 - $g_t^* =$ **unobservable** persistent latent state
 - ϵ_t = transitory shock with **Pareto tail**: $f(\epsilon) \propto \epsilon^{-\nu}$ as $|\epsilon| \longrightarrow \infty$, where $\nu > 2$
- Remarks:
 - If ϵ_t was Gaussian, rational expectation would be the Kalman filter
 - Key: tail parameter in u_t larger than ϵ_t , otherwise inconsistent with Fact 3

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) & var(\epsilon_t) = 1 \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

• Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1 \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1 \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -\rho\sigma_{g^*}^2 \cdot \frac{d}{dg}\log h(g_t)$$

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1 \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -\rho\sigma_{g^*}^2 \cdot \frac{d}{dg}\log h(g_t)$$

• In bulk of distribution, $g_t \approx \text{Gaussian} \Rightarrow \log h(g_t) \approx -\frac{g_t^2}{2\sigma_a^2} + \text{constant}$

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1 \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$\mathsf{E}(g_{t+1}|g_t) =
ho \sigma_{g^*}^2 \cdot rac{g_t}{\sigma_g^2} \qquad
earrow g_t$$

- In bulk of distribution, $g_t \approx \text{Gaussian} \Rightarrow \log h(g_t) \approx -\frac{g_t^2}{2\sigma_a^2} + \text{constant}$
- Intution: moderate values of g_t likely reflect $g_t^* \Rightarrow$ likely persistent

$$egin{aligned} g_{t+1} &= g_{t+1}^* + \sigma_\epsilon \epsilon_{t+1} & \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1 \ g_{t+1}^* &=
ho g_t^* + \sigma_u u_{t+1} & u_t \sim N(0, \sigma_u^2) \end{aligned}$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = -\rho\sigma_{g^*}^2 \cdot \frac{d}{dg}\log h(g_t)$$

• In tails of distribution, $g_t \approx$ Pareto $\Rightarrow \log h(g_t) \approx -\nu \log(g_t)$

$$g_{t+1} = g_{t+1}^* + \sigma_{\epsilon} \epsilon_{t+1} \quad \epsilon_t \sim f(\cdot) \quad var(\epsilon_t) = 1$$

$$g_{t+1}^* = \rho g_t^* + \sigma_u u_{t+1} \quad u_t \sim N(0, \sigma_u^2)$$

- Replicates Fact 2: ϵ_t has Pareto tail ν and u_t is normal $\Rightarrow g_t$ has Pareto tail
- What about Fact 3: $E(g_{t+1}|g_t)$ is non-linear in g_t ?
 - Challenge: no closed-form expression $E(g_{t+1}|g_t)$ unless ϵ_t Gaussian
- **Result** (Tweedie's formula): If $h(\cdot)$ is the observable marginal PDF of g_t , then

$$E(g_{t+1}|g_t) = \rho \sigma_{g^*}^2 \cdot \frac{\nu}{g_t} \qquad \searrow g_t$$

- In tails of distribution, $g_t \approx$ Pareto $\Rightarrow \log h(g_t) \approx -\nu \log(g_t)$
- Intuition: extreme values of g_t likely reflect $\epsilon_t \Rightarrow$ likely transitory

• Assumption: agents think $\epsilon_t \sim N(0, 1)$ but otherwise rational \Rightarrow Kalman filter

- Assumption: agents think $\epsilon_t \sim N(0, 1)$ but otherwise rational \Rightarrow Kalman filter
- Result: In steady-state,

 $E(\operatorname{error}_{t+1} | \operatorname{revision}_t)$

- Assumption: agents think $\epsilon_t \sim N(0, 1)$ but otherwise rational \Rightarrow Kalman filter
- Result: In steady-state,

 $E(\operatorname{error}_{t+1} | \operatorname{revision}_t) \xrightarrow{|\operatorname{revision}_t| \to \infty}$

- Assumption: agents think $\epsilon_t \sim N(0, 1)$ but otherwise rational \Rightarrow Kalman filter
- Result: In steady-state,

 $E(\operatorname{error}_{t+1} | \operatorname{revision}_t) \xrightarrow{|\operatorname{revision}_t| \to \infty} - C \times \operatorname{revision}_t$

- Assumption: agents think $\epsilon_t \sim N(0, 1)$ but otherwise rational \Rightarrow Kalman filter
- **Result**: In steady-state,

 $E(\operatorname{error}_{t+1} | \operatorname{revision}_t) \xrightarrow{|\operatorname{revision}_t| \to \infty} - C \times \operatorname{revision}_t < 0$

• Large revision t reflects ϵ_t or ϵ_{t-h} , but forecasters overreact ignoring its transitory

- Assumption: agents think $\epsilon_t \sim N(0, 1)$ but otherwise rational \Rightarrow Kalman filter
- **Result**: In steady-state,

 $E(\operatorname{error}_{t+1} | \operatorname{revision}_t) \xrightarrow{|\operatorname{revision}_t| \to \infty} - C \times \operatorname{revision}_t < 0$

- Large revision_t reflects ϵ_t or ϵ_{t-h} , but forecasters overreact ignoring its transitory
- **Result**: In steady-state, there exists a *R* > 0 where:

 $E(\operatorname{error}_{t+1} \times \operatorname{revision}_t || \operatorname{revision}_t | < R) > 0$

• Overreaction in tails + unbiased on average \Rightarrow underreaction in bulk \Rightarrow Fact 1

- Evidence of insensitivity to signal strength in lab inference problems
 - Overreaction to weak + underreaction to strong signals Augenblick et al. 24, Ba et al. 24
 - Challenge: how to generalize this behavior to a time-series setting?

- Evidence of insensitivity to signal strength in lab inference problems
 - Overreaction to weak + underreaction to strong signals Augenblick et al. 24, Ba et al. 24
 - Challenge: how to generalize this behavior to a time-series setting?
- Result: Given our DGP,

$$\operatorname{var}(g_{t+1}|g_t) = \sigma_g^2 + \rho^2 \sigma_{g^*}^4 \frac{d^2}{dg^2} \log h(g_t)$$

- Evidence of insensitivity to signal strength in lab inference problems
 - Overreaction to weak + underreaction to strong signals Augenblick et al. 24, Ba et al. 24
 - Challenge: how to generalize this behavior to a time-series setting?
- Result: Given our DGP,

$$\operatorname{var}(g_{t+1}|g_t) = \sigma_g^2 + \rho^2 \sigma_{g^*}^4 \frac{d^2}{dg^2} \log h(g_t)$$

- Conditional variance is lower/higher when log density is concave/convex
 - Bulk: log density is concave ⇒ strong signal, and have underreaction
 - Tails: log density is convex \Rightarrow weak signal, and have overreaction

- Evidence of insensitivity to signal strength in lab inference problems
 - Overreaction to weak + underreaction to strong signals Augenblick et al. 24, Ba et al. 24
 - Challenge: how to generalize this behavior to a time-series setting?
- Result: Given our DGP,

$$\operatorname{var}(g_{t+1}|g_t) = \sigma_g^2 + \rho^2 \sigma_{g^*}^4 \frac{d^2}{dg^2} \log h(g_t)$$

- Conditional variance is lower/higher when log density is concave/convex
 - Bulk: log density is concave \Rightarrow strong signal, and have underreaction
 - Tails: log density is convex \Rightarrow weak signal, and have overreaction
- Ignoring fat tails looks like ignoring signal strength in time-series setting!

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

3 Additional Model Predictions

Quantitative Fit Forecasting Experiment Return Momentum

4 Conclusion

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

3 Additional Model Predictions Quantitative Fit

Forecasting Experimen Return Momentum

4 Conclusion

MODEL FIT: DGP

- Estimate DGP parameters using SMM by matching Facts 2 and 3
 - Assume $\epsilon \sim t$ -distribution with ν degrees of freedom

MODEL FIT: DGP

- Estimate DGP parameters using SMM by matching Facts 2 and 3
 - Assume $\epsilon \sim t$ -distribution with ν degrees of freedom
- Parameter estimates: $\rho = 0.53, \nu = 2.53, \sigma_u = 0.63, \sigma_e = 1.33$

Given DGP, model generates Fact 1 qualitatively, but not quantitatively

• Allow anchoring to RE:
$$F_t^{\lambda}g_{t+h} = \lambda F_t g_{t+h} + \underbrace{(1-\lambda)E_t g_{t+h}}_{\text{use particle filter}}$$

MODEL FIT: BELIEFS

- Allow anchoring to RE: $F_t^{\lambda}g_{t+h} = \lambda F_t g_{t+h} + (1 \lambda)E_t g_{t+h}$
- Shrinkage between "default" and RE á la bounded rationality Fuster et al. 10, Gabaix 19

1 It is simple, like default models in Fuster et al. 10 and Gabaix 19

Accuracy loss relative to RE is small: 1.2% reduction in MSE •

• With $\lambda = 0.29$, reduction in MSE is only **0.1%**

8 Kalman filter outperforms RE in small samples with learning

• Need T = 100 for deviations from Kalman filter to outperform out-of-sample

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

Additional Model Predictions
 Quantitative Fit
 Forecasting Experiment
 Return Momentum

EXPERIMENTAL DESIGN

- Design follows Afrouzi et al. 23: participants make one and two-period forecasts
- 403 MTurk participants make 40 forecasts \Rightarrow 16K observations
- DGPs: 1. rescaled estimated DGP + 2. Gaussian AR1 with ho = 0.2 Afrouzi et al. 23

FAT TAILS CREATE NON-LINEAR ERROR-REVISION RELATIONSHIP

	Dependent Variable: Error			
	Gaussian AR1 (1)	Estimated DGP		
Revision	-0.44*** (0.02)			
Revision \times Bottom 40%				
Revision \times Top 40%				
Constant and Main Effects Included	1			
SEs Clustered by Participant	1			
Number of Observations	6,942			

	Dependent Variable: Error			
	Gaussian AR1 (1)	Estimated DGP (3)		
Revision	-0.44***	-0.41***		
	(0.02)	(0.01)		
Revision $ imes$ Bottom 40%				
Revision \times Top 40%				
Constant and Main Effects Included	✓	✓		
SEs Clustered by Participant	1	1		
Number of Observations	6,942	15,717		

	Dependent Variable: Error				
	Gaussia (1)	ın AR1 (2)	Estimated DGP (3)		
Revision	-0.44***	-0.39	-0.41***		
	(0.02)	(0.41)	(0.01)		
Revision $ imes$ Bottom 40%		-0.03			
		(0.42)			
Revision $ imes$ Top 40%		-0.11			
		(0.41)			
Constant and Main Effects Included	1	1	1		
SEs Clustered by Participant	\checkmark	1	1		
Number of Observations	6,942	6,942	15,717		

	Dependent Variable: Error				
	Gaussia	ın AR1	Estimat	ed DGP	
	(1)	(2)	(3)	(4)	
Revision	-0.44***	-0.39	-0.41***	0.97**	
	(0.02)	(0.41)	(0.01)	(0.39)	
Revision $ imes$ Bottom 40%		-0.03		-1.46***	
		(0.42)		(0.39)	
Revision $ imes$ Top 40%		-0.11		-1.41***	
		(0.41)		(0.40)	
Constant and Main Effects Included	1	1	1	1	
SEs Clustered by Participant	\checkmark	\checkmark	\checkmark	\checkmark	
Number of Observations	6,942	6,942	15,717	15,717	

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

3 Additional Model Predictions

Quantitative Fit Forecasting Experiment Return Momentum

Positive Momentum in Bulk + Mean-Reversion in Tails

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma \left(F_{t+1} - F_t \right) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Positive Momentum in Bulk + Mean-Reversion in Tails

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma \left(F_{t+1} - F_t \right) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

POSITIVE MOMENTUM IN BULK + MEAN-REVERSION IN TAILS

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma \left(F_{t+1} - F_t \right) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Positive Momentum in Bulk + Mean-Reversion in Tails

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma \left(F_{t+1} - F_t \right) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

POSITIVE MOMENTUM IN BULK + MEAN-REVERSION IN TAILS

• Campbell 91 + assume constant $F_t(r_{t+k})$ & earnings growth $t = \gamma \times g_t$

$$\Rightarrow r_{t+1} = \overline{r} + \gamma \left(F_{t+1} - F_t \right) \sum_{k=0}^{\infty} c^k g_{t+1+k}$$

Data: Below Median Market Cap

Fact 1: Non-Linear Error-Revision Relationship Fact 2: Fat Tails in the Distribution of Growth Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

Additional Model Predictions Quantitative Fit Forecasting Experiment Return Momentum

- Main fact: forecast errors are non-linear in forecast revisions
 - Underreaction in the bulk of the distribution, overreaction in the tails
- One deviation from RE can explain this: ignoring fat tails
 - Intuition: extreme realizations are less persistent than forecasters realize
 - Provides a parsimonious model of under and overreaction within a DGP
 - Also consistent with evidence from experiments and asset prices
- Broader takeaways:
 - **1** Non-Gaussian models of DGP are helpful for understanding belief formation
 - **2 Combining** experiments + surveys useful for assessing important features

THANK YOU!

tdesilva@stanford.edu

thesmar@mit.edu

FACT 1: RAW GROWTH

de Silva, Larsen-Hallock, Rej, Thesmar

FACT 1: PERCENT GROWTH

FACT 1: US FIRMS

FACT 1: FOREIGN FIRMS

Back

FACT 1: INDIVIDUAL-LEVEL FORECASTS

FACT 1: REMOVING TIME FES

FACT 1: ADJUSTING FOR TIME-VARYING AGGREGATE VOLATILITY

FACT 1: VARIATION WITH ANALYST EXPERIENCE

Back

	ρ	σ_u	σ_ϵ	ν	λ
Estimate	0.529	0.631	1.325	2.533	0.290
Std. Error	0.041	0.038	0.100	0.083	0.023

FULL SAMPLE MSE LOSS: KALMAN FILTER

				u				
ρ	2.1	2.5	2.533	3.0	3.5	4.0	4.5	5.0
0.1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
0.2	0.1%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	0.0%
0.3	0.2%	0.4%	0.4%	0.3%	0.2%	0.2%	0.1%	0.1%
0.4	0.4%	0.7%	0.7%	0.6%	0.4%	0.3%	0.2%	0.2%
0.5	0.6%	1.1%	1.1%	0.9%	0.7%	0.5%	0.4%	0.3%
0.529	0.7%	1.2%	1.2%	1.0%	0.8%	0.6%	0.4%	0.3%
0.6	1.0%	1.6%	1.6%	1.3%	1.0%	0.7%	0.5%	0.4%
0.7	1.4%	2.2%	2.2%	1.8%	1.4%	1.0%	0.8%	0.6%
0.8	1.9%	3.0%	2.9%	2.4%	1.8%	1.4%	1.1%	0.8%
0.9	2.5%	3.6%	3.6%	3.0%	2.3%	1.8%	1.4%	1.1%

				u				
ρ	2.1	2.5	2.533	3.0	3.5	4.0	4.5	5.0
0.1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
0.2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
0.3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
0.4	0.0%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%
0.5	0.1%	0.1%	0.1%	0.1%	0.1%	0.0%	0.0%	0.0%
0.529	0.1%	0.1%	0.1%	0.1%	0.1%	0.0%	0.0%	0.0%
0.6	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.0%	0.0%
0.7	0.1%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%	0.0%
0.8	0.2%	0.3%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%
0.9	0.2%	0.3%	0.3%	0.2%	0.2%	0.1%	0.1%	0.1%

APPROXIMATING RE WITH STATE-DEPENDENT FILTER

$$egin{aligned} \mathcal{F}_t egin{aligned} \mathcal{F}_$$

APPROXIMATING RE WITH STATE-DEPENDENT FILTER

$$egin{aligned} \mathcal{F}_t egin{aligned} \mathcal{F}_$$

OUT-OF-SAMPLE COMPARISON WITH KALMAN FILTER

Note: γ_0, γ_1 estimated using past data only

