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1 Introduction

A fundamental challenge in empirical settings is to disentangle the effects of supply and de-

mand. Approaches taken in the literature range from reduced form (for instance, unobserved

heterogeneity models, e.g., Abowd et al. (1999)), to those blending instrumental variables

and structural specifications (e.g., Berry et al. (1995), MacKay and Miller (forthcoming))

to highly structural (e.g., Olley and Pakes (1996)). While sometimes the elasticities of

prices and quantities with respect to supply and demand are of interest, supply and demand

“shocks” themselves – unpredictable innovations to supply or demand – can also offer impor-

tant insights. This is often the case, for example, in studies of credit markets (e.g. Khwaja

and Mian (2008), Greenstone et al. (2020), Chava and Purnanandam (2011), or Amiti and

Weinstein (2018)) – researchers want to measure how much of an observed change in credit

quantity may be associated with a change in demand from the firm, versus a change in credit

supplied by the bank. This knowledge may allow policymakers, for instance, to understand

whether credit fluctuations are supply- or demand-driven, and hence craft an appropriate

policy response. For concreteness, we maintain the firm-bank credit market setting as a

running example throughout this paper.

Credit markets are an example of a bipartite network – one in which there are two

types of agents, who form relationships with agents of the other type, but not their own

type. This paper studies the many-to-many bipartite network setting. Although specialised,

this setting is actually relatively common in applied work and has received considerable

methodological attention, building on the seminal contribution of Abowd et al. (1999). Other

empirical environments include importers and exporters and many types of financial markets

where some firms serve as dealers of a type of asset to collections of buyers; for a review

of such settings, see Bonhomme (2020). While Abowd et al. (1999) originally intended

to recover permanent characteristics of the workers and the employers as fixed effects, the

same methodology has been widely used to identify supply and demand shocks, under a

homogeneity assumption. That is, a firm experiences a single demand shock in each period,

which uniformly impacts the quantity of credit it demands across all banks with which it

interacts. Likewise, each bank adjusts its supply of credit to all firms uniformly. As a result,

demand shocks are purely firm-specific objects, and supply shocks bank-specific objects, and

the “shocks” are thus estimable as simple fixed (or random) effects in a linear regression

(e.g., Abowd et al. (1999), Bonhomme (2020), Khwaja and Mian (2008), Greenstone et al.

(2020), Amiti and Weinstein (2018)). These are very strong assumptions, at odds with

models of credit shock transmission; they also rather limit the types of policy questions that

a researcher can answer. Indeed, after a tightening of some regulatory requirement for banks,
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a policymaker would be keenly interested to know if banks shift credit away from riskier firms

towards safer borrowers: What are the distributional effects of regulatory changes? This is

not possible in the standard framework since all shocks are necessarily homogeneous by

assumption.

In this paper, we depart from the simple additive model studied by Abowd et al. (1999)

and others to consider one in which each relationship has specific – generally unique – as-

sociated supply and demand shocks in each period. To do so, we crucially study a pair of

innovations to observed outcomes – price and quantity, say – rather than a single outcome,

which has typically been the change or growth in loan quantity in the credit markets litera-

ture.1 We assume that the innovation to price and quantity in each firm-bank relationship

is a linear combination of the firm-bank specific supply and demand shocks, with the as-

sociated matrix of elasticities constant across firm and bank pairs. Demand shocks from

different firms to the same bank may be correlated, as may demand shocks from one firm to

different banks – and vice versa for supply shocks from banks to firms. The key restriction

is that the demand shock from one firm to a particular bank is uncorrelated with the supply

shock from a different bank to that firm; symmetrically, the supply shock from one bank

to a particular firm is uncorrelated with the demand shock from a different firm to that

bank. This is a largely innocuous assumption, since it is much weaker than the theoretical

properties usually stipulated for supply and demand shocks. Under these assumptions, we

show that the matrix of elasticities linking price and quantity to supply and demand shocks

is non-parametrically identified from two covariance matrices: one measuring the covariance

of price and quantity innovations across firms, holding the lending bank fixed, and the other

measuring the covariance of price and quantity innovations across banks, holding the bor-

rowing firm fixed. Given these matrices, the elasticities are available in closed form and the

shocks themselves are recoverable by simply inverting the relationship between price and

quantity and the shocks. Crucially, the identification argument requires only a single period

of data, meaning that while elasticities are assumed constant across relationships, they need

not be unduly restricted over time.

Next, we establish the asymptotic properties of an estimator based on the sample coun-

terparts of those two covariance matrices. As is typical in network settings, this is a non-

standard problem, since, even as the number of firms and banks grows large, dependence of

new observations with previous observations does not in general fade. Asymptotically, the

final observations may be strongly correlated with the first – for instance if the final bank

lends to a common firm with the first bank. Naturally, some further restrictions are needed

1This is not strictly novel; Graeve and Karas (2014) also consider price and quantity in a SVAR-based
study of bank runs.
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on the shocks – in particular, we assume that supply and demand shocks are independent,

and can be decomposed into two components: one that may be correlated across firms and

one that may be correlated across banks. Then, under suitable assumptions on the growth

rates of the numbers of banks and firms, the sample counterparts of these covariance ma-

trices are consistent. The resulting estimator for the matrix of elasticities is also consistent

and asymptotically normal. The asymptotic variance may be consistently estimated with a

surprisingly simple estimator, very similar to a cluster-robust variance estimator. Crucially,

the assumptions required for these asymptotic results do not imply that the network of firms

and banks is unrealistically dense; there need only be some non-vanishing fraction of “large”

firms/banks whose number of trading partners increases at the same rate as the total num-

ber of banks/firms. All of these results extend to estimation strategies where data is pooled

across multiple periods in order to obtain a richer sample.

We examine the performance of our proposed estimator in simulations. The simulations

clearly demonstrate the consistency of our approach for the matrix of elasticities, and exhibit

relatively small biases even in samples considerably smaller than those present in the data.

Predictably, as more periods of data are pooled together, there are efficiency gains and

reduced bias, even when the shocks exhibit persistence over time. Using our asymptotic

variance estimators, simple t-tests control size well at the nominal level for sample sizes

in the range observed in the data. When the shocks are persistent, the autocorrelation-

robust version of our variance estimator continues to control size at the nominal level. Next,

we compare our estimates of the average demand/supply shock a firm/bank experiences to

those obtained using the standard fixed effects approach. The simulations show that, even

if a homogeneous “average shock” is the object of interest, taking averages of the firm-

bank specific shocks we recover is much more accurate than estimating fixed effects. This

is because our estimator uses information in both the firm and bank dimensions to separate

supply or demand shocks, rather than just one or the other.

We use the new methodology to study European credit markets from 2019-2023 using

the AnaCredit dataset. We recover considerable time variation in the elasticities of price

and quantity to supply and demand shocks over the pandemic, inflation, and monetary

policy tightening periods. With each time period, there is also considerable heterogeneity

by country. Representing the elasticities as supply and demand curves demonstrates that

markets are frequently characterised by inelastic supply or demand, but that this again varies

by period and country.

Studying the shock distributions uncovers a wealth of findings. We fit a series of fixed

effects models to the estimated shocks and find that fixed effects, like those the literature

relies on, explain very little of the variation in the distributions we uncover. Notably, a
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vanishingly small share of variation in demand shocks is explained by fixed effects. This is

consistent with further findings that the within-firm and within-bank variation is compa-

rable to or larger than the between-firm or between-bank variation in demand and supply

shocks, respectively. Crucially, the variation in both demand and supply shocks not cap-

tured by standard fixed effects is economically meaningful. It is strongly correlated with

relationship-specific variables measuring loan type and the importance of the relationship.

The signs of these relationships vary with the period considered, yet they generally remain

highly significant. We show that time variation in the obtained relationships are linked to

changes in monetary and macroprudential policy. A bank’s subjective assessment of a firm’s

probability of default predicts heterogeneous variation in supply shocks but has zero correla-

tion with demand shocks; this strongly indicates that demand and supply shocks have been

reliably identified. Removing fixed effects from the regression and including bank- or firm-

level regressors reveals significant relationships with the shocks but even less explanatory

power. Fixed effects still capture unobservable heterogeneity not explained by the covariates

available in AnaCredit, even though they leave the majority of shock variation unexplained.

In a final exercise, we also show how studying heterogeneity in the credit demand and sup-

ply shock may resolve ambiguities or hidden effects when analyzing heterogeneity in credit

growth and interest rate changes.

This paper builds on several literatures. We are not aware of any direct antecedents

for the model we propose, but it is closely related to both fixed and random effects ap-

proaches to modeling heterogeneity in bipartite networks. In particular, it can be viewed as

a generalisation of both Abowd et al. (1999) as well as earlier work by Chamberlain (1980);

the latter is perhaps closer since it views the underlying “shocks” as random effects whose

moments are to be estimated, as opposed to objects to be directly estimated. However,

these approaches maintain the same key homogeneity assumption discussed above – each

firm has one fixed/random effect “demand shock” in a given period, and each bank a single

fixed/random effect “supply shock”. Any heterogeneity is noise in the error term (typically

i.i.d. within each period), as opposed to an object to be studied. In contrast, we model each

relationship as experiencing two unique shocks in each period – one which has a structural in-

terpretation as a demand shock, and the other as a supply shock. Some papers, like Graham

et al. (2014), do consider extensions to nonlinear random effects models. However, in these

models the corresponding effects are still assumed to be some function of the homogeneous

effects from each side of the market. Rather than assuming that the demand shocks a firm

issues to different banks are all identical, we assume merely that there exists some non-zero

correlation between them, and likewise for a bank’s supply shocks. Indeed, the possibility of

homogeneous shocks, like in the fixed effects model of Abowd et al. (1999), or random effects
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models, is nested as a special case, as we discuss below. However, it is also possible to view

our contribution as providing a structural extension of the Abowd et al. (1999) model. For

instance, the Abowd et al. (1999) methodology could model the conditional mean of the the

innovations to price and quantity, with our model providing a structural interpretation to

the error terms arising from that familiar specification. For these reasons, we view our model

as highly versatile: it relaxes a key homogeneity assumption and nests existing models, but

can alternatively be seen as a complement to those models.

These empirical results have important implications in several directions. First, they

provide insights potentially useful for policy, by characterising how price and quantity are

likely to respond to shocks within a given credit market, as well as illustrating how firms’

credit demand and banks’ credit supply respond to different types of events at a granular,

distributional level. Second, by testing the correlations between supply and demand shocks

and various observable characteristics, our results allow a laboratory within which identifi-

cation assumptions may be tested for use in less data-rich credit market datasets. Finally,

our results provide important targets for modeling exercises: we provide correlations for a

bank’s credit supply with firm characteristics, for instance, that modelers can seek to match.

While the setting of the problem is novel, the structure of the identification argument

parallels strategies more commonly found in time series settings. In particular, it is con-

nected to identification approaches based on heteroskedasticity, for example in SVARs, see

for instance Rigobon (2003). In these methodologies, two or more covariance matrices are

used to identify a common matrix of elasticities. However, to the best of our knowledge, such

arguments have never been used for objects other than simple variance-covariance matrices;

here, we apply the argument to covariance matrices between different firms and between

different banks. Ostensibly, the identification strategy may seem reminiscent of the “granu-

lar IV” approach of Gabaix and Koijen (2024), since both exploit idiosyncratic variation in

demand shocks for identification. However, our contribution uses the variation within each

firm’s demand shocks – across its relationships – for identification, and focuses on higher

moments. Moreover, our identification rests on higher moments of the shocks – their co-

variance across relationships – while granular identification exploits the fact that a cleverly

constructed weighted average of demand is a valid instrument for aggregate demand (in the

price equation) or price (in the demand equation). A key feature of granular identification

is also the use of a common price across entities, while we require price variation not only

at the entity level, but the relationship level.

While asymptotic analysis is largely missing from the original Abowd et al. (1999)

paradigm, it was recently provided by Jochmans and Weidner (2019), who note that in

the real world data studied by papers like these, incidental parameters bias arising from
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many firms having a small number of relationships means that these estimates may be be

unreliable. In contrast, the methodology we propose leverages information from all firms

and all banks simultaneously to estimate the elasticity matrix decomposing price and quan-

tity innovations into shocks. Note that a straightforward comparison of rates is not possible

since this paper proposes to consistently estimate the matrix of elasticities mapping observed

innovations to shocks, while Jochmans and Weidner (2019) provide conditions for the consis-

tency of the fixed effects – and thus shock estimates – themselves. Their variance bounds are

complicated functions not only of the degree of a given firm or bank, but also those of every

entity it is connected to. However, we do discuss inference for moments of the recovered

shocks below; the sampling uncertainty around an estimate of the average shock associated

with any firm or bank is inversely proportional to its degree.

Empirically, this paper is related to the literature recovering supply and demand shocks

in corporate credit markets – much of which owes its origins to Abowd et al. (1999). For

instance, Greenstone et al. (2020) use a shift-shares approach to recover bank lending supply

shocks at the county level. Khwaja and Mian (2008) exploit an exogenous event impacting

bank liquidity to estimate heterogeneous credit supply shocks to firms and their effects. Amiti

and Weinstein (2018) develop a methodology to separate firm credit demand shocks from

bank supply shocks and quantify their effects on overall investment dynamics. However, all

of these approaches maintain the assumption of homogeneous shocks, implicitly or explicitly

making the assumptions underlying a fixed effects model, and ultimately estimating at least

demand shocks as fixed effects.

The remainder of the paper is organised as follows. Section 2 describes the setting, exist-

ing methodologies, and the novel identification argument. Section 3 defines the estimators

and establishes their asymptotic properties. Section 4 presents simulation results. Section 5

introduces the AnaCredit dataset and analyses our key credit market elasticities vary both

across countries and across time. Section 6 estimates the distributions of supply and demand

shocks in the same data and establishes which observable characteristics of firms and banks

explain heterogeneous supply and demand dynamics. Section 7 concludes.

2 Identification

In this paper we consider the loan market between firms and banks, although our results

apply equally to any many-to-many bipartite network. Loan quantities between a firm-

bank pair are simultaneously determined by both supply and demand effects. We want to

decompose changes in loan quantity into supply- and demand-driven components. Typically,

this has been achieved by assuming a standard Abowd et al. (1999)-style model for changes
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in loan volume with unobserved heterogeneity:

∆l∗fb = df + sb + ΓXfb + ϵfb, f = 1, . . . , F, b = 1, . . . , B, (1)

where ∆l∗fb is a potential outcome that is realized if firm f has a relationship with bank b,

and ∆lfb = ∆l∗fbDfb is observed, where Dfb is an indicator for whether a lending relationship

exists between f and b. df is the firm-specific demand component and sb the bank-specific

supply component. Additionally, ϵfb is mean-zero and i.i.d. It is generally assumed that

E [ϵfb|D,X,d, s] = 0, where d, s stack the realised firm/bank effects; that is, X, and the

relationships encoded by D, are strictly exogenous. This allows the use of standard reduced-

form regression techniques. However, it does accommodate endogenous network formation,

since D may only be exogenous after additionally conditioning on X,d, s. Often, models

include a third time subscript on each observation. (1) can be cast as either a fixed effects

or random effects model depending on the setting. The former is most common in classic

treatments of bipartite networks (e.g., Abowd et al. (1999)), as well as leading empirical

studies of credit markets, for instance Greenstone et al. (2020), Khwaja and Mian (2008),

and Amiti and Weinstein (2018). As shown in Abowd et al. (1999), under the exogeneity

assumption above, Γ can be consistently estimated, and we can focus instead on the simpler

model

∆lfb = df + sb + ϵfb, (2)

where it is understood that a) we limit our attention to observed relationships (i.e. Dfb = 1)

and b) any covariates, X, have been partialed out. We will henceforth focus on this simpler

model, and return to the problem of including covariates in Section 3.3. The statistical

properties of the model depend on the structure of the network, but Jochmans and Weidner

(2019) show that the degree (i.e. the number of connections of a firm or bank) appears in the

denominator of the variance (although the numerator also depends in a complicated manner

on the same quantity). This means that – holding certain properties of the network fixed – if

the number of banks a firm interacts with goes to infinity (or vice versa), the firm and bank

effects can be consistently estimated. This is admittedly a strong assumption, but implicitly

underpins the approaches of existing empirical work; otherwise, these estimates suffer from

incidental parameters bias (e.g., Abowd et al. (2004), Andrews et al. (2008), Jochmans and

Weidner (2019)).

A crucial uninterrogated assumption is that demand shocks, df , vary across firms, but,

for a given firm, impact its borrowing from each bank identically. The same is true for

supply shocks, sb, with respect to each firm. Any heterogeneity across relationships is driven

by random noise in ϵfb, which is i.i.d. across firms and banks, and cannot be given any
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structural interpretation. However, it could be the case that, for example, faced with tighter

regulatory requirements or financial conditions, the supply shocks from bank b to different

firms are different — “riskier” firms might face a more negative supply shock as the bank

attempts to rebalance its loan portfolio. Instead of assuming that shocks are homogeneous

for each entity, we will instead make the weaker assumption that they are correlated for each

entity; the associated variation facilitates identification of the relationship-specific shocks.

Allowing for negatively correlated shocks across relationships also allows for the possibility

of substitution effects, which are ruled out in the homogeneous setting. If a firm’s demand

behaviour is better expressed as a distribution of different shocks across lending relationships

(and similarly for banks’ supply shocks), this distribution may be helpful to characterise

heterogeneity in credit dynamics across time, macrofinancial conditions, and policy actions.

2.1 A new model for price and quantity

In this paper, we propose a new model that nests (1) as a special case. A key distinction

of our approach is that we jointly study two simultaneously determined outcome variables –

price and quantity, say – in this case the change in the interest rate paid on loans and the

growth in loan volume. More generally,

ηifb = Ai1u
d
fb + Ai2u

s
fb, i ∈ {1, 2}, (3)

where demand shocks udfb and supply shocks usfb are mean-zero and correlated across f and

b.2 Note that this model nests the structure in (2) by letting

udfb = (df + adfb)/Ai1 (4)

usfb = (sb + asfb)/Ai2 (5)

ϵfb = adfb/Ai1 + asfb/Ai2, (6)

provided that the sequence df is uncorrelated with sb conditional on Dfb. The mapping

between the two models is not unique; there are generally infinitely many ways to decompose

the i.i.d. ϵfb into uncorrelated components adfb, a
s
fb such that the structure in (3) holds. Thus,

one way to view the present model is as a generalisation of the random effects version of (2),

where ϵfb can be decomposed into two components, one of which is associated structurally

with supply, and the other with demand, so there are relationship-specific random effects,

df + adfb and df + adfb, and no additional error term.

Stacking the equations in (3), we will study firm-bank observations ηfb as a linear com-

2Stronger assumptions are introduced in Assumption 3 in order to derive asymptotic properties.
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bination of firm-bank specific demand and supply shocks:

ηfb ≡

(
∆rfb

∆lfb

)
= A

(
udfb
usfb

)
= Aufb. (7)

Only mild assumptions are required for identification. Let D̄ in a conditional expec-

tation denote the remainder of D not specified by the other conditions; for instance, in

E
[
·|Dfb = 1, D̄

]
, D̄ = D−fb.

Assumption 1. The following hold:

1. A is invertible and constant across firm-bank pairs,

2. E
[
ufb|Dfb = 1, D̄

]
= 0,

3. E
[
udfbu

s
fb′|Dfb = 1, Dfb′ = 1, D̄

]
= 0, E

[
udfbu

s
f ′b|Dfb = 1, Df ′b = 1, D̄

]
= 0, b′ ̸= b, f ′ ̸=

f .

A encodes the elasticity of both loan size and interest rates to demand and supply shocks.

Second, the shocks are mean zero. The third point requires that demand shocks from firm

f to one bank b are orthogonal to supply shocks to that firm f from a different bank b′;

demand shocks from one firm f to a bank b are orthogonal to supply shocks from that bank

to a different firm f ′. Crucially, we do not need to make any assumptions about network

formation; the stipulated points must hold in the observed sample (that for which Dfb = 1),

possibly after controlling for some covariates or demeaning (see Section 3.3), but we do

not need to impose any form of exogeneity. This is because the central requirement for

identification is the structure of the identifying equations (e.g., (12) below) with respect

to A, rather than the precise values of the non-zero moments of the shocks. Demeaning

may induce an intercept shift in all shocks for a given time period, but this is analogous to

selecting the reference unit in a fixed effects model. In what follows, unless otherwise noted,

all expectations and covariances should be understood to be taken conditional on D, as in

Assumption 1; however, we suppress the conditioning to avoid notational clutter.

To identify (7), we use two sets of covariance equations. The first is

cov (ηfb, ηf ′b) =

[
A2

11E
[
udfbu

d
f ′b

]
+ A2

12E
[
usfbu

s
f ′b

]
−

A11A21E
[
udfbu

d
f ′b

]
+ A12A22E

[
usfbu

s
f ′b

]
A2

21E
[
udfbu

d
f ′b

]
+ A2

22E
[
usfbu

s
f ′b

] ]
(8)

the covariance of ηfb across firms, holding b fixed. This has the structure

ΣFF ≡ cov (ηfb, ηf ′b) = AΛFFA
′, (9)
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where

ΛFF =

[
E
[
udfbu

d
f ′b

]
0

0 E
[
usfbu

s
f ′b

] ] . (10)

The second set of equations is

ΣBB ≡ cov (ηfb, ηfb′) = AΛBBA
′. (11)

Let θ denote the six free parameters between the entries of A and ΛFF ,ΛBB; while these three

objects contain 8 parameters, two of them must be fixed to impose a scale normalisation.

For instance, we set ΛFF = I2. Together these covariances provide six equations,

m(θ) =

[
vech (ΣFF − AΛFFA

′)

vech (ΣBB − AΛBBA
′)

]
= 0. (12)

Finally, the identification condition is given in Assumption 2:

Assumption 2. ΛFF ̸= cΛBB for any scalar c.

The following identification result is well-known for equations having the structure of

(12) (e.g., Rigobon (2003)).

Proposition 1. If Assumption 2 holds, then θ is the unique solution to (12) up to scale,

sign, and column ordering.

A is identified as long as the covariances between between the two shocks across firms

(holding bank fixed) are not exactly proportional to their covariances across banks (hold-

ing firm fixed). The result follows directly from linear algebra arguments; A is identified

in closed form as the eigenvectors of cov (ηfb, ηf ′b) cov (ηfb, ηfb′)
−1 = AΛFFΛ

−1
BBA

−1. Intu-

itively, separately exploiting heterogeneity within a firm but across banks and within a bank

but across firms provides two sets of linearly independent moments in terms of supply and

demand shocks, which are linked by A.

A itself is of interest, containing the elasticities determining how supply and demand

shocks pass through to loan volume and interest rates. Indeed, A is sufficient to compute

the slopes of the supply and demand curves in the loan market. From A, ufb is additionally

immediately recovered for each firm-bank pair.

3 Estimation and Asymptotic Properties

In this section, we introduce a simple estimator for A and establish its asymptotic properties.
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3.1 Estimation

Estimation proceeds with the sample analogues of the covariances used for identification.

While sample averages, the structure of these estimators is non-standard due to the type of

covariances involved. In particular, the natural estimators for the two covariance matrices

are

SFF =
1

NFF

B∑
b=1

∑
f ′ ̸=f

ηfbη
′
f ′b (13)

SBB =
1

NBB

F∑
f=1

∑
b′ ̸=b

ηfbη
′
fb′ , (14)

where NFF = 1
2

∑B
b=1 Fb(Fb − 1), NBB = 1

2

∑F
f=1Bf (Bf − 1), and Fb is the number of firms

connected to bank b and Bf the banks connected to firm f . Note that sums over the indices

f ′ ̸= f and b′ ̸= b indicate sums over all unique combinations of different indices, without

duplication. We assume without loss of generality that the sample average of ηfb is zero;

this can be achieved by de-meaning the data.

After estimating ΣFF and ΣBB using SFF and SBB, respectively, the sample analogue of

m(θ) is

q(η, θ) =

(
vech (SFF − AΛFFA

′)

vech (SBB − AΛBBA
′)

)
, (15)

where η contains all observations ηfb, b = 1, . . . , B, f = 1, . . . , F . θ̂ is the minimum distance

estimator solving

q(η, θ) = 0 (16)

or equivalently minimising the just-identified minimum distance objective function

Q = q(η, θ)′q(η, θ). (17)

θ̂ is available in close form. In particular, a solution for A in (16) that is unique up to scale,

sign, and column order is

Ã = evec
(
SFFS

−1
BB

)
, (18)

where evec (·) denotes the matrix of left eigenvectors of its argument.

The column order of this initial estimate must be determined – which shock is the demand

shock, and which supply – and a normalisation imposed. We select the column order that
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minimises the Frobenius norm between Ã and

(
1 −1

1 1

)
, so that the first shock is a demand

shock and the second shock is a supply shock. We finally normalise the resulting matrix

such that covariance of both shocks across firms is unity, ΛFF = I2. The matrix resulting

from these transformations is Â. Appendix A formalises this procedure. The value of ΛBB

consistent with this normalisation can be immediately obtained, and hence the full vector θ̂

consistent with the labeling and normalisation.

3.2 Asymptotic properties

While the identification argument needed to recover the supply and demand shocks holds

under mild non-parametric assumptions, slightly stronger assumptions on the shocks facil-

itate asymptotic results. In particular, we assume an additive component structure for the

shocks:

Assumption 3. Demand and supply shocks have the structure

udfb = edfb + vdfb (19)

usfb = esfb + vsfb. (20)

where eifb, i ∈ {d, s} is mean zero and independent of all innovations except for eifb′ and

vifb, i ∈ {d, s} is mean zero and independent of all innovations except for vif ′b. All innovations

have strictly positive variance and finite eighth moments, and

lim
F,B→∞

B

N2
FF

B∑
b=1

var

(∑
f ′ ̸=f

vech(vfbv
′
f ′b)

)
and lim

F,B→∞

F

N2
BB

F∑
f=1

var

(∑
b′ ̸=b

vech(efbe
′
fb′)

)
(21)

are symmetric positive definite, where efb and vfb stack the bank and firm demand and supply

components, respectively.

This structure is flexible enough to capture rich correlation patterns in supply and de-

mand shocks. In particular, edfb and esfb are firm-specific demand and supply components,

respectively, which may be correlated across banks (for a given firm), but are mutually inde-

pendent and independent of bank-specific components and other firms’ supply and demand

components. Likewise, vdfb and vsfb are bank-specific supply and demand components that

may be correlated across firms (for a given bank), but are mutually independent and inde-

pendent of firm-specific components and other banks’ supply and demand components. This

structure allows for (positive or negative) correlation of both demand and supply shocks

across banks, holding firm fixed, or across firms, holding bank fixed. With this flexible
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structure in hand, we can derive the asymptotic distributions of the sample counterparts

of the covariances required for identification and thus that of θ̂. The assumptions on the

variances ensure that asymptotic variances of SFF and SBB are valid variance matrices and

the moment assumptions ensure that they are consistently estimable.

We next impose assumptions on the network structure.

Assumption 4. The following limits hold:

1.

lim
F,B→∞

N

FB
= κ ∈ (0, 1] , N ≡

B∑
b=1

Fb =
F∑

f=1

Bf ; (22)

2.
B

F 2
→ 0 as F,B → ∞; (23)

3.
F

B2
→ 0 as F,B → ∞. (24)

The first point of Assumption 4 is relatively mild; it guarantees that the density of

connections available to the econometrician grows proportionally to B and F , but only for a

non-vanishing share of firms and banks. The latter two do not impose that B and F increase

at the same rate, but rather that neither grows to dominate the other.

Theorem 1. Suppose θ0 ∈ interior(Θ), which is compact. After suitable normalisation and

labeling of the columns of A, under Assumptions 1 to 4, θ̂
p→ θ; Φ̃(θ̂− θ)

d→ N (0,W), where

Φ̃ =

([√
B 0

0
√
F

]
⊗ I3

)
Φ, Φ = E

[
∂q(X, θ)

∂θ′

]
. (25)

More practically, the asymptotic variance of the parameter estimates, θ̂, is given by

Ω = Φ̃−1WΦ̃′−1. Theorem 1 shows that θ̂ is a consistent estimator and that a suitable

rescaling has an asymptotically normal distribution. The proof of Theorem 1 is non-standard,

since the asymptotic framework of Assumption 4 is novel.

As shown in the proof in Appendix B, W is block diagonal, with the diagonal blocks

consisting of matrices WFF and WBB. We now consider the problem of estimating W.

WFF can be estimated using

ŴFF =
B2

N2
FF

1

B

B∑
b=1

(∑
f ′ ̸=f

vech
(
ηfbη

′
f ′b

)
− vech(SFF )

)(∑
f ′ ̸=f

vech
(
ηfbη

′
f ′b

)
− vech(SFF )

)′

(26)
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This is essentially an unbalanced clustered variance formula (over banks) for the mean

of vech
(
ηfbη

′
f ′b

)
, and simply a rescaling of the sample variance of

∑
f ′ ̸=f vech

(
ηfbη

′
f ′b

)
−

vech(SFF ) across b = 1, . . . , B banks. Define ŴBB analogously and let Ŵ =

[
ŴFF 0

0 ŴBB

]
.

Proposition 2. Under Assumptions 1-4, Ŵ
p→ W.

Thus, Ŵ is a consistent estimator for the asymptotic variance in Theorem 1, so we can

conduct inference on parameters of interest in θ̂.

3.3 Including covariates

It is common in models of unobserved heterogeneity to include covariates, as in (1), whose

coefficients, in this setting, can be viewed as nuisance parameters. A more general version

of (7) is then

ηfb = ΓXfb + Aufb. (27)

In Abowd et al. (1999) and other fixed and random effects settings, the coefficients on

observed covariates are typically shown to be consistently estimable, so Xfb can be partialed

out and analysis focus on the heterogeneous effects of interest. The same is true in this

novel setting; Lemma 2 in the Appendix shows that Γ can be consistently estimated under

Assumptions 1-4 and an additional assumption involving Xfb:

Assumption 5. ufb is mean independent of Xfb, given D,

E
[
ufb|Xfb, Dfb = 1, D̄

]
= E

[
ufb|Dfb = 1, D̄

]
, (28)

and Xfb is mean zero for observed relationships,

E
[
Xfb|Dfb = 1, D̄

]
= 0. (29)

This assumption ensures that Xfb can be treated as exogenous within the observed sam-

ple, while refraining from imposing any exogeneity assumptions on network formation with

respect to ufb. Note that the second part is without loss of generality since Xfb can always

be demeaned within the observed sample. Since the coefficients on suitable covariates can be

consistently estimated, the requirement under Assumption 1 that the shocks are mean zero

is without loss of generality, since ηfb may be demeaned in a pre-processing step. Moreover,

if there is a concern that the demand shocks issuing from a subset of firms in the same

industry, for example, may be correlated, the data may be first demeaned by industry.

14



The inclusion of covariates also allows us to recast our model as a complement to proce-

dures like Abowd et al. (1999), rather than an alternative. Indeed, consider the model

Yfb = xFf + xBb + ηfb, (30)

where Yfb, xf , and xb (firm and bank fixed effects) are all 2×1 vectors, and ηfb is modeled as

in (7). This is a standard Abowd et al. (1999) model, except we impose additional structure

on the error term: that is, it is a linear combination of supply and demand shocks, that

are not i.i.d., but rather correlated across firms and banks. This setup allows the researcher

to first control for unobserved firm- and bank-specific characteristics before embarking on

the structural decomposition this paper proposes. However, this strategy relies on there

remaining non-negligible correlation across firms and banks in ηfb after extracting common

variation through the fixed effects in order for the identification condition in Assumption 2

to hold. Moreover, in order for the Â to be consistent, the fixed effects {xFf }, {xBb } must all

be consistently estimated, which in general will require the degree of every firm and bank

to diverge as F,B → ∞, which is a significantly stronger assumption than Assumption 4.

Nevertheless, it is an assumption made implicitly in much of the empirical literature, so may

not be seen as prohibitive in certain settings.

3.4 Exploiting intertemporal variation

So far we have exploited just a single time period to identify and estimate A. However, in

practice the variance of the shocks may be substantial and the number of observations in a

single period may not be that large; for instance, the number of major banks in a particular

country may be modest, or the number of multi-bank firms small. In these cases, pooling

data over several time periods can provide a greater effective sample size and more precise

estimates. Using multiple time periods – adding a third t subscript to ηfb,t – does not impact

the asymptotic results above: the average of T (possibly correlated) consistent and asymp-

totically normal estimators remains consistent and asymptotically normal. If the shocks are

uncorrelated over time, as is typically assumed (in keeping with most theoretical notions of

structural shocks) the original estimator of Ŵ remains consistent for the asymptotic variance,

treating units in each time period as additional banks/firms:

Ŵi.i.d.
FF,T =

B2

N2
FF

1

TB

T∑
t=1

B∑
b=1

(∑
f ′ ̸=f

vech
(
ηfbtη

′
f ′bt

)
− vech(SFF,T )

)(∑
f ′ ̸=f

vech
(
ηfbtη

′
f ′bt

)
− vech(SFF,T )

)′

(31)
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However, if the shocks are serially correlated, an autocorrelation robust estimator is required.

In particular,

Ŵrob
FF,T =

B2

N2
FF

1

TB

B∑
b=1

(
T∑
t=1

∑
f ′ ̸=f

vech
(
ηfbtη

′
f ′bt

)
− vech(SFF,T )

)(
T∑
t=1

∑
f ′ ̸=f

vech
(
ηfbtη

′
f ′bt

)
− vech(SFF,T )

)′

,

(32)

where the only difference is that the estimator now computes the (scaled) variance of B

double sums over t and f ′ ̸= f , instead of simply f ′ ̸= f . Consistency of both follows by the

same arguments as in Proposition 2.

3.5 Studying the shock distributions

When supply and demand shocks are estimated by fixed effects, as in, for instance, Khwaja

and Mian (2008) and Amiti and Weinstein (2018), they are typically treated as consistently

estimated objects to study, rather than generated regressors. Besides conceptual compli-

cations – since shocks are, after all, random variables – consistent estimation requires the

number of connections or “degree” of each bank or firm to tend to infinity, holding network

structure fixed, see for instance Jochmans and Weidner (2019). In our setting, in contrast,

the decomposition between supply and demand shocks is consistently estimated under the

asymptotic framework in Assumption 4, although relationship-specific shocks themselves

cannot be consistently estimated since they are random variables, not parameters. However,

since the shock estimates are a linear combination of observed innovations, they are unbiased

and the estimates converge to the true random shocks as F,B → ∞. As the degree of any

firm or bank increases, the variation in its average estimated shocks also vanishes, in this

sense recovering something comparable to the fixed effects estimates seen in the preceding

literature. We document the performance of such “average heterogeneous shocks” in our

simulation study.

Regressions involving the estimated shocks face a generated regressors problem. Propo-

sition 4 and 5 in Appendix E jointly show that such feasible regression coefficients are

consistent, derive their asymptotic distribution, and provide consistent estimators for their

asymptotic variances. These variance estimators are linear combinations of standard (unbal-

anced) clustered variances. Thus, the estimated shocks may be used as dependent variables

in regressions with only minor modification to standard practice. These results and a detailed

discussion can be found in Appendix E.
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4 Simulations

In this section, we demonstrate the performance of the proposed estimator. We also compare

the estimator’s ability to recover average supply and demand shocks to estimating (7) as a

fixed effects model.

In these simulations, we set

A =

[
0.0761 −0.0687

0.0124 0.0610

]
. (33)

which corresponds to empirical estimates for Italy in the monetary policy tightening subsam-

ple. We also match the moments of the supply and demand shocks to those estimated in that

specification. We consider both i.i.d. shocks and shocks which may have some persistence

in firm and bank components. For i.i.d. shocks, we generate the shocks according to

uifb = zif + zib + zifb, i = {d, s}, f = 1, . . . , F, b = 1, . . . , B, (34)

where each of the components is independent and normally distributed with mean zero and

empirically calibrated variance. For persistent shocks, we use the same structure as before,

but now allow zif and zib to be independent mean-zero AR(1) processes, with autoregressive

parameters matching the data and resulting shock variances equal to those in the i.i.d. case.

We consider three different sample sizes: a small sample, with 10 banks, a small empirical

sample, with 25 banks, a moderate empirical sample (comparable to that in most countries

studied in Section 5) with 100 banks, and a large sample, with 500 banks. In each case, we

set F = 1000B. We consider settings using either a single quarter (T = 1) or 4 quarters of

data (T = 4). We draw relationship dummies uniformly to match the density of the sparse

network structure seen in the data, subject to the constraint that each firm borrows from at

least two banks. For each design, we draw 1000 Monte Carlo samples.

Table 1 reports the mean and standard deviation of the estimates of A. Starting with

the T = 1 case, for B = 10, which is a smaller sample size than in almost all countries

in our empirical application, the bias can be moderately large particularly for A21. These

results are potentially driven by the fact that, with sample sizes this small (with such a

sparse network), complex values for Â are obtained in some samples, so that these statistics

are computed across only those samples for which Â is real. However, as B increases to 25

and then 100, comparable to the order of magnitude observed in most countries, the bias

decreases quickly for all parameters. The standard deviation falls steadily for all parameters.

Finally, for B = 500, all biases are negligible and the standard deviations are vanishingly
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Table 1: Bias and standard deviation of parameter estimates

B = 10 B = 25 B = 100 B = 500
T = 1, i.i.d. bias s.d. bias s.d. bias s.d. bias s.d.
A11 -0.04 0.03 -0.02 0.02 -0.01 0.01 0.00 0.00
A21 -0.32 0.02 -0.09 0.02 -0.02 0.01 -0.00 0.00
A12 -0.13 0.03 -0.08 0.02 -0.02 0.01 -0.00 0.00
A22 -0.10 0.01 -0.06 0.01 -0.01 0.00 -0.00 0.00

T = 4, i.i.d. bias s.d. bias s.d. bias s.d. bias s.d.
A11 -0.02 0.02 -0.01 0.01 -0.00 0.01 0.00 0.00
A21 -0.05 0.02 0.03 0.01 -0.01 0.00 -0.01 0.00
A12 -0.05 0.01 -0.01 0.01 -0.00 0.00 -0.00 0.00
A22 -0.04 0.01 -0.01 0.00 -0.00 0.00 -0.00 0.00

T = 4, dep. bias s.d. bias s.d. bias s.d. bias s.d.
A11 -0.02 0.02 -0.01 0.01 -0.00 0.01 0.00 0.00
A21 -0.05 0.02 0.03 0.01 -0.01 0.00 -0.01 0.00
A12 -0.05 0.01 -0.01 0.01 -0.00 0.00 -0.00 0.00
A22 -0.04 0.01 -0.01 0.00 -0.00 0.00 -0.00 0.00

Notes: The table reports the bias (in relative terms) and standard deviation of estimates of each
entry in A across 1000 Monte Carlo samples generated according to the DGPs described in the
text. The top panel considers three sample sizes for T = 1, with shocks independent over time:
B = 10, 25, 100, 500, and F = 1000B in each case. The second panel considers T = 4 time
periods, where the shocks are independent in each, and the final considers T = 4, where the
shocks are dependent over time.

small as well. As T increases to 4, for i.i.d. data the bias falls substantially, essentially

vanishing for B = 100, as do the standard deviations. When the data is instead dependent,

the results are identical to the independent case up to two digits, due to the low level of

presence detected in the data. The results make a clear case for pooling data across multiple

time periods due to the reduction in bias, as we opt to do in the simulations. Overall, the

estimation strategy performs extremely well in realistic sample sizes. In empirical terms,

this potentially casts doubt on the empirical results for Ireland, where the sample size is

smallest, but suggests results are likely reliable for other countries studied.

Table 2 presents the empirical size of nominal 5% t-tests for each parameter in the same

specifications. The size distortions are small for all parameters when B = 100 or larger,

and moderate for smaller sample sizes. When B ≥ 25, for the majority of parameters and

specifications, empirical sizes range from 4-6%. Otherwise, there are few clear patterns in

the results to point to. Note that there is little difference between the robust and non-robust

tests here because the empirically-calibrated persistence is small and negative. When shocks

instead have positive persistence, as in additional calibrations considered, the differences in

size control can be much more pronounced.
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Table 2: Empirical size of t-tests

B = 10 B = 25 B = 100 B = 500
T = 1, i.i.d. SU robust SU robust SU robust SU robust
A11 10.7 10.7 8.1 8.1 6.0 6.0 5.7 5.7
A21 10.7 10.7 9.1 9.1 6.5 6.5 5.4 5.4
A12 15.4 15.4 8.9 8.9 4.9 4.9 5.3 5.3
A22 18.5 18.5 14.2 14.2 5.9 5.9 5.0 5.0

T = 4, i.i.d. SU robust SU robust SU robust SU robust
A11 5.1 7.5 4.7 6.0 5.8 6.1 6.1 6.2
A21 5.6 7.9 4.4 5.2 5.2 5.3 6.6 6.8
A12 7.6 8.3 5.9 6.1 5.6 6.0 5.4 5.0
A22 11.3 12.7 6.0 7.1 5.3 6.1 4.9 5.1

T = 4, dep. SU robust SU robust SU robust SU robust
A11 5.3 7.4 4.5 6.1 6.0 6.1 6.2 6.2
A21 5.8 7.6 4.7 5.1 4.9 5.3 6.9 6.6
A12 7.3 8.3 5.5 6.1 5.6 5.9 5.6 5.5
A22 11.5 13.4 6.6 7.2 6.2 6.2 5.1 5.5

Notes: The table reports the reports the empirical rejection rates of 5% t-tests for each entry
in A across 1000 Monte Carlo samples generated according to the DGPs described in the text.
For each specification, rejection rates are reported using the baseline variance estimator that
assumes serially uncorrelated shocks (“SU”) as well as the robust variance estimator that allows
for dependence (“robust”). The top panel considers three sample sizes for T = 1, with shocks
independent over time: B = 10, 25, 100, 500, and F = 1000B in each case. The second panel
considers T = 4 time periods, where the shocks are independent in each, and the final considers
T = 4, where the shocks are dependent over time.

Table 3 considers the problem of estimating the average demand shock for each firm and

supply shock for each bank. Given the DGP described, a fixed effects estimator is well-

specified for this object, but the average heterogeneous shock is as well. In particular, the

“demand” firm fixed effects are zdf and the “supply” bank fixed effects are zsb , and we have

E
[
B−1

∑B
b=1 u

d
fb|zdf

]
= zdf and E

[
F−1

∑F
f=1 u

s
fb|zsb

]
= zsb . For each Monte Carlo sample, we

compute the correlation of both the average heterogeneous shocks for each firm (bank) with

zdf (zsb) as well as the correlation of each estimated firm (bank) fixed effect with zdf (zsb). We

report the average correlation for each across samples. For all specifications and estimators,

the correlations are much stronger for bank fixed effects than firm fixed effects, reflecting the

large number of relationships for each bank relative to each firm. Across specifications, the

firm average heterogeneous demand shock is substantially better correlated with the true

firm fixed effect than the estimated fixed effect – by a factor of 2 to 3. As explained, this

is because although the firm average can only make use of a firm’s limited relationships,

the new estimator leverages information across the entire dataset to separate supply and
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Table 3: Correlations of average shocks and fixed effects

B = 10 B = 25 B = 100 B = 500
T = 1, i.i.d. avg. het. FE avg. het. FE avg. het. FE avg. het. FE
Firm 0.11 0.05 0.11 0.04 0.11 0.04 0.21 0.07
Bank 0.90 0.97 0.94 0.97 0.98 0.97 1.00 0.98

T = 4, i.i.d. avg. het. FE avg. het. FE avg. het. FE avg. het. FE
Firm 0.11 0.04 0.11 0.04 0.11 0.04 0.21 0.07
Bank 0.96 0.97 0.98 0.97 0.99 0.97 1.00 0.98

T = 4, dep. avg. het. FE avg. het. FE avg. het. FE avg. het. FE
Firm 0.11 0.04 0.11 0.04 0.11 0.04 0.21 0.07
Bank 0.96 0.97 0.98 0.97 0.99 0.97 1.00 0.98

Notes: The table reports the average correlations (across 1000 Monte Carlo samples) of the
average estimated heterogeneous demand and supply shocks (“avg. het.”) and the true “fixed
effects” as well as the average correlations of the estimated fixed effects (“FE”) with the true
fixed effects in the DGP described in the text. For each firm, we consider the average demand
shock across banks and for each bank we consider the average bank supply shock across firms.
The top panel considers three sample sizes for T = 1, with shocks independent over time:
B = 10, 25, 100, 500, and F = 1000B in each case. The second panel considers T = 4 time
periods, where the shocks are independent in each, and the final considers T = 4, where the
shocks are dependent over time.

demand factors. For all B = 10 specifications and B = 25 with T = 1, the estimated

bank fixed effects have slightly higher correlations with the true bank fixed effects than the

bank average supply shocks. However, as more observations become available (through more

firms/banks and/or time periods) the average bank supply shocks become more accurate, as

the advantage to exploiting information from the whole dataset grows more pronounced.

5 Supply and Demand in European Credit Markets

5.1 Data

We use our new methodology to estimate supply and demand dynamics in European credit

markets using the ECB’s AnaCredit dataset. The AnaCredit dataset is a new harmonised

euro area loan-level credit registry developed by the Eurosystem that contains the universe

of loans to corporations in the Euro area over e25,000. Loans are reported at a monthly

frequency from September 2018. The dataset contains many types of loans, including term

loans, financial leases, trade receivables, credit lines, revolving credit, and syndicated loans.

For a detailed discussion of the AnaCredit dataset, see the recent paper by Kosekova et al.

(forthcoming). For more technical documentation of the data included, see the AnaCredit
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Manual, European Central Bank (2019).

We focus our analysis on the 11 largest euro area countries, following Kosekova et al.

(forthcoming). These are Austria (AT), Belgium (BE), Germany (DE), Spain (ES), Finland

(FI), France (FR), Greece (GR), Ireland (IE), Italy (IT), the Netherlands (NL), and Portugal

(PT). Our sample spans January 2019 to December 2023. We collapse the monthly data

to quarterly frequency since we study changes in the loan quantities and interest rates, and

there are few such changes at monthly frequency. We limit our focus to three types of credit:

term loans, credit lines, and revolving credit. Like Kosekova et al. (forthcoming), we do not

consider syndicated loans, since they are often not fully documented in AnaCredit. Given

the nature of our identification approach, we limit our sample to firms that have borrowing

relationships with multiple banks included in the dataset.

In each quarter, we compute the total committed credit for each firm and bank rela-

tionship over all instruments amongst the three types considered: term loans, credit lines,

and revolving credit. We measure the the change in loan quantity as the quarter-on-quarter

change in this total committed. We choose to focus on changes in committed quantities

instead of utilised quantities since the former represent the outcome of interaction between

both firm and bank, whereas the latter can be viewed as simply demand driven changes,

given previously committed quantities. We convert the quarterly change to a quarterly

growth rate using the formula

∆lfb,t =
lfb,t − lfb,t−1

0.5lfb,t + 0.5lfb,t−1

. (35)

We compute the prevailing interest rate for a relationship using the volume-weighted average

across all instruments of the three types studied. Where the rate is indexed to a reference

rate, we do so using the prevailing value of that reference rate. The quarterly change in the

interest rate, ∆rfb,t is then the quarter-on-quarter change in this weighted average interest

rate. The object of interest for our analysis is then

ηfb,t =

(
∆rfb,t

∆lfb,t

)
. (36)

We drop observations for which the ηfb,t = 0; that is, observations for which a relationship

exists between firm f and bank b, but for which there is no change at time t. We winsorise

the data at the 1% level. We also address occasional data quality issues, for instance incon-

sistency in the units used to report interest rates. Taking this final sample for each country,

as a final pre-processing step we demean ηfb,t for each quarter. A full description of data

cleaning and construction can be found in the Online Appendix.
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We opt to estimate supply and demand dynamics for three 6-quarter windows for three

reasons. First, given we study 11 different countries, presenting quarterly results would

become unmanageable, while using a single pooled sample from 2019-2023 would make the

assumption of a common A matrix non-credible due to dramatic changes in credit markets

during this period. The 6-quarter approach strikes a balance between the two. Second, and

relatedly, three 6-quarter windows cleanly capture three distinct economic periods for credit

markets. The first sample, 2019Q3-2020Q4, spans the lead-up to and pandemic period, which

featured severe disruptions and emergency support measures. The second sample, 2021Q1-

2022Q2, covers the subsequent inflationary episode, up until the point of monetary policy

intervention. Finally, 2022Q3-2023Q4 was a period of contractionary monetary policy and

credit tightening. It is reasonable to believe that the elasticities in A, inter alia, the supply

and demand curves of national credit markets, changed from each of these periods to the

next along with macroeconomic and financial conditions. Third, while some of the countries

we study feature very large numbers of banks and multi-bank firms, smaller countries and

those with more consolidated lending relationships benefit from the increased sample size

associated with pooling 6 quarters of data. Our results are quite stable with respect to the

precise timing of the subsamples. We have experimented with both 4- and 8-quarter windows

loosely aligning with the same major economic events as well as rolling windows, and the

magnitudes of Â remain largely unchanged. These results are available upon request.

Table 9 in the Appendix reports summary statistics for each country, including the total

number of firms and banks and total number of relationships in each of the three subsamples

described above. Note that not every relationship may have a non-zero observation in a

given quarter. The table illustrates that, as documented by Kosekova et al. (forthcoming),

there are stark differences in the structure of credit markets across the countries studied.

Indeed, particularly comparing to the total number of firms in the AnaCredit dataset in each

country, it is clear multi-bank firms are quite common in some countries, like Italy and Spain

(each with well over 100,000), but relatively rare in others, like Ireland and the Netherlands

(200-650 and under 1,700, respectively). The number of banks also varies starkly, ranging

from 9-16 for Greece and Ireland to around 800 for Germany. As a result, the effective sample

size is quite variable across the countries considered, ranging from about 400 relationships

per quarter in Ireland for two of the subsamples to about 5-600,000 per quarter in Italy.

5.2 Price and quantity elasticities over time

The first set of results consists of the elasticities contained in Â over the three subsamples

considered. In particular, these are the elasticities of price with respect to demand shocks,
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price with respect to supply shocks, quantity with respect to demand shocks, and quantity

with respect to supply shocks. They are reported in Figures 1 and 2, respectively. The x-axis

indicates the three different subsamples, and the y-axis indicates the elasticity for each of

those samples. We report 95% confidence intervals using our robust variance estimator.

The first reassuring feature of the results is that the sign pattern of the elasticities is

consistent with identifying both a demand shock and a supply shock. As with any statistical

identification approach, there is no guarantee that this is the case. However, we see that for

virtually every country-subsample pair, we recover one shock that positively impacts both

price and quantity (demand), and one that negatively impacts price and positively impacts

quantity (supply). While this is very occasionally violated – and only during the turbulent

and likely noisy pandemic and inflationary periods – none of these violations are statistically

significant. Thus, we can have confidence that our statistical identification strategy does

indeed recover supply and demand shocks.

There is considerable variation in the scale of the elasticities both over countries and

time. For the most part, the quantity elasiticities with respect to both shocks are somewhat

smaller in magnitude than those of price; in general, interest rates seem to be the main

margin of adjustment in response to supply and demand shocks. The elasticity of price with

respect to demand (Figure 1a) is statistically significant for 5 countries during the pandemic,

6 during inflation, and 8 during tightening. During the pandemic, it is largest for Greece,

Ireland, Italy, and the Netherlands (1.34, 8.67, 1.24, 1.21) and smallest for Austria and

Finland (0.05, 0.02). During inflation, it is largest for Italy, the Netherlands, and Portugal

(1.19, 1.27, 2.45) and smallest for Austria and Belgium (0.23, -0.19). During tightening, it is

largest for Belgium, Finland, and the Netherlands (1.09, 1.04, 1.04) and smallest for Spain

and Portugal (0.13, 0.03).

The elasticity of price with respect to supply (Figure 1b) is statistically significant for

10 countries during the pandemic, 7 during inflation, and 6 during tightening. During the

pandemic, it is largest for Belgium, Germany, the Netherlands, and Portugal (-1.22, -2.42,

-1.48, -1.41) and smallest for Spain and France (-0.20, -0.20). During inflation, it is largest

for Belgium, Germany, and Ireland (-1.50, -1.73, -2.50) and smallest for Spain and France(-

0.04, -0.04). During tightening, it is largest for Germany and Portugal (-1.96, -1.12) and

smallest for France (-0.17).

The elasticity of quantity with respect to demand (Figure 2a) is statistically significant

for 6 countries during the pandemic, 4 during inflation, and 5 during tightening. During

the pandemic, it is largest for Austria, Belgium, Germany, Finland, and Portugal (0.37,

0.51, 0.38, 0.35, 0.36) and smallest for Spain, France, and Greece (0.00, 0.01, -0.01). During

inflation, it is largest for the Belgium and Ireland (0.80, 0.67) and smallest for Spain, France,
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and the Netherlands (-0.00, 0.01, 0.02). During tightening, it is largest for Belgium, Germany,

Spain, Ireland, and Portugal (0.25, 0.25, 0.22, 0.48, 0.24) and smallest for Austria, Finland,

and the Netherlands (0.01, 0.00, 0.02).

The elasticity of quantity with respect to supply (Figure 2b) is statistically significant

for 6 countries during the pandemic, 7 during inflation, and 7 during tightening. During the

pandemic, it is largest for France and Greece (0.43, 0.48) and smallest for Belgium, Germany,

and Finland (0.03, 0.09, 0.06). During inflation, it is largest for Belgium (0.69) and smallest

for Germany and Finland (0.07, 0.02). During tightening, it is largest for Belgium, France,

and Ireland (0.33, 0.29, 0.40) and smallest for Germany, Spain, and Portugal (0.02, 0.02,

0.01).

We also observe similar dynamics for certain elasticities amongst certain families of coun-

tries. The price elasticity with respect to demand is stable before rising significantly during

tightening in Austria, Belgium, and Finland, while it peaks prominently during the inflation-

ary episode in Portugal, and to a much lesser degree in the Netherlands. Germany, Spain,

Greece, and Italy experience gradual declines in this elasticity. The elasticity of price with

respect to supply displays a prominent peak during inflation in Italy and Portugal, and to

a much lesser extent in Germany, France, Spain, Greece, and the Netherlands. Belgium

and Ireland show a modest decline in this elasticity during tightening. The elasticity of

quantity with respect to demand shows modest increases during the tightening episode in

Spain, France, and Italy, with gradual declines in Austria, Belgium, Germany, Finland, and

Portugal. The quantity elasticity with respect to supply peaks during tightening in Belgium

the Netherlands, and Portugal, with the opposite pattern in Finland. There are gradual

declines in Germany, Spain, and Greece.
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Figure 1: Elasticity of Price with Respect to Demand and Supply

(a) Elasticity of price with respect to demand shocks, Â11,
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(b) Elasticity of price with respect to supply shocks, Â12
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Notes: Panel (a) plots the elasticity of price with respect to credit demand shocks, Â11. Panel (b) plots the elasticity of price with respect to credit
supply shocks, Â12. For each country, the figure plots the elasticities across the three 6-quarter sub-samples described in the text, which we label as
“pandemic”, “inflation”, and “tightening”. The estimates are normalised so that both demand and supply shocks have unit variance in each country
in each subsample. The confidence intervals are 95% intervals based on the robust variance estimator.
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Figure 2: Elasticity of Quantity with Respect to Demand and Supply

(a) Elasticity of quantity with respect to demand shocks, Â21,

0

0.5

1
AT

0

0.5

1
BE

0

0.5

1
DE

0

0.5

1
ES

0

0.5

1
FI

0

0.5

1
FR

0

0.5

1
GR

0

0.5

1
IE

0

0.5

1
IT

pandemic
inflation

tightening

0

0.5

1
NL

pandemic
inflation

tightening

0

0.5

1
PT

(b) Elasticity of quantity with respect to supply shocks, Â22
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Notes: Panel (a) plots the elasticity of quantity with respect to credit demand shocks, Â21. Panel (b) plots the elasticity of quantity with respect to
credit supply shocks, Â22. For each country, the figure plots the elasticities across the three 6-quarter sub-samples described in the text, which we
label as “pandemic”, “inflation”, and “tightening”. The estimates are normalised so that both demand and supply shocks have unit variance in each
country in each subsample. The confidence intervals are 95% intervals based on the robust variance estimator.
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5.3 Supply and demand curves over time

The entries of the matrix A represent the elasticities of both price and quantity with respect

to the shocks of demand and supply. As a result, they contain all the information needed

to identify the slope of both the supply and demand curves. In particular, the slope of the

supply curve is given by A11/A21 – that is, it is identified by the relative movements of price

and quantity in response to an identified demand shock. Symmetrically, the slope of the

demand curve is identified by A12/A22. As a result, we can identify both supply and demand

curves for each country and subsample, which may be a more intuitive way to represent the

results in the previous section. Figure 3 plots these curves for each country and sub-sample.

The figures show how the dynamics of supply and demand have varied over countries and

over time. We omit confidence intervals to avoid crowding the figures; note that they tend to

be quite wide for many of the slopes, since they are the ratios of estimated parameters, some

of which were quite noisily estimated in the previous section. During the pandemic, Figure 3a,

most countries exhibit at least one curve that is essentially vertical (inelastic). For Belgium,

Germany, the Netherlands, and to a lesser extent Austria, Finland, and Portugal, demand

is inelastic. This is consistent with firms demanding the funding required to survive such a

major economic shock at whatever price it was available. For Spain, France, Greece, Ireland,

Italy and, to a lesser extent, the Netherlands, the supply is inelastic. This is consistent with

banks supplying credit at essentially fixed prices following significant intervention into credit

markets by the ECB, for instance, the Pandemic Emergency Purchase Program.

During the post-pandemic inflationary episode, Figure 3b, inelastic curves are again

present in most countries. Germany, Finland, and to a lesser extent, Ireland, exhibit inelastic

demand. This is consistent with firms demanding credit to cover rising costs due to inflation

at whatever price it was available. On the other hand, Spain, France, Greece, Italy, the

Netherlands, and Portugal exhibit inelastic supply. This is consistent with banks being wary

to issue term loans whose repayment may be depreciated by inflation. For some countries,

these results mark a change from the pandemic. Portugal goes from having largely inelastic

demand to inelastic supply. Belgium and the Netherlands see a flattening of demand. It is

worthwhile to note that while Belgium, Ireland, and Italy appear to have downward-sloping

supply curves, these slopes are very noisily estimated and not statistically significant.
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Figure 3: Supply and Demand Curves across Countries and Time
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Notes: For each country, each panel plots the estimated supply and demand curves for the indicated period, constructed from Â using the method
described in the text. Confidence intervals are omitted so as not to crowd the figures.
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Figure 3c presents results for the period of monetary policy tightening. Once more,

inelastic curves remain common. Germany, Spain, and Portugal exhibit inelastic supply

curves. This is consistent with firms demanding a relatively fixed amount of credit regardless

of the increased funding costs. On the other hand, Austria, Finland, the Netherlands, and,

to a lesser extent Belgium, France, Greece, and Italy exhibit inelastic supply curves. This

is consistent with banks constraining credit in response to tighter conditions fostered by

monetary policy, with interest rates serving to ration credit. Relative to the inflationary

episode, Finland goes from having largely inelastic demand to inelastic supply, while the

opposite is true for Spain and Portugal. Supply also dramatically steepens in Belgium.

Overall, these results demonstrate both the heterogeneity of credit markets across coun-

tries and time as well as remarkably similar patterns. While monetary policy was the same

across the Euro-area, credit markets clearly behaved differently. Such results can be informa-

tive for evaluating the effects of potentially heterogeneous local policies as well as motivating

such policies given the variation in credit dynamics.

6 What Explains Heterogeneity in Supply and Demand

Shocks?

From the outset, one of the features of our identification strategy was relaxing the homogene-

ity assumption of supply and demand shocks, making an important advantage the ability

to study the heterogeneous distributions of those shocks. In this section, we consider the

distributions of supply and demand shocks over country, time, and observable relationship-

specific, firm, and bank characteristics. This is a very rich source of empirical targets, so

space constraints dictate that the present analysis only touches the surface of possible in-

sights.

6.1 Within-firm/bank vs. between-firm/bank variation

We begin by recovering the identified shocks in each quarter by inverting the estimated Â

matrix for the corresponding subsample and applying it to decompose the observed ηfb,t.

Following the assumptions underlying many of the papers using credit registers, the within-

firm dispersion in innovations should be small (homogeneous credit demand assumption).

We thus explore to what extent fixed effects (capturing the “average shocks”) can explain

the variation in supply and demand shocks. Figure 4 plots the adjusted R2 over time after

regressing the estimated supply and demand shocks on various combinations of fixed effects,
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pooling all countries for ease of interpretation.3

We consider four types of fixed effects and combinations thereof: bank-time (BT), firm-

time (FT), industry-location-sector-time (ILST), and bank-industry-location-size-time (BILST).

The left panel starts with demand shocks. There are several notable features. First, the

overall share of variation explained by even the richest combination of fixed effects (FT and

BILST) generally explains less than 10% of variation in the estimated shocks. FT, which

are typically used in the literature to capture demand shocks, almost always explain less

than 5% of variation; the one exception is Q2 of 2020, the onset of the pandemic, which

is the period where one would indeed expect a monolithic demand shock. The figures in

the Appendix show that, of the four types of fixed effects, FT explain the most variation

in unadjusted terms, but after adjusting for the very large number of fixed effects used, the

adjusted value generally falls below that of BT and BILST. The right panel repeats the

exercise for supply shocks. Once more, even the richest fixed effects generally fail to capture

even 10% of variation in the supply shocks. Notably, FT are generally associated with a

negative or essentially zero adjusted R2. On the other hand, BT explain more variation than

either FT or ILST, consistent with bank-side factors being a more important determinant

of supply than borrower characteristics.

Figure 5 conducts a similar exercise focusing instead on observables: the growth in loan

quantity and the change in interest rates. In the typical empirical setting, the researcher

only has access to the former, and estimates FT and BT fixed effects to measure supply and

demand shocks using this data alone. Similar conclusions apply to this raw data, even if one

was skeptical of our recovered shock distributions. Here, we find that FT explain essentially

zero variation in loan quantity, after adjusting the R2. BT explain more variation, peaking

around 5% during the inflationary episode, while interacting with ILST adds somewhat

more information. Interestingly, fixed effects explain more variation in interest rates, with

BT explaining as much as 15% in 2023, and FT and BILST together explaining as much

as 25%. However, we reiterate that price data is not available in many credit datasets

and is even more rarely studied. The trends in explanatory power are quite different for

quantity compared to supply and demand. Studying the former would suggest that fixed

effects peaked in efficacy during the inflationary episode, while the latter actually points to a

gradual decline in explanatory power for demand shocks, despite some peaks during inflation.

Crucially, studying loan quantity, which combines both supply and demand shocks, the only

time that FT have positive explanatory power is Q2 of 2020, which captures the surge in

demand for emergency credit at the onset of the pandemic; otherwise, the adjusted R2 values

3Figure 6 in the Appendix additionally reports unadjusted R2 values. Figure 7 in the Appendix collapses
results into the three 6-quarter subsamples but breaks them down by country.
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Figure 4: Variation in Demand and Supply shocks explained by Sets of Fixed Effects

Notes: This graph presents the adjusted R2 values from regressing time-varying firm-bank specific demand
and supply shocks on sets of fixed effects. Data is pooled over all countries. The fixed effects regressions
are done separately for each quarter, over the period 2019Q3 to 2023Q4. The different lines depict adjusted
R2 values for various fixed effects combinations, including Bank-Time (BT), Industry-Location-Size-Time
(ILST), Bank-Industry-Location-Size-Time (BILST), Firm-Time (FT), and two way fixed effects combining
either FT and BT or FT and BILST in one set-up. The y-axis shows the adjusted R2 values, with dotted
reference lines at 0.2 intervals. The upper panel considers demand shocks and the lower supply.
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are consistently negative.

Another way to compare within- and between- variation is to directly study the distri-

bution of the average shocks collapsed at firm and bank levels. Table 4 computes summary

statistics for the shocks, studying both between- and within- firm and bank variation. For

demand, we consider the properties at firm-time level, and for supply at bank-time level,

mirroring how each has been studied in the literature, using fixed effects. The first row

shows that, after collapsing at firm-time level, demand shocks are essentially symmetrically

distributed around zero. The final entry computes the between-firm-time standard deviation

of demand shocks, 0.665. The next three rows compute various measures of the dispersion

of the innovations. Of particular interest, the final row computes the distribution of the

standard deviation of demand shocks within firm-time. The median such standard deviation

is 0.291, over 40% of the within-firm standard deviation. This undermines the credibility

of the homogeneity assumption; there is substantial dispersion of demand shocks within the

firm at a given time. The second panel repeats the exercise for supply shocks at bank-time

level. Here again, we see an essentially symmetric distribution, after collapsing at bank

level, with a standard deviation of 0.453. However, the median within-bank-time standard

deviation is higher at 0.803, almost 80% larger than the between bank-time variation. This

suggests that the dispersion of supply shocks within a bank in a given period dominates the

variation of the average supply shock across banks. Once more, this is evidence against the

types of homogeneity assumptions commonly maintained in the literature. In contrast, it is

clear support for the presence of important within-firm and within-bank heterogeneity.

6.2 Observable characteristics predict shocks

Our methodology enables us to examine the drivers of heterogeneity in credit demand and

credit supply. We can run analyses similar to a large body of empirical banking studies,

but with estimates of time-varying firm-bank credit demand and supply as left-hand side

variables. In this section, we illustrate this with a limited set of firm- and bank-specific

characteristics as well as observable characteristics at the firm-bank relationship level. We

will only consider characteristics that can be constructed using AnaCredit data.4 The goal

here is not to be complete in the included characteristics, but to highlight the new insights

that our approach can offer.

What we aim to show in these first analyses is that firm characteristics are also relevant

for supply, and that bank characteristics matter for credit demand. Furthermore, we will

illustrate that high-dimensional fixed effects may still have relevance in regressions of credit

4This approach ensures the analysis can be replicated without access to confidential regulatory bank data
or commercial databases with firm balance sheet information.
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Figure 5: Variation in Credit growth and Price changes explained by Sets of Fixed Effects

Notes: This graph presents the adjusted R2 values from regressing Credit growth (upper) and Price changes
(lower) on sets of fixed effects. The fixed effects regressions are done separately for each quarter, over the
period 2019Q3 to 2023Q4. Data is pooled over 11 euro-area countries. The different lines depict adjusted
R2 values for various fixed effects combinations, including Bank-Time (BT), Industry-Location-Size-Time
(ILST), Bank-Industry-Location-Size-Time (BILST), Firm-Time (FT), and two way fixed effects combining
either FT and BT or FT and BILST in one set-up. The y-axis shows the adjusted R2 values, with dotted
reference lines at 0.05 intervals.

33



Table 4: Between and within variation

Collapse at the firm-time level
p10 p25 p50 p75 p90 IQR StD

Number of banks 2.000 2.000 2.000 3.000 4.000 1.000 1.272
Average demand innovation -0.636 -0.199 0.005 0.192 0.628 0.391 0.665
Range of demand innovation 0.021 0.110 0.472 1.370 2.899 1.260 1.324
IQR of demand innovation 0.019 0.097 0.393 1.134 2.450 1.037 1.180
Std dev demand innovation 0.014 0.071 0.291 0.811 1.699 0.739 0.792

Collapse at the bank-time level
p10 p25 p50 p75 p90 IQR StD

Number of firms 3.000 9.000 30.000 107.000 440.000 98.000 2642.576
Average supply innovation -0.360 -0.127 -0.002 0.135 0.377 0.262 0.453
Range of supply innovation 0.257 1.649 4.546 7.112 8.523 5.463 3.110
IQR of supply innovation 0.006 0.061 0.245 0.578 1.236 0.516 0.751
Std dev supply innovation 0.188 0.439 0.803 1.178 1.576 0.739 0.554

Notes: For the first panel, starting from the firm-bank-time level dataset, we collapse it to the
firm-time level and compute four summary statistics for the time-varying innovations to firm-bank
specific credit demand. We compute the average firm-time innovation, as well as three measures of
within firm-time dispersion in the innovations (spread, interquartile range, and standard deviation).
For each of these “collapsed” firm-time observations, we provide summary statistics to indicate the
spread. The second panel repeats the exercise for supply innovations at bank level.

demand and credit supply. Finally, we introduce a number of bank-firm characteristics

that received much less attention in the current theoretical and empirical banking literature

(compared with bank and firm characteristics) and inspect how they relate to credit demand

and credit supply.

We shed light on the above with six regressions with results reported in Table 5. Columns

1–3 of Table 5 explore demand shocks, while columns 4–6 focus on supply shocks. Essentially,

these regressions examine whether the available characteristics within AnaCredit explain

between variation in the demand and supply shocks, as well as within variation. The first

block of variables are bank characteristics, the middle block are firm characteristics, while

the bottom block are characteristics of the firm-bank credit relationship.

The first thing that stands out is that bank characteristics enter significantly in a re-

gression framework explaining variation in credit demand. Similarly, firm characteristics are

predictors of cross-sectional variation in credit supply. We find that the bank’s total assets

and its credit-to-asset ratio are both significantly positive predictors of demand. Firm total

assets, firm leverage, and firm age are all significantly negative predictors of credit demand.

Younger and potentially rapidly expanding firms require more credit. A bank’s exposure

to a specific sector or region affects credit supply significantly positively (suggesting a role

for specialization). Banks supply significantly more credit to firms that are more dominant

within their sector, but less to larger firms, more leveraged firms, and older firms. Our
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structural decomposition thus enables researchers to address the concern that one other-

wise has to remain largely agnostic about the economic origins of the shocks captured by

high-dimensional fixed effects (Beaumont et al. 2019). 5

Across different columns, we use different sets of fixed effects. Columns 1 and 4 include

time-fixed effects, while columns 2 and 5 substitute bank characteristics with bank-industry-

location-quarter (BILT) fixed effects. Columns 3 and 6 replace firm characteristics with

firm-quarter fixed effects. Bank characteristics still matter for credit demand, even after

controlling for all unobserved time-varying firm heterogeneity (column 3). Similarly, firm

characteristics matter for credit supply even when bank characteristics are replaced with

granular fixed effects that are typically attributed to proxy for credit supply (column 6).

Remarkably, there is an asymmetry in the stability of coefficients and significance levels in

specifications with and without fixed effects. Bank characteristics are more stable in de-

mand regressions than in supply regressions when fixed effects are added. Similarly, firm

characteristics are more robust in supply regressions (columns 4-5) than in demand regres-

sions (columns 1–2). This differential sensitivity suggests the critical role of unobserved

heterogeneity in shaping demand and supply shocks. Also note that the (unadjusted) R2

of the credit demand and credit supply regressions falls dramatically (from 0.40 to 0.00)

as fixed effects are removed from the regressions, even as observable variables are added.

This suggests that although they may not explain much variation in demand shocks (after

adjustment), the fixed effects do still capture considerable unobserved heterogeneity that is

not well-explained by the limited observable characteristics available within AnaCredit.

In the bottom panel, we introduce four characteristics that are specific to the firm-bank

relationship. These four variables will be the focal point in the next subsection as they allow

explaining the within firm and within bank heterogeneity in credit demand and credit supply.

What we already surmise from the current regressions is that across specifications, the four

relationship-specific characteristics remain consistent in sign and magnitude, underscoring

their robustness. Across characteristics, we observe all possible combinations of signs and

(in)significance on their impact on credit demand and credit supply. Some characteristics

have a similar signed impact on both credit demand and supply, whereas others affect demand

5Beaumont et al. 2019 write the following: “the firm-time component may as well relate to demand
(variations in input costs, productivity shocks) as to supply. In the event of a default on a trade bill, for
instance, all banks might want to cut lending to the defaulting firm at the same time, leading to a low
value of the firm-time fixed effect in a credit growth regressions. Similarly, a low bank-specific fixed effect
may either indicate that the bank is cutting back lending due to funding constraints or that borrowers are
all reducing their credit exposure to this particular bank.” We thus document that, on average during our
sample period, bank characteristics indeed matter for credit demand, and firm characteristics also matter
for credit supply. An interesting application for future research would be to look at typical shocks studied
in the empirical banking literature (change in regulatory requirement, funding shocks, ...) and assess how
these relationships behave during these specific episodes.
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Table 5: Bank, firm and relationship characteristics

(1) (2) (3) (4) (5) (6)
Demand innovation (f,b,t) Supply innovation (f,b,t)

ln(Total Assets - Bank) (b,t-1) 0.007*** 0.008*** -0.002* -0.000
(0.002) (0.002) (0.002) (0.002)

Corporate lending to Total Assets - Bank (b,t-1) 0.037*** 0.037*** -0.005 -0.006
(0.010) (0.009) (0.011) (0.016)

Bank Sectoral Market Share (f,b,t-1) -0.021 -0.056 0.163** 0.104
(0.078) (0.058) (0.067) (0.120)

Bank Sectoral Exposure (f,b,t-1) 0.037** 0.124* 0.088*** 0.190***
(0.019) (0.065) (0.032) (0.069)

Bank Geographical Market Share (f,b,t-1) -0.030 -0.052 -0.068* -0.049
(0.030) (0.032) (0.038) (0.047)

Bank Geographical Exposure (f,b,t-1) -0.013 -0.014 0.046*** 0.059***
(0.013) (0.016) (0.014) (0.016)

ln(Total Assets - Firm) (f,t-1) -0.002 -0.004** -0.023*** -0.020***
(0.002) (0.002) (0.002) (0.003)

Bank credit to Total Assets - Firm (f,t-1) -0.041*** -0.055*** -0.127*** -0.124***
(0.007) (0.007) (0.008) (0.007)

ln(Firm Age, in months) (f,t-1) -0.018*** -0.014*** -0.023*** -0.031***
(0.003) (0.003) (0.004) (0.003)

Firm Geographical Market Share (f,t-1) -0.148* 0.033 0.619*** 0.454***
(0.084) (0.067) (0.074) (0.063)

Firm Sectoral Market Share (f,t-1) -0.101 -0.162** 0.179** 0.054
(0.066) (0.068) (0.084) (0.068)

Share of fixed rate loans (f,b,t-1) -0.137*** -0.159*** -0.157*** 0.139*** 0.179*** 0.118***
(0.017) (0.023) (0.018) (0.014) (0.020) (0.015)

Share of collateralized loans (f,b,t-1) -0.011 -0.011 0.021 0.037*** 0.030*** 0.039***
(0.014) (0.012) (0.017) (0.012) (0.010) (0.013)

Share of Credit lines and Term Loans (f,b,t-1) 0.054*** 0.059*** 0.072*** -0.112*** -0.142*** -0.124***
(0.017) (0.020) (0.020) (0.026) (0.027) (0.032)

Share of bank in a firm’s overall borrowing (f,b,t-1) -0.160*** -0.172*** -0.182*** -0.320*** -0.316*** -0.329***
(0.016) (0.016) (0.020) (0.017) (0.013) (0.022)

Observations 9657889 9878671 10023898 9657889 9878671 10023898
R-squared 0.00 0.16 0.40 0.01 0.18 0.39
Adjusted R-squared 0.00 0.06 0.03 0.01 0.07 0.01
Time-FE Yes - - Yes - -
Firm×Time FE - - Yes - - Yes
Bank×Industry×Location×Time FE - Yes - - Yes -

Notes: This table shows the regression results obtained when regressing time-varying innovations to firm-
bank specific credit demand (columns 1-3) and credit supply (columns 4-6) on six bank characteristics,
five firm characteristics and four bank-firm relationship-specific characteristics. In columns 1 and 4, we
include time fixed effects. In columns 2 and 5, the bank characteristics are absorbed by bank-industry-
location-quarter (BILT) fixed effects. In columns 3 and 6, the firm characteristics are absorbed by firm-
quarter (FT) fixed effects. Standard errors are obtained from a weighted sum of two standard cluster
variances, one clustered at the firm level, and the other at the bank level (see Appendix E). The unbalanced
sample spans firm-bank level observations over the period 2019Q3-2023Q4 for 11 euro area countries.
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positively and supply negatively (or vice versa). Likewise, some have an impact on demand,

supply, both, or none.

In sum, the shocks we recover strongly correlate with the observable characteristics found

in the AnaCredit dataset in ways that are economically meaningful. This is true at both the

firm and the bank level – capturing “between” effects, and at the relationship-specific level

– capturing “within effects”, or heterogeneity. The latter results are intrinsically unavailable

from previous methodologies and thus provide novel insights. They also cast doubt on

the suitability of the types of homogeneity assumptions maintained in the literature. In the

following subsections, we dive deeper into these relationship-specific level or “within” effects.

6.3 The impact of relationship characteristics: subsample analy-

ses

Table 4 in Subsection 6.1 documented significant variability in demand and supply shocks

between firms and banks. In this subsection, we analyze whether this variability can be

attributed to observable relationship-specific characteristics as captured in the AnaCredit

data set. We integrate all observed and unobserved time-varying heterogeneity in firms and

banks into granular fixed effects, and thus focus exclusively on relationship-level variables.

The idea of this analysis is that, if our hypothesis is correct and supply and demand shocks

exhibit meaningful heterogeneity within firms and banks, then, even after including fixed

effects, the remaining variation should be correlated with observable relationship-specific

characteristics.

Column 1 of Table 6 begins by examining how characteristics of the firm-bank credit

relationship predict demand shocks (upper panel). For a given relationship, we find that the

share of fixed-rate loans and the importance of a bank to a firm are both negative and highly

significant predictors of demand shocks, conditional on fixed effects. Firms will demand more

credit from banks, where firms’ past borrowing was mainly in the form of credit lines and

term loans. These insights are obtained after controlling for a firm’s overall demand and a

bank’s overall supply (through the included fixed effects).

In parallel, the lower panel of Table 6 considers relationship-specific predictors of supply

shocks. Column (1) presents the full-sample regression. In contrast to the effect on credit

demand, we find that the share of past lending that is fixed rate positively and significantly

predicts supply shocks. Credit supply is also higher if a larger fraction of past borrowing

is secured by collateral. On the other hand, the share of credit lines and term loans, and

the share of a bank in a firm’s overall borrowing both significantly negatively predict supply

shocks. Even after accounting for a bank’s overall supply – and overall supply to a particular
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firm – supply will be smaller for a firm-bank pair with larger values of these predictors.

Table 10 in the appendix shows that the results of the first column are remarkably

quantitatively robust to alternative clustering of the standard errors or the inclusion of

bank-quarter fixed effects (rather than the more granular bank-industry-location-quarter

fixed effects).

In column 2, we additionally include the probability of default assessed by the bank.

The probability of default itself has zero effect on demand. In stark contrast to the demand

results, the bank-specific assessment of firm credit risk is a highly significant negative pre-

dictor of credit supply. This finding makes sense: This implies that banks supply relatively

less credit to firms that they deem to be riskier in a given period. Although it may seem

like an obvious result, this finding – in contrast with the null result for demand – strongly

suggests that we have credibly separately identified supply and demand shocks. Importantly,

the other coefficients are little changed in this column. This first indicates that the effect of

the probability of default is not related to other contractual characteristics. Moreover, since

the inclusion of the PD variable effectively halves the sample (as it is not available for all

relationships), it provides further robustness on the previously obtained results.

The results so far already clearly demonstrate that the heterogeneity present in the

distributions of demand and supply shocks is economically meaningful and a potentially rich

source of empirical insights leading to a better understanding of credit market dynamics.

Subsequently, we take a first look at the stability of these coefficients in various sub-samples.
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Table 6: Baseline and subsample analyses

(1) (2) (3) (4) (5) (6) (7)
Demand innovation (f,b,t)

Share of fixed rate loans (f,b,t-1) -0.162*** -0.148*** -0.066*** -0.168*** -0.210*** -0.114*** -0.179***
(0.019) (0.021) (0.013) (0.046) (0.040) (0.031) (0.020)

Share of collateralized loans (f,b,t-1) 0.016 0.008 -0.002 0.022 0.034 0.064*** -0.028***
(0.016) (0.024) (0.010) (0.029) (0.022) (0.015) (0.005)

Share of Credit lines and Term Loans (f,b,t-1) 0.086*** 0.085*** 0.131*** 0.127* 0.042** 0.040 0.102***
(0.017) (0.020) (0.030) (0.071) (0.019) (0.030) (0.020)

Share of bank in a firm’s overall borrowing (f,b,t-1) -0.206*** -0.214*** -0.117*** -0.085*** -0.320*** -0.319*** -0.123***
(0.023) (0.031) (0.027) (0.012) (0.045) (0.015) (0.013)

Probability of Default (f,b,t) -0.023
(0.027)

R-squared 0.52 0.52 0.51 0.56 0.50 0.56 0.48
Adjusted R-squared 0.04 0.03 0.05 0.09 0.02 0.06 0.03

Supply innovation (f,b,t)

Share of fixed rate loans (f,b,t-1) 0.156*** 0.150*** 0.008 0.027* 0.311*** 0.239*** 0.089***
(0.021) (0.030) (0.007) (0.015) (0.042) (0.022) (0.009)

Share of collateralized loans (f,b,t-1) 0.034*** 0.042** 0.008 0.086*** 0.012 0.048*** 0.038*
(0.013) (0.018) (0.013) (0.028) (0.015) (0.013) (0.020)

Share of Credit lines and Term Loans (f,b,t-1) -0.150*** -0.204*** -0.235*** -0.129*** -0.126*** -0.063** -0.216***
(0.030) (0.043) (0.036) (0.027) (0.035) (0.025) (0.030)

Share of bank in a firm’s overall borrowing (f,b,t-1) -0.337*** -0.386*** -0.518*** -0.505*** -0.151*** -0.301*** -0.355***
(0.019) (0.027) (0.053) (0.039) (0.040) (0.030) (0.027)

Probability of Default (f,b,t) -0.249***
(0.055)

R-squared 0.52 0.52 0.51 0.53 0.52 0.57 0.47
Adjusted R-squared 0.04 0.02 0.04 0.03 0.06 0.07 0.02

Observations 10477109 5899787 3229758 2734506 4512845 4827038 5650071
Sample Period 201909-202312 201909-202312 201909-202012 202103-202206 202209-202312 201909-202312 201909-202312
Coverage 11 countries 11 countries 11 countries 11 countries 11 countries Excl. Italy Italy

Notes: Time-varying innovations to firm-bank specific credit demand (upper panel) or credit supply (lower panel) are regressed on four time-
varying bank-firm characteristics. These are the share of borrowing by firm f from bank b at time t−1 that is (1) fixed rate, (2) secured by collateral,
or (3) credit line or term loan borrowing (with the remaining part mainly revolving credit). The fourth characteristic is the share of firm f ’s borrowing
from bank b at time t − 1 in firm f ’s overall borrowing at time t − 1. The baseline sample (column 1) is an unbalanced sample of firm-bank level
observations over the period 2019Q3-2023Q4 for 11 euro area countries. In column 2, we also include a bank-specific assessment of firm credit risk
(resulting in a much smaller sample size). In subsequent columns, we estimate the specification of column 1 in various other subsamples. In columns
3 to 5, we split the sample into three periods of six quarters: the pandemic period 2019Q3-2020Q4, the inflationary period 2021Q1-2022Q2 and the
monetary tightening period 2022Q3-2023Q4. In the last two columns, we return to the entire time period, but split the sample geographically. In
column 6, we exclude Italy. In column 7, we only include Italian banks and firms. All specifications include firm-quarter fixed effects as well as
bank-industry-location-quarter fixed effects. Standard errors are obtained from a weighted sum of two standard cluster variances, one clustered at
the firm level, and the other at the bank level (see Appendix E).
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In columns (3) to (5) of Table 6, we divide the sample into three periods of six quarters:

the pandemic period 2019Q3-2020Q4, the inflationary period 2021Q1-2022Q2, and the mon-

etary tightening period 2022Q3-2023Q4. In general, the signs of the significant coefficients

remain similar in the three columns. For some variables, we observe sizable variation in the

coefficients and thus in the economic magnitude. In particular, whether past borrowing is

at a fixed rate appears to have a much larger effect on credit supply innovations in the last

subsample covering the monetary tightening. During an episode where policy rates increase,

banks have a more generous credit supply to firms who borrowed mainly fixed rate in the

past. This can be linked to bank risk management, where banks have a more positive at-

titude towards firms whose interest expenses are predetermined. The share of a bank in

the firm’s total borrowing seems to gain importance for explaining heterogeneity in credit

demand during the monetary tightening episode, whilst its impact on credit supply becomes

economically smaller in the same subsample.

Columns (6) and (7) consider again the full sample period, but differ in the country

coverage. Specifically, we assess how the results differ for Italy relative to all other countries.

The upper and lower panels depict a slightly different story. The impact of the relationship

characteristics is much more stable for credit supply than credit demand innovations. In the

lower panel, the signs are similar in the two columns, and for two variables, the point esti-

mates are similar across both columns. In the upper panel, we find that country-specificities

play a larger role. For each of the four characteristics, we find sizable differences in economic

magnitude and for two of them also in statistical significance or sign.

6.4 The distributional impact of monetary and macroprudential

policy

The estimated coefficients in columns (3) to (5) of Table 6 indicate that the relationships

between firm-bank characteristics and the credit demand and supply shocks exhibit time

variation. We will now focus on two of these characteristics, namely the probability of

default and the share of fixed-rate loans, to inspect whether the time variation is associated

with policy changes, and may thus be given a structural interpretation. In particular, we

will analyze whether monetary policy and macroprudential policy shape these relationships.

We interact the two firm-bank characteristics with the Monetary Policy (MP) and Central

Bank Information (CBI) shocks from Jarociński and Karadi (2020). Changes in macro-

prudential policy are measured as the quarterly change in the index of 17 policy-action

indicators from the IMF’s integrated Macroprudential Policy (iMaPP) Database, originally

constructed by Alam et al. (2019). The results are presented in 7.
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Across specifications, we still find that firms’ PD is not statistically significant in the

credit demand regressions, though its interaction with CBI shocks is negative and statistically

significant. This should be interpreted as follows: credit demand of borrowers with different

risk profiles will be more dispersed the larger the economic news shock is. In addition,

whether the news shock contains positive or negative news determines whether safer or

riskier firms will have a higher credit demand (relative to the other group). When there is

a positive (negative) CBI shock, which indicates an improvement (a deterioriation) in the

economic outlook, the safer (riskier) firms will demand more credit than the riskier (safer)

firms. The relationship between credit supply and firms’ PD seems not to be affected by

the MP and CBI shocks. Adding changes in the macroprudential policy stance (columns

3 and 6) does not alter these conclusions. When macroprudential policy is tightened, the

supply of credit to riskier firms decreases, and their demand for credit increases. However,

the economic effects are smaller compared to the CBI shock on credit demand. Importantly,

controlling for the interaction between PD and changes in macroprudential policy has an

impact on the interaction effect of PD and MP surprises. The effect is also opposite in

the credit demand and supply regressions. In the credit supply (demand) regression, the

interaction term of the PD and MP surprises becomes larger (smaller) in absolute value and

is almost significant. The coefficient suggests a reduced supply of credit to riskier borrowers

during a tightening of monetary policy.
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Table 7: The impact of monetary policy, central bank information and macroprudential policy

(1) (2) (3) (4) (5) (6)
Demand innovation (f,b,t) Supply innovation (f,b,t)

Probability of Default (f,b,t) 0.016 0.011 -0.006 -0.212*** -0.207*** -0.185***
(0.024) (0.024) (0.026) (0.050) (0.049) (0.050)

Monetary Policy (t) × Probability of Default (f,b,t) -0.397 -0.416 -0.044 -0.012 0.034 -0.446
(0.265) (0.255) (0.203) (0.175) (0.183) (0.307)

Central Bank Information (t) × Probability of Default (f,b,t) -2.087*** -2.127*** -2.271*** -0.466 -0.349 -0.162
(0.534) (0.516) (0.574) (0.302) (0.307) (0.329)

Share of fixed rate loans (f,b,t-1) -0.127*** -0.125*** 0.141*** 0.141***
(0.022) (0.021) (0.018) (0.018)

Monetary Policy (t) × Share of fixed rate loans (f,b,t-1) -0.511*** -0.533*** 0.721*** 0.725***
(0.127) (0.127) (0.238) (0.237)

Central Bank Information (t) × Share of fixed rate loans (f,b,t-1) 0.021 0.033 0.700* 0.699*
(0.300) (0.313) (0.366) (0.365)

Quarterly Change in Macro-Prudential index (t) × Probability of Default (f,b,t) 0.037*** -0.047*
(0.010) (0.025)

Quarterly Change in Macro-Prudential index (t) × Share of fixed rate loans (f,b,t-1) -0.017* 0.003
(0.010) (0.007)

Observations 5899787 5899787 5899787 5899787 5899787 5899787
R-squared 0.52 0.52 0.52 0.51 0.51 0.51
Adjusted R-squared 0.02 0.03 0.03 0.00 0.01 0.01
Firm×Time FE Yes Yes Yes Yes Yes Yes
Bank×Industry×Location×Time FE Yes Yes Yes Yes Yes Yes
SE-cluster1 Bank Bank Bank Bank Bank Bank
SE-cluster2 Firm Firm Firm Firm Firm Firm

Notes: Time-varying innovations to firm-bank specific credit demand (columns 1-3) or credit supply (columns 4-6) are regressed on two firm-bank
characteristics as well as their interactions with monetary policy shocks, central bank information shocks, and changes in macroprudential policy. The
two firm-bank characteristics are a bank-specific assessment of firm credit risk and the share of borrowing by firm f from bank b at time t-1 that is
fixed rate. The Monetary Policy and Central Bank Information shocks are obtained from Jarociński and Karadi (2020) . Changes in macro-prudential
policy are measured as the quarterly change in the index of 17 policy-action indicators from the IMF’s integrated Macroprudential Policy (iMaPP)
Database, originally constructed by Alam et al. (2019). All specifications include firm-quarter fixed effects as well as bank-industry-location-quarter
fixed effects. Standard errors are obtained from a weighted sum of two standard cluster variances, one clustered at the firm level, and the other at the
bank level (see Appendix E). The unbalanced sample spans firm-bank level observations over the period 2019Q3-2023Q4 for 11 euro area countries.
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In addition, the interaction effects between MP and CBI shocks and the share of fixed-rate

loans reveal interesting patterns. During monetary tightening episodes, the heterogeneity in

credit supply and demand induced by past differences in fixed versus variable rate borrowing

is much more sizable. This is in line with the results in column 5 of Table 6, where the

sample period coincides with the monetary tightening period (2022Q3-2023Q4), where we

also find larger coefficients compared to column 3 (the pandemic period). During a surprise

tightening, banks’ credit supply is more generous if borrowers borrowed predominantly fixed

rate (from that bank) in the past. In bank-firm relationships with more historical variable

rate borrowing, there will be more cautious supply as those firms’ debt-bearing capacity is

negatively affected by a monetary policy tightening. Postive CBI shocks increase the wedge

in credit supply for fixed-rate borrowers to a similar extent.

In sum, the application to monetary and macroprudential policy changes and the es-

tablished relationships therein also lend further credibility to our decomposition of credit

growth and interest rate changes in their underlying demand and supply innovations. More-

over, these results illustrate another interesting application of our methodology. It illustrates

how these heterogeneous shocks may be used to assess the distributional effects of financial

or economic policies. We have showed an application with changes in monetary policy sur-

prises and changes in macro-prudential policy. Future research could investigate whether

the policy stance also matters or whether other structural differences between countries can

explain cross-country heterogeneity in the relationships. Such an analysis would be helpful

in interpreting and extrapolating results from single-country applications.

6.5 Credit growth, interest rate changes and credit demand and

supply

When credit registers record both quantities and prices, implementing the Amiti and Wein-

stein (2018) or Khwaja and Mian (2008) approach to both dimensions could be considered as

a useful framework for labeling relationships as demand or supply effects. While the signs of

coefficients may be suggestive, we will now show that it is not necessarily conclusive and at

best would only indicate which effect is the dominant one. Our approach, on the other hand,

allows us to unveil the full picture of how a bank or firm characteristic may impact demand

and/or supply and how this translates into quantity and price changes. We will illustrate

these claims based on the results presented in Table 8 where we run a similar regression on

four outcome variables: (i) Credit growth, (ii) Interest Rate changes, (iii) Credit demand

innovations and (iv) Credit supply innovations.6

6In Table 11, we provide a table similar to Table 8, but based on the analysis performed in Table 7.
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Table 8: Credit Growth and Interest rate changes vs. Demand and Supply innovations

(1) (2) (3) (4)

Credit growth
(f,b,t)

Change in
Interest Rate

(f,b,t)

Demand
innovation
(f,b,t)

Supply
innovation
(f,b,t)

Share of fixed rate loans (f,b,t-1) 0.045*** -0.229*** -0.157*** 0.158***
(0.006) (0.016) (0.018) (0.016)

Share of collateralized loans (f,b,t-1) 0.047*** -0.021*** 0.011 0.039***
(0.011) (0.008) (0.013) (0.012)

Share of Credit lines and Term Loans (f,b,t-1) -0.137*** 0.118*** 0.088*** -0.130***
(0.025) (0.017) (0.016) (0.028)

Share of bank in a firm’s overall borrowing (f,b,t-1) -0.482*** -0.043*** -0.223*** -0.301***
(0.025) (0.008) (0.022) (0.019)

Bank Sectoral Market Share (f,b,t-1) -0.030 -0.010 -0.023 -0.001
(0.040) (0.020) (0.023) (0.041)

Bank Sectoral Exposure (f,b,t-1) 0.225*** -0.069*** 0.060 0.154***
(0.042) (0.019) (0.038) (0.031)

Observations 12711274 12711274 12711274 12711274
R-squared 0.42 0.45 0.43 0.43
Adjusted R-squared 0.05 0.11 0.08 0.07
Firm×Time FE Yes Yes Yes Yes
Bank×Time FE Yes Yes Yes Yes
SE-cluster1 Bank Bank Bank Bank
SE-cluster2 Firm Firm Firm Firm
Sample 201909-202312 201909-202312 201909-202312 201909-202312
Coverage 11 countries 11 countries 11 countries 11 countries

Notes: This table shows the regression results obtained when regressing (i) Credit growth (column 1),
(ii) Interest Rate changes (column 2), (iii) Credit demand innovations (column 3) and (iv) Credit supply
innovations (column 4) on six variables that vary at the firm-bank-time level. These are the share of
borrowing by firm f from bank b at time t-1 that is (1) fixed rate, (2) secured by collateral, or (3) credit line
or term loan borrowing (with the remaining part being mainly revolving credit). The fourth characteristic
is the share of firm f’s borrowing from bank b at time t-1 in firm f’s overall borrowing at time t-1. The fifth
characteristic is the share of bank b’s lending to the sector of firm f in total borrowing of all firms in that
sector (the market share of bank b in the sector of firm f). The sixth characteristic is the share of bank b’s
lending to the sector of firm f in total lending by banking b (the sectoral exposure of bank b to the sector
of firm f). We include firm-quarter fixed effects as well as bank-quarter (BILT) fixed effects, which subsume
all firm and bank characteristics. Standard errors are clustered at the bank and firm level in columns 1 and
2. In columns 3 and 4, Standard errors are obtained from a weighted sum of two standard cluster variances,
one clustered at the firm level, and the other at the bank level (see Appendix E). The unbalanced sample
spans firm-bank level observations over the period 2019Q3-2023Q4 for 11 euro area countries.
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The first two variables of Table 8 provide an interesting illustration. The share of past

borrowing that was fixed rate or collateralized both positively impact credit growth while

negatively affecting interest rate changes. These signs align with a supply-driven explanation.

However, our decomposition shows that fixed-rate borrowing influences quantities and prices

through a combination of contractionary demand and expansionary supply effects. The

demand contraction offsets the supply expansion, leading to a relatively small net effect on

credit growth but a significant negative effect on pricing.

In contrast, the impact of secured (collateralized) borrowing is purely a supply-side phe-

nomenon, as indicated by the absence of demand-side effects. The result is small, but it

produces a positive effect on credit growth and a negative one on pricing. In particular,

relying solely on the magnitude of the coefficients in the credit growth regression could in-

correctly suggest that the supply effects are equally important to those for fixed rate loans,

which underscores the importance of incorporating price data and implementing our identi-

fication strategy to arrive at heterogeneous credit demand and supply effects.

The impact of the share of credit lines and term loans in past borrowing provides ad-

ditional insight. Its effect on credit growth and interest rate changes is opposite in sign

compared to the impact of the share of fixed rate borrowing. But this is not just due solely

to a contractionary supply effect. This characteristic also has an expansionary effect on

credit demand. The supply effect is approximately 40% stronger than the demand effect,

resulting in a larger (absolute) impact on credit growth and a smaller impact on pricing

compared to the share of fixed-rate loans. This asymmetry highlights the importance of

considering the relative magnitudes of supply and demand effects when interpreting these

relationships.

The effect of the main bank share on credit growth and price changes indicates that

at least a contractionary demand effect should be at play. This is also effectively what we

find in column 3. Our approach also reveals a contractionary supply effect. Together, these

forces result in a significant contraction in credit with only a minimal effect on interest rates.

This highlights the dual role of demand and supply channels in shaping credit outcomes in

concentrated banking relationships.

Compared to the baseline approach, where we mainly focused on these four bank-firm

relationship characteristics, we now also look at the impact of banks’ market share in a

sector and banks’ exposure to a sector. The impact of banks’ sectoral exposure aligns with

previous findings in the literature, such as De Jonghe et al. (2024), who show that bank

specialization in a sector enhances credit growth for healthy firms. However, as noted by

Paravisini et al. (2023), firm-time fixed effects alone may not fully isolate supply-side effects,

as bank specialization can also influence heterogeneous credit demand. In column 2, we find
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that bank sectoral exposure also leads to more favorable pricing, which combined with the

evidence in column 1 supports at least the idea that the supply effect dominates. Our credit

demand and supply decomposition allows to conclude that in our setting the effect of bank

sectoral exposure on credit market dynamics is mainly supply driven. The coefficient on

credit demand is insignifcant (though borderline) and much smaller in economic magnitude.

But, if anything, it would imply that firms would direct their credit demand more to banks

with more expertise in their sector.

7 Conclusion

This paper proposes a novel framework to study heterogeneous distributions of supply and

demand shocks, and their impacts on price and quantity, in bipartite network data. The elas-

ticities of price and quantity, or, alternatively, the shocks themselves, are non-parametrically

identified under mild assumptions, and the elasticities can be consistently estimated. We

illustrate the advantages of this new framework empirically. We characterize how the supply

and demand dynamics of 11 European countries have evolved through the pandemic, subse-

quent inflation, and monetary policy tightening. The slopes of the supply and demand curves

across different countries accord with contemporaneous macrofinancial conditions. Previous

methodologies assuming homogeneous shocks generally capture less than 10% of variation in

the shocks we identify. Moreover, we are able to study how – within a firm or bank – shocks

covary with observable characteristics. The types of loans that characterise a relationship, as

well as the importance of the relationship to the firm, robustly predict supply and demand

shocks, although the sign may vary with financial conditions. The bank’s assessment of a

firm’s probability of default strong predicts supply shocks, but not demand shocks, validat-

ing our approach. We show that some time variation in the relationships between observable

characteristics and shocks is associated with policy changes, demonstrating this methodology

is a potentially powerful tool for understanding the distributional effects of policy.

The empirical analysis only begins to touch the surface of what is possible using modern

credit register data; exhaustive study is left for dedicated future work. These types of results

– demonstrating what identified supply and demand shocks do and do not correlate with –

can be instructive for other empirical exercises. They may be useful to motivate alternative

identifying assumptions. On the theoretical side, they may help to discipline models of credit

supply and demand: they provide targets for how a bank’s credit supply should vary by firm,

for example.

The methodology is also suited to a wide range of other empirical settings which remain

to be explored, including labour market and trade applications. Econometrically, there is
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scope to extend the dimensions of the analysis beyond price and quantity; indeed, the same

approach could be extended to an arbitrary n-dimensional vector of observables that depends

linearly on n or fewer underlying shocks in a bipartite network.
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A Labeling and normalisation of Â

The preliminary estimate Ã requires labeling and normalisation to obtain the supply and

demand elasticities. In particular, let

Â = P̂ (ÃΥ̃)ÃΥ̃, (37)

where P (·) is a signed permutation matrix and Υ̃(·) is a diagonal matrix imposing a scale

normalisation. In practice, we set Υ̃ = Λ̃
1
2
FF , where Λ̃FF = Ã−1SFF Ã

′−1, which normalises

the covariances of demand and supply shocks across firms (within a given bank) to be unity.

A signed permutation matrix is one in which a subset of columns may be negative. We

choose P̂ (ÃΥ̃) to be the signed permutation matrix P ∈ P , where P is the set of all such

matrices, that minimises the Frobenius norm of PÃΥ̃−

(
1 −1

1 1

)
. That is, it is the signed

permutation that minimises the elementwise distance between Â and

(
1 −1

1 1

)
. Formally,

P̂ (ÃΥ̃) = argminP∈P

√√√√ 2∑
i=1

2∑
j=1

(
PÃΥ̃−

(
1 −1

1 1

))2

ij

, (38)

where (M)ij denotes the ij entry of matrix M . This means that the first column of Â

corresponds to the shock whose properties are most consistent with those of a demand

shock, while the second corresponds to a supply shock, and the effects of the shocks are

scaled such that the shocks’ covariances across firms (within a given bank) are unity. Once

Â is obtained, it is trivial to obtain Λ̂BB, and thus the full vector of estimated parameters,

θ̂. In reporting the elasticities, for instance in Figures 1a-2b, we rescale them such that both

supply and demand shocks have unit standard deviations, to render the elasticities more

interpretable across countries and time periods.

B Proof of Theorem 1

We begin by proving a preliminary lemma and proposition. We first prove that the variance

of vech(SFF ) vanishes as F,B → ∞.

Lemma 1. Under Assumptions 3 and 4, var(SFF ) → 0 as F,B → ∞.
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Proof.

var(vech(SFF )) = var

(
1

NFF

B∑
b=1

∑
f ′ ̸=f

vech
(
ηfbη

′
f ′b

))
(39)

= N−2
FFvar

(
vech

(
B∑
b=1

∑
f ′ ̸=f

ηfbη
′
f ′b

))
(40)

= N−2
FF

B∑
b=1

B∑
b′=1

cov

vech

(∑
f ′ ̸=f

ηfbηf ′b

)
, vech

∑
f̃ ̸=f̄

ηf̃ b′ηf̄ b′

′ (41)

= N−2
FF

B∑
b=1

∑
f ′ ̸=f

∑
f̃ ̸=f̄

cov
(
vech (ηfbηf ′b) , vech

(
ηf̃ bηf̄ b

)′)
(42)

+ 2N−2
FF

∑
b′ ̸=b

∑
f ′ ̸=f

cov
(
vech (ηfbηf ′b) , vech (ηfb′ηf ′b′)

′) (43)

≡ ωFF , (44)

where in (43) terms are dropped for which
(
f̄ , f

)
̸= (f, f ′) since these are zero by the

structure and independence conditions in Assumption 3. We now derive the asymptotic

behaviour of this variance. Note that the first summation contains

1

4

B∑
b=1

(Fb(Fb − 1))2 (45)

terms, while the second summation contains∑
b′ ̸=b

∑
f ′ ̸=f

1fb1fb′1f ′b1f ′b′ (46)

terms, where 1fb is an indicator for whether there is a connection between f and b. Since

the number of connections of any single bank, Fb, cannot be larger than F , Assumption 4

guarantees that Fb grows proportionally to F for a non-vanishing share of banks, µF,B →
µ̃ ∈ (0, 1]. It follows that

lim
F,B→∞

1

F 2B

B∑
b=1

Fb(Fb − 1)

2
= δ̃ ∈ (0, 1] (47)

and thus

lim
F,B→∞

(
1

F 2B

B∑
b=1

Fb(Fb − 1)

2

)2

= δ̃2 ∈ (0, 1] , (48)
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and additionally

lim
F,B→∞

1

F 4B

B∑
b=1

F 2
b (Fb − 1)2

4
= γ̃ ∈ (0, 1] . (49)

Then, since in the denominator we have N2
FF =

(
1
2

∑B
b=1 Fb(Fb − 1)

)2
= O (B2F 4), the

first term of ωFF is O(B−1), since the covariances are assumed to be finite, and thus converges

to zero as F,B → ∞. The number of non-zero terms entering the second summation

is bounded above by that for the fully dense network where all firms are connected to all

banks, in which case there are 1
4
B(B−1)F (F −1) terms. Then, given the denominator N2

FF ,

the second term is O(F−2), and converges to zero as F,B → ∞. Thus, the total variance

ωFF = O(B−1) + O(F−2) = O(B−1) by the third point of Assumption 4 and converges to

zero asymptotically.

The consistency of SFF for ΣFF then follows from Lemma 1:

Proposition 3. Under Assumptions 3 and 4, SFF
p→ ΣFF ; the convergence of vech (SFF − AΛFFA

′)

is uniform in θ.

Proof. Consistency of SFF for ΣFF follows directly from Lemma 1 by applying Chebyshev’s

Inequality. The convergence of

f(θ) = SFF − AΛFFA
′ (50)

to E [f(θ)] is also uniform in θ since it is entirely separable in θ and X, where X denotes the

sample of ηfb, and thus

∥f(θ)− E [f(θ)]∥ = ∥SFF − ΣFF∥, (51)

independent of θ.

By symmetry, the same arguments apply to the estimator SBB for ΣBB, whose variance

I denote as ωBB. Denote the two blocks of q(X, θ) as

q(X, θ) ≡

(
qFF (X, θ)

qBB(X, θ)

)
(52)

We can now prove Theorem 1.

Proof. Following the uniform consistency result of Proposition 3, θ̂
p→ θ by standard mini-

mum distance results, see, e.g., Theorem 2.1 of Newey and McFadden (1994), establishing

the first part of the theorem.
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To prove asymptotic normality, we first derive the limiting distribution of the two blocks

of q(·), qFF , qBB. While the proof of Lemma 1 contains expressions for the variances of each

block, it remains to derive their covariance, ωFB. We have

cov (vech(SFF ), vech(SBB)
′) = cov

 1

NFF

B∑
b=1

∑
f ′ ̸=f

vech
(
ηfbη

′
f ′b

)
,

1

NBB

F∑
f̃=1

∑
b̸̃=b′

vech
(
ηf̃ b′η

′
f̃ b̃

)′
(53)

=
4

NFFNBB

∑
f ′ ̸=f

∑
b′ ̸=b

cov
(
vech

(
ηfbη

′
f ′b

)
, vech

(
ηfbη

′
fb′

)′)
, (54)

where we have leveraged the structure of the error terms in Assumption 3. Thus, the

covariance is O(F−1B−1) and vanishes asymptotically at a faster rate than either of the

variance blocks.

Under Assumption 3, vech
(
ηfbη

′
f ′b

)
can be decomposed into several components with

different covariance properties; in particular, the ij element of ηfbη
′
f ′b is

ηfb,iηf ′b,j =

(
Ai,·

(
udfb
usfb

))(
Aj,·

(
udf ′b

usf ′b

))
(55)

=

(
Ai,·

(
edfb + vdfb
esfb + vsfb

))(
Aj,·

(
edf ′b + vdf ′b

esf ′b + vsf ′b

))
(56)

≡ αb,ff ′,ij + βb,ff ′,ij + ζb,ff ′,ij + ξb,ff ′,ij, (57)

where

αb,ff ′,ij =
(
Ai1e

d
fb + Ai2e

s
fb

) (
Aj1e

d
f ′b + Aj2e

s
f ′b

)
(58)

βb,ff ′,ij =
(
Ai1v

d
fb + Ai2v

s
fb

) (
Aj1v

d
f ′b + Aj2v

s
f ′b

)
(59)

ζb,ff ′,ij =
(
Ai1e

d
fb + Ai2e

s
fb

) (
Aj1v

d
f ′b + Aj2v

s
f ′b

)
(60)

ξb,ff ′,ij =
(
Ai1v

d
fb + Ai2v

s
fb

) (
Aj1e

d
f ′b + Aj2e

s
f ′b

)
. (61)

Working term by term, for αb,ff ′,ij, E [αb,ff ′,ij] = 0 as it is the product of independent

firm-specific components. First, note that

√
B

NFF

B∑
b=1

∑
f ′ ̸=f

αb,ff ′,ij =

√
BF 2

NFF

B∑
b=1

1

F 2

∑
f ′ ̸=f

αb,ff ′,ij =

√
BF 2

NFF

B∑
b=1

Op(F
−1), (62)
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since the inner summation is is the sample average of at most F (F−1)/2 uncorrelated mean-

zero terms by the independence conditions in Assumption 3, and is thus
√
F 2 consistent by

the weak LLN. Then

√
BF 2

NFF

B∑
b=1

Op(F
−1) = O

(
BF 2

NFF

)
Op

(
B

1
2F−1

)
→ 0 (63)

jointly in F,B, where the limit follows since O
(

BF 2

NFF

)
→ O(1) by (47) and B

1
2/F → 0 by

Assumption 4.

Turning to βb,ff ′,ij, first note that

E[βb,ff ′,ij] = E [ηi,fb,iηf ′b,j] = ΣFF,ij, (64)

since vdfb and v
s
fb are the only source of correlation across firms. Then

√
B

(
1

NFF

B∑
b=1

∑
f ′ ̸=f

βb,ff ′,ij − ΣFF,ij

)
(65)

is a (scaled) sum of B mean-zero independent random variables
∑

f ′ ̸=f βb,ff ′,ij−ΣFF,ij. Note

that under Assumption 3, in particular the i.i.d. and finite moments assumptions on the

shock components, it follows that, for some ϵ > 0,(
B∑
b=1

var

(∑
f ′ ̸=f

βb,ff ′,ij − ΣFF,ij

))−(1+ϵ/2) B∑
b=1

E

[
||
∑
f ′ ̸=f

βb,ff ′,ij − ΣFF,ij||2+ϵ

]
= O(B− ϵ

2 ) →
F,B→∞

0,

(66)

Lyapunov’s condition.

It follows from Lyapunov’s Central Limit Theorem that

(
B∑
b=1

var

(∑
f ′ ̸=f

βb,ff ′,ij − ΣFF,ij

))− 1
2 B∑

b=1

∑
f ′ ̸=f

βb,ff ′,ij − ΣFF,ij
d→ N (0, 1). (67)

Then, rearranging we obtain

√
B

NFF

B∑
b=1

∑
f ′ ̸=f

βb,ff ′,ij − ΣFF,ij
d→ ψb,ij ∼ N (0, Vij), (68)
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where

Vij = lim
F,B→∞

B

N2
FF

B∑
b=1

var

(∑
f ′ ̸=f

βb,ff ′,ij − ΣFF,ij

)
. (69)

Joint asymptotic normality then holds across
√
B
(

1
NFF

∑B
b=1

∑
f ′ ̸=f βb,ff ′ − vech(ΣFF )]

)
,

for βb,ff ′ the vector stacking unique entries over i, j. Note that for any linear combination

given by t ∈ R3, the resulting random variable
√
B

NFF

∑B
b=1 t

′∑
f ′ ̸=f βb,ff ′ −vech(ΣFF ) will sat-

isfy Lyapunov’s Condition by the same argument given above, since the asymptotic weight

given to each βb,ff ′,ij is constant across entries, so the linear combination is asymptotically

normal with mean zero and variance γ̃

δ̃2
t′V t, where V = limF,B→∞

B
N2

FF

∑B
b=1 var

(∑
f ′ ̸=f βb,ff ′ − vech(ΣFF )

)
,

which is equal to var(t′Ψb), where Ψb stacks ψb,ij across ij. Note that V is full rank by

Assumption 3. Then, by the Cramer-Wold device, the original random vector is jointly

asymptotically normal:

√
B

(
1

NFF

B∑
b=1

∑
f ′ ̸=f

βb,ff ′ − vech(ΣFF )

)
d→ N (0, V ). (70)

For ζb,ff ′,ij, which is mean zero,

√
B

(
1

NFF

B∑
b=1

∑
f ′ ̸=f

ζb,ff ′,ij − E [ζb,ff ′,ij]

)
=

√
BOp

(
N

− 1
2

FF

)
, (71)

since the expression in parentheses is the sample average of NFF mean-zero finite variance

uncorrelated random variables, converging in probability to zero (e.g., Chebyshev’s Weak

LLN). Then limF,B→∞
√
BOp

(
N

− 1
2

FF

)
= 0 by Assumption 4. By symmetry, the same argu-

ment applies to ξb,ff ′,ij, since it has the same properties. Thus, combining the limits of each

component, √
B
(
SFF,ij − (AΛFFA

′)ij

)
d→ N (0, Vij) (72)

by Slutsky’s Theorem. Stacking entries and using the joint normality established above

for βb, the only non-vanishing term asymptotically, gives a multivariate normal limiting

distribution for
√
BqFF (X, θ), with variance denoted WFF ≡ V . By symmetry, a parallel

argument applies to
√
FqBB(X, θ), with variance WBB.

Joint asymptotic normality (as F,B → ∞) of
√
BqFF (X, θ) and

√
FqBB(X, θ) follows

because they are asymptotically independent. In particular, asymptotically, the distribution

of each sum depends exclusively on sums of vfb and efb, respectively, which are independent

by Assumption 3; all terms inducing dependence are asymptotically negligible. Due to this

independence, Ψb and Ψf are jointly normal, so we have
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(√
BqFF (X, θ)√
FqBB(X, θ)

)
d→ N (0,W), (73)

where

W =

[
WFF 0

0 WBB

]
. (74)

Given the structure of q and the identification condition, regularity conditions for continuous

differentiability and the Jacobian of q, denoted Φ, required for minimum distance estimation,

are trivially satisfied. Therefore, with this limiting distribution, following the standard

minimum distance argument (e.g., Theorem 3.2, Newey and McFadden (1994)),

Φ̃(θ̂ − θ)
d→ N (0,W), (75)

where

Φ̃ =

([√
B 0

0
√
F

]
⊗ I3

)
Φ, Φ = E

[
∂q(X, θ)

∂θ′

]
. (76)

C Proof of Proposition 2

Proof. The proof of Theorem 1 defined WFF ,

WFF = lim
F,B→∞

B

N2
FF

B∑
b=1

var

(∑
f ′ ̸=f

βb,ff ′ − vech(ΣFF )

)
(77)

= lim
F,B→∞

B∑
b=1

B(Fb(Fb − 1)/2)2

N2
FF

var

(
1

Fb(Fb − 1)/2

∑
f ′ ̸=f

βb,ff ′ − vech(ΣFF )

)
(78)

=
γ̃

δ̃2
µ̃ lim var

(
1

Fb(Fb − 1)/2

∑
f ′ ̸=f

βb,ff ′ − vech(ΣFF )

)
(79)

=
γ̃µ̃

δ̃2
ΩFF , (80)

where ΩFF = limFb→∞ var
(

1
Fb(Fb−1)/2

∑
f ′ ̸=f βb,ff ′ − vech(ΣFF )

)
. In particular, the third

equality follows from the fact that Fb increases proportionally to F for a non-vanishing share,

µ̃ asymptotically, of banks as a consequence of Assumption 4, and for the remaining banks
B2(Fb(Fb−1)/2)2

N2
FF

→ 0, so their variance is asymptotically negligible in computing (79). For a

fraction µ̃ of banks the scaled summations are independently and asymptotically identically
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distributed.

Note that, following the decomposition in the proof of Theorem 1, ŴFF can be expanded

in terms of four types of terms. That proof showed that sample averages of three of them

over f ′ ̸= f , holding b fixed and normalised by F 2 converged in probability to zero, for

instance 1
F 2

∑
f ′ ̸=f αb,ff ′ = Op(F

−1) → 0. Since ŴFF features second powers of such sample

averages, it is easy to show that any contributions owing to those terms are asymptotically

negligible. The only non-vanishing terms in ŴFF are those depending exclusively on βb,ff ′ .

We thus study the behaviour of

B

N2
FF

B∑
b=1

(∑
f ′ ̸=f

βb,ff ′ − vech(SFF )

)(∑
f ′ ̸=f

βb,ff ′ − vech(SFF )

)′

. (81)

First, denote
1

Fb(Fb − 1)/2

∑
f ′ ̸=f

βb,ff ′ − vech(ΣFF )
d→ νb, (82)

where var(νb) is bounded for all b by Assumption 3. It follows that

νb ∼ ν, E[ν] = 0, var(ν) = ΩFF , (83)

for a fraction µ̃ of banks as F,B → ∞. Since SFF is consistent for ΣFF by Proposition 3,

1

B

B∑
b=1

B2(Fb(Fb − 1)/2)2

N2
FF

(
1

Fb(Fb − 1)/2

∑
f ′ ̸=f

βb,ff ′ − vech(SFF )

)(
1

Fb(Fb − 1)/2

∑
f ′ ̸=f

βb,ff ′ − vech(SFF )

)′

(84)

p→ lim
F,B→∞

1

B

B∑
b=1

B2(Fb(Fb − 1)/2)2

N2
FF

νbν
′
b =

γ̃µ̃

δ̃2
ΩFF + (1− µ̃)× 0 =

γ̃µ̃

δ̃2
ΩFF , (85)

as the average of κB i.i.d. random variables consistent by Chebyshev’s Inequality.

D Lemma 2

Lemma 2. In the model ηfb = ΓXfb +Aufb, Γ can be consistently estimated by OLS under

Assumptions 1-4 provided that Xfb is independent of Xf ′b′ , for all f
′ ̸= f, b′ ̸= b, Xfb has full

rank and finite variance, and var
(
AufbX

′
fb

)
<∞.

Proof. By the usual algebra, making the dependence on network structure D explicit, the
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OLS estimator of Γ is

Γ̂ = Γ +
1

N

F∑
f=1

B∑
b=1

AufbX
′
fbDfb

(
1

N

F∑
f=1

B∑
b=1

XfbX
′
fbDfb

)−1

. (86)

The expectation of the numerator of the error term is zero by Assumption 1. To see this,

note that by the law of iterated expectations,

E

[
1

N

F∑
f=1

B∑
b=1

AufbX
′
fbDfb

]
=

1

N

F∑
f=1

B∑
b=1

AE
[
E [ufb|X,D]X ′

fbDfb|D
]

(87)

=
1

N

F∑
f=1

B∑
b=1

AE
[
E [ufb|D]X ′

fbDfb|D
]

(88)

= E [Dfb]AE
[
E [ufb|Dfb = 1, D−fb]X

′
fb|Dfb = 1, D−fb

]
(89)

= E [Dfb]AE [ufb|Dfb = 1, D−fb]E
[
X ′

fb|Dfb = 1, D−fb

]
(90)

= 0. (91)

The variance of the numerator is

var

(
1

N

F∑
f=1

B∑
b=1

AufbX
′
fb

)
(92)

=
1

N2

F∑
f=1

B∑
b=1

F∑
f ′=1

B∑
b′=1

cov
(
AufbX

′
fb, Xf ′b′Au

′
f ′b′

)
(93)

≤ F 2B2

N2

1

F 2B2

F∑
f=1

B∑
b=1

(F +B − 1)var
(
AufbX

′
fb

)
(94)

=
F 2B2

N2

(F +B − 1)

FB
var
(
AufbX

′
fb

)
→ 0. (95)

Since the correlation pattern is identical in the denominator, the variance of the denomi-

nator also vanishes as F,B → ∞. Applying Chebyshev’s Inequality separately to both the

numerator and the denominator followed by Slutsky shows that Γ̂
p→ Γ.

E Inference based on estimated shocks

Fixed-effects based approaches to shock estimation in the corporate credit literature – for

instance, Khwaja and Mian (2008) and Amiti and Weinstein (2018) – aim to consistently
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estimate supply and/or demand shocks. In our setting, the shocks specific to any firm-bank

pair can be obtained by simply inverting Â and computing ûfb = Â−1ηfb. Due to the lin-

earity assumption in (7), our methodology exploits the information in all F firms and B

banks to estimate the matrix A, and thus identify the shocks specific to any firm-bank pair.

In contrast, as shown by Jochmans and Weidner (2019), in Abowd et al. (1999)-type esti-

mators, information is exploited in effect from only the direct neighbours of a given firm or

bank. While our estimates of the relationship-specific shocks, ûfb, are unbiased for the true

values, asymptotic inference for an average firm demand shock or bank supply shock is con-

ceptually problematic from a frequentist perspective. The reason is that, akin to the random

effects literature, shocks are better viewed as random variables. It would be more appro-

priate to instead consider prediction intervals. This is a key conceptual distinction between

the original Abowd et al. (1999) setting – where unobserved heterogeneity captures fixed

worker and employer characteristics – and many subsequent empirical applications, where

the unobserved heterogeneity takes the form of shocks or other random variables. Inference

on a random variable is not a well-defined frequentist problem. In previous frameworks,

it is perhaps more accurate to think about sampling uncertainty of fixed effects estimates

of shocks vanishing asymptotically, with the sampling distribution collapsing around some

realisation of the underlying random variable.

Although we do not impose that Bf → ∞ for all firms, if we did it would be immediate

to show (under Assumptions 1 − 4) that the sample average of the relationship-specific

shock estimates for any firm would converge in probability to edfb and e
s
fb, and similarly for

banks to vdfb and vsfb. Such averages provide an analogous estimate to the supply shocks

obtained by Amiti and Weinstein (2018), for instance. We explore the relative accuracy of

these approaches in simulations below and find that such sample averages outperform well-

specified fixed effects estimates in terms of their correlation with a true “average” supply or

demand shock.

While inference for the shocks themselves is not a well-defined frequentist problem, it

is natural to treat such random variables as generated regressors in regressions of interest.

In particular, we use them as a dependent variable in a variety of specifications. We now

establish the asymptotic properties of OLS estimators based on these generated regressors.

First, we show that moments in terms of the estimated shocks and some other observable,

Zfb are consistent estimates of their population counterparts based on the true, infeasible

shocks.

Proposition 4. For some covariate, Zfb, which is potentially correlated across both firms

(holding b fixed) and banks (holding f fixed) and E
[
ZfbZ

′
fb

(
uifb
)2]

<∞, under Assumptions
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1-4,

1

N

F∑
f=1

B∑
b=1

Zfbû
i
fb

p→ E
[
Zfbu

i
fb

]
, i ∈ {s, d}. (96)

Proof. Note that

ûfb = A−1ηfb = ufb + (Â−1 − A)ηfb, (97)

where (Â−1 − A)
p→ 0 and is asymptotically independent of all ηfb. Then

1

N

F∑
f=1

B∑
b=1

ûifbZfb → plim
1

N

F∑
f=1

B∑
b=1

uifbZfb. (98)

Under the stated assumptions,

var

(
1

N

F∑
f=1

B∑
b=1

uifbZfb

)
(99)

=
1

N2

F∑
f=1

B∑
b=1

F∑
f ′=1

B∑
b′=1

cov
(
uifbZfb, u

i
f ′bZf ′b

)
(100)

≤ F 2B2

N2

1

F 2B2

F∑
f=1

B∑
b=1

(F +B − 1)E
[
ui2fbZfbZ

′
fb

]
(101)

=
F 2B2

N2

(F +B − 1)

FB
E
[
ui2fbZfbZ

′
fb

]
→ 0. (102)

Then the estimate is consistent for the expectation by Chebyshev’s Inequality.

Now, consider regressions of the form

uifb = ς i + ϕiZfb + υifb, i ∈ {s, d}, (103)

where E
[
υifb|Zfb

]
= 0. We make an additional assumption on the dependence structure of

the regressors and regression errors across firms and banks, appropriate moments, and the

asymptotic behaviour of F and B.

Assumption 6. Zfb in can be decomposed as Zfb = zfb,f + zfb,b, where z
f
fb, z

b
fb are indepen-

dent, but zfb,f may be dependent across banks, and zfb,b may be dependent across firms. For

i ∈ {s, d}, υifb can be decomposed as υifb = υifb,f + υifb,b, where υ
i
fb,f , υ

i
fb,b are independent,

but υifb,f may be dependent across b, and υifb,b may be dependent across f . Additionally,

E
[
ZfbZ

′
fb

(
υifb
)2]

is positive semidefinite and E
[
Z2

fb,lZ
2
fb,k

(
υifb
)4]

< ∞ for all regressors

l, k. limF/B exists and is in [0,∞].

61



With this assumption in hand, we can characterise the asymptotic distribution; details

on the variance structure and estimators are given in the proof.

Proposition 5. Under Assumptions 1-6, the OLS estimator of ϕ in (103) follows
√
min(F,B)

(
ϕ̂− ϕ

)
d→

N (0, Vϕ); Vϕ can be consistently estimated using clustered variance estimators.

Proof. Proposition 4 shows that the numerator of the OLS estimator is consistent for its

population counterpart (using the infeasible, true shocks). By a similar argument,

1

N

B∑
b=1

F∑
f=1

ZfbZ
′
fb ≡ Q̂ZZ

p→ E
[
ZfbZ

′
fb

]
≡ QZZ , (104)

so ϕ̂i p→ ϕi.

Note that we can write ûifb = uifb +
(
Â−1A− I2

)
i
ufb. Following Theorem 1,

ûifb =
(
I2 +Op

(
min(F,B)−

1
2

))
i
ufb. (105)

We thus study the asymptotic behaviour in terms of the infeasible true shocks, before showing

that this suffices to characterise that involving the estimated shocks.

Let ϕ̃i be the infeasible OLS estimator based on the true shocks. As usual, we note that

ϕ̃i − ϕ =

(
1

N

F∑
f=1

B∑
b=1

ZfbZ
′
fb

)−1

1

N

F∑
f=1

B∑
b=1

Zfbυ
i
fb, (106)

and thus study 1
N

∑F
f=1

∑B
b=1 Zfbυ

i
fb. First, consider the asymptotic behaviour of

1

N

F∑
f=1

B∑
b=1

Zfbυ
i
fb. (107)

We can construct a similar decomposition of Zfbυ
i
fb as in the proof of Theorem 1. In partic-

ular,

Zfbυ
i
fb = τ ifb,f + τ ifb,b + λifb,fb + λifb,bf (108)

τ ifb,f ≡ zfb,fυ
i
fb,f (109)

τ ifb,b ≡ zfb,bυ
i
fb,b (110)

λifb,fb ≡ zfb,fυ
i
fb,b (111)

λifb,bf ≡ zfb,bυ
i
fb,b, (112)
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and similarly decompose the summation into four corresponding summations. Consider first
1
N

∑B
b=1

∑F
f=1 τ

i
fb,b, and assume for now that Zfb is a scalar. By Assumption 6, this is a

normalised sum of B independent mean zero random variables,
∑F

f=1 τ
i
fb,b. By the mo-

ment assumptions made in Assumption 6, and definition of N ,
√
B
B

∑B
b=1

(
(B/N)

∑F
f=1 τ

i
fb,b

)
satisfies Lyapunov’s condition, so

√
B

B

B∑
b=1

(
(B/N)

F∑
f=1

τ ifb,b

)
d→ N (0, V i

ZB). (113)

If Zfb is vector valued, joint asymptotic normality follows from the Cramer-Wold device,

similarly to the proof of Theorem 1. By symmetry,

√
F

F

F∑
f=1

(
(F/N)

B∑
b=1

τ ifb,f

)
d→ N (0, V i

ZF ), (114)

and joint convergence likewise holds when Zfb is vector-valued.

Turning to 1
N

∑B
b=1

∑F
f=1 λ

i
fb,fb, we have

√
B

(
1

N

B∑
b=1

F∑
f=1

λifb,fb

)
=

√
BOp

(
N− 1

2

)
,

√
F

(
1

N

B∑
b=1

F∑
f=1

λifb,fb

)
=

√
FOp

(
N− 1

2

)
,

(115)

since the expression in parentheses is the sample average of N mean-zero finite variance

uncorrelated random variables, converging in probability to zero (e.g., Chebyshev’s Weak

LLN). Then in either case, the expressions converge to zero by Assumption 4.

Thus, √
min(F,B)

N

B∑
b=1

F∑
f=1

Zfbυ
i
fb

d→ ϱB + ϱF , (116)

where

√
min(F,B)

N

∑B
b=1

(∑F
f=1 τ

i
fb,f

)
d→ ϱB and

√
min(F,B)

N

∑B
b=1

(∑F
f=1 τ

i
fb,b

)
d→ ϱF . The

asymptotic behaviour depends on the relative rates of F,B. If B/F → 0, then ϱF = 0, since

min(F,B) is not of large enough asymptotic order to normalise the underlying summation

(whose variance is O(F−1)). On the other hand, ϱB ∼ N (0, V i
ZB), so the entire summation

is distributed N (0, V i
ZB). By symmetry, the opposite is true if B/F → 0. If F/B → c ∈

[1,∞), then ϱF ∼ N (0, c−1V i
ZF ); if c ∈ (0, 1), then ϱB ∼ N (0, cV i

ZB). ϱB and ϱF are

independent since τ ffb, τ
b
fb are independent by Assumption 6. Then the sum converges to
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N (0, V i
ZB + c−1V i

ZF ). Defining V
i
Zυ as

V i
Zυ =



V i
ZB, B/F → 0

V i
ZF , F/B → 0

V i
ZB + c−1V i

ZF , F/B → c ∈ [1,∞)

cV i
ZB + V i

ZF , F/B → c ∈ (0, 1)

(117)

yields √
min(F,B)

(
ϕ̃i − ϕi

)
d→ N (0, V i

ϕ), (118)

where V i
ϕ = Q−1

ZZV
i
ZυQ

−1
ZZ .

It remains to relate the limiting distribution of ϕ̂i constructed using the estimated shocks,

ûifb, to this one. Following (105),

ϕ̂i =
(
1 +Op

(
min(F,B)−

1
2

))
ϕ̃i d→ N (0, V i

ϕ), (119)

since the first term converges to unity.

V i
ZB and V i

ZF are clustered variances at firm and bank level, respectively, for unbalanced

panel data. Under the moment assumptions in Assumption 6, the standard clustered esti-

mators are consistent. To illustrate this, consider the infeasible estimator

Ṽ i
ZB =

B

N2

B∑
b=1

(
F∑

f=1

Zfbυ
i
fb

)(
F∑

f=1

Zfbυ
i
fb

)′

−

(
1

N

B∑
b=1

F∑
f=1

Zfbυ
i
fb

)(
1

N

B∑
b=1

F∑
f=1

Zfbυ
i
fb

)′

(120)

The second term is consistent for limE
[
Zfbυ

i
fb

]
E
[
Zfbυ

i
fb

]′
following Proposition 4 and the

continuous mapping theorem.

The variance of this object is the sum of at most O (BF 4 +B2F 2) = O(BF 4) non-zero

covariances, since in order to have non-zero covariance terms must either have common b in-

dex or two common f indices, but the object is normalised by B2N−4, and B2N−4O (BF 4) =

O (B−1) → 0. Note that

B

N2

B∑
b=1

(
F∑

f=1

Zfbυ
i
fb

)(
F∑

f=1

Zfbυ
i
fb

)′

=
1

B

B∑
b=1

(
B/N

F∑
f=1

Zfbυ
i
fb

)(
B/N

F∑
f=1

Zfbυ
i
fb

)′

(121)
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Therefore, by Chebyshev’s inequality,

B

N2

B∑
b=1

(
F∑

f=1

Zfbυ
i
fb

)(
F∑

f=1

Zfbυ
i
fb

)′
p→ limE

[(
B/N

F∑
f=1

Zfbυ
i
fb

)(
B/N

F∑
f=1

Zfbυ
i
fb

)′]
.

(122)

Combining the two terms, we have

Ṽ i
ZB

p→ limE

[(
B/N

F∑
f=1

Zfbυ
i
fb

)(
B/N

F∑
f=1

Zfbυ
i
fb

)′]
− E

[
Zfbυ

i
fb

]
E
[
Zfbυ

i
fb

]′
(123)

= lim var

(
B/N

F∑
f=1

Zfbυ
i
fb

)
= V i

ZB. (124)

As above, υ̂ifb =
(
I2 +Op

(
min(F,B)−

1
2

))
i
υfb, so V̂

i
ZB =

(
1 +Op

(
min(F,B)−

1
2

))
Ṽ i
ZB

p→

V i
ZB. By symmetry, the same is true for the analogous estimator V̂ i

ZF . Finally, V̂ i
Zυ can

be consistently estimated by combining V̂ i
ZB, V̂

i
ZF , F, B according to (117), and thus V̂ i

ϕ =

Q̂−1
ZZ V̂

i
ZυQ

−1
ZZ

p→ V i
ϕ.

Three remarks are in order. First, the structure of the asymptotic variance is dependent

on the relative rates of F,B. Thus, the researcher is required to take a stand on the appro-

priate asymptotic framework to compute the estimator. Second, V̂ i
ϕ is a weighted sum of two

standard cluster variances, one clustered at the firm level, and the other at the bank level.

Note that these variance estimators must respect the fact that the panel data is unbalanced,

however, due to the varying degrees of each firm and bank. Third, in the case that either

var(zfb,f ) = 0 or var(zfb,b) = 0, for instance in the cases of regressions using only firm or

bank fixed effects, respectively, the variance estimators will still be asymptotically correct.

Either V̂ i
ZB or V̂ i

ZF will go to zero, in the presence of irrelevant clusters. However, in the

case where B/F → 0 and only bank-invariant regressors are used (e.g, firm fixed effects),

and vice versa, the limiting distribution may be degenerate. For instance, in the case where

B/F → 0, but the only regressors included are bank invariant (i.e. firm fixed effects), the

asymptotic variance is normalised by
√
B = min(F,B)

1
2 , so V i

Zυ = V i
ZB, but V

i
ZB → 0. In

this case, it is necessary to study the distribution of
√
F
(
ϕ̂i − ϕ−

)
in order to obtain a

non-degenerate limiting distribution.
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F Additional empirical results

Table 9: Summary statistics

Pandemic Inflation Tightening
F B N F B N F B N

Austria 6,324 334 17,371 7,222 446 19,493 17,234 416 45,824
Belgium 12,511 19 27,129 13,398 20 29,297 16,891 21 37,107
Germany 59,059 848 151,185 60,468 808 155,567 95,451 774 242,030
Spain 108,521 99 323,796 100,198 101 302,326 114,485 96 328,883
Finland 7,649 172 16,324 7,019 158 15,026 13,749 144 30,155
France 60,156 129 142,101 74,498 132 176,373 57,476 131 135,142
Greece 3,536 16 9,645 4,042 15 10,074 8,165 14 20,072
Ireland 200 10 409 217 9 439 650 10 1,334
Italy 192,523 214 582,294 168,079 202 497,973 196,463 195 583,328
Netherlands 1,092 19 2,267 1,692 19 3,585 1,519 20 3,282
Portugal 22,700 110 62,724 25,288 103 68,216 29,881 99 80,965

Notes: This table reports the sample sizes by country for each of the subsamples studied. F
indicates the number of multi-bank firms, B the number of banks and N the number of relation-
ships between banks and such firms. The steps used to select this sample are described in the
text.
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Figure 6: Variation in Demand and Supply shocks explained by Sets of Fixed Effects

Notes: This graph presents the unadjusted R2 values from regressing time-varying firm-bank specific demand
and supply shocks on sets of fixed effects. Data is pooled over all countries. The fixed effects regressions are
done separately for each quarter, over the period 2019Q3 to 2023Q4. The different lines depict R2 values for
various fixed effects combinations, including Bank-Time (BT), Industry-Location-Size-Time (ILST), Bank-
Industry-Location-Size-Time (BILST), Firm-Time (FT), and two way fixed effects combining either FT and
BT or FT and BILST in one set-up. The y-axis shows the R2 values, with dotted reference lines at 0.2
intervals. The left panel considers demand shocks and the right supply.
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Figure 7: Variation in Demand and Supply shocks explained by Fixed Effects: three 6 quarter
periods and full period

Notes: These graphs display adjusted R2 values from regressing time-varying firm-bank specific demand (left) or supply (right)
shocks on various sets of fixed effects (FEs). The first line of plots corresponds with pooling all countries. Each subsequent row
corresponds with one country. For each subplot, we report the adjusted R2 for 10 different sets of (combinations of fixed effects)
across three six-quarter periods and the full sample period (2019Q3-2023Q4). The three six quarter periods are: 2019Q3-
2020Q4, 2021Q1-2022Q2 and 2022Q3-2023Q4. Colors represent different time periods, with the entire period (2019Q3-2023Q4)
shown in dark gray. The FEs are respectively (1) industry-location-time (ILT), (2) bank-time (BT), (3) industry-location-size
time (ILST), (4) bank-location-time (BLT), (5) bank-industry-time (BIT), (6) bank-industry-location-time (BILT), (7) bank-
industry-location-size-time (BILST), (8) firm-time (FT), (9) FT and BT, (10) FT and BILST). Time (T) is the quarterly
frequency, where size is quintiles of the firm size distribution (in a BILT bin). The y-axis shows the R2 values, with dotted
reference lines at 0.2 intervals.
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Table 10: Baseline: robustness to standard error clustering and fixed effects

(1) (2) (3) (4) (5)
Demand innovation (f,b,t)

Share of fixed rate loans (f,b,t-1) -0.162*** -0.162*** -0.162*** -0.162*** -0.157***
(0.019) (0.017) (0.001) (0.019) (0.018)

Share of collateralized loans (f,b,t-1) 0.016 0.016** 0.016*** 0.016 0.012
(0.016) (0.008) (0.001) (0.016) (0.013)

Share of Credit lines and Term Loans (f,b,t-1) 0.086*** 0.086*** 0.086*** 0.086*** 0.088***
(0.017) (0.016) (0.001) (0.017) (0.016)

Share of bank in a firm’s overall borrowing (f,b,t-1) -0.206*** -0.206*** -0.206*** -0.206*** -0.223***
(0.023) (0.012) (0.002) (0.023) (0.022)

R-squared 0.52 0.52 0.52 0.52 0.43
Adjusted R-squared 0.04 0.04 0.04 0.04 0.08

Supply innovation (f,b,t)

Share of fixed rate loans (f,b,t-1) 0.156*** 0.156*** 0.156*** 0.156*** 0.158***
(0.021) (0.018) (0.001) (0.021) (0.016)

Share of collateralized loans (f,b,t-1) 0.034*** 0.034*** 0.034*** 0.034*** 0.040***
(0.013) (0.008) (0.001) (0.013) (0.012)

Share of Credit lines and Term Loans (f,b,t-1) -0.150*** -0.150*** -0.150*** -0.150*** -0.131***
(0.030) (0.015) (0.002) (0.030) (0.028)

Share of bank in a firm’s overall borrowing (f,b,t-1) -0.337*** -0.337*** -0.337*** -0.337*** -0.298***
(0.019) (0.017) (0.002) (0.019) (0.019)

R-squared 0.52 0.52 0.52 0.52 0.43
Adjusted R-squared 0.04 0.04 0.04 0.04 0.07

Observations 10477109 10477109 10477109 10477109 12752210
Firm×Time FE Yes Yes Yes Yes Yes
Bank×Time FE - - - - Yes
Bank×Industry×Location×Time FE Yes Yes Yes Yes -

SE-cluster1 Bank
Bankx-
Time

Firm Bank Bank

SE-cluster2 - - - Firm -

Notes: Time-varying innovations to firm-bank specific credit demand (upper panel) or credit supply
(lower panel) are regressed on four time-varying bank-firm characteristics. These are the share of borrowing
by firm f from bank b at time t-1 that is (1) fixed rate, (2) secured by collateral, or (3) credit line or
term loan borrowing (with the remaining part being mainly revolving credit). The fourth characteristic
is the share of firm f’s borrowing from bank b at time t-1 in firm f’s overall borrowing at time t-1. We
use an unbalanced sample of firm-bank level observations over the period 2019Q3-2023Q4 for 11 euro area
countries. All specifications include firm-quarter fixed effects. In columns 1 to 4, we include bank-industry-
location-quarter fixed effects. Columns 1 to 4 differ in the extent of clustering the standard errors. We
cluster the standard errors at the bank level (colum 1), bank-quarter level (column 2), firm level (column
3). In column 4, standard errors are obtained from a weighted sum of two standard cluster variances, one
clustered at the firm level, and the other at the bank level (see Appendix E). In column 5, we replace the
bank-industry-location-quarter fixed effects with the less granular bank-quarter fixed effects.
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Table 11: The impact of monetary policy, central bank information and macroprudential policy

(1) (2) (3) (4)

Credit growth
(f,b,t)

Change in
Interest Rate

(f,b,t)

Demand
innovation(f,b,t)

Supply
innovation(f,b,t)

Probability of Default (f,b,t) -0.260*** 0.079*** -0.006 -0.185***
(0.039) (0.024) (0.026) (0.050)

Monetary Policy (t) × Probability of Default (f,b,t) 0.064 0.789*** -0.044 -0.446
(0.261) (0.195) (0.203) (0.307)

Central Bank Information (t) × Probability of Default (f,b,t) -1.120*** -0.255 -2.271*** -0.162
(0.349) (0.244) (0.574) (0.329)

Share of fixed rate loans (f,b,t-1) 0.064*** -0.181*** -0.125*** 0.141***
(0.021) (0.017) (0.021) (0.018)

Monetary Policy (t) × Share of fixed rate loans (f,b,t-1) 0.260** -0.922*** -0.533*** 0.725***
(0.114) (0.122) (0.127) (0.237)

Central Bank Information (t) × Share of fixed rate loans (f,b,t-1) -0.196** -0.588*** 0.033 0.699*
(0.079) (0.192) (0.313) (0.365)

Quarterly Change in Macro-Prudential index (t) × Probability of Default (f,b,t) -0.016 0.043*** 0.037*** -0.047*
(0.016) (0.010) (0.010) (0.025)

Quarterly Change in Macro-Prudential index (t) × Share of fixed rate loans (f,b,t-1) -0.008*** -0.015 -0.017* 0.003
(0.003) (0.009) (0.010) (0.007)

Observations 5899787 5899787 5899787 5899787
R-squared 0.51 0.53 0.52 0.51
Adjusted R-squared -0.01 0.04 0.03 0.01
Firm×Time FE Yes Yes Yes Yes
Bank×Industry×Location×Time FE Yes Yes Yes Yes
SE-cluster1 Bank Bank Bank Bank
SE-cluster2 Firm Firm Firm Firm
Sample 201909-202312 201909-202312 201909-202312 201909-202312
Coverage 11 countries 11 countries 11 countries 11 countries

Notes: This table is similar in design to Table 8, but uses the specification as in columns 3 and 6 of Table 7. More specifically, the table shows
the regression results obtained when regressing (i) Credit growth (column 1), (ii) Interest Rate changes (column 2), (iii) Credit demand innovations
(column 3) and (iv) Credit supply innovations (column 4) on two firm-bank characteristics as well as their interactions with monetary policy shocks,
central bank information shocks, and changes in macroprudential policy. The two firm-bank characteristics are a bank-specific assessment of firm
credit risk and the share of borrowing by firm f from bank b at time t-1 that is fixed rate. The Monetary Policy and Central Bank Information
shocks are obtained from Jarociński and Karadi (2020) . Changes in macro-prudential policy are measured as the quarterly change in the index
of 17 policy-action indicators from the IMF’s integrated Macroprudential Policy (iMaPP) Database, originally constructed by Alam et al. (2019).
All specifications include firm-quarter fixed effects as well as bank-industry-location-quarter fixed effects. Standard errors are clustered at the bank
and firm level in columns 1 and 2. In columns 3 and 4, Standard errors are obtained from a weighted sum of two standard cluster variances, one
clustered at the firm level, and the other at the bank level (see Appendix E). The unbalanced sample spans firm-bank level observations over the
period 2019Q3-2023Q4 for 11 euro area countries.
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