## Pricing Inequality

#### Simon Mongey

Federal Reserve Bank of Minneapolis, NBER

#### **Michael Waugh**

Federal Reserve Bank of Minneapolis, NBER

#### NBER EF&G Meeting - July 2025

The views expressed herein are those of the authors and not the views of the Federal Reserve Bank of Minneapolis or of the Federal Reserve System.

Mongey, Waugh - Pricing Inequality

### - Standard theory of fiscal expansions and inflation

- Increase in demand requires more labor
- "Hot labor market" drives up wages, marginal cost, prices

#### - Seems unsatisfactory given the pandemic period

- 2021-2022 inflation surge was from a "shock to prices given wages" Bernanke Blanchard (2025)

#### - Need a better quantitative theory of fiscal expansions and markups

- Develop a new quantitative theory that links:
- Fiscal expansion ightarrow Improvement in household balance sheets ightarrow Higher aggregate markup

#### Theory consistent with recent measurement

- Rich households are less price sensitive than poor households, and buy high priced varieties
- Larger firms have higher markups, while selling higher quality goods to more customers

#### **Parsimonious model**

- Macro Heterogeneous agent incomplete markets model
- IO Additive random utility (discrete choice) model of demand

#### **Two results**

- 1. Deficit financed fiscal expansions have a significant effect on the aggregate markup
  - Accounts for more than 40% of the increase in P/W in the pandemic
- 2. Household heterogeneity is the main determinant of markup differences across firms

- Accounts for more than 58% of markup differences between large and small firms

## Simple choice model - Rich indulge their tastes, Poor respond to prices

- Two types of households  $i \in \{1, 2\}$  with wealth  $a^i \in \{a^L, a^H\}$
- Consume one of two goods  $j \in \{1, 2\}, p_1 > p_2$
- Problem
  - 1. Draw tastes for each good

$$\zeta_1^i \sim \Gamma\Bigl(\zeta\Bigr)$$
 ,  $\zeta_2^i \sim \Gamma\Bigl(\zeta\Bigr)$ , where  $\log \Gamma\Bigl(\zeta\Bigr) = -e^{-\eta\zeta}$ 

2. Choose which good to consume

$$\max\left\{ V\left(a^{i}, p_{1}\right) + \zeta_{1}^{i} , V\left(a^{i}, p_{2}\right) + \zeta_{2}^{i} \right\}$$

## Simple choice model - Rich indulge their tastes, Poor respond to prices

- Two types of households  $i \in \{1, 2\}$  with wealth  $a^i \in \{a^L, a^H\}$
- Consume one of two goods  $j \in \{1, 2\}, p_1 > p_2$
- Problem
  - 1. Draw tastes for each good

$$\zeta_1^i \sim \Gamma\Bigl(\zeta\Bigr)$$
 ,  $\zeta_2^i \sim \Gamma\Bigl(\zeta\Bigr)$ , where  $\log \Gamma\Bigl(\zeta\Bigr) = -e^{-\eta\zeta}$ 

2. Choose which good to consume

$$\max\left\{ V\left(a^{i}, p_{1}\right) + \zeta_{1}^{i} , V\left(a^{i}, p_{2}\right) + \zeta_{2}^{i} \right\}$$

3. Intensive margin

$$V\left(a^{i}, p_{j}\right) = u\left(q_{j}^{i}\right)$$
 subject to  $p_{j}q_{j}^{i} = a^{i}$ 

## Simple choice model - Rich indulge their tastes, Poor respond to prices

- Two types of households  $i \in \{1, 2\}$  with wealth  $a^i \in \{a^L, a^H\}$
- Consume one of two goods  $j \in \{1, 2\}, p_1 > p_2$
- Problem
  - 1. Draw tastes for each good

$$\zeta_1^i \sim \Gamma\Bigl(\zeta\Bigr)$$
 ,  $\zeta_2^i \sim \Gamma\Bigl(\zeta\Bigr)$  , where  $\log \Gamma\Bigl(\zeta\Bigr) = -e^{-\eta\zeta}$ 

2. Choose which good to consume Quality:  $\phi_1 > \phi_2$ 

$$\max\left\{ V\left(a^{i}, p_{1}\right) + \zeta_{1}^{i} + \frac{1}{\eta}\log\phi_{1}, V\left(a^{i}, p_{2}\right) + \zeta_{2}^{i} + \frac{1}{\eta}\log\phi_{2} \right\}$$

3. Intensive margin

$$V\left(a^{i}, p_{j}\right) = u\left(q_{j}^{i}\right)$$
 subject to  $p_{j}q_{j}^{i} = a^{i}$ 

$$\rho_1^i = \frac{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\}}{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\} + \phi_2 \exp\left\{\eta V(a^i, p_2)\right\}}$$

$$\rho_1^i = \frac{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\}}{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\} + \phi_2 \exp\left\{\eta V(a^i, p_2)\right\}}$$

$$\varepsilon_{1}^{\rho,i} = \underbrace{\frac{\partial \log \rho_{1}^{i}}{\partial V(a^{i}, p_{1})}}_{\text{Size-based market power}} \times - \frac{\frac{\partial V(a^{i}, p_{1})}{\partial \log p_{1}}}{\text{Household heterogeneity}}$$

$$\rho_1^i = \frac{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\}}{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\} + \phi_2 \exp\left\{\eta V(a^i, p_2)\right\}}$$

$$\varepsilon_{1}^{\rho,i} = \eta\left(1-\rho_{1}^{i}\right) \times -\frac{\partial V(a', p_{1})}{\partial \log p_{1}}$$
  
Size-based market power Household heterogeneity

$$\rho_1^i = \frac{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\}}{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\} + \phi_2 \exp\left\{\eta V(a^i, p_2)\right\}}$$

$$\varepsilon_{1}^{\rho,i} = \eta\left(1-\rho_{1}^{i}\right) \times -\frac{\partial V(a', p_{1})}{\partial \log p_{1}}$$
  
Size-based market power Household heterogeneity

- Rich households
  - ✓ Are less price sensitive

$$\rho_1^i = \frac{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\}}{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\} + \phi_2 \exp\left\{\eta V(a^i, p_2)\right\}}$$

$$\varepsilon_{1}^{\rho,i} = \eta\left(1-\rho_{1}^{i}\right) \times -\frac{\frac{\partial V(a', p_{1})}{\partial \log p_{1}}}{\text{Size-based market power}} + \frac{\partial V(a', p_{1})}{\partial \log p_{1}}$$

- Rich households
  - ✓ Are less price sensitive
  - $\checkmark\,$  Consume higher priced goods within the same market

$$\rho_1^i = \frac{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\}}{\phi_1 \exp\left\{\eta V(a^i, p_1)\right\} + \phi_2 \exp\left\{\eta V(a^i, p_2)\right\}}$$

$$\varepsilon_{1}^{\rho,i} = \eta \left(1 - \rho_{1}^{i}\right) \times \left(q_{1}^{i}\right)^{-(\sigma-1)}$$
Size-based market power Household heterogeneity

- Rich households
  - ✓ Are less price sensitive
  - $\checkmark\,$  Consume higher priced goods within the same market

## Firm price setting

- Demand

$$x_1 = 
ho_1^L q_1^L + 
ho_1^H q_1^H$$

- Pricing

$$p_1^* = rac{arepsilon_1}{arepsilon_1 - 1} \, \overline{mc}$$
 ,  $arepsilon_1 = \sum_i \left( rac{
ho_1^i q_1^i}{x_1} 
ight) arepsilon_j^i$ 

## Firm price setting

- Demand

$$x_1 = 
ho_1^L q_1^L + 
ho_1^H q_1^H$$

- Pricing

$$p_1^* = \frac{\varepsilon_1}{\varepsilon_1 - 1} \overline{mc} \quad , \quad \varepsilon_1 = \sum_i \left( \frac{\rho_1^i q_1^i}{x_1} \right) \left[ \eta \left( 1 - \rho_1^i \right) \left( q_1^i \right)^{-(\sigma-1)} + 1 \right]$$

## Firm price setting

- Demand

$$x_1 = 
ho_1^L q_1^L + 
ho_1^H q_1^H$$

- Pricing

$$p_1^* = \frac{\varepsilon_1}{\varepsilon_1 - 1} \overline{mc} \quad , \quad \varepsilon_1 = \sum_i \left( \frac{\rho_1^i q_1^i}{x_1} \right) \left[ \eta \left( 1 - \rho_1^i \right) \left( q_1^i \right)^{-(\sigma - 1)} + 1 \right]$$

- Large firms
  - ✓ Sell higher quality goods
  - ✓ To more customers
  - ✓ At higher markups

Size-based market power: Higher quality  $\rightarrow$  Higher market share  $\rightarrow$  Higher prices Household heterogeneity: Higher prices  $\rightarrow$  Less elastic customers  $\rightarrow$  Higher prices Quantitative model extends to Nested logit and Bewley

#### Nested logit

- Many markets  $m \in \mathcal{M}$ , each has J firms  $j \in \{1, \dots, J\}$
- Pareto distribution of quality  $\phi_j$

## **Bewley**

- CRRA utility
- Stochastic income Wet, quarterly
- Labor income tax au, receive transfers au and profits lump-sum
- Save in government debt

Quantitative model extends to Nested logit and Bewley

#### Nested logit

- Many markets  $m \in \mathcal{M}$ , each has J firms  $j \in \{1, \ldots, J\}$
- Pareto distribution of quality  $\phi_j$

## Bewley

- CRRA utility
- Stochastic income Wet, quarterly
- Labor income tax au, receive transfers au and profits lump-sum
- Save in government debt

$$\frac{\partial V\left(a^{i}, p_{j}\right)}{\partial \log p_{j}} \implies \frac{\partial V\left(a^{i}_{t}, e^{i}_{t}, p_{jm}\right)}{\partial \log p_{jm}}$$

 $\eta, \theta, J$ 

ξ

 $\sigma$ 

### 1. Follow Kaplan Violante (2024)

- Income process, borrowing constraint, taxes, transfers, r,  $\beta$ 

#### 1. Follow Kaplan Violante (2024)

- Income process, borrowing constraint, taxes, transfers, r,  $\beta$
- 2. Replicate calibration strategy in Edmond Midrigan Xu (2023)
  - Firms-per-market J, Pareto tail of quality distribution  $\xi$ , Taste distribution  $\eta$ ,  $\theta$
  - Moments: Concentration, Average markup
  - Important: Positive empirical relationship between Firms' share of sales and Markups

#### 1. Follow Kaplan Violante (2024)

- Income process, borrowing constraint, taxes, transfers, r,  $\beta$
- 2. Replicate calibration strategy in Edmond Midrigan Xu (2023)
  - Firms-per-market J, Pareto tail of quality distribution  $\xi$ , Taste distribution  $\eta$ ,  $\theta$
  - Moments: Concentration, Average markup
  - Important: Positive empirical relationship between Firms' share of sales and Markups
- 3. Replicate regressions in Auer, Burstein, Lein, Vogel (2024)
  - Households with  $3 \times$  less income have elasticities that are higher by 2.4
  - Requires  $\sigma = 2.6$

#### Disciplined by recent measurement

- ✓ Rich households are less price sensitive than poor households, and buy high priced varieties
- ✓ Larger firms sell higher quality goods to more customers, at higher markups

## Model consistent with other important statistics

- How firms' markups respond to changes in household wealth
  - An increase in wealth increases markups

Stroebel Vavra (2019)

- Which firms are exposed to which households
  - High price goods within a market sold more to high income households Jaimovich Rebelo Wong Zhang (2019)
  - High sales firms within a market sell more to high income households

Faber Fally (2022)

### From here

#### 1. Compute the elasticity of the aggregate markup to a fiscal transfer

- Deficit financed one-time increase in transfers T by 1% of GDP
- Holding  $\overline{G}$  and  $\overline{r}$  fixed
- Increase labor income taxes to smoothly repay debt
- 2. Apply this to the increase in transfers in 2020-2021
- 3. How the data disciplines this result



- Elasticity of aggregate markup *P*/*W* is **0.26**.



- Consistent with excess savings of households in the pandemic (Ganong et al, 2024)



- Consistent with 'cheapflation' (Cavallo, Kryvstov, 2024)



- McDonald's CEO, late 2022 - "Resilient customers... strategic price increases"

#### - 2020 - 2021

- Increase in transfers: 9.3% of GDP
- Increase in savings: 8.8% of GDP
- 2022
  - P/W peaks at 5.9% above trend
  - PCE price level P is 7.2% above trend
- Applying our elasticity
  - Increase in transfers of 9.3% of GDP increases the aggregate markup P/W by 2.5%
  - Accounts for 41% of the 5.9% increase in P/W

## 3. How the data disciplines this result

$$\varepsilon_{jg}^{\rho \, i} = \underbrace{\left[\theta \, \rho_{j|m}^{i} + \eta \left(1 - \rho_{j|m}^{i}\right)\right]}_{\text{Size based market power}} \underbrace{\left(q_{jm}^{i}\right)^{-(\sigma-1)}}_{\text{Household heterogeneity}}$$

|                                                        | Baseline       |  |
|--------------------------------------------------------|----------------|--|
| Moments                                                |                |  |
| Elasticities by Income - Auer et al (2024)             | 2.42           |  |
| Concentration, Average markup, Markups-by-Market-share |                |  |
| Parameters                                             |                |  |
| CRRA - $\sigma$                                        | 2.6            |  |
| Substitutability between / within                      | $	heta < \eta$ |  |
| Results                                                |                |  |
| 1. Aggregate markup response to fiscal expansion       |                |  |
| Share of empirical increase in $P/W$                   | 41 %           |  |
| 2. Decomposition of large vs. small firm markups       |                |  |
| Share due to household heterogeneity                   | 58 %           |  |

## 3. How the data disciplines this result

$$\varepsilon_{jg}^{\rho \, i} = \underbrace{ \begin{bmatrix} \theta \, \rho_{j|m}^{i} + \eta \left( 1 - \rho_{j|m}^{i} \right) \end{bmatrix}}_{\text{Size based market power}} \underbrace{ \begin{pmatrix} q_{jm}^{i} \end{pmatrix}^{-(\sigma-1)}}_{\text{Household heterogeneity}}$$

|                                                        | Baseline       |                   |              |
|--------------------------------------------------------|----------------|-------------------|--------------|
| Moments                                                |                |                   |              |
| Elasticities by Income - Auer et al (2024)             | 0              | 2.42              | 2.88         |
| Concentration, Average markup, Markups-by-Market-share | -              | – Same as baselin | e —          |
| Parameters                                             |                |                   |              |
| CRRA - $\sigma$                                        | 1              | 2.6               | 3.4          |
| Substitutability between / within                      | $	heta < \eta$ | $	heta < \eta$    | $	heta=\eta$ |
| Results                                                |                |                   |              |
| 1. Aggregate markup response to fiscal expansion       |                |                   |              |
| Share of empirical increase in $P/W$                   | 0%             | 41 %              | 66 %         |
| 2. Decomposition of large vs. small firm markups       |                |                   |              |
| Share due to household heterogeneity                   | 0%             | 58 %              | 100 %        |

#### New quantitative theory

- Flexible framework that integrates IO into frontier HA macro
- The key link between the two is the endogenous marginal value of wealth
- 1. New perspective on fiscal policy Expansionary policies produce 'markup shocks'
  - Policies studied in incomplete markets settings have markup implications

Child Tax Credit expansion, UBI, Medical insurance, Tax progressivity, Debt relief, ...

#### 2. New perspective on markups - Household heterogeneity is central

- Counterfactuals studied in incomplete markets settings have markup implications

Income inequality, Income shocks, Financial instruments, ...

# **APPENDIX SLIDES**

## RELAXING THE ONE-GOOD PER-PERIOD ASSUMPTION

#### The restriction to a single good each period is not important

- Appendix has important variations with infinitely many purchases per quarter:

Continuous time model - Shrink the period length. Keep the basket size

Shopping cart model - Keep the period length. Expand the basket size

### The divisibility of the good is not important

- Consider utility over an 'outside' good  $u(c^i)$
- Then  $u'(c^i)$  shows up in elasticity formula

$$u(c^{i}) + \psi_{jm} + \zeta^{i}_{jm}$$
  
 $c^{i} + p_{jm} + a^{i\prime} = \dots$ 

# CALIBRATION: ABLV / JRWZ

## Parameters - Disciplining $\sigma$

Auer et al (2024) - Unequal Expenditure Switching: Evidence from Switzerland
Data

$$\log\left(\frac{b_{Mt}^{i}}{b_{Dt}^{i}}\right) = \beta_{0} - \beta_{1}\log\left(\frac{p_{Mt}}{p_{Dt}}\right) + \beta_{2}\log e^{i}\log\left(\frac{p_{Mt}}{p_{Dt}}\right) + \varepsilon_{it} \quad , \quad \widehat{\beta}_{2} = 2.20$$
#### Parameters - Disciplining $\sigma$

Auer et al (2024) - Unequal Expenditure Switching: Evidence from Switzerland
Data

$$\log\left(\frac{b_{Mt}^{i}}{b_{Dt}^{i}}\right) = \beta_{0} - \beta_{1}\log\left(\frac{p_{Mt}}{p_{Dt}}\right) + \beta_{2}\log e^{i}\log\left(\frac{p_{Mt}}{p_{Dt}}\right) + \varepsilon_{it} \quad , \quad \widehat{\beta}_{2} = 2.20$$

#### Model

- Compare shares on goods  $\{M, D\} \in g$  across low / high income  $i \in \{L, H\}$
- To a first order around  $p_{Dg}$  then  $e_L$ :

$$\log\left(\frac{b_{Mg}^{H}}{b_{Dg}^{H}}\right) - \log\left(\frac{b_{Mg}^{L}}{b_{Dg}^{L}}\right) = \underbrace{\epsilon_{Dg}^{L}\left(\frac{\partial \log c_{Dg}^{L}}{\partial \log e^{L}}\right)\left(-\frac{\partial \log \epsilon_{Mg}^{L}}{\partial \log c_{Mg}^{L}}\right)}_{\text{Coefficient estimated in ABLV}} \log\left(\frac{e^{H}}{e^{L}}\right)\log\left(\frac{p_{Mg}}{p_{Dg}}\right)}$$

#### Parameters - Disciplining $\alpha$

JRWZ (2019) - Trading Up and the Skill Premium

Data - Within-market-time, Across-household differences in prices paid

$$\log P_{mt}^{i} = \lambda_{mt} + \sum_{q=1}^{Q} \beta_{q} \mathbb{1} \left[ q_{dt}^{i} = q \right] + \eta_{mt}^{i} \quad \text{, where} \quad \log P_{mt}^{i} = \sum_{u \in \{m,t\}} \omega_{umt}^{i} \log \overline{P}_{umt}.$$

#### **Refine their approach**

- Define markets *m* as  $Module \times DMA$
- Compute average unit prices  $\overline{P}_{umt}$  of UPC's *u* within these markets
- Rank households by total annual expenditure quantiles  $q_{dt}^i$  within each  $DMA \times Year$
- Result  $\widehat{\beta}_5 \widehat{\beta}_1 = 0.144$

# **RESULTS - NESTED CALIBRATIONS**

## Result 2 - Household heterogeneity accounts for markup differences

|                                                           |                                   | Baseline | Log model      | Monopolistic<br>competition |
|-----------------------------------------------------------|-----------------------------------|----------|----------------|-----------------------------|
|                                                           |                                   |          | $(\sigma = 1)$ | $(\eta = \theta)$           |
|                                                           |                                   | (1)      | (2)            | (3)                         |
| A. Household parameters                                   |                                   |          |                |                             |
| Curvature in consumption                                  | $\sigma$                          | 2.6      | 1              |                             |
| Taste dispersion - Within markets                         | η                                 | 8.9      | 2.12           |                             |
| - Across markets                                          | $\dot{	heta}$                     | 0        | 0              |                             |
| B. Firm parameters                                        |                                   |          |                |                             |
| Tail parameter of Pareto                                  | ξ                                 | 10.9     | 4.1            |                             |
| Decreasing returns                                        | ά                                 | 0.63     | 0.66           |                             |
| C. Moments                                                |                                   |          |                |                             |
| Firms - Top 4 sales share                                 |                                   | 0.30     | 0.30           |                             |
| Firms - Average markup                                    | $\mathbb{E}[\mu_i]$               | 1.25     | 1.25           |                             |
| Firms - Markups and sales shares                          | β <sub>ΕΜΧ</sub>                  | 0.03     | 0.03           |                             |
| Households - Elasticities and income                      | βΑΒΙν                             | 2.20     | 0              |                             |
| Households & Firms - Sorting                              | $\beta_{JRWZ}^5 - \beta_{JRWZ}^1$ | 0.14     | 0              |                             |
| Price dispersion                                          | Std. $[\log p_j]$                 | 0.14     | 0.14           |                             |
| Share of elasticity variation due to h'hold heterogeneity |                                   | 58       | 0              |                             |

Note: All economies have the same interest rate (r), with other parameters recalibrated to match the same level of total differentiated goods expenditure  $(\overline{Z})$ , labor income taxes  $(\tau)$  and transfers (T) to GDP, average assets to average income  $(\beta)$ 

## Result 2 - Household heterogeneity accounts for markup differences

|                                                           |                                   | Baseline | Log model      | Monopolistic competition |
|-----------------------------------------------------------|-----------------------------------|----------|----------------|--------------------------|
|                                                           |                                   |          | $(\sigma = 1)$ | $(\eta = \theta)$        |
|                                                           |                                   | (1)      | (2)            | (3)                      |
| A. Household parameters                                   |                                   |          |                |                          |
| Curvature in consumption                                  | $\sigma$                          | 2.6      | 1              | ↑ 3.4                    |
| Taste dispersion - Within markets                         | η                                 | 8.9      | 2.12           | 11 7                     |
| - Across markets                                          | $\dot{	heta}$                     | 0        | 0              | 11.7                     |
| B. Firm parameters                                        |                                   |          |                |                          |
| Tail parameter of Pareto                                  | ξ                                 | 10.9     | 4.1            | 14.7                     |
| Decreasing returns                                        | α                                 | 0.63     | 0.66           | 0.64                     |
| C. Moments                                                |                                   |          |                |                          |
| Firms - Top 4 sales share                                 |                                   | 0.30     | 0.30           | 0.30                     |
| Firms - Average markup                                    | $\mathbb{E}[\mu_i]$               | 1.25     | 1.25           | 1.25                     |
| Firms - Markups and sales shares                          | βεмχ                              | 0.03     | 0.03           | 0.03                     |
| Households - Elasticities and income                      | βΑΒΙν                             | 2.20     | 0              | <b>↑ 2.62</b>            |
| Households & Firms - Sorting                              | $\beta_{JRWZ}^5 - \beta_{JRWZ}^1$ | 0.14     | 0              | <b>↑ 0.17</b>            |
| Price dispersion                                          | Std. $[\log p_j]$                 | 0.14     | 0.14           | 0.14                     |
| Share of elasticity variation due to h'hold heterogeneity |                                   | 58       | 0              | 100                      |

Note: All economies have the same interest rate (r), with other parameters recalibrated to match the same level of total differentiated goods expenditure  $(\overline{Z})$ , labor income taxes  $(\tau)$  and transfers (T) to GDP, average assets to average income  $(\beta)$ 

## **RESULTS - WELFARE EFFECTS OF MARKUPS**

#### Role of consumer heterogeneity - Welfare effects of markups

Who gains from competitive product markets?

- Follow exercise in Edmond, Midrigan, Xu (2023)
- Implement optimal quantity subsidy  $S_j = s_j^* y_j$ :

$$ho_j^* = rac{arepsilon_j^*}{arepsilon_j^* - 1} \Big[ m c_j^* - s_j^* \Big]$$
 ,  $s_j^* = rac{m c_j^*}{arepsilon_j^*}.$ 

- Financed by lump-sum tax on households:  $S = \sum_{i} S_{i}$ 

#### Who gains from competitive product markets? Poor households.

|               |                                        | Baseline | Optimal<br>Subsidy |
|---------------|----------------------------------------|----------|--------------------|
| A. Statistics | Interest rate                          | 2.00%    | 1.67%              |
|               | Average markup                         | 24%      | 25%                |
|               | EMX slope                              | 0.034    | 0.078              |
| B. Firms      | Total quantities                       |          |                    |
|               | Low quality goods                      |          | -1.66              |
|               | High quality goods                     |          | 4.31               |
| C. Households | Average quality - $\phi_i$             |          |                    |
|               | Poor                                   |          | 2.2                |
|               | Rich                                   |          | -0.9               |
|               | Average consumption                    |          |                    |
|               | Poor                                   |          | -7.9               |
|               | Rich                                   |          | 3.5                |
|               | Average welfare - $\overline{V}(a, e)$ |          |                    |
|               | Poor                                   |          | 46.2               |
|               | Rich                                   |          | -21.9              |

Note: Firms split by top / bottom ouintile of sales in baseline. Households split by top / bottom half of cash-on-hand in baseline. All values are log changes expressed in log points. mongey, Waugh - Pricing inequality

#### Who gains from competitive product markets? Poor households.

|               |                                        | Baseline | Optimal<br>Subsidy |
|---------------|----------------------------------------|----------|--------------------|
| A. Statistics | Interest rate                          | 2.00%    | 2.00%              |
|               | Average markup                         | 24%      | 25%                |
|               | EMX slope                              | 0.034    | 0.077              |
| B. Firms      | Total quantities                       |          |                    |
|               | Low quality goods                      |          | -1.30              |
|               | High quality goods                     |          | 4.83               |
| C. Households | Average quality - $\phi_i$             |          |                    |
|               | Poor                                   |          | 2.3                |
|               | Rich                                   |          | -0.6               |
|               | Average consumption                    |          |                    |
|               | Poor                                   |          | -8.0               |
|               | Rich                                   |          | 2.9                |
|               | Average welfare - $\overline{V}(a, e)$ |          |                    |
|               | Poor                                   |          | 46.1               |
|               | Rich                                   |          | -23.0              |

Note: Firms split by too / bottom quintile of sales in baseline. Households split by top / bottom half of cash-on-hand in baseline. All values are log changes expressed in log points.

p.12/12

## **RESULTS - CROSS-SECTION**

#### 1. Elasticities



- Simple regression:  $\mathbb{E}\left[\varepsilon^{i}|e\right] = \beta_{0} \beta_{1}\log e, \quad \widehat{\beta}_{1} = 2.19$
- Nakamura Zerom (2010) 'Coffee paper' A household with an income 1 s.d. above the mean has a price elasticity about 20% [18.1%] below the price elasticity of the median consumer [8.34].

## 2. Sorting



- At the low quality firm, >50 percent of sales to below median expenditure households

- At the high quality firm, <15 percent of sales to below median expenditure households

## 3. Markups



- High quality firms have: Higher sales, Higher prices, Lower elasticities, Higher markups