Regulating Firearm Markets: Evidence from California

Adam M. Rosenberg

- Preferences: Consumers value gun purchase
 - \bullet 1/3 households owns, >\$1b sales each year

- Preferences: Consumers value gun purchase
 - 1/3 households owns, >\$1b sales each year
- ullet Durability: Purchase today o Own in future
 - \bullet 1/2 gun owners have not purchased in last 5 years (Azrael et al. 2017)

- Preferences: Consumers value gun purchase
 - 1/3 households owns, >\$1b sales each year
- ullet Durability: Purchase today o Own in future
 - \bullet 1/2 gun owners have not purchased in last 5 years (Azrael et al. 2017)
- Externalities: "Firearm injuries are a serious public health problem" (CDC)
 - ullet >100k gun injuries each year, 1/3 fatal

- Preferences: Consumers value gun purchase
 - 1/3 households owns, >\$1b sales each year
- Durability: Purchase today \rightarrow Own in future
 - \bullet 1/2 gun owners have not purchased in last 5 years (Azrael et al. 2017)
- Externalities: "Firearm injuries are a serious public health problem" (CDC)
 - >100k gun injuries each year, 1/3 fatal
- Market regulation: Little evidence
 - CA 2024 gun sales tax. Doubles 1918 federal rate
 - ullet Key: Effect on marginal gun purchases o Ambiguity in magnitude and characteristics

How do preferences, durability, and externalities determine the impacts of gun policy?

• Admin data on CA handgun purchases, firearm retailers, and fatality outcomes

How do preferences, durability, and externalities determine the impacts of gun policy?

- Admin data on CA handgun purchases, firearm retailers, and fatality outcomes
- Document facts of gun purchases marginal to entry/exit of gun retailers

How do preferences, durability, and externalities determine the impacts of gun policy?

- Admin data on CA handgun purchases, firearm retailers, and fatality outcomes
- Document facts of gun purchases marginal to entry/exit of gun retailers

$$\underbrace{\mathsf{Gun\ sales\ up\ 30\%}}_{\mathsf{Marginal\ purchases}} \& \underbrace{\mathsf{Gun\ owners\ up\ 12\%}}_{\mathsf{Marginal\ owners}} \to \underbrace{\mathsf{Homicides\ up\ 13\%}}_{\mathsf{Negative\ externallities}}$$

ullet Build model of gun demand in which durable gun ownership affects fatalities Heterogeneity o Higher willingness to pay \Leftrightarrow Costlier externality o Adverse selection

How do preferences, durability, and externalities determine the impacts of gun policy?

- Admin data on CA handgun purchases, firearm retailers, and fatality outcomes
- Document facts of gun purchases marginal to entry/exit of gun retailers

$$\underbrace{\mathsf{Entry} \to \mathsf{\underline{Gun\ sales\ up\ 30\%}}_{\mathsf{Marginal\ purchases}} \; \& \; \underbrace{\mathsf{\underline{Gun\ owners\ up\ 12\%}}_{\mathsf{Marginal\ owners}} \to \underbrace{\mathsf{\underline{Homicides\ up\ 13\%}}_{\mathsf{Negative\ externallities}}$$

- ullet Build model of gun demand in which durable gun ownership affects fatalities Heterogeneity o Higher willingness to pay \Leftrightarrow Costlier externality o Adverse selection
- Analyze counterfactual taxes and regulations for CA handgun market
 - Today: CA 2024 tax maximizes revenue. Too low accounting for CS and public health
 - In paper: Targeted policy proposals

Roadmap

1. Setting and data

2. Facts of marginal purchases

3. Model

4. Counterfactual policy

CA licit handgun market

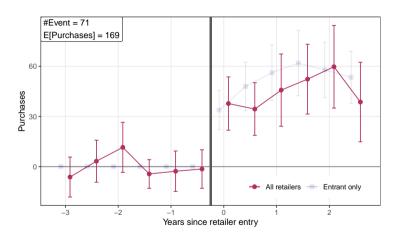
- Price \approx \$600. Quantity \approx 300k/year
 - 1/3 buyers are first-time owners
- Regulations on each sale
 - Implemented by licensed, brick-and-mortar retailer (1k in data, 500 entries)
 - Reported to CA DOJ
- Transaction-level data 2005-2015
 - Observe: Consumer and Retailer ID + Location + Characteristics (demo, own pre-2005)
 - ullet No price o Use distance as metric
- Public health. 9k shootings/year
 - Data from morgue records
 - In paper: Shootings tied to licit market operations, nearby and short-term

Roadmap

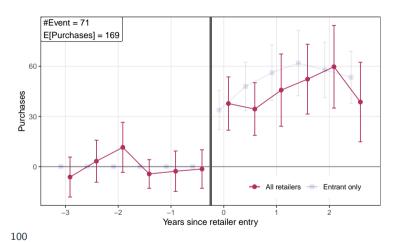
1. Setting and data

2. Facts of marginal purchases

3. Model

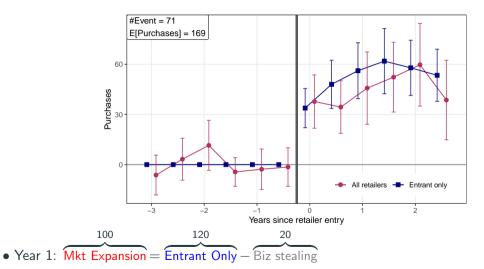

4. Counterfactual policy

Many gun purchases on margin: Method

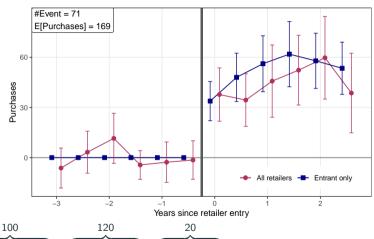

ullet Estimate event study around "clean" first entries of firearm retailers (0 o 1)

$$\frac{\mathsf{GunPurchases}_{zt}}{\mathsf{Pop}_z} = \sum_{t'=-6}^{5} \underbrace{\beta_{t'} \mathsf{EventPeriod}_{zt,t'}}_{\substack{\mathsf{Average} \ \Delta \mathsf{Purchases} \\ t' \ \mathsf{periods} \ \mathsf{from \ entry}}}^{\mathsf{FE}_z} + \mathsf{FE}_z \ + \ \mathsf{FE}_t \ + \ \xi_{zt}$$

- Zip code z, half-year t, event time t'
- Compare zip-period post entry to others not-yet or never entered (Borusyak et al. 2024)

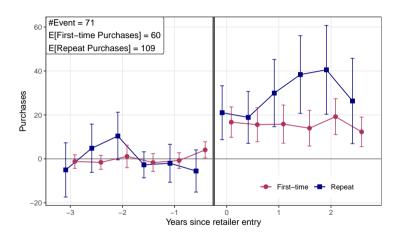


- ullet Outcome: Purchases by consumers in entered zip at any retailer o Mkt Expansion
- ullet Assume: Retailers do not time or position operations on dmd shock $\xi_{\it zt}$ (Support in paper)



• Year 1: Mkt Expansion

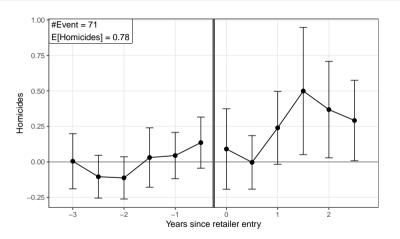
• In paper: Travel distance, Heterogeneity by more-distant zips, incumbents, exit



• In paper: Travel distance, Heterogeneity by more-distant zips, incumbents, exit


- ullet Year 1: $\overline{\text{Mkt Expansion}} = \overline{\text{Entrant Only}} \overline{\text{Biz stealing}} \to \uparrow \overline{\text{Purchases 30\%}} \to \overline{\text{Large margin}}$
- In paper: Travel distance, Heterogeneity by more-distant zips, incumbents, exit

Proportional change in composition of handgun purchases


ullet \uparrow Purchases 30% for repeat and first-time buyers \rightarrow Change in ownership

Handgun ownership grows post-entry

ullet Level change in flow of first-time purchases o Kink in growth of ownership stock

Retailer entry causes homicide fatalities

- ullet Kink in ownership stock o Kink in homicide flow o Owning gun causes homicide
- In paper: Higher-power 2SLS, Heterogeneity by fatality and owner characteristics

Roadmap

1. Setting and data

2. Facts of marginal purchases

3. Model

4. Counterfactual policy

Preferences, purchases, and handgun ownership

• Purchase by consumer i in zip z, quarter t. Nested logit over stores j, no-buy j=0

$$u_{ijt} = \overbrace{\nu_i - \alpha_i^p \cdot \mathsf{price}_t + \xi_{zt}}^{\mathsf{extensive margin}} + \overbrace{\delta_j - \alpha_i^d \cdot \mathsf{distance}_{ij} + \varepsilon_{ijt}}^{\mathsf{retailer choice}}$$

$$u_{i0t} = \varepsilon_{i0t}$$

- ν_i : Individual demand, partially unobservable
- ξ_{zt} : Zip-quarter demand shock (i.e., local crime wave)
- ullet Choice set_{it} : Retailers j within 200 miles, operating durint t. Handguns undifferentiated

Preferences, purchases, and handgun ownership

• Purchase by consumer i in zip z, quarter t. Nested logit over stores j, no-buy j=0

$$u_{ijt} = \overbrace{\nu_i - \alpha_i^p \cdot \mathsf{price}_t + \xi_{zt}}^{\mathsf{extensive margin}} + \overbrace{\delta_j - \alpha_i^d \cdot \mathsf{distance}_{ij} + \varepsilon_{ijt}}^{\mathsf{retailer choice}}$$

$$u_{i0t} = \varepsilon_{i0t}$$

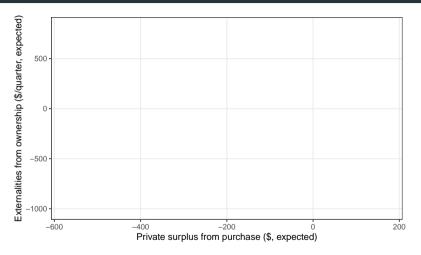
- ν_i : Individual demand, partially unobservable
- ξ_{zt} : Zip-quarter demand shock (i.e., local crime wave)
- Choice set_{it}: Retailers j within 200 miles, operating durint t. Handguns undifferentiated
- ullet Gun ownership $g_{it} \in \{0,1\}$ is durable + Repeated static choice o Law of motion

$$g_{it}(\nu_i, \xi_{zt}) = g_{i,t-1} + \left(1 - g_{i,t-1}\right) \times \mathbf{1}\left(\max_{j \in \text{choice set}_{it}} u_{ijt}(\nu_i, \xi_{zt}) > u_{i0t}\right)$$

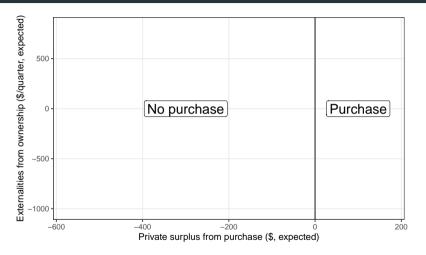
Handgun ownership and public health

• Fatalities from externalities $e_i \in \mathbb{R}$ of gun owners $g_{it} = 1$, and other sources

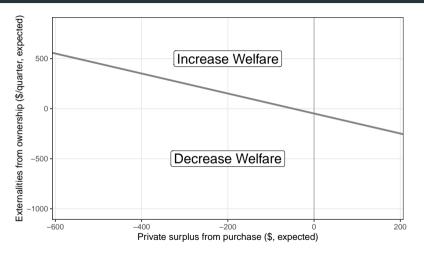
$$\frac{\mathsf{Fatalities}_{zt}}{\mathsf{Pop}_z} = \underbrace{\sum_{i|z} \frac{\mathsf{g}_{it} \left(\nu_i, \xi_{zt}\right)}{\mathsf{Pop}_z}}_{\mathsf{git} \left(\nu_i, \xi_{zt}\right)} \times \underbrace{E_{zt} \big[\mathbf{e}_i(\nu_i) \, | \, \mathbf{g}_{it} \left(\nu_i, \xi_{zt}\right) = 1 \big]}_{\mathsf{avg owner's externality}}$$

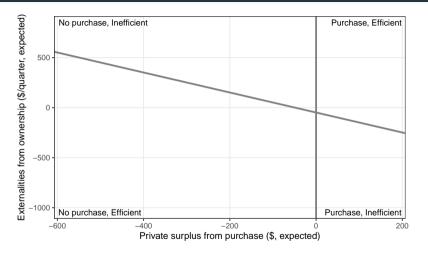

$$+ \underbrace{\kappa_z + \eta_t}_{\mathsf{fixed effects}} + \underbrace{\chi \xi_{zt}}_{\mathsf{endogeneity}} + \underbrace{\omega_{zt}}_{\mathsf{shocks}}$$

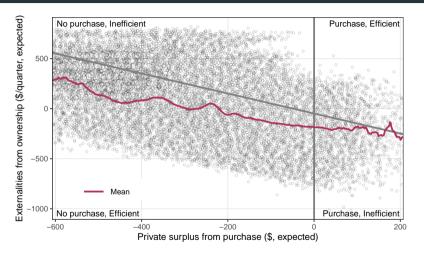
- Selection: Individual demand $\nu_i \to \text{ownership } g_{it}$ and externality e_i (Heckman 1979)
- Endogeneity: Demand shock $\xi_{zt} \to \text{ownership } g_{it}$, externality $E[e_i|g_{it}]$, and fatality χ

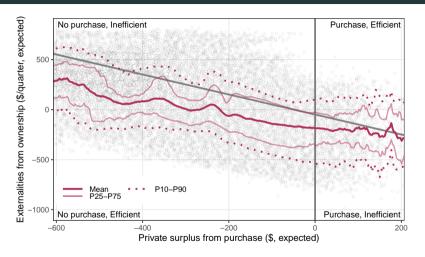

Empirical implementation

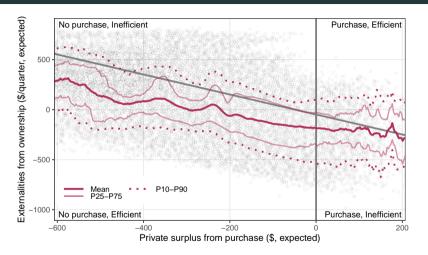
- Estimation via exactly-identified minimum distance. Moments from
 - Panel data
 - Effects of entry/exit
 - ullet Calibrate price coefficient: $lpha_i^p = \hat{lpha}_i^d \, / \, {
 m Scost} \, \, 1 \, \, {
 m mile}_z \, \, ({
 m Dolfen} \, \, {
 m et} \, \, {
 m al.} \, \, 2023)$


- Valuing welfare components
 - Consumer surplus = $E\left[\max_{j \in \{\text{choice set}_{it} \cup 0\}} u_{ijt}\right]/\alpha_i^p$
 - Gun fatality: fiscal cost (homicide = \$170k)
 - Tax: \$1 revenue = \$1 welfare, account for status-quo sales tax


• Preferences and externalities


 $\bullet \ \mathsf{Preferences} \to \mathsf{Gun} \ \mathsf{purchase}$

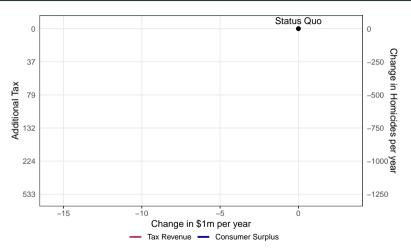

ullet Preferences, externalities, tax revenue o Welfare


ullet Gun purchase o Allocative (in)efficiency

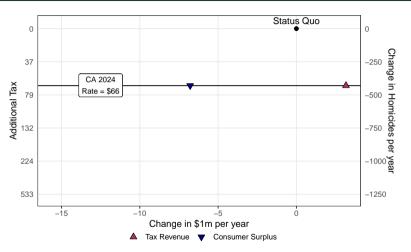
Fitted model → Consumer distribution

Fitted model → Consumer distribution

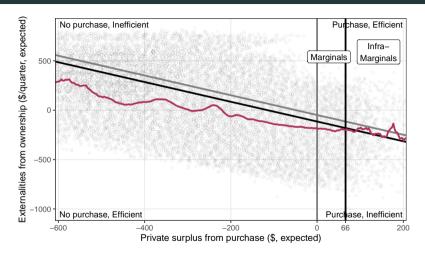
- Fitted model → Consumer distribution
- ullet Downward slope o Adverse selection o Allocative inefficiency

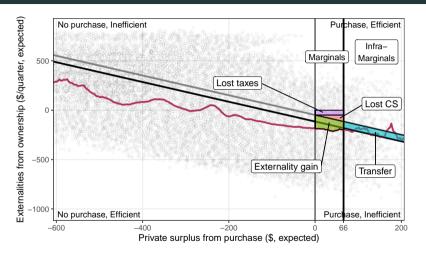

Roadmap

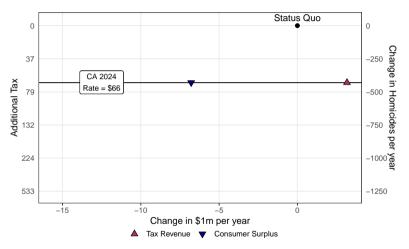
1. Setting and data

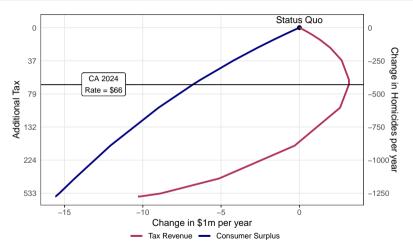

2. Facts of marginal purchases

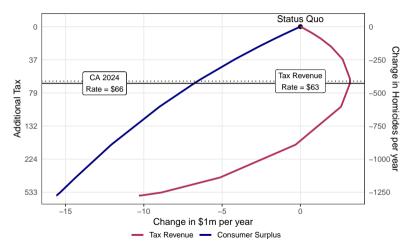
3. Mode

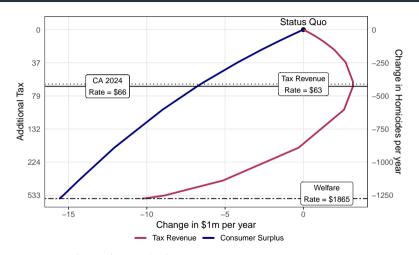

4. Counterfactual policy


• Use tax to trace out frontier of CS, revenue, and homicides


- Use tax to trace out frontier of CS, revenue, and homicides
- ullet Raise tax \$66 o -\$7m CS, +\$1m Revenue, -400 Homicides o Sound policy (CA 2024)


Counterfactual tax partitions consumers at WTP = \$66


- Counterfactual tax partitions consumers at WTP = \$66
- Measure ΔCS, ΔTax revenue, ΔHomicides in average quarter


• Use tax to trace out frontier of CS, revenue, and homicides

- Use tax to trace out frontier of CS, revenue, and homicides
- Solve at many counterfactual taxes

• CA 2024 rate approximately maximizes tax revenue

- CA 2024 rate approximately maximizes tax revenue
- ullet Directly value CS and homicides o Adverse selection o Shut down market

Conclusion

How do preferences, durability, and externalities determine the impacts of gun policy?

- Assemble admin data on CA handgun market
- Marginal gun purchases have welfare consequences
 - \bullet Entry \to More purchases & More owners \to More fatalities
- ullet Model of gun purchase and fatalities o Adverse selection
- Evaluate counterfactual policy design
 - Today: CA 2024 tax maximizes revenue. Too low accounting for CS and public health
 - More in paper: local taxes, store bans, min age restrictions, buybacks

Thank you!

arosenbe@stanford.edu