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Abstract

Performance pay schemes influence not only workers’ incentives to exert effort but

also the skill composition of the applicant pool. Conventional wisdom suggests that

stronger incentives should attract higher-skilled workers. We demonstrate, however,

this is not always the case: under certain distributions of outside options, stronger

incentives may disproportionately cause low-skilled workers to flood into the ap-

plicant pool, reducing overall workforce quality. We identify necessary and suffi-

cient conditions under which selection necessarily improves, as well as a simple,

sufficient-statistics test—based on approval rates in a screening process—that reveals

whether a given contract modification improves or harms selection. We then develop

a framework for characterizing the optimal incentive adjustments that maximize per-

formance without harming selection.
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1 Introduction

Designing the right incentive scheme is central to a firm’s success. When a firm changes

its compensation plan, it naturally affects how much workers produce (the “incentive

effect”). Less obvious, but no less critical, is that the new compensation structure also

shapes who applies for the job in the first place (the “selection effect”). Indeed, the offer

of a steeper incentive scheme can attract a different mix of job-seekers. Whether this new

applicant pool is more or less skilled overall is not guaranteed, and understanding pre-

cisely when it improves the quality of the workforce and when it backfires is the central

question of this paper.

A well-known empirical illustration of the role of incentives in labor markets is Lazear’s

(2000) classic study of Safelite, a windshield-repair firm that switched from hourly wages

to piece rates. That switch spurred a 44% increase in productivity, with roughly half of

this gain attributed to the firm attracting more productive workers. In that setting, steeper

incentives naturally favored higher-skilled workers, who could more profitably convert

effort into output. Yet this success story need not always hold: a higher-powered contract

might improve everyone’s payoffs enough that low-skilled workers flood in dispropor-

tionately, leading to negative selection. The question is: how can we tell whether a shift

toward higher-powered incentives will worsen or improve the skill composition of the workforce?

To see how incentives can shape workforce composition, consider the following simpli-

fied setup. You manage a firm and compensate workers through a performance-based

contract: each worker exerts costly effort to generate output, and workers differ in skill.

High-skilled workers face lower marginal costs of effort compared to low-skilled ones,

and thus benefit differently from incentive changes. Prospective workers, whose outside

options are drawn from type-dependent distributions, apply if your contract’s expected

payoff exceeds their outside option. You then administer a screening test, which high-

skilled applicants pass with higher probability, and hire randomly from those who pass.
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Suppose you are now thinking of modifying the contract in a particular way. How will

this affect selection; i.e., the share of high-skilled workers among those hired?
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Figure 1: The horizontal axis plots each type’s expected payoff (ut: original contract; ût:
modified), while the vertical axis shows the density of outside options. The shaded areas
indicate the mass of new applicants drawn in by the modified contract.

Figure 1 illustrates how modifying the contract influences each type’s decision to apply,

using an example where the modified contract increases both types’ expected payoffs.1

Here, Gl and Gh mark the probability that a low-skilled or high-skilled worker, respec-

tively, applies under the original contract, while ∆Gl and ∆Gh denote the additional mass

of applicants drawn in by the new contract.

A key insight is that the modification improves selection if and only if

∆Gh

Gh

>
∆Gl

Gl

. (1)

That is, the percentage increase in high-skilled applicants must exceed that of low-skilled

applicants. Critically, whether selection improves or worsens depends solely on how

much each type benefits and how their outside options are distributed. Surprisingly,

1Here, (ul, uh) and (ûl, ûh) denote low and high types’ expected payoffs under the original and modified
contracts, respectively.
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neither the fraction of high-skilled workers in the overall population nor the accuracy of

the firm’s screening test plays any direct role in determining this outcome.

If a firm can adjust incentives in a way that raises payoffs for high-skilled workers while

lowering payoffs for low-skilled workers so that ∆Gh > 0 > ∆Gl, then the improvement

in selection is straightforward (Theorem 1). This clear-cut scenario, however, is theoreti-

cally less interesting. Moreover, designing precise contract “rotations” that affect payoffs

in opposite directions requires detailed knowledge of worker preferences and production

technologies that firms rarely have. In practice, incentive changes typically move the pay-

offs of both worker types in the same direction; indeed, most empirical evidence, such as

Lazear’s (2000) study of Safelite, arises from scenarios where pay improved across the

board. At Safelite, for example, the shift to piece rates included a wage floor that guar-

anteed no worker would be worse off, likely reflecting resistance by workers to reforms

that threaten to reduce their earnings. Thus, we focus on the subtler case of contract

modifications that move payoffs for both types in the same direction.

We extend our analysis beyond the simple linear-contract setting by considering local ad-

justments to any incentive contract—potentially nonlinear—and examining their effect

on effort, the share of high-skilled workers in the firm, and overall profit. This general

approach lets us define a broad notion of “steepening of incentives,” which means that,

however the contract is tweaked, both high- and low-skilled workers face stronger incen-

tives to exert effort.

Our first main result (Theorem 2) reveals a sharp negative possibility: for any given contract

and any way of steepening its incentives, there always exist outside-option distributions

that make selection worse. In other words, whenever a new scheme raises the payoffs of

both high- and low-skilled workers, there is always a scenario where low-skilled appli-

cants come in disproportionately, hurting workforce quality. Then, in a partial converse

(Theorem 3), we characterize the shape of the outside-option distributions under which
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any such steepening improves selection. This condition requires that the reverse hazard

rate (i.e., the ratio between the density and cumulative distribution) of outside options

evaluated at the utility under the status quo contract is weakly larger for high types than

for low types. The intuition is that the mass of high-type applicants would respond more

in percentage terms than the mass of low-type applicants and, hence, the share of high-

skilled workers hired would increase.

A practical hurdle to applying these theorems is that firms rarely observe detailed data on

outside-option distributions. Hence, we propose a sufficient-statistics style test: namely,

Theorem 4 shows that a contract tweak improves selection if and only if the proportion of

applicants who pass the firm’s screening test increases. Intuitively, because high-skilled

individuals pass the screen more often, a higher approval rate means a greater inflow of

high-skilled workers relative to low-skilled ones. This result does not require knowledge

of screening-test accuracy, the overall fraction of high-skilled workers in the market, or

even the shape of their outside-option distributions. We then show (Theorem 5) that by

running just one experiment—a single directional change in the contract—and observing

how the total and rejected masses of applicants move, the firm can extrapolate all local

adjustments that would improve selection.

After clarifying when steepened incentives improve selection, we then ask what is the

optimal contract adjustment. An exact solution is typically difficult because a contract

change affects profits through three channels: how workers adjust their effort (the “in-

centive effect”), how workforce composition changes (the “selection effect”), and any di-

rect change in wage costs. Fully optimizing over these requires substantial knowledge of

worker preferences and market structure.

To tackle this complexity, we propose a simpler strategy: focus on maximizing the incen-

tive and direct effects only, subject to not harming selection. By ignoring the possibility

that harming selection might raise short-run profits, we ensure that the firm reaps higher
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effort without risking long-term damage from drawing in less-skilled recruits.Under an

assumption about how effort translates into output, Theorem 6 demonstrates that firms

can identify the optimal adjustment—among those that do not harm selection—by run-

ning just two simple experiments. The first is an adjustment made before hiring, which

gauges how many applicants enter and pass the test. The second is a post-hiring modification—

a bonus or other incentive that applies only after workers are on the job—so that selection

is unaffected, and the principal can observe how effort (and thus output) responds in

isolation. Combining these two data points, the firm can pinpoint exactly which modi-

fications to the existing contract improve profits the most without reducing the share of

high-skilled workers.

This paper contributes to the extensive literature on principal-agent problems under moral

hazard. Since the seminal work of Holmström (1979) and Mirrlees (1999), the canonical

framework has been extended to address a wide range of real-world complexities, in-

cluding how moral hazard interacts with private information (see Georgiadis (2024) for

a comprehensive review). A hallmark of this literature is that it treats the distribution

of worker types as fixed, even when examining whether and how firms screen private

information (Foarta and Sugaya (2021); Castro-Pires et al. (2024)) or choose not to screen

(Castro-Pires and Moreira (2021); Gottlieb and Moreira (2022)). In contrast, our paper

endogenizes the composition of the applicant pool by studying how adjustments to an

existing incentive scheme influence the distribution of workers who choose to apply.

Several papers document productivity gains following an increase in incentives, includ-

ing influential studies by Lazear (2000, 2018), Shearer (2004), Bandiera et al. (2005), and

Friebel et al. (2017). Yet, others find monetary incentives to be ineffective or even counter-

productive; e.g., Leuven et al. (2010), Fryer (2011, 2013), and Alfitian et al. (2024). Existing

theoretical explanations for why incentives might backfire include the crowding out of

intrinsic motivation (e.g., Frey and Oberholzer-Gee (1997), Kreps (1997), Bénabou and
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Tirole (2003), Casadesus-Masanell (2004), Bénabou and Tirole (2006)), interactions with

social norms (e.g., Gneezy and Rustichini (2000), Sliwka (2007)), and social preferences or

peer pressure (e.g., Hamilton et al. (2003), Ashraf and Bandiera (2018)). We contribute to

this literature by demonstrating that negative effects on firm performance can also stem

from worsening the firm’s workforce composition, even when agents are fully rational

and motivated solely by monetary rewards.

This paper also relates to a recent literature examining the effect of monetary incentives

on the selection of employees. Similarly to the literature on productivity, the empirical ev-

idence here is mixed. Following increases in financial rewards, Dal Bó et al. (2013) find ev-

idence of improved selection among civil servants in Mexico, whereas Guiteras and Jack

(2018) document no improvement in the context of informal labor in rural Malawi, while

Deserranno (2019) reports negative selection effects among health-promoters in Uganda.

We extend this literature in two main ways: First, we propose another mechanism for

negative selection beyond attracting less intrinsically (or pro-socially) motivated work-

ers. We show that even if intrinsic motivation plays no role, selection might be harmed

depending on the shape of the workers’ outside option distributions. Second and most

importantly, we develop a simple test to evaluate whether selection improves following

changes in incentives. Given that empirical studies on selection often struggle with data

limitations, our parsimonious test (Theorem 4) can help overcome these challenges.

Finally, on methodological grounds, our work is connected to the literature using sufficient-

statistics approaches via envelope conditions, which characterize behavioral responses

and optimal policies with a few key parameters (typically elasticities); see Chetty (2009)

for a review. This approach has a long history dating back to Harberger (1964) measur-

ing deadweight losses of commodity taxes, and has been applied extensively in income-

taxation (Saez, 2001), corruption policy design (Ortner and Chassang, 2018), and welfare

program evaluation (Finkelstein and Notowidigdo, 2019) among others. The closest pa-
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per to ours is Georgiadis and Powell (2022), who bring these tools to analyze moral hazard

problems. We extend this methodology in two significant ways: we incorporate worker

selection into the analysis, and we derive sufficient statistics for assessing when selection

improves or worsens.

2 Model

There is a principal (also referred to as the firm) and a unit mass of agents (also referred

to as the workers). The principal aims to hire a fixed mass of agents and motivate them

to exert hidden effort.

Events unfold in the following order:

i. The principal posts a fixed number of (identical) job openings and a wage contract

w(·), which is a bounded and upper-semicontinuous mapping from output x to pay-

ments.

ii. Each agent has a privately known type t ∈ {l, h}, where the share of high types

(t = h) is p. Each agent, conditional on his type, draws his outside option u from a

type-dependent distribution Gt(·) and decides whether to apply for an opening.

iii. The principal has an imperfect screening technology, whereby each type-t applicant

passes the screen with probability 1− rt. We assume that rl > rh so that high types

pass with strictly higher probability than low types. Then, the principal hires at

random among the agents who pass the screen to fill the vacancies.

iv. Each hiree then chooses how much effort, a ∈ [0, a] ⊂ R+ to exert, individual output

x is drawn according to the probability density function f(·|a), payoffs are realized,

and the game ends.

If a type-t agent is hired, is paid y, and exerts effort a, then his payoff is v(y)−ct(a), where
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v is strictly increasing, twice continuously differentiable, and weakly concave, while ct is

strictly increasing, strictly convex, and twice continuously differentiable. Thus, a type-t

agent applies whenever his expected utility from taking the job is larger than his outside

option:

ut(w) := max
a

{∫
(v ◦ w)(x)f(x|a)dx− ct(a)

}
≥ ū.

From Bayes’ rule, the probability of hiring a high-type agent given contract w is

q(w) :=
(1− rh)p(Gh ◦ uh)(w)

(1− rh)p(Gh ◦ uh)(w) + (1− rl)(1− p)(Gl ◦ ul)(w)
. (2)

The numerator represents the probability that a high-type chooses to apply and passes the

screening test, while the denominator represents the probability that a randomly chosen

agent applies and passes the test.

Then the principal’s payoff (per opening) when she posts contract w is

π(w) =

∫ [
x− w(x)

][
q(w)f

(
x|ah(w)

)
+ (1− q(w))f(x|al(w))

]
dx,

where at(w) denotes the optimal effort of a type-t agent.

We will study how the share of high types among the hired agents q and the principal’s

payoff π respond to changes in some arbitrary status quo contract w. We will say that a

change in the contract causes positive selection if it causes the share of high types among

the hirees, q(·), to rise, and it causes negative selection otherwise.

Finally, we impose the following assumptions:

A.1. High types have weakly better outside options; i.e., Gh weakly first-order stochasti-

cally dominates Gl. Moreover, both distributions are continuously differentiable.

A.2. High types have strictly smaller absolute and marginal effort costs than low types;
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i.e., cl(a) > ch(a) and c′l(a) > c′h(a) for all a > 0.

A.3. The density function f(·|a) has full support over the output space, a finite first mo-

ment, and its derivative with respect to a, denoted fa, exists. Without loss of general-

ity, we normalize a ≡ E[x|a], so that an agent’s effort is interpreted as their expected

output.

A.4. At the status quo contract, strictly positive masses of both types apply for the job;

i.e., (Gh ◦ uh)(w), (Gl ◦ ul)(w) > 0.

3 Steeper Incentives, Worse Selection?

Conventional wisdom suggests that higher-powered incentives attract higher-ability work-

ers because they will have the opportunity to earn more under the new scheme. For

example, when Safelite, a windshield repair firm, switched from hourly wages to piece

rates, productivity increased by 44%, half of which was attributable to increased motiva-

tion and the other half to more productive workers joining the firm (Lazear, 2000); i.e.,

improved selection. Here, we demonstrate that this conclusion need not always be true—

higher-powered incentives may, in fact, harm selection.

Towards this goal, by dividing both the numerator and the denominator of (2) by (Gl ◦

ul)(w), we make the following observation:

Remark 1. A change in the contract w leads to positive selection if and only if it increases

(Gh ◦ uh)(w)
(Gl ◦ ul)(w)

. (3)

This remark highlights that the fraction of high types in the population, as well as the pre-

cision of the principal’s screen (i.e., rl and rh) are immaterial for whether a change in the

contract improves or harms selection. On the other hand, the outside option distributions
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play a central role.

3.1 An Example

Consider a simple example where agents are risk-neutral, they have isoelastic effort costs,

and the principal restricts attention to linear contracts. That is,

v(y) ≡ y, ct(a) =
a1+γ

(1 + γ)θt
, Gl ≡ Gh := G, and w(x) = αx,

for some θl < θh and γ > 0. Using the normalization a ≡ E[x|a] and solving for the agent’s

optimal effort, we have that the expected utility of a type−t agent

ut(w) =
αγ

1 + γ
(αθt)

1/γ .

Consider a marginal increase of the slope α. The expected utility of both types will in-

crease, so more both low and high types will apply. Notice that dut/dα = (αθt)
1/γ in-

creases in θt; that is, high types benefit more from the larger slope than the low types. Of

course, this is not sufficient to guarantee an improvement in selection. In fact, by Remark

1, selection worsens if (and only if) (G ◦ uh)(w)/(G ◦ ul)(w) decreases in α. We have

d

dα

(G ◦ uh)(w)
(G ◦ ul)(w)

=s
g(uh)

G(uh)

duh
dα

− g(ul)

G(ul)

dul
dα

=s uhρ(uh)− ulρ(ul),

where ρ := g/G is the reverse hazard rate function of G.2 Thus selection worsens if uρ(u)

decreases in u, or equivalently, if the reverse hazard rate function, ρ, has elasticity smaller

than −1.3

Several distributions have this property. For example, the reverse hazard rate function of

the uniform distribution has elasticity smaller than −1. Similarly, the exponential distri-

2The symbol “=s” indicates that the objects on either side have strictly the same sign.
3Conversely, selection is improved if ρ has elasticity greater than −1.
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bution has this property, as does the Pareto distribution, as long as the shape parameter

is larger than 1, and the right tail of the normal distribution also has this property; i.e.,

uρ(u) is decreasing for u sufficiently large.

3.2 General Framework

In this section, we extend the above insight to a more general contracting environment

and identify conditions under which a marginal change to an arbitrary contract in a given

direction might improve or harm selection.

To carry out this exercise, we must describe how the share of high types among hired

workers changes as we locally adjust the status quo contract w. Given a contract w and a

function h(w), we define the Gateaux differential of h in the direction ℓ by

Dh(w, ℓ) := lim
ε↓0

h(w + εℓ)− h(w)

ε
,

where the direction of adjustment ℓ : X → R is the difference between an adjustment

contract ŵ and the status quo contract w. Our main interest is how q(w) varies as we

change the status quo contract w in direction ℓ, i.e., whether Dq(w, ℓ) is positive.

Definition. Adjusting w in direction ℓ improves selection if and only if Dq(w, ℓ) > 0.

The following lemma provides a necessary and sufficient condition such that an adjust-

ment improves or harms selection.

Lemma 1. An adjustment of w in direction ℓ improves selection if and only if

(gh ◦ uh)(w)
(Gh ◦ uh)(w)

×Duh(w, ℓ) >
(gl ◦ ul)(w)
(Gl ◦ ul)(w)

×Dul(w, ℓ) (4)

The interpretation is similar to (1): On the margin, adjusting the status quo contract in the
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direction of ℓ increases the utility of type−t agents by Dut(w, ℓ) utils, and their probability

of applying by (gh ◦ uh)(w)/(Gh ◦ uh)(w) percentage points per util. Thus, selection is

improve if (and only if) the percentage change of high-type applicants exceeds that of

low-type applicants.

Our first result is a direct implication of Lemma 1, and it shows that any adjustment that

impacts the expected utility of high types and low types in opposite directions has an

unambiguous effect on selection.

Theorem 1. Consider a marginal adjustment in direction ℓ of the status quo contract w.

(i) If Duh(w, ℓ) ≥ 0 ≥ Dul(w, ℓ), then this adjustment improves selection.

(ii) If Duh(w, ℓ) ≤ 0 ≤ Dul(w, ℓ), then this adjustment harms selection.

If the adjustment raises the expected utility of high types while decreasing that of low

types, then the firm attracts more high-type applicants and fewer low-type ones, thus

improving selection. One example of such an adjustment is a rotation of the contract,

where the firm increases its slope and reduces base pay by the appropriate amount. The

converse is true in case (ii). Notice, however, that to determine how to implement such a

rotation (e.g., how much to reduce base pay), the firm must know the agents’ preferences,

as well as the mapping from effort into output. Otherwise, it might inadvertently increase

or decrease the expected utility of both types which, as the next theorem shows, can lead

to negative selection for any adjustment.

In the remainder of this section, we focus on adjustments that impact both types’ ex-

pected utilities in the same direction. Specifically, we are interested in conditions such

that steepening incentives improves or harms selection. When contracts are linear and

agents are risk-neutral, the definition of “steepening incentives” corresponds to increas-

ing the contract’s slope. Towards generalizing the notion of “steepening incentives” to
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arbitrary contracts observe that each agent’s optimal effort, assuming its interior, satisfies

∫
(v ◦ w)(x)fa(x|a)dx = c′t(a),

that is, it equates marginal incentives to marginal cost. We will say that an adjustment ℓ to

the status quo contract steepens incentives if it increases marginal incentives for all levels

of effort.

Definition. An adjustment to w in the direction of ℓ steepens incentives if

∫
(v′ ◦ w)(x)ℓ(x)fa(x|a)dx > 0 ∀a.

Theorem 2. Consider an arbitrary status quo contract w and a steepening of incentives in direc-

tion ℓ, where Duh(w, ℓ) × Dul(w, ℓ) > 0. Then, there exist Gh(·) ≻FOSD Gl(·) for which a local

adjustment in direction ℓ harms selection.

Theorem 2 shows that any steepening of incentives that affects both types’ utilities in

the same direction may lead to negative selection. For instance, consider a change in

contracts that steepens incentives but weakly raises payments for all output realizations

(à la the change studied by Lazear (2000)). As high types have lower effort cost, uh ≥ ul.

Moreover, as incentives are steepened, high types’ utility increases more than low types’

(i.e., Duh(w, ℓ) ≥ Dul(w, ℓ)), which favors selection. This theorem shows that one can

always construct outside option distributions with a reverse hazard rate that decreases

fast enough that reverses the effect of bigger utility gains for high types by attracting a

sufficiently larger mass of low types.

In Theorem 2, we take as given the workers’ preferences and show that for any given

status quo contract and any steepening of incentives that changes the utility of both types

in the same direction—as was the case at Safelite (Lazear, 2000), there exist outside option
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distributions under which such steepening harms selection. We now look at the converse:

we characterize the outside option distributions under which any strict Pareto-improving

steepening of incentives improves selection for all possible effort cost functions.

Whether a local adjustment generates a strict Pareto improvement or not may depend on

the effort cost function as it affects the agents’ effort choices. We first state a condition on

the direction of the adjustment ℓ(·) that guarantees a strict Pareto improvement for every

effort cost function. This condition requires that this adjustment increases the worker’s

expected monetary utility for any fixed effort level, i.e.,

∫
v′
(
w(x)

)
ℓ(x)f(x|a)dx > 0 for all a. (5)

Condition (5) guarantees that any agent strictly benefits from the contract change even if

they do not change their efforts, regardless of what level it was originally at. As agents

can always keep the same initial effort level, both types would strictly benefit from that

change once they can also adjust their effort.

Theorem 3. Consider a marginal steepening of the status quo contract in the direction of ℓ, and

assume it satisfies (5).

(i) If ρh(ũ) ≥ ρl(û) for all ũ ≥ û, this adjustment improves selection for all effort cost functions.

(ii) Otherwise, there exist effort cost functions such that this adjustment harms selection.

Theorem 3 generalizes the insights provided by our linear contracts example by showing

that a decreasing reverse hazard rate is the key feature of outside option distributions

potentially generating negative selection. As in our example, if the reverse hazard rate

of the high types’ outside option distribution is significantly smaller than the low types’

one, it can outweigh the fact that high types benefit more from steeper incentives than

low types. This theorem shows that if there is a pair of utility levels ũ ≥ û for which
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ρh(ũ) < ρl(û), then we can construct effort cost functions for which

uh(w) = ũ, ul(w) = û, and ρh(ũ)Duh(w, ℓ) < ρl(û)Dul(w, ℓ),

which by Lemma 1 implies negative selection.

3.3 A Sufficient Statistic for improved Selection

Theorem 3 allows us to construct examples under which any steepening of incentives im-

proves selection. However, it relies on knowledge about the outside option distributions,

which are not typically observable. The following result finds conditions over observ-

ables to assess whether a particular adjustment to the status quo contract improves or

harms selection.

Before we formulate the principal’s payoff, we introduce some notations. For a given

contract w, we denote by T (w) the total mass of applicants, by R(w) the mass of rejected

applicants, and by A(w) the share of agents who are approved among the ones who take

the hiring test. That is,

T (w) = pGh(uh(w)) + (1− p)Gl(ul(w))

R(w) = rhpGh(uh(w)) + rl(1− p)Gl(ul(w))

A(w) =
T (w)−R(w)

T (w)
.

Theorem 4. A local adjustment of w in direction ℓ improves selection if and only if DA(w, ℓ) ≥ 0.

Theorem 4 shows that selection improves if and only if the share of agents who are ap-

proved by the hiring test increases. Intuitively, if a change in the contract generates an

increase in the approval rate, then it must have attracted more (fewer) high types than
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low types since high types are less likely to be rejected.

Theorem 4 implies that knowing how the approval rate changed suffices to answer whether

a given local contract adjustment has improved or harmed selection. In particular, an-

swering whether selection has improved does not require knowledge of many of the

model’s primitives, including the quality of the principal’s screening technology, the dis-

tribution of outside options, the prevalence of each type in the market, the workers’ utility

function, or each type’s effort cost function.

Theorem 4 tells us that the principal can tell if selection improved even before employees

get to work –> can use this information in various ways –> discuss

3.4 Adjustments that improve Selection

Theorem 4 provides a test of whether an adjustment in a given direction ℓ has improved or

harmed selection. We extend the result to identify the information needed to characterize

all local adjustments that do not harm selection.

Suppose the firm knows the workers’ monetary utility function, v : R → R, and its own

screening technology, rl and rh. Moreover, suppose the firm observes the outcome data

generated under a status quo contract w, where the outcome data consists of the distribu-

tion of output generated by each worker-type, f(·|al(w)) and f(·|ah(w)), and the masses

of total and rejected applicants T (w) and R(w).

We consider data from one experiment (Experiment 1) where the firm marginally changes

the status quo contract in direction ℓ. Upon conducting such an experiment, the firm ob-

serves how the total and rejected masses of applicants change; that is, it observes DT (w, ℓ)

and DR(w, ℓ). We shall argue that the data from this experiment suffices for the firm to

infer all adjustments to w that do not hurt selection.

By the Envelope Theorem, marginally changing the contract in direction ℓ̂ changes the
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utility of a type-t worker by

Dut(w, ℓ̂) =
∫
v′
(
w(x)

)
ℓ̂(x)f(x|at)dx ∀t ∈ {l, h}. (6)

Hence, even without information about the effort costs, we can compute how the utility

of each agent’s type varies by marginally changing the contract in any direction ℓ̂. Next,

we combine this observation with the data observed in Experiment 1 to establish the

following result:

Theorem 5. Consider the data generated by Experiment 1, and suppose that Dut(w, ℓ) ̸= 0 for all

t ∈ {l, h}. Then, a local change in direction ℓ̂ weakly improves selection if and only if

Duh(w, ℓ̂)
rlDT (w, ℓ)−DR(w, ℓ)

[rlT (w)−R(w)]Duh(w, ℓ)︸ ︷︷ ︸
:= Kh

≥ Dul(w, ℓ̂)
DR(w, ℓ)− rhDT (w, ℓ)

[R(w)− rhT (w)]Dul(w, ℓ)︸ ︷︷ ︸
:= Kl

. (7)

Note that Kh and Kl depend only on ℓ and not on ℓ̂. This implies that by observing the

data from a single experiment, the principal can find all adjustments that do not harm

selection. Moreover, (7) is linear in ℓ̂, implying not only that it is a simple condition to

check but also that the set of directions that do not harm selection is convex.

4 Optimal Local Adjustments

So far, we have explored when a local adjustment improves or harms selection and what

information the principal needs to make this assessment. In this section, we will be inter-

ested in the profit-maximizing adjustment to the status quo contract. When the principal

adjusts w in the direction ℓ̂, assuming effort responses are differentiable, the effect in her
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payoff can be decomposed into three terms:4

Dπ(w, l̂) =
∫

[x− w(x)][q(w)fa(x|ah)Dah(w, ℓ̂) + (1− q(w))fa(x|al)Dal(w, ℓ̂)]dx︸ ︷︷ ︸
Incentive effect

+

[ ∫
[x− w(x)][f(x|ah)− f(x|al)]dx

]
Dq(w, ℓ̂)︸ ︷︷ ︸

Selection effect

−
∫
ℓ̂(x)[q(w)f(x|ah) + (1− q(w))f(x|al)]dx︸ ︷︷ ︸

Direct effect

.

The incentive effect is the change in profit that stems from workers adjusting their effort,

holding the workforce composition fixed. The selection effect is the variation in profits

due to changes the workforce composition, holding effort fixed. Finally, the direct effect

computes the direct cost of changing the payments in direction ℓ̂.

Ideally, the principal would like to adjust the status quo contract in the direction that

leads to the largest profit gain. However, computing Dπ(w, l̂) for all possible directions l̂

demands substantial information about the environment. As a simplification, we find the

adjustment that maximizes the sum of incentive and direct effects, subject to not hurting

selection. This can be interpreted as adjusting the contract in a way that maximizes short-

term gains without harming selection, which may have significant long-run effects. We

call this the prescriptive problem (PP).

Denote by I ℓ̂(w) the incentive effect on direction ℓ̂ under the status quo contract w. We

can then write the prescriptive problem as:

max
ℓ̂:∥ℓ̂∥≤1

{
I ℓ̂(w)−

∫
ℓ̂(x)[q(w)f(x|ah) + (1− q(w))f(x|al)]dx

}
(PP )

4We shall soon impose a sufficient condition for effort responses to be differentiable (Condition 1). We
present the argument in this order for expositional convenience.
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subject to

Dq(w, l̂) ≥ 0, (NHS)

where (NHS) is the not-harming selection constraint.

Recall that Theorem 5 allows us to represent (NHS) as a linear inequality that can be

constructed using the data generated by Experiment 1. However, to solve (PP ), we still

need to characterize how the agent’s incentives change for every direction ℓ̂.

To achieve that, we must introduce an additional condition and a second experiment. The

following condition assumes that the output distribution is affine in effort, which implies

that marginal incentives are independent of the effort level.

Condition 1. The output distribution f(x|a) is affine in a, that is, f(x|a) = h1(x) + ah0(x) for

some h0(x) and h1(x) satisfying
∫
h0(x)dx = 0 and

∫
h1(x)dx = 1.

An important implication of this condition is that the agent’s effort choice is fully char-

acterized by its first-order condition. Hence, optimal effort is implicitly characterized by

c′t(at) =
∫
v
(
w(x)

)
h0(x)dx. Therefore, locally adjusting a contract w in the direction ℓ

changes the agent’s effort by

Dat(w, ℓ) =
∫
ℓ(x)v′

(
w(x)

)
h0(x)dx

c′′t (at)
.

We can then write the effort response in any direction ℓ̂ as a function of the effort response

in direction ℓ. That is,

Dat(w, ℓ̂) =
Dat(w, ℓ)∫

ℓ(x)v′(w(x))h0(x)dx︸ ︷︷ ︸
Does not depend on ℓ̂

·
∫
ℓ̂(x)v′(w(x))h0(x)dx. (8)

Equation (8) provides a path to recover effort responses in all directions upon observing
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the responses from a single direction. However, we must still recover the effort responses

in a given direction. The main challenge is that changing contracts affects not only incen-

tives but simultaneously the skill composition of the applicant group. We shall show that

this challenge can be addressed with a second experiment (Experiment 2) that keeps the

workforce composition fixed while affecting incentives.

Consider a second experiment where the principal advertises the position at the original

contract w but, after hiring, changes the worker’s contracts in direction ℓ+, where ℓ+ en-

sures that both types are strictly better off and
∫
ℓ+(x)v′

(
w(x)

)
h0(x)dx > 0. As locally

changing contracts in direction ℓ+ strictly benefits both types, all hired types still accept

the job after the change. Moreover, as the change occurs after workers are hired, it does

not affect the composition of the applicant pool and, hence, the share of high types among

the hired workers. Finally, the relevant data generated by this experiment is how the av-

erage output (effort) and the distribution of outputs change when the contract is adjusted

in direction ℓ+ while keeping q fixed at the status quo. That is, upon running Experiment

2, the principal observes

Dā(w, ℓ+) = qDah(w, ℓ+) + (1− q)Dal(w, ℓ+),

and

Df̄(w, ℓ+)(x) = qh0(x)Dah(w, ℓ+) + (1− q)h0(x)Dal(w, ℓ+) = h0(x)Dā(w, ℓ+),

where ā(w) and f̄(w) respectively denote the average effort and distribution of outputs

under status quo contract w.

From Experiment 2, the principal can recover not only the average effort response Dā(w, ℓ+)

but also the function h0(x) = Df̄(w, ℓ+)(x)/Dā(w, ℓ+). However, even with the data gen-

erated by Experiment 2, we still cannot fully reconstruct how each type responds to a
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local adjustment of the status quo contract in any direction, since the experiment only

reveals the average effort response and not the type-specific response. Nevertheless, the

following result shows that the data generated from Experiments 1 and 2 suffices to solve

(PP ).

Theorem 6. Let w be the status quo contract and assume Condition 1 holds. The data generated

by Experiments 1 and 2 is a sufficient statistic for problem (PP ). Moreover, there exists λ∗, µ∗ ≥ 0

such that the solution

ℓ̂∗(x) = C ×
[
µ∗h0(x)

f(x)
+ λ∗

[f(x|ah)Kh − f(x|al)Kl]

f(x)
− 1

v′
(
w(x)

)]f(x)v′(w(x)),
where C is a constant characterized in the Appendix, and Kh and Kl are defined in (7).

Theorem 6 constructs the local adjustment direction that increases the most the sum of

the incentive and direct effects subject to not hurting selection. The optimal local ad-

justment is in the direction of a modified Holmström-Mirlees-type contract. While the

traditional Holmström-Mirrlees optimal contract (Mirrlees, 1999 and Holmström, 1979),

balances incentives and insurance, here, the optimal adjustment shifts payments to out-

puts that increase incentives but provide sufficiently more utility to high types than low

types to ensure positive selection. The optimal way to balance these two considerations

is determined by the coefficients λ∗ and µ∗, which are characterized in the Appendix.

The prescriptive problem aims to construct improvements to the status quo contract using

only observable information stemming from Experiments 1 and 2. An appealing property

of this approach is that it guarantees that, regardless of the unobservable primitives, i.e.,

Gt and ct(·) for t ∈ {l, h}, the resulting direction of adjustment will not decrease profits. In

particular, if the status quo contract is optimal, the prescriptive approach will recommend

that no changes are made to the contract. The following result formalizes these assertions.
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Corollary 1. Suppose that the status quo contract satisfies

∫
[x− w(x)][f(x|ah)− f(x|al)]dx ≥ 0. (9)

Then Dπ(w, ℓ̂∗) ≥ 0. Moreover, if w ∈ argmax
w̃

{π(w̃)}, then ℓ̂∗(x) = 0 for all x ∈ X .

Our approach looks for adjustments such that the gain in incentives outweighs the direct

cost. Moreover, as we look only for directions that do not harm selection, profits will not

decrease due to worse selection as long as the principal benefits from a more able work-

force (condition (9)). Intuitively, we can think about the principal’s profit depending on

two dimensions: how strongly it motivates workers and the workforce skill composition.

Our procedure finds local profit increases whenever you can improve the former without

worsening the latter.

The prescriptive problem has two important limitations. First, as it only looks for lo-

cal improvements, it would not prescribe any change when the status quo contract is a

local but not a global maximum. The second issue is that we would miss adjustments

that increase profits while harming selection. However, finding global maxima and fully

considering the trade-off between incentives and selection is a complex task that requires

detailed knowledge of the environment, including knowing the workers’ effort costs and

outside option distributions. The advantage of our approach is that imposes more modest

informational demands.

5 Conclusion

This paper speaks to the dual role of incentive schemes in motivating workers and shap-

ing a firm’s workforce. Our findings challenge the straightforward intuition that steeper

incentives automatically improve workforce quality by attracting more skilled workers.

Instead, we show that depending on the distribution of outside options, increasing incen-
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tives may actually lower the average skill level of the workforce.

We then establish conditions under which steeper incentives improve the workforce’s

skill composition. We show that the reverse hazard rate of outside option distributions

plays a critical role, as it determines whether high-skilled workers will apply in greater

numbers relative to low-skilled ones in response to a steepening of incentives. This nu-

ance highlights the importance of considering external labor market conditions and the

shape of outside options when designing incentive schemes.

Our contribution goes beyond theoretical insights and offers a practical test for firms to

assess whether changes to their incentive structure have improved or harmed workforce

composition. We show that a simple comparison between the elasticities of total and re-

jected masses of applicants with respect to the payment scheme is sufficient to determine

the direction of the change in the skill distribution in the firm. This test enables firms to

make informed decisions about the effects of incentive changes on selection, even in the

absence of detailed information about workers’ outside options or effort costs.

Our approach also offers broader implications for firms seeking to improve their incentive

schemes. We show that when output is affine in effort, firms can, from two simple experi-

ments, construct improvements to their compensation scheme that increase the incentives

without harming the skill composition of their workforce. The first experiment adjusts in-

centives prior to hiring, allowing the firm to characterize all directions of changes that do

not harm selection. The second experiment, executed post-hiring, offers additional pay

conditional on good performance and permits firms to calculate effort responses. Com-

bining the data generated by both, firms can construct the best increase of incentives

among all non-selection-harming ones.

We hope that our insights are taken to the data by future empirical research, particu-

larly by studying monetary incentive effects across different industries and labor mar-
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kets where the distribution of outside options may vary significantly. Such studies could

further refine our understanding of how incentive schemes interact with labor market

dynamics.
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A Omitted Proofs

Proof of Lemma 1. The first step is to show that Dut(w, ℓ) exists, which is done through

two intermediate results we name as Claims.

Let

ψ(a, ε) =

∫
v
(
w(x) + εℓ(x)

)
f(x|a)dx− ct(a).

Note that ut(w + εℓ) = max
a

ψ(a, ε).

Claim 1. The family of functions {∂ψ(a, ·)/∂ε}a∈[0,a] is equidifferentiable at ε0 ∈ [0, 1] and

sup
a∈[0,a]

|∂ψ(a, ε0)/∂ε| < +∞.

Proof. Note that as v is continuous and w and ℓ bounded, by the Dominated Convergence

Theorem
∂ψ(a, ε)

∂ε
=

∫
v′
(
w(x) + εℓ(x)

)
ℓ(x)f(x|a)dx < +∞,
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since v is twice continuously differentiable. Note also that

∣∣∣∂ψ(a, ε̃)
∂ε

− ∂ψ(a, ε̂)

∂ε

∣∣∣ ≤
∫ ∣∣∣v′(w(x) + ε̃ℓ(x)

)
− v′

(
w(x) + ε̂ℓ(x)

)∣∣∣ · |ℓ(x)| · f(x|a)dx
≤ |ε̃− ε̂| · sup

x
|ℓ2(x)| · sup

y
|v′′(y)|,

which concludes the Claim’s proof.

Claim 2. Dut(w, ℓ) exists and

Dut(w, ℓ) =
∫
v′
(
w(x)

)
ℓ(x)f(x|at)dx.

Proof. Claim 1 shows that the conditions of Theorem 3 in Milgrom and Segal (2002) are

satisfied. Hence, the right derivative of ut
(
w + ε0ℓ) exists and is equal to ∂ψ(at, ε0)/∂ε. In

particular, at ε0 = 0

Dut(w, ℓ) = lim
ε0↓0

∂ψ(at, ε0)

∂ε
=

∫
v′
(
w(x)

)
ℓ(x)f(x|at)dx.

As noted before, q increases if and only ifGh/Gl increases or, equivalently, ln(Gh)− ln(Gl)

is decreasing. Taking the Gateaux differential in the direction ℓ delivers the result.

Proof of Theorem 2. Fix an arbitrary status quo contract w and a steepening of incentives

ℓ for which Dul(w, ℓ̂) · Duh(w, ℓ) > 0. We then construct two distributions Gh(·) ≻FOSD

Gl(·) such that adjusting w in direction ℓ harms selection.

Under contract w, each type-t gets a utility ut = ut(w) if hired. Moreover, as ch(a) < cl(a)

for all a, we know that ul < uh. Also, as c′h(a) < c′l(a), we have that ah ≥ al. By the
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definition of steepening of incentives we have that

Duh(w, ℓ) =
∫
v′
(
w(x)

)
f(x|ah)dx ≥

∫
v′
(
w(x)

)
f(x|al)dx = Dul(w, ℓ̂).

By Lemma 1, a local adjustment in direction ℓ harms selection if and only if

gh
Gh

Duh(w, ℓ) <
gl
Gl

Dul(w, ℓ̂).

The main argument in the proof is to construct distributions with reversed hazard rates

g/G such that the inequality above holds. We then split the construction of G’s into two

possible cases: Duh(w, ℓ) > 0 or Duh(w, ℓ) < 0.

Case I: Duh(w, ℓ) > 0.

Let Gl(y) = exp
(
− [y + b]−γ

)
and Gh(y) =

[
Gl(y)

]δ, where b > −ul, γ > 0 and δ > 1. Note

that as δ > 1 and Gl(y) < 1 for all y ≥ −b, then Gh(·) ≤ Gl(·), which implies that Gh(·)

first-order stochastically dominates Gl(·). We then show that selection is harmed when γ

is sufficiently large.

Note that
gh
Gh

Gl

gl
= δ

[
uh + b

ul + b

]−(γ+1)

.

Hence, for γ large enough

gh
Gh

Gl

gl
<

Dul(w, ℓ̂)
Duh(w, ℓ)

=⇒ Dq(w, ℓ) < 0.

Case II: Duh(w, ℓ) < 0.

Let G(y|t) = exp
(
− λt[b − y]

)
, where b > uh and λh > λl > 0. For any point in the

support Gh(y) < Gl(y). Hence, Gh(·) first-order stochastically dominates Gl(·). Moreover,
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gt/Gt = λt. Therefore, for a sufficiently large λh/λl

λh
λl

>
Dul(w, ℓ̂)
Duh(w, ℓ)

=⇒ Dq(w, ℓ) < 0.

Proof of Theorem 3.

The “if” part: Suppose that ρh(ũh) ≥ ρl(ũl) for all ũh ≥ ũl.

Recall that

ut(w) = max
a

{∫
v
(
w(x)

)
f(x|a)dx− ct(a)

}
.

As ch(a) ≤ cl(a), we have that uh(w) ≥ ul(w) and ρh(uh(w)) ≥ ρ(ul(w)).

Moreover, by the Envelope Theorem

Dut(w, ℓ) =
∫
v′(w(x)ℓ(x)f(x|at)dx.

Also, as c′h(a) < c′l(a), then ah ≥ al.

The fact that ℓ is a steepening of incentives implies that Duh(w, ℓ) ≥ Dul(w, ℓ̂), while by

the Theorem’s statement Dul(w, ℓ̂) > 0. Hence,

ρh
(
uh(w)

)
Duh(w, ℓ)−ρl

(
ul(w)

)
Dul(w, ℓ̂) =s ρh

(
uh(w)

)Duh(w, ℓ)
Dul(w, ℓ̂)

−ρl
(
ul(w)

)
≥ ρh

(
uh(w)

)
−ρl

(
ul(w)

)
≥ 0,

which by Lemma 1 implies that selection must be improved.

The “only if” part: Suppose that there exists ũh ≥ ũl such that ρh(ũh) < ρl(ũl). We will

construct cost functions cl(·) and ch(·) such that selection is harmed by an adjustment in

direction ℓ.
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Let ct(a) = βt(a+1)2+γt. We now construct (βl, βh, γl, γh) such that all properties assumed

for the effort cost function are satisfied and ρh(uh(w))Duh(w, ℓ) < ρl(ul(w))Dul(w, ℓ̂).

Let

ψ∗(β) = max
a∈[0,a]

{∫
v
(
w(x)

)
f(x|a)dx− β(a+ 1)2

}
, and

a∗(β) = argmax
a∈[0,a]

{∫
v
(
w(x)

)
f(x|a)dx− β(a+ 1)2

}
,

where β > 0. Let βH > inf{β ∈ R++ : a∗(β) = 0} and βL = βH + ε, where ε > 0.

Consequently, a∗(βH) = a∗(βL) = 0. Let γt = ψ∗(βt)− ũt, which implies ut(w) = ũt.

Note that for ε sufficiently small, cl(0) > ch(0). Also, ct(a) is a valid cost function since

• c′t and c′′t > 0;

• cl(a) > ch(a) and c′l(a) > c′h(a).

Observe then that

ut(w) = max
a

{∫
v
(
w(x)

)
f(x|a)dx− ct(a)

}
= ũt.

Therefore,

ρh(uh(w))Duh(w, ℓ)− ρl(ul(w)Dul(w, ℓ̂) =
∫
v′(w(x))ℓ(x)f(x|0)dx

[
ρh(ũh)− ρl(ũl)

]
< 0.

Hence, by Lemma 1, an adjustment in direction ℓ harms selection.

Proof of Theorem 4. Recall that

T (w) = pGh ◦ uh(w) + (1− p)Gl ◦ ul(w)

R(w) = rhpGh ◦ uh(w) + rl(1− p)Gl ◦ ul(w).
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Hence,

Gl ◦ ul(w) =
R(w)− rhT (w)

(1− p)(rl − rh)
and Gh ◦ uh(w) =

rlT (w)−R(w)

p(rl − rh)
. (10)

Also,

DT (w, ℓ) = p[gh ◦ uh(w)]Duh(w, ℓ) + (1− p)[gl ◦ ul(w)]Dul(w, ℓ̂)

DR(w, ℓ) = rhp[gh ◦ uh(w)]Duh(w, ℓ) + rl(1− p)[gl ◦ ul(w)]Dul(w, ℓ̂).

Hence,

[gl◦ul]Dul(w, ℓ̂) =
DR(w, ℓ)− rhDT (w, ℓ)

(1− p)(rl − rh)
and [gh◦uh]Duh(w, ℓ) =

rlDT (w, ℓ)−DR(w, ℓ)
p(rl − rh)

.

(11)

Replacing (10) and (11) into (4), we get

Dq(w, ℓ) =s
gh ◦ uh
Gh ◦ uh

Duh(w, ℓ)−
gl ◦ ul
Gl ◦ ul

Dul(w, ℓ̂)

=
rlDT (w, ℓ)−DR(w, ℓ)

rlT −R
− DR(w, ℓ)− rhDT (w, ℓ)

R− rhT

=
(rl − rh)TR

(rlT −R)(R− rhT )

[
DT (w, ℓ)

T
− DR(w, ℓ)

R

]

=s
DT (w, ℓ)
T (w)

− DR(w, ℓ)
R(w)

.

Where the last =s stems from (rlT − R)(R − rhT ) > 0, which is a consequence of Gl ◦

ul(w), Gh ◦ uh(w) > 0.

Finally, note that

DA(w, ℓ) = −T (w)×DR(w, ℓ) +R(w)×DT (w, ℓ)(
T (w)

)2 =s
DT (w, ℓ)
T (w)

− DR(w, ℓ)
R(w)

.

Hence, Dq(w, ℓ) =s DA(w, ℓ).
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Proof of Theorem 5. Recall that a marginal change in the contract in direction ℓ̂ improves

selection if and only if

Duh(w, ℓ̂)
gh
Gh

≥ Dul(w, ℓ̂)
gl
Gl

.

By equation (6), we can construct Dℓ̂
ut(w) for any direction ℓ̂. It remains to find gt/Gt as a

function of observables. By equations (10) and (11), we have that

gl
Gl

=
DR(w, ℓ)− rhDT (w, ℓ)
(R− rhT )Dul(w, ℓ̂)

, and
gh
Gh

=
rlDT (w, ℓ)−DR(w, ℓ)
(rlT −R)Duh(w, ℓ)

,

which concludes the proof.

Proof of Theorem ??. The proof is divided into two parts: first, we rewrite problem (PP )

and argue that all the information needed to state the problem can be recovered from

Experiments 1 and 2. Second, we characterize its solution.

Problem (PP ) can be written as

max
ℓ̂

{
µ∗ ·

∫
ℓ̂(x)v′

(
w(x)

)
h0(x)dx−

∫
ℓ̂(x)f(x)dx

}

subject to ∫
v′
(
w(x)

)
ℓ̂(x)

[
f(x|ah)Kh − f(x|al)Kl

]
dx ≥ 0,∫

ℓ̂2(x)dx ≤ 1,

where

µ∗ :=

∫
[s− w(s)]h0(s)ds∫

ℓ+(s)v′
(
w(s)

)
h0(s)ds

·
[
qDah(w, ℓ+) + (1− q)Dal(w, ℓ+)

]
︸ ︷︷ ︸

≡ Dā(w,ℓ+)

.

From Experiment 1, the firm can reconstructKh andKl. From Experiment 2, the principal

can recover Dā(w, ℓ+) and h0(·). Therefore, the two experiments provide all the necessary

information to solve problem (PP ). We now find its solution.
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Letting λ ≥ 0 and ν ≥ 0 denote the dual multipliers associated with the first and second

constraint, we have the Lagrangian

L(λ, ν) = max
ℓ̂

{
ν +

∫
ℓ̂(x)

[
v′
(
w(x)

)(
µ∗h0(x) + λ

[
f(x|ah)Kh − f(x|al)Kl

])
− f(x)− νℓ̂(x)

]
dx

}
.

For any λ, ν ≥ 0, note that the integrand is differentiable and strictly concave. We can

then maximize it pointwise with respect to ℓ̂, with each respective first-order condition

delivering

ℓ̂λ,ν(x) =

[
µ∗h0(x) + λ

(
f(x|ah)Kh − f(x|al)Kl

)]
v′
(
w(x)

)
− f(x)

2ν
.

Next, we find the optimal λ and ν by solving the dual problem:

min
λ≥0,ν≥0

L(λ, ν).

This problem is convex, and using ℓ̂λ,ν , the solution to the dual problem is

λ∗ = max

{
0,

∫ [
f − µ∗h0

(
fhKh − flKl

)
v′
(
w
)][

fhKh − flKl

]
v′
(
w
)
dx∫ [

v′
(
w
)]2[

fhKh − flKl

]2
dx

}

and

ν∗ =
1

2

√∫ {
v′
(
w(x)

)[
µ∗h0(x) + λ∗

(
f(x|ah)Kh − f(x|al)Kl

)]
− f(x)

}
dx

}
.

Thus, the optimal adjustment direction is

ℓ̂∗(x) =

[
µ∗h0(x) + λ∗

(
f(x|ah)Kh − f(x|al)Kl

)]
v′
(
w(x)

)
− f(x)√∫ {

v′
(
w(x)

)[
µ∗h0(x) + λ∗

(
f(x|ah)Kh − f(x|al)Kl

)]
− f(x)

}
dx

} ,

which is proportional to L(x, λ∗, ν∗).
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Up to now, we have shown that ℓ̂∗ solves the dual problem. To show it solves the pri-

mal problem given in (PP ), we will now establish that strong duality holds. Denote the

optimal value of the primal by Π∗. First, by weak duality, we have that L(λ∗, ν∗) ≥ Π∗.

Second, it is straightforward to check that ℓ̂∗ is feasible for problem (PP ), and that λ∗ and

ν∗ are strictly positive if and only if the respective (primal) constraint binds; meaning that

the complementary slackness conditions are satisfied. This implies that L(λ∗, ν∗) ≤ Π∗.

Therefore, L(λ∗, ν∗) = Π∗, which proves that strong duality holds, and ℓ̂∗ solves (PP ).

Proof of Corollary 1. Note that (NHS) and (9) imply that

[ ∫
[x− w(x)][f(x|ah)− f(x|al)]dx+ γ′

(
q(w)

)]
Dq(w, ℓ̂∗) ≥ 0.

Hence,

Dπ(w, ℓ̂∗) ≥ I ℓ̂
∗
(w)−

∫
ℓ̂∗(x)[q(w)f(x|ah) + (1− q(w))f(x|al)]dx ≥ 0,

where the final inequality stems from ℓ̂(x) = 0 for all x ∈ X being feasible in problem

(PP ). Therefore, Dπ(w, ℓ̂∗) ≥ 0.

It remains to show that if the status quo contract w is optimal, we have that ℓ̂∗(x) = 0 for

all x ∈ X .

Suppose w ∈ argmax
w̃

{π(w̃)}. As w maximizes π, it must be that Dℓ̂
π(w) = 0 for any ℓ̂. As a

consequence, any ℓ̂ that satisfies (NHS) must be such that

I ℓ̂(w)−
∫
ℓ̂(x)[q(w)f(x|ah) + (1− q(w))f(x|al)]dx ≤ 0.

Therefore, ℓ̂∗(x) = 0 for all x ∈ X solves problem (PP ).
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