Incentives and Selection

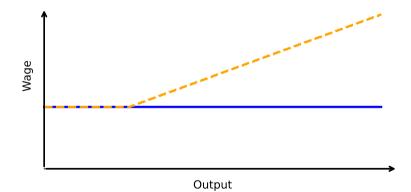
Henrique Castro-Pires

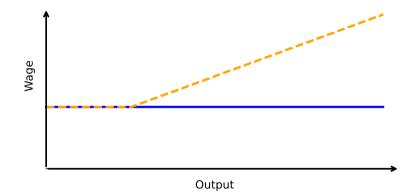
University of Miami

George Georgiadis Northwestern University

Mage

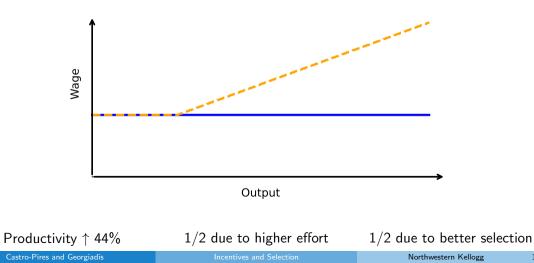
Output





Productivity \uparrow 44%

Castro-Pires and Georgiadis



1/16

Positive:

1. Do steeper incentives (always) improve selection?

- 1. Do steeper incentives (always) improve selection?
 - No! Even with standard preferences

- 1. Do steeper incentives (always) improve selection?
 - No! Even with standard preferences
- 2 When do steeper incentives improve or harm selection?

- 1. Do steeper incentives (always) improve selection?
 - No! Even with standard preferences
- 2 When do steeper incentives improve or harm selection?
 - Characterize model primitives under which selection improves or worsens
 - Sufficient statistic for improved (harmed) selection

- 1. Do steeper incentives (always) improve selection?
 - No! Even with standard preferences
- 2 When do steeper incentives improve or harm selection?
 - Characterize model primitives under which selection improves or worsens
 - Sufficient statistic for improved (harmed) selection

Positive:

- 1. Do steeper incentives (always) improve selection?
 - No! Even with standard preferences
- 2 When do steeper incentives improve or harm selection?
 - Characterize model primitives under which selection improves or worsens
 - Sufficient statistic for improved (harmed) selection

Prescriptive:

- 3 How to optimize contract accounting for selection?
 - Find the best direction of improvement
 - ► Trade-off: insurance, incentives, and shifting payments to improve selection

Model: Players & Timing

- There is a principal and a unit mass of agents
- The principal wants to hire a fixed number of agents and motivate them to exert effort
- Each agent has type $t \in \{I, h\}$, decides whether to apply and, if hired, chooses effort

Model: Players & Timing

- There is a principal and a unit mass of agents
- The principal wants to hire a fixed number of agents and motivate them to exert effort
- Each agent has type $t \in \{I, h\}$, decides whether to apply and, if hired, chooses effort

Timing:

- **1** The principal posts a wage scheme w(x) (not a menu)
- 2- Each agent draws his outside option and decides whether to apply for job
- 3- The principal screens applicants and hires at random among those who pass the test
- 4- Each hired agent choose effort a
- 5- Each worker's output $x \sim f(\cdot|a)$ and payoffs are realized

Model: The Agents

- Each agent privately knows his type $t \in \{I, h\}$
 - High types have lower total and marginal effort costs

Model: The Agents

- Each agent privately knows his type $t \in \{I, h\}$
 - High types have lower total and marginal effort costs
- Type-*t* agent's payoff if hired:

$$u_t(w) := \max_{a} \int \underbrace{v(w(x))}_{\text{utility}} \underbrace{f(x|a)}_{\text{f}(x|a)} dx - \underbrace{c_t(a)}_{\text{effort cost}}$$

Model: The Agents

- Each agent privately knows his type $t \in \{I, h\}$
 - High types have lower total and marginal effort costs
- Type-*t* agent's payoff if hired:

$$u_t(w) := \max_{a} \int \underbrace{v(w(x))}_{\text{utility}} \overbrace{f(x|a)}^{\text{output dist.}} dx - \underbrace{c_t(a)}_{\text{effort cost}}$$

- Each type-t agent draws outside option $\overline{u} \sim G_t(\cdot)$ and applies iff $u_t(w) \geq \overline{u}$
 - Assumption: High types have better outside options; i.e., $G_h(\cdot) \succeq^{fosd} G_l(\cdot)$

Model: The Principal

• The ex-ante share of high types in the population is p

Screening test:

- Each type-*t* agent passes the test with probability $1 r_t$. (Assume: $r_h < r_l$)
- The principal hires at random among the applicants who pass the test

Model: The Principal

• The ex-ante share of high types in the population is p

Screening test:

- Each type-*t* agent passes the test with probability $1 r_t$. (Assume: $r_h < r_l$)
- The principal hires at random among the applicants who pass the test

Principal's payoff (per worker):

$$\pi(w) = \int \left[x - w(x)\right] \left[q(w)f(x|a_h(w)) + (1 - q(w))f(x|a_l(w))\right] dx,$$

where q(w) is probability that each worker is a high type

Model: The Principal

• The ex-ante share of high types in the population is p

Screening test:

- Each type-*t* agent passes the test with probability $1 r_t$. (Assume: $r_h < r_l$)
- The principal hires at random among the applicants who pass the test

Principal's payoff (per worker):

$$\pi(w) = \int \left[x - w(x)\right] \left[q(w)f(x|a_h(w)) + (1 - q(w))f(x|a_l(w))\right] dx,$$

where q(w) is probability that each worker is a high type

Main objects of interest: How does q(w) and $\pi(w)$ change with w?

Building Blocks

Given contract *w*:

- Each type-t agent applies with probability $G_t := G_t(u_t(w))$
- The probability that each agent is a high type is

$$q(w) := \frac{p(1-r_h)G_h}{p(1-r_h)G_h + (1-p)(1-r_l)G_l}$$

Building Blocks

Given contract *w*:

- Each type-t agent applies with probability $G_t := G_t(u_t(w))$
- The probability that each agent is a high type is

$$q(w) := \frac{p(1-r_h)G_h}{p(1-r_h)G_h + (1-p)(1-r_l)G_l}$$

Definition

A change in w improves selection if it causes q(w) to rise (and vice versa)

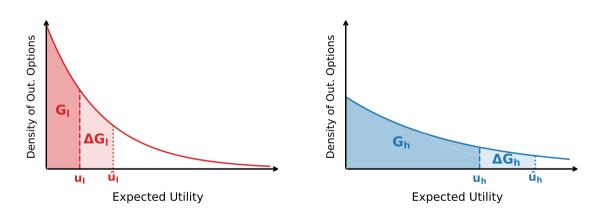
Remark 1

A change in w improves selection if and only if it causes G_h/G_l to rise.

Castro-Pires and Georgiadis

Incentives and Selection

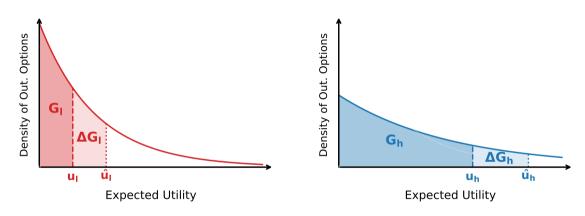
An Illustrative Example



Given status quo contract w, each low and high type applies w.p G_l and G_h , respectively

If we replace w with \hat{w} , both types' payoffs and their probabilities of applying will change

An Illustrative Example



Selection improves if and only if

$$\frac{\Delta G_h}{G_h} > \frac{\Delta G_l}{G_l} \text{ i.e., iff } \% \Delta \Pr\{\text{high type applies}\} > \% \Delta \Pr\{\text{low type applies}\}$$

Local modifications to w

- We evaluate the effects of small contract changes in arbitrary directions.
 i.e., we replace w(x) by w(x) + εℓ(x) for some small ε.
- Use notion of a directional derivative. Define the Gateaux differential in direction ℓ :

$$\mathcal{D}h(w,\ell) := \lim_{\varepsilon \downarrow 0} \frac{h(w + \varepsilon \ell) - h(w)}{\varepsilon}$$

Definition

Modifying w in direction ℓ improves selection if $\mathcal{D}q(w, \ell) > 0$ (and harms selection if < 0).

Key Lemma

Lemma 1

Modifying the contract w in direction ℓ improves selection if and only if

$$\mathcal{D}q(w,\ell) = {}^{s} \rho_h(u_h) \times \mathcal{D}u_h(w,\ell) - \rho_l(u_l) \times \mathcal{D}u_l(w,\ell) > 0,$$

The key determinants of selection are:

• The reverse hazard rates $\rho_h := g_h/G_h$ and $\rho_l := g_l/G_l$

 $\rho_t\simeq$ %increase in type-t applicants if they get an extra util

Key Lemma

Lemma 1

Modifying the contract w in direction ℓ improves selection if and only if

$$\mathcal{D}q(w,\ell) = {}^{s} \rho_{h}(u_{h}) \times \mathcal{D}u_{h}(w,\ell) - \rho_{l}(u_{l}) \times \mathcal{D}u_{l}(w,\ell) > 0,$$

The key determinants of selection are:

() The reverse hazard rates $\rho_h := g_h/G_h$ and $\rho_l := g_l/G_l$

 $ho_t \simeq$ %increase in type-t applicants if they get an extra util

2 The payoff gains $\mathcal{D}u_h$ and $\mathcal{D}u_l$

Key Lemma

Lemma 1

Modifying the contract w in direction ℓ improves selection if and only if

$$\mathcal{D}q(w,\ell) = {}^{s} \rho_{h}(u_{h}) \times \mathcal{D}u_{h}(w,\ell) - \rho_{l}(u_{l}) \times \mathcal{D}u_{l}(w,\ell) > 0,$$

The key determinants of selection are:

() The reverse hazard rates
$$\rho_h := g_h/G_h$$
 and $\rho_l := g_l/G_l$

 $ho_t \simeq \%$ increase in type-t applicants if they get an extra util

2 The payoff gains $\mathcal{D}u_h$ and $\mathcal{D}u_l$

Theorem 1

If $\mathcal{D}u_h(w, \ell) \ge 0 \ge \mathcal{D}u_l(w, \ell)$, then selection improves (and vice versa)

"Steepening" incentives may harm selection

Def: Modifying w in direction ℓ "steepens" incentives if both types obtain stronger incentives

Theorem 2

- Consider a steepening of w in direction ℓ such that $\mathcal{D}u_h \times \mathcal{D}u_l > 0$.
- There exist G_h and $G_l \prec_{fosd} G_h$ such that this modification harms selection.

Takeaway: For any marginal modification for which the selection effect is nontrivial, there exist outside option distributions such that this modification *harms* selection.

"Steepening" incentives may harm selection

Def: Modifying w in direction ℓ "steepens" incentives if both types obtain stronger incentives

Theorem 2

- Consider a steepening of w in direction ℓ such that $\mathcal{D}u_h \times \mathcal{D}u_l > 0$.
- There exist G_h and $G_l \prec_{fosd} G_h$ such that this modification harms selection.

Takeaway: For any marginal modification for which the selection effect is nontrivial, there exist outside option distributions such that this modification *harms* selection.

Proof idea:

- Selection effect depends on the *utility gains* and the *reverse hazard rates*
- Construct G_h and G_l such that their reverse hazard rates decrease fast enough

A sufficient statistic for improved selection

Denote by A(w) the fraction of applicants who pass the screening test

Theorem 4

Modifying the contract w in direction ℓ improves selection if and only if $\mathcal{D}A(w, \ell) > 0$.

Key: High types pass the screening test more often than low types

If pass rate \uparrow , modified contract must have attracted proportionally more high than low types

A sufficient statistic for improved selection

Denote by A(w) the fraction of applicants who pass the screening test

Theorem 4 Modifying the contract w in direction ℓ improves selection if and only if $\mathcal{D}A(w, \ell) > 0$.

Key: High types pass the screening test more often than low types

If pass rate \uparrow , modified contract must have attracted proportionally more high than low types

• Valuable information before principal trains the workers and put them to work (costly!)

Assumption 1: The principal knows:

- Mass of total and rejected applicants, and screening technology (r_h, r_l)
- Agents' marginal utility $v'(\cdot)$
- Output distributions $f(\cdot|a_l(w))$ and $f(\cdot|a_h(w))$; *i.e.*, can identify high types in workforce

Experiment 1: Principal observes output data from a local modification of w in direction $\hat{\ell}$

Assumption 1: The principal knows:

- Mass of total and rejected applicants, and screening technology (r_h, r_l)
- Agents' marginal utility $v'(\cdot)$
- Output distributions $f(\cdot|a_l(w))$ and $f(\cdot|a_h(w))$; *i.e.*, can identify high types in workforce

Experiment 1: Principal observes output data from a local modification of w in direction $\hat{\ell}$

Theorem 5

Assumption 1 and Experiment 1 suffice to evaluate $\mathcal{D}q(w, \ell)$ for every direction ℓ

Assumption 1: The principal knows:

- Mass of total and rejected applicants, and screening technology (r_h, r_l)
- Agents' marginal utility $v'(\cdot)$
- Output distributions $f(\cdot|a_l(w))$ and $f(\cdot|a_h(w))$; *i.e.*, can identify high types in workforce

Experiment 1: Principal observes output data from a local modification of w in direction $\hat{\ell}$

Theorem 5

Assumption 1 and Experiment 1 suffice to evaluate $\mathcal{D}q(w, \ell)$ for every direction ℓ

Selection depends on:

- Utility gains
- Reverse hazard rate

Castro-Pires and Georgiadis

Assumption 1: The principal knows:

- Mass of total and rejected applicants, and screening technology (r_h, r_l)
- Agents' marginal utility $v'(\cdot)$
- Output distributions $f(\cdot|a_l(w))$ and $f(\cdot|a_h(w))$; *i.e.*, can identify high types in workforce

Experiment 1: Principal observes output data from a local modification of w in direction $\hat{\ell}$

Theorem 5

Assumption 1 and Experiment 1 suffice to evaluate $\mathcal{D}q(w, \ell)$ for every direction ℓ

Selection depends on:

- Utility gains \leftarrow Assumption 1
- Reverse hazard rate \leftarrow Assumption 1 + Experiment 1

Optimal local modifications

Principal's profit:

$$\pi(w) = \int \left[x - w(x)\right] \left[q(w)f(x|a_h) + (1 - q(w))f(x|a_l)\right] dx$$

Optimal local modifications

Principal's profit:

$$\pi(w) = \int \left[x - w(x) \right] \left[q(w) f(x|a_h) + (1 - q(w)) f(x|a_l) \right] dx$$

We are interested in solving the following problem:

$$\max_{\ell: \|\ell\| \le 1} \mathcal{D}\pi(w,\ell) \tag{PP}$$

Optimal local modifications

Principal's profit:

$$\pi(w) = \int \left[x - w(x) \right] \left[q(w) f(x|a_h) + (1 - q(w)) f(x|a_l) \right] dx$$

We are interested in solving the following problem:

$$\max_{\ell: \|\ell\| \le 1} \mathcal{D}\pi(w,\ell) \tag{PP}$$

Modifying *w* in direction ℓ has 3 effects:

- 1- Direct Effect: Direct cost of changing payments
- 2- Selection Effect: Effect of changes in selection
- 3- Incentive Effect: Effect of changes in efforts

Prescriptive problem

The principal solves

```
\max_{\ell} \; (\mathsf{direct effect}) + (\mathsf{selection effect}) + (\mathsf{incentive effect})
```

Information needed to compute each effect:

- Direct effect: Observational data under contract w
- Selection effect: Per Theorem 4, need Assumption 1 + Experiment 1
- Incentive effect: Need one more assumption + one more experiment

Prescription: Replace w with $w(x) + \epsilon \ell^*(x)$ for some small $\varepsilon > 0$

Computing incentives effect: Condition + Experiment

Experiment 2: Post-hiring, offer an unannounced increase in wages in direction ℓ'

- Observe how the output distribution responds holding q(w) constant
- Allows us to identify the incentive effect; *i.e.*, effort response holding selection fixed

Assumption 2: f(x|a) is affine in a

Computing incentives effect: Condition + Experiment

Experiment 2: Post-hiring, offer an unannounced increase in wages in direction ℓ'

- Observe how the output distribution responds holding q(w) constant
- Allows us to identify the incentive effect; *i.e.*, effort response holding selection fixed

Assumption 2: f(x|a) is affine in a

Theorem 6

Assumptions 1+2 and Experiments 1+2 suffice to solve (PP)

Trade-off: Insurance vs. incentives vs. shifting payments to outputs that improve selection

Explicit characterization is in the paper

Limitations

Non-local modifications

• To extrapolate, additional assumptions on $c_t(\cdot)$ and $G_t(\cdot)$ are needed

Endogenous screening

• How to jointly optimize the wage scheme and the screening technology?

Miscellaneous

- Binary types
- Binary screening technology
- Positions are scarce, workers are abundant; *i.e.*, filling positions is never a problem
- Outside option distributions are assumed to be exogenous