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Introduction

» Research Question:
- How can one measure the value of a place for households?
* The value of a place is reflected through
* the cost of housing (observed) + the value of amenities (not directly observed)

» Approach:
* Geographic PageRank (GPR)
A novel ranking of places revealed by household migration choices
» A measure that captures a networked-based measure of centrality
* Places attracting people are ranked as good
* Places attracting people from other attractive places are ranked as even better

* Interpretation through a revealed preference framework as households generally try to move to better
places

 Today'’s focus:

1. Apply the algorithm to rich data to obtain rankings across geography, time periods, and sub-
populations

2. Use the Geographic PageRank as a measure of unobserved housing quality, which then can be used
In pricing amenities (e.g., air quality)



. Motivation
Il.  Theory of the PageRank Algorithm
Il Empirics and Measurement

IV. Application for pricing amenities
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The PageRank Algorithm

(12) United States Patent

Page (57) ABSTRACT

A method assigns importance ranks to nodes in a linked
database, such as any database of documents containing
(54) METHOD FOR NODE RANKING IN A citations, the world wide web or any other hypermedia
LINKED DATABASE database. The rank assigned to a document is calculated
from the ranks of documents citing it. In addition, the rank
(75) Inventor: Lawrence Page, Stanford, CA (US) of a document 1s calculated from a constant representing the
(73) Assignee: The Board of Trustees of the Leland pml:-ahillit}r that a browser thru}lgh the datat‘\asx: wlill ran-
Stanford Junior University, Stanford, domly jump to the document. The method is particularly
CA (US) useful 1n enhancing the perlormance ol search engine results
for hypermedia databases, such as the world wide web,

(*) Notice:  Subject to any disclaimer, the term of this whose documents have a large variation in quality.

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

« PageRank, at its core, is an iterative eigenvector

computation to produce a measure of network

(21)  Appl. No.: 09/004,827

 Additional features added to resist manipulation

GOO gle (e.g., damping factor)



The PageRank Algorithm: A Brief History

(12) United States Patent * The Eigenvalue problem was discovered and
Page rediscovered:

* In 1895, Edmund Landau (mathematician) suggested
for ranking chess players

(54) METHOD FOR NODE RANKING IN A * In 1976, Gabriel Pinski and Francis Narin used it to
LINKED DATABASE rank scientific journals

(75) Inventor: Lawrence Page, Stanford, CA (US) o
(73) Assignee: The Board of Trustees of the Leland * In 1996, Robin Li patented RankDex and founded
Stanford Junior University, Stanford, Baidu
CA (US)
* In 2001, Larry Page patented PageRank
(*) Notice: Subject to any disclaimer, the term of this o . . . .
patent 15 extended or adjug[gd under 35 ® NOwadayS, It IS used IN a Wlde Varlety Of Settlngs
U.5.C. 154(b) by 0 days. « Bibliometrics, network analysis, link prediction
(21)  Appl. No.: 09/004,827 and recommendation
22) Filed:  Jan. 9, 1998 * Biology, chemistry, neuroscience, and physics

» Sorkin (2018): Ranking Firms Using Revealed

OO gﬂe Preference




Related Literature

* PageRank:
« Web: Brin and Page (1998), Page et. al. (1999), Page (2001)
* Numerous applications across many fields(survey by Gleich 2015)
* Including a ranking of roads in transportation studies (Jiang 2009)
* Labor economics:

* Firm rankings: Sorkin (2018), Lachowska, Mas, Saagio, and Woodbury (2023);
Morchio and Moser (2024)

* Housing:
* Modeling housing markets through a single index of quality:

* Epple, Quintero, and Sieg (2020), Landvoigt, Piazzesi, and Schneider (2015),
Ekeland, Heckman, Nesheim (2004)

» Role of amenities in household location choices:
* Diamond (2016), Almagro, Dominguez-lino (2024)



Define Geographic PageRank (GPR)

* Geographic PageRank:
* Adjacency matrix M:
* M; represents the fraction of households migrating from location j to i

 Eigenvector formulation:
Mv =v

e v is the stationary distribution of the Markov process M

* If people keep migrating with the migration matrix M forever, v represents the eventual
population distribution that it converges to

* Places with higher probabilities are ranked higher

« Geographic PageRank formulation
(dM + (1-d)U )v = v

* The damping factor d (=0.85) and U represent a uniform random teleport

 Better computational properties (connected, no cycling) and robust to manipulation (link
farms)
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PageRank Example

Starting Input:

- Equal starting size

- 10% leaves SF for Boston
- 10% leaves SF for NYC

N

0.1

Output:
- Net migration rates

- SF: -20%; NYC: +10%, BOS: +10%
- Ranking:

- Boston = NYC > SF
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PageRank Example

Starting Input:
- Equal starting size

0.05 @ - 5% leaves SF for Boston
/ - 15% leaves SF for NYC
- 5% leaves NYC for Boston
0.05
.15 @

Output:
\ - Same net migration rates as before
- SF: -20%; NYC: +10%, BOS: +10%

0 - Ranking

- Boston > NYC > SF
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Outline

Il Empirics and Measurement
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Overview of Empirics

* Data:
1. IRS County-to-county migration counts
* Available from 1991 to present

2. DataAxle data
* Available from 2009 to present

 Address level moves; allowing us to rank not only counties, but also finer
geographic areas

* Focus is on finer neighborhood-level rankings

3. ACS micro data
* Available from 2005 to present
* Rich household and individual demographics
 Migration PUMA is created for data privacy, not consistent over time

* Focus is on metropolitan level rankings to compare ranks for different
demographic groups
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Outline

Ill.  Empirics and Measurement

a) Cross-sectional rankings
b)
C)

V.
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Geographic PageRank for US Counties: 2017-2022
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Geographic PageRank for US Counties: 2017-2022

IRS Page Rank for U.S. Counties, 2017 to 2022
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Geographic PageRank for US Counties: 2017-2022

County-level Page Rank v.s Population Change, 2017-2022
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Geographic PageRank for US Counties: 2017-2022

County-level Page Rank v.s Population Change, 2017-2022
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Geographic PageRank for Neighborhoods

« To getting ranking of finer
smaller geographic units, we
use Data Axle

» Based on address changes
(e.g., USPS, utility etc.)

» Aggregate to
neighborhood as defined
by Mast (2025)

* Fairly intuitive estimates
within a metropolitan area
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Outline

Ill.  Empirics and Measurement
a)
b) Time-series rankings
<)

V.
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Geographic PageRank for US Counties: 1997-2022

Top 20 Ranked Counties: 1997 - 2002

Top 20 Ranked Counties: 2017 - 2022

Rank State County City Rank State County City

1 Texas Harris Houston 1 Texas Harris Houston
2 Arizona Maricopa Phoenix 2 Arizona Maricopa Phoenix ° Ranking of the top pIaces
3 Texas Dallas Dallas 3 Texas Bexar San Antonio are similar
4 Minnesota Hennepin Minneapolis 4  Texas Tarrant Fort Worth ) )
5 Texas Tarrant Fort Worth 5 lllinois Cook Chicago » Some differences remain:
6 Texas Bexar San Antonio 6 Texas Dallas Dallas e San Diego (13 ->28)
7 California Los Angeles Los Angeles 7 California Los Angeles Los Angeles .
8 Ilinois Cook Chicago 8 lowa Polk Des Moines * Austin (17 ->29)
9  Washington King Seattle 9 Minnesota Hennepin Minneapolis . Raleigh (36->15)

10 Nebraska Lancaster Lincoln 10 Okl_ahoma Oklaklt?rr121 Oklahoma City e Lubbock (28->12)

11  South Dakota Minnehaha  Sioux Falls 11  Ohio Franklin Columbus

12 Nevada Clark Las Vegas 12 Texas Lubbock Lubbock

13 California San Diego ~ San Diego 13  Oklahoma Tulsa Tulsa

14  Iowa Polk Des Moines 14  Washington King Seattle

15  Ohio Franklin Columbus 15 North Carolina Wake Raleigh

16 Oklahoma Oklahoma  Oklahoma City 16 South Dakota  Minnehaha  Sioux Falls

17 Texas Travis Austin 17 Nevada Clark Las Vegas

18 Indiana Marion Indianapolis 18 Utah Salt Lake Salt Lake City

19  Tennessee Shelby Memphis 19 Indiana Marion Indianapolis

20 Utah Salt Lake Salt Lake City 20  Kentucky Jefferson Louisville




Geographic PageRank for US Counties: 1997-2022

Rolling 5-Year PageRank Rankings Over Time (Selected New York City Counties)
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Ill.  Empirics and Measurement

a)

b)

c¢) Rankings by demographic subgroups
V.
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Geographic PageRank By Subgroups

- Data: ACS micro data
* Includes the migration PUMA from last year (if moved)
 Aggregate to metro measures to be consistent across years
« Aggregate for multiple years (5yr) given that ACS is only a sample
A wide array of household and individual characteristics:
 Age, Education, Race, and Industry
* The value of a place may vary for these sub-groups

* Main findings:

« For most demographic characteristics, the ranking of metros are highly correlated
« However, important differences remain
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Geographic PageRank for US Metros: By Age Group

Correlations between ACS Metro PageRanks by Age

All moves
25-35
35-65
65+

All moves

* Highly correlated for all age groups

* The rankings for the oldest movers and
the youngest movers are least
correlated




Geographic PageRank for US Metros: By Education

Correlations between ACS Metro PageRanks by Education
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Geographic PageRank for US Metros: By Race and Ethnicity

Correlations between ACS Metro PageRanks by Race
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» Mostly correlated across racial and
ethnicity groups

04 * The rankings for Blacks and
Hispanics are also different
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Geographic PageRank for US Metros: By Industry

Correlations between ACS Metro PageRanks by Industry

* Mostly correlated across industries

* Industry measured at the
destination due to ACS

« Rankings become noticeably
different for those in agriculture,
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IV. Application for pricing amenities
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Application: Pricing Neighborhood Amenities

* Research question:
« What is the implicit price of air quality?
« Empirical challenge: amenities such as clean air can often be correlated with the
unobserved quality of the place -> “The wrong-signed problem”
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Application: Pricing Neighborhood Amenities

* Research question:
« What is the implicit price of air quality?
« Empirical challenge: amenities such as clean air can often be correlated with the
unobserved quality of the place -> “The wrong-signed problem”

* Method:
 Conventional approach:
 Find more controls -> But can never exhaust all controls
* Find quasi-experiments -> Limited in scope

» The Anti-IV Approach (Bell, Billings, Calder-Wang, and Zhong, 2024)
« County-level Geographic PageRank can be used as an anti-instrument
» GPR co-moves with unobserved housing quality

* The extent to which GPR mismeasures true housing quality is uncorrelated with air
pollution

Bell, Calder-Wang, and Zhong



Application: Pricing Neighborhood Amenities

3D Binscatter at county-level, nationwide 2019 Ranked Most

12- . . . . .
Desirable « X-axis: Deciles of air pollution

* Y-axis: Deciles of home prices

» Z-axis (color): Deciles of predicted
Geographic PageRank:
PageRank Ranking ° E[ H | P, Z]
- - Calculated as the average GPR

2000 for the bin
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. 1000

House Price
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Deswatgle , | ,
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Application: Pricing Neighborhood Amenities

County-Level Housing Elasticity to Air Pollution (Median AQI Interpolated)

2019, Univariate .
* No more wrong-signed problems!

2
g * Magnitude is consistent with Chay
3 ¢ and Greenstone (2005)
0
-2
-4
-6
OLS Income Control PageRank Control PageRank Anti-IV
® Coefficients == 95% CI Chay & Greenstone (2005)
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Conclusion

* Theory:
* Use the well-known PageRank algorithm to rank places
* A recursive measure based on network centrality
* Interpreted as the value of place through revealed preference

* Measurement:
1. Cross-sectional measures: County-level and neighborhood-level GPR
2. Time-series measures: County-level GPR over time
3. Geographic PageRank for different demographic groups

 Application:
* Use GPR as an anti-IV for unmeasured quality of housing to price
neighborhood amenities

» Works well for obtaining the implicit price of air quality

Bell, Calder-Wang, and Zhong

Data and Visualization
Available at:
https://sophiegzwang.github.
io/geopagerank/
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https://sophieqzwang.github.io/geopagerank/
https://sophieqzwang.github.io/geopagerank/

Thanks!

Questions or comments?
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