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MOTIVATION

• Large recent literature documenting predictability in expectation errors
• Underreaction: lab + field, often short-term or consensus forecasts
• Overreaction: lab + field, often longer-term individual forecasts

• Models to explain this predictability typically have two ingredients

1 Simple DGP for forecasting variable (e.g. AR1 with normal shocks)
2 Biases given known DGP (e.g. diagnostic expectations)

• However, many variables have non-Gaussian DGPs with Pareto tails Gabaix 09

• Challenge: hard to study beliefs because rational expectations become intractable

• This paper: study expectations formation in the presence of “fat” tails
• Takeaway: helps match data + parsimonious model of under & overreaction
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WHAT WE DO

1 Document three facts using analysts forecasts of sales growth from IBES

1. Forecast errors are non-linear in revisions: underreaction in bulk, overreaction in tails
2. Distribution of growth has non-Gaussian “fat” tails
3. Expected future growth is non-linear in current growth

2 Show that a model of beliefs with two ingredients can explain these three facts
1. DGP = persistent component + non-Gaussian shock ⇒ Facts #2 and #3
2. Forecasters use optimal expectations (partially) ignoring fat tails ⇒ Fact #1

3 Provide additional evidence in support of our theory

1. Estimate the model and show it quantitatively three facts
2. Adding fat tails to DGP in experiment ⇒ non-linear error-revision relationship
3. Returns to momentum are positive in bulk, but exhibit mean-reversion in tails

⇒ Allowing for fat tails is helpful for understanding belief formation!
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RELATED LITERATURE

1 Empirical evidence on under and overreaction in expectations

2 Models of under or overreaction in individual expectations

3 Models of under and overreaction in individual expectations

4 Models of expectations with unknown/misspecified DGPs

5 Statistical models with non-Gaussian dynamics
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RELATED LITERATURE

1 Empirical evidence on under and overreaction in expectations
• Underreaction: lab Benjamin 19, ST earnings Bouchaud et al. 19, revenues Ma et al. 2024,

ST rates Wang 21, macro (consensus) Coibion-Gorodnichenko 15

• Overreaction: lab Afrouzi et al. 23, LT earnings growth Bordalo et al. 19, LT rates Giglio-Kelly

18, d’Arienzo 20, macro (individual) Bordalo et al. 20
• Contributions:

1 Field: evidence of both within same forecasting variable + horizon
2 Lab: non-linearity in overreaction depends on the Pareto tail of DGP

2 Models of under or overreaction in individual expectations

3 Models of under and overreaction in individual expectations

4 Models of expectations with unknown/misspecified DGPs

5 Statistical models with non-Gaussian dynamics
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RELATED LITERATURE

1 Empirical evidence on under and overreaction in expectations

2 Models of under or overreaction in individual expectations

3 Models of under and overreaction in individual expectations
• Experience effects/constant-gain learning Malmendier-Nagel 16, Nagel-Xu 19

• Selective recall with similarity and interference Bordalo et al. 22, 23

• Shrinkage towards average persistence or precision Wang 21, Augenblick et al. 24

• Overreaction to category-specific features Kwon-Tang 25

• Within vs. across-category comparisons Graeber et al. 24

• Contribution: model with under + overreaction within category/DGP

4 Models of expectations with unknown/misspecified DGPs

5 Statistical models with non-Gaussian dynamics
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RELATED LITERATURE

1 Empirical evidence on under and overreaction in expectations

2 Models of under or overreaction in individual expectations

3 Models of under and overreaction in individual expectations

4 Models of expectations with unknown/misspecified DGPs
• Natural expectations Fuster et al. 10, 11

• Learning Kozlowski et al. 20, Singleton 21, Farmer et al. 24, Dew-Becker et al. 24

• No restrictions on the DGP de Silva-Thesmar 24

• Our focus: misspecified model of distribution in the tails (could come from learning)

5 Statistical models with non-Gaussian dynamics
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RELATED LITERATURE

1 Empirical evidence on under and overreaction in expectations

2 Models of under or overreaction in individual expectations

3 Models of under and overreaction in individual expectations

4 Models of expectations with unknown/misspecified DGPs

5 Statistical models with non-Gaussian dynamics
• Pareto tails, especially in firm growth Gabaix 09, Stanley et al. 96, Moran et al. 24

• Skewness + kurtosis in income Guvenen et al. 14, 21, Braxton et al. 25

• Contribution: connect with models of belief formation in a tractable way
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OUTLINE

1 Three Key Facts
Fact 1: Non-Linear Error-Revision Relationship
Fact 2: Fat Tails in the Distribution of Growth
Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

3 Additional Model Predictions
Quantitative Fit
Forecasting Experiment
Return Momentum

4 Conclusion
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DATA AND VARIABLES

• Sample: 122K observations from 2000-2023 of US and foreign firms in IBES

• Forecasting variable:

git ≡ log salesit − log salesit−1 year

• Advantages relative to EPS: larger sample + stationary
• git standardized by firm: accounts for heterogenous DGPs Wyatt-Bouchaud 03

• Forecasts:

Ftgit+h ≡ log Ftsalesit+h years − log Ftsalesit+(h−1) years

• Ft = consensus analyst forecasts after year t FY-end announcement
• Ftgit+h standardized using same firm-specific mean and SD as git

• Ignores a Jensen’s term, but results similar with % growth
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COIBION-GORODNICHENKO ERROR-REVISION REGRESSIONS

git+1 − Ftgit+1︸ ︷︷ ︸
forecast error

= α+ β (Ftgit+1 − Ft−1git+1)︸ ︷︷ ︸
forecast revision

+ϵit+1

• β ̸= 0 is inconsistent with rational expectations
• Revisions are in forecasters’ information set ⇒ should not predict errors

• β > 0 ⇒ revisions do not update “enough” ⇒ underreaction Bouchaud et al. 19

• β < 0 ⇒ revisions update “too much” ⇒ overreaction Bordalo et al. 19

• Now a standard way of characterizing deviations from RE across datasets
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FACT 1: NON-LINEAR ERROR-REVISION RELATIONSHIP

• Forecasts underreact and overreact within same variable and horizon
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UNDERREACTION IN THE BULK OF THE DISTRIBUTION...

• Between 10-90% of revisions, error-revision slope is positive Bouchaud et al. 19
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... BUT OVERREACTION IN THE TAILS!

• Between 0-10%

and 90-100%

of revisions, error-revision slope is negative
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ADDITIONAL RESULTS AND ROBUSTNESS

1 Not driven by within-firm adjustment: holds with raw growth

2 Does not reflect omitted Jensen’s term: holds with percent growth

3 Does not reflect sample: similar for both US and foreign firms

4 Not specific to sales growth: present with earnings-price ratios

5 Not driven by aggregation: present in individual forecasts

6 Driven by cross-section not time-varying aggregate mean or volatility

7 Limited evidence of learning: does not vary with analyst experience
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TAILS OF git ARE FATTER THAN GAUSSIAN
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TAIL BEHAVIOR IN TOP DECILES IS APPROXIMATELY A POWER LAW

Power Law : logP(|git | > x) = −ν log x + constant
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TAIL BEHAVIOR IN TOP DECILES IS APPROXIMATELY A POWER LAW

Power Law : logP(|git | > x) ≈ −2.7 log x + constant
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FACT 3: E(git |git−1) IS NON-LINEAR

de Silva, Larsen-Hallock, Rej, Thesmar 13



OUTLINE

1 Three Key Facts
Fact 1: Non-Linear Error-Revision Relationship
Fact 2: Fat Tails in the Distribution of Growth
Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

3 Additional Model Predictions
Quantitative Fit
Forecasting Experiment
Return Momentum

4 Conclusion

de Silva, Larsen-Hallock, Rej, Thesmar 13



DATA-GENERATING PROCESS

• DGP for sales growth (dropping i subscripts):

gt+1 = g∗
t+1 + σϵϵt+1 ϵt ∼ f (·) var(ϵt) = 1

g∗
t+1 = ρg∗

t + σuut+1 ut ∼ N(0, 1)

• gt is a combination of persistent & transitory processes Bansal-Yaron 04, Lettau-Wachter 07

• g∗
t = unobservable persistent latent state

• ϵt = transitory shock with Pareto tail: f (ϵ) ∝ ϵ−ν as |ϵ| −→ ∞, where ν > 2

• Remarks:
• If ϵt was Gaussian, rational expectation would be the Kalman filter
• Key: tail parameter in ut larger than ϵt , otherwise inconsistent with Fact 3
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DGP REPLICATES FACTS 2 AND 3

gt+1 = g∗
t+1 + σϵϵt+1 ϵt ∼ f (·) var(ϵt) = 1

g∗
t+1 = ρg∗

t + σuut+1 ut ∼ N(0, σ2
u)

• Replicates Fact 2: ϵt has Pareto tail ν and ut is normal ⇒ gt has Pareto tail

• What about Fact 3: E(gt+1|gt) is non-linear in gt?
• Challenge: no closed-form expression E(gt+1|gt) unless ϵt Gaussian

• Result (Tweedie’s formula): If h(·) is the observable marginal PDF of gt , then

• In bulk of distribution, gt ≈ Gaussian ⇒ log h(gt) ≈ − g2
t

2σ2
g
+ constant
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• Challenge: no closed-form expression E(gt+1|gt) unless ϵt Gaussian

• Result (Tweedie’s formula): If h(·) is the observable marginal PDF of gt , then

d
dg

E(gt+1|gt) = ρσ2
g∗ ·

gt

σ2
g

↗ gt
d
dg

• In bulk of distribution, gt ≈ Gaussian ⇒ log h(gt) ≈ − g2
t

2σ2
g
+ constant

• Intution: moderate values of gt likely reflect g∗
t ⇒ likely persistent
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E(gt+1|gt) = ρσ2
g∗ ·

ν

gt
↘ gt

d
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• In tails of distribution, gt ≈ Pareto ⇒ log h(gt) ≈ −ν log(gt)

• Intuition: extreme values of gt likely reflect ϵt ⇒ likely transitory

de Silva, Larsen-Hallock, Rej, Thesmar 15



ONE DEPARTURE FROM RATIONAL EXPECTATIONS REPLICATES FACT 1

• Assumption: agents think ϵt ∼ N(0, 1) but otherwise rational ⇒ Kalman filter

• Result: In steady-state,

E(errort+1 | revisiont)

|revisiont |→∞−−−−−−−−→ − C × revisiont < 0

• Large revisiont reflects ϵt or ϵt−h, but forecasters overreact ignoring its transitory

• Result: In steady-state, there exists a R > 0 where:

E
(
errort+1 × revisiont

∣∣|revisiont | < R
)
> 0

• Overreaction in tails + unbiased on average ⇒ underreaction in bulk ⇒ Fact 1
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CONNECTION TO INSENSITIVITY TO SIGNAL STRENGTH

• Evidence of insensitivity to signal strength in lab inference problems
• Overreaction to weak + underreaction to strong signals Augenblick et al. 24, Ba et al. 24

• Challenge: how to generalize this behavior to a time-series setting?

• Result: Given our DGP,

var(gt+1|gt) = σ2
g + ρ2σ4

g∗
d2

dg2 log h(gt)

• Conditional variance is lower/higher when log density is concave/convex
• Bulk: log density is concave ⇒ strong signal, and have underreaction
• Tails: log density is convex ⇒ weak signal, and have overreaction

• Ignoring fat tails looks like ignoring signal strength in time-series setting!
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OUTLINE

1 Three Key Facts
Fact 1: Non-Linear Error-Revision Relationship
Fact 2: Fat Tails in the Distribution of Growth
Fact 3: Expected Growth is Non-Linear in Past Growth

2 Model of Expectations Formation

3 Additional Model Predictions
Quantitative Fit
Forecasting Experiment
Return Momentum

4 Conclusion
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MODEL FIT: DGP

• Estimate DGP parameters using SMM by matching Facts 2 and 3
• Assume ϵ ∼ t-distribution with ν degrees of freedom

• Parameter estimates: ρ = 0.53, ν = 2.53, σu = 0.63, σϵ = 1.33 Standard Errors
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MODEL FIT: BELIEFS

Kalman Filter: λ = 1

Estimated λ = 0.29
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• Given DGP, model generates Fact 1 qualitatively, but not quantitatively
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t gt+h = λFtgt+h + (1 − λ)Etgt+h︸ ︷︷ ︸

use particle filter
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MODEL FIT: BELIEFS

Kalman Filter: λ = 1 Estimated λ = 0.29
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• Allow anchoring to RE: Fλ
t gt+h = λFtgt+h + (1 − λ)Etgt+h

• Shrinkage between “default” and RE á la bounded rationality Fuster et al. 10, Gabaix 19
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IS THE KALMAN FILTER A REASONABLE DEFAULT?

1 It is simple, like default models in Fuster et al. 10 and Gabaix 19

2 Accuracy loss relative to RE is small: 1.2% reduction in MSE
• With λ = 0.29, reduction in MSE is only 0.1%

3 Kalman filter outperforms RE in small samples with learning
• Need T = 100 for deviations from Kalman filter to outperform out-of-sample
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OUTLINE
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Fact 1: Non-Linear Error-Revision Relationship
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EXPERIMENTAL DESIGN

• Design follows Afrouzi et al. 23: participants make one and two-period forecasts

• 403 MTurk participants make 40 forecasts ⇒ 16K observations

• DGPs: 1. rescaled estimated DGP + 2. Gaussian AR1 with ρ = 0.2 Afrouzi et al. 23
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FAT TAILS CREATE NON-LINEAR ERROR-REVISION RELATIONSHIP

Dependent Variable: Error

Gaussian AR1 Estimated DGP
(1)

(2) (3) (4)

Revision -0.44***

-0.39 -0.41*** 0.97**

(0.02)

(0.41) (0.01) (0.39)

Revision × Bottom 40%

-0.03 -1.46***
(0.42) (0.39)

Revision × Top 40%

-0.11 -1.41***
(0.41) (0.40)

Constant and Main Effects Included ✓

✓ ✓ ✓

SEs Clustered by Participant ✓

✓ ✓ ✓

Number of Observations 6,942

6,942 15,717 15,717
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POSITIVE MOMENTUM IN BULK + MEAN-REVERSION IN TAILS

• Campbell 91 + assume constant Ft(rt+k) & earnings growtht = γ × gt

⇒ rt+1 = r + γ (Ft+1 − Ft)
∞∑

k=0

ck gt+1+k

Model

Data: Below Median Market Cap
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CONCLUSION

• Main fact: forecast errors are non-linear in forecast revisions
• Underreaction in the bulk of the distribution, overreaction in the tails

• One deviation from RE can explain this: ignoring fat tails
• Intuition: extreme realizations are less persistent than forecasters realize
• Provides a parsimonious model of under and overreaction within a DGP
• Also consistent with evidence from experiments and asset prices

• Broader takeaways:

1 Non-Gaussian models of DGP are helpful for understanding belief formation
2 Combining experiments + surveys useful for assessing important features
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THANK YOU!
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FACT 1: RAW GROWTH
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FACT 1: PERCENT GROWTH
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FACT 1: US FIRMS
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FACT 1: FOREIGN FIRMS
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FACT 1: EPS
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FACT 1: INDIVIDUAL-LEVEL FORECASTS
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FACT 1: REMOVING TIME FES
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FACT 1: ADJUSTING FOR TIME-VARYING AGGREGATE VOLATILITY
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FACT 1: VARIATION WITH ANALYST EXPERIENCE
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ESTIMATED PARAMETERS WITH STANDARD ERRORS

ρ σu σϵ ν λ

Estimate 0.529 0.631 1.325 2.533 0.290
Std. Error 0.041 0.038 0.100 0.083 0.023
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FULL SAMPLE MSE LOSS: KALMAN FILTER

ν
ρ 2.1 2.5 2.533 3.0 3.5 4.0 4.5 5.0

0.1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.2 0.1% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0%
0.3 0.2% 0.4% 0.4% 0.3% 0.2% 0.2% 0.1% 0.1%
0.4 0.4% 0.7% 0.7% 0.6% 0.4% 0.3% 0.2% 0.2%
0.5 0.6% 1.1% 1.1% 0.9% 0.7% 0.5% 0.4% 0.3%
0.529 0.7% 1.2% 1.2% 1.0% 0.8% 0.6% 0.4% 0.3%
0.6 1.0% 1.6% 1.6% 1.3% 1.0% 0.7% 0.5% 0.4%
0.7 1.4% 2.2% 2.2% 1.8% 1.4% 1.0% 0.8% 0.6%
0.8 1.9% 3.0% 2.9% 2.4% 1.8% 1.4% 1.1% 0.8%
0.9 2.5% 3.6% 3.6% 3.0% 2.3% 1.8% 1.4% 1.1%

Back

de Silva, Larsen-Hallock, Rej, Thesmar 36



FULL SAMPLE MSE LOSS: ESTIMATED λ

ν
ρ 2.1 2.5 2.533 3.0 3.5 4.0 4.5 5.0

0.1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.4 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
0.5 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
0.529 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
0.6 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%
0.7 0.1% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0%
0.8 0.2% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1%
0.9 0.2% 0.3% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1%
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APPROXIMATING RE WITH STATE-DEPENDENT FILTER

Ftgt+h = ρhFtg∗
t Ftg∗

t = (1 − Kt)Ft−1g∗
t + Ktgt

Kt = K
γ0

1 + exp(|gt − Ft−1gt | − γ1)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
One-Period Ahead Rational Expectation

0.6

0.4

0.2

0.0

0.2

0.4

0.6

On
e-

Pe
rio

d 
Ah

ea
d 

Fo
re

ca
st

Kalman Filter: R2 = 0.625
State-Dependent Kalman Filter: R2 = 0.997
45-Degree Line

de Silva, Larsen-Hallock, Rej, Thesmar 38



APPROXIMATING RE WITH STATE-DEPENDENT FILTER

Ftgt+h = ρhFtg∗
t Ftg∗

t = (1 − Kt)Ft−1g∗
t + Ktgt

Kt = K
γ0

1 + exp(|gt − Ft−1gt | − γ1)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
One-Period Ahead Rational Expectation

0.6

0.4

0.2

0.0

0.2

0.4

0.6
On

e-
Pe

rio
d 

Ah
ea

d 
Fo

re
ca

st

Kalman Filter: R2 = 0.625
State-Dependent Kalman Filter: R2 = 0.997
45-Degree Line

de Silva, Larsen-Hallock, Rej, Thesmar 38



OUT-OF-SAMPLE COMPARISON WITH KALMAN FILTER
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