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Introduction

• Research Question:

• How can one measure the value of a place for households?

• The value of a place is reflected through

• the cost of housing (observed) + the value of amenities (not directly observed)

• Approach:

• Geographic PageRank (GPR)

• A novel ranking of places revealed by household migration choices

• A measure that captures a networked-based measure of centrality

• Places attracting people are ranked as good

• Places attracting people from other attractive places are ranked as even better

• Interpretation through a revealed preference framework as households generally try to move to better 
places

• Today’s focus:

1. Apply the algorithm to rich data to obtain rankings across geography, time periods, and sub-
populations

2. Use the Geographic PageRank as a measure of unobserved housing quality, which then can be used 
in pricing amenities (e.g., air quality)
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The PageRank Algorithm

• PageRank, at its core, is an iterative eigenvector 
computation to produce a measure of network 
centrality

• Additional features added to resist manipulation 
(e.g., damping factor) 



The PageRank Algorithm: A Brief History

• The Eigenvalue problem was discovered and 
rediscovered:

• In 1895, Edmund Landau (mathematician) suggested 
for ranking chess players

• In 1976, Gabriel Pinski and Francis Narin used it to 
rank scientific journals

• …

• In 1996, Robin Li patented RankDex and founded 
Baidu

• In 2001, Larry Page patented PageRank

• Nowadays, it is used in a wide variety of settings

• Bibliometrics, network analysis, link prediction 
and recommendation

• Biology, chemistry, neuroscience, and physics

• Sorkin (2018): Ranking Firms Using Revealed 
Preference



Related Literature

• PageRank:

• Web: Brin and Page (1998), Page et. al. (1999), Page (2001)

• Numerous applications across many fields(survey by Gleich 2015)

• Including a ranking of roads in transportation studies (Jiang 2009)

• Labor economics: 

• Firm rankings: Sorkin (2018), Lachowska, Mas, Saagio, and Woodbury (2023); 
Morchio and Moser (2024)

• Housing: 

• Modeling housing markets through a single index of quality: 

• Epple, Quintero, and Sieg (2020), Landvoigt, Piazzesi, and Schneider (2015), 
Ekeland, Heckman, Nesheim (2004)

• Role of amenities in household location choices:

• Diamond (2016), Almagro, Dominguez-Iino (2024)



Define Geographic PageRank (GPR) 

• Geographic PageRank:

• Adjacency matrix M: 

• Mij represents the fraction of households migrating from location j to i

• Eigenvector formulation: 
                                                       Mv = v 

• v is the stationary distribution of the Markov process M

• If people keep migrating with the migration matrix M forever, v represents the eventual 
population distribution that it converges to

• Places with higher probabilities are ranked higher

• Geographic PageRank formulation
                                             (dM + (1-d)U )v = v

• The damping factor d (=0.85) and U represent a uniform random teleport

• Better computational properties (connected, no cycling) and robust to manipulation (link 
farms)
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PageRank Example
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SF

Starting Input:

- Equal starting size

- 10% leaves SF for Boston

- 10% leaves SF for NYC

Output:

- Net migration rates

- SF: -20%; NYC: +10%, BOS: +10%

- Ranking:

- Boston = NYC > SF

BOS

NYC

0.1

0.1



PageRank Example
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SF

Starting Input:

- Equal starting size

- 5% leaves SF for Boston

- 15% leaves SF for NYC

- 5% leaves NYC for Boston

Output:

- Same net migration rates as before

- SF: -20%; NYC: +10%, BOS: +10%

- Ranking

- Boston > NYC > SF

BOS

NYC

0.05

0.15

0.05
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Overview of Empirics 

• Data:

1. IRS County-to-county migration counts

• Available from 1991 to present

2. DataAxle data

• Available from 2009 to present

• Address level moves; allowing us to rank not only counties, but also finer 
geographic areas

• Focus is on finer neighborhood-level rankings

3. ACS micro data

• Available from 2005 to present

• Rich household and individual demographics

• Migration PUMA is created for data privacy, not consistent over time

• Focus is on metropolitan level rankings to compare ranks for different 
demographic groups
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Geographic PageRank for US Counties: 2017-2022



Geographic PageRank for US Counties: 2017-2022

• Rankings of counties in the Boston-
metro area:

• Middlesex (85) – Cambridge

• Worcester (361) - Worcester

• Essex (629) - Salem

• Norfolk (717) - Norfolk

• Suffolk (770) – Boston 

• Plymouth (1138) – Plymouth



Geographic PageRank for US Counties: 2017-2022
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• Places with more inflows are 
ranked higher

• Places with more inflows from 
other higher-ranked places are 
ranked even higher



Geographic PageRank for US Counties: 2017-2022
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• Places with more inflows are 
ranked higher

• Places with more inflows from 
other higher-ranked places are 
ranked even higher

• Still significant dispersion 
compared to pure migration 
measures



Geographic PageRank for Neighborhoods
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• To getting ranking of finer 
smaller geographic units, we 
use Data Axle

• Based on address changes 
(e.g., USPS, utility etc.)

• Aggregate to 
neighborhood as defined 
by Mast (2025)

• Fairly intuitive estimates 
within a metropolitan area
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Geographic PageRank for US Counties: 1997-2022

• Ranking of the top places 
are similar

• Some differences remain:

• San Diego (13 ->28)

• Austin (17 ->29)

• Raleigh (36->15)

• Lubbock (28->12)



Geographic PageRank for US Counties: 1997-2022

For NYC counties:

• Brooklyn and Queens 
gained in the rankings

• Manhattan and Bronx 
lost in the rankings

• However, rank itself is 
only ordinal, not cardinal
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Geographic PageRank By Subgroups
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• Data: ACS micro data

• Includes the migration PUMA from last year (if moved)

• Aggregate to metro measures to be consistent across years

• Aggregate for multiple years (5yr) given that ACS is only a sample

• A wide array of household and individual characteristics:

• Age, Education, Race, and Industry 

• The value of a place may vary for these sub-groups

• Main findings:

• For most demographic characteristics, the ranking of metros are highly correlated

• However, important differences remain



Geographic PageRank for US Metros: By Age Group

• Highly correlated for all age groups

• The rankings for the oldest movers and 
the youngest movers are least 
correlated



Geographic PageRank for US Metros: By Education

• Highly correlated for levels of 
education

• The rankings for those without college 
are least correlated with those with 
graduate degrees



Geographic PageRank for US Metros: By Race and Ethnicity

• Mostly correlated across racial and 
ethnicity groups

• The rankings for Blacks and 
Hispanics are also different



Geographic PageRank for US Metros: By Industry

• Mostly correlated across industries

• Industry measured at the 
destination due to ACS

• Rankings become noticeably 
different for those in agriculture, 
mining, and utilities

• Framework can be extended to the 
ranking of Place-Industry pairs 

• Requires more granular data at 
both the source and the 
destination
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Application: Pricing Neighborhood Amenities
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• Research question:

• What is the implicit price of air quality?

• Empirical challenge: amenities such as clean air can often be correlated with the 
unobserved quality of the place -> “The wrong-signed problem”



Application: Pricing Neighborhood Amenities

• Research question:

• What is the implicit price of air quality?

• Empirical challenge: amenities such as clean air can often be correlated with the 
unobserved quality of the place -> “The wrong-signed problem”

• Method:

• Conventional approach:

• Find more controls -> But can never exhaust all controls

• Find quasi-experiments -> Limited in scope

• The Anti-IV Approach (Bell, Billings, Calder-Wang, and Zhong, 2024)

• County-level Geographic PageRank can be used as an anti-instrument

• GPR co-moves with unobserved housing quality

• The extent to which GPR mismeasures true housing quality is uncorrelated with air 
pollution

Bell, Calder-Wang, and Zhong



Application: Pricing Neighborhood Amenities
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Ranked Most 
Desirable

Ranked Least 
Desirable

• X-axis: Deciles of air pollution

• Y-axis: Deciles of home prices

• Z-axis (color): Deciles of predicted 
Geographic PageRank:

• E[ H | P, Z ]

• Calculated as the average GPR 
for the bin



Application: Pricing Neighborhood Amenities
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• No more wrong-signed problems!
• Magnitude is consistent with Chay 

and Greenstone (2005)

PageRank Anti-IV



Conclusion

• Theory:

• Use the well-known PageRank algorithm to rank places

• A recursive measure based on network centrality

• Interpreted as the value of place through revealed preference

• Measurement: 

1. Cross-sectional measures: County-level and neighborhood-level GPR

2. Time-series measures: County-level GPR over time

3. Geographic PageRank for different demographic groups

• Application:

• Use GPR as an anti-IV for unmeasured quality of housing to price 
neighborhood amenities

• Works well for obtaining the implicit price of air quality

Bell, Calder-Wang, and Zhong

Data and Visualization 

Available at:
https://sophieqzwang.github.
io/geopagerank/

https://sophieqzwang.github.io/geopagerank/
https://sophieqzwang.github.io/geopagerank/


Thanks!

Questions or comments?
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